Coarse Grained Retrenchment and the Mondex Denial of Service Attacks

Richard Banach
School of Computer Science
University of Manchester
Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk

Abstract

Retrenchment is a framework that allows relatively unre-
stricted system evolution steps to be described in a way that
gives an evolution step some formal content — unlike model
based refinement, whence it emerged, which is inapplica-
ble outside some fairly tightly drawn notion of ‘progress
towards implementation’. In this paper, we introduce a
‘coarse grained’ version of retrenchment, relating to sys-
tem behaviours in the large, and exemplify it on the require-
ments issues surrounding a Denial of Service case study
drawn from the Mondex Purse. We show that the coarse
grained retrenchment framework gives a good account of
this case study.

1. Introduction

Retrenchment [10, 2, 19], which dates back to its first
introduction in the context of the B Method [6, 8, 7], aims
to extend the kind of rigour achievable using model based
refinement techniques [13, 15], to a wider range of scenar-
ios than model based refinement permits. Many system de-
velopment activities, perfectly justified in their own terms,
do not fit the neat monolithic disciplines that typical model
based refinement formulations demand. One characteris-
tic element found in such situations, is the introduction of
features or details into the process, before their abstrac-
tions have been developed at higher levels — refinement
methodologies do not normally allow the more concrete to
be present before the more abstract. Another characteristic
element, is the adaptation (which in logical terms amounts
to contradiction) of previously present properties — re-
finement forbids this, apart perhaps from the mild case of
making underspecification more precise during refinement
(which can be expressed logically as implication rather than
contradiction). Both aspects arise during realistic develop-
ments, which are after all, human driven activities (with all
that that implies), rather than closed logical theories.

Retrenchment aims to redress this imbalance between
idealised developments and real ones. It does this by giv-
ing up some of the ‘completeness’ aspects (to coin a phrase)
found in typical refinement formulations, by introducing the
capacity for greater laxity in what remains, and by focusing
on the ‘proof obligations’ (POs) or ‘verification conditions’
(VCs) that formal developments generate.

Notable among the success stories of retrenchment has
been the Mondex Purse [21]. A good range of Mondex re-
quirements issues that were treated less than ideally (though
cost effectively as regards the techniques of the day), have
been well served by being revisited using retrenchment, eg.:
the boundedness of purse sequence numbers [9]; the bound-
edness of purse exception logs [3]; the use of hash functions
to validate log clearance [4]; the behaviour of balance en-
quiries during Mondex protocol runs [5].

This paper continues the Mondex work, but in a direction
which is novel in two respects. Firstly, it concerns a new re-
quirements aspect of Mondex, namely its vulnerability to
certain kinds of Denial of Service (DOS) attack.' Secondly,
it requires a new development of the retrenchment frame-
work itself, namely its enlargement to deal with extended
behaviours rather than just with effects that concern only
individual system events.

The rest of this paper is as follows. In Section 2 we give
an outline of the Mondex Purse. In Section 3 we describe
the DOS attacks and the fix that mends them (these were
first described in the literature in [20], which included a me-
chanical verification using the KIV theorem prover [1]). In
Section 4 we outline the retrenchment tools we use to de-
scribe the evolution between the DOS-vulnerable and DOS-
immune models. In Section 5 we develop the retrenchment
case study itself. Section 6 concludes.

'We should say immediately that the attacks that we will discuss below
were already envisaged at the time of the original Mondex development,
as confirmed by Susan Stepney, author of [21]. However, the decision
was taken at the time that these vulnerabilities should be tolerated, given
their precise nature (as we discuss below), and most significantly, given the
severe technical limitations of the smartcards of the day (i.e. the mid 90s).

AbTransferOK ¢
AbTransferLost
L] L]
M
L]

Figure 1. The Mondex atomic protocol.

2. The Mondex Purse

In this section we give an outline of the operation of the
Mondex Purse [21]. There are by now several accounts of
the Mondex Purse in the literature. See [17] for a good ac-
count of the various mechanical verifications that have cor-
roborated the original hand-performed proofs. Our account
will differ a little from them since we emphasise those as-
pects salient to the DOS attacks of interest.

Mondex was an industrial scale development of a smart-
card electronic purse application. Mondex money had to be
non-forgeable (to maintain users’ and underwriters’ confi-
dence), but Mondex money was not itself concerned with
whether the transactions it engaged in were honest or not.

Mondex was (almost) the first real product certified to
ITSEC level E6 [14] (these days Common Criteria EAL
7 [16]). Key to this is a refinement from an abstract
model to a concrete one. In Mondex, the abstract model
described atomic operations for money transfer between
purses, whereas the concrete model described a distributed
algorithm that closely models the code for the money trans-
fer protocol actually used.

At the abstract level, illustrated in Fig. 1, in which the
arrows are transitions and the nodes are states, there are
three options. Either the transfer succeeds (AbTransferOK),
or it fails (AbTransferLost), or there is no change of state
(AbIgnore, Mondex-speak for skip). The security invari-
ants of Mondex are defined in terms of this abstract model.
These say that: (i) the sum total of purse balances must
never increase; (ii) all funds must be accounted for. While
the meaning of (i) is obvious, (ii) means that even in the
face of various kinds of protocol failure, the net result has
to be such that it is knowable from the system state when
money has been lost in transit (such knowledge making the
situation recoverable in principle). While AbTransferOK
and AbIgnore plausibly preserve (i) and (ii), AbTransferLost
gives an abstraction (in terms of transfer of money to an
overt ‘lost’ component of the state), that all critically failing
protocol runs must provably adhere to.

At the concrete level, more things happen, illustrated in
the activity diagram Fig. 2, in which the round nodes are
events, the lines are states, and the arrows are messages

To purse

startTo / \ /
ackk
o (9

startFrom\
ide — — idle

idle

From purse

Figure 2. The Mondex concrete protocol.

traveling between the From (donor) purse and the To (recip-
ient) purse. The interface to a purse accepts input messages
and emits output messages, reacting to messages according
to its internal state.

At the start of a transfer, the two purses receive their or-
ders in the startTo and startFrom messages. The startTo and
startFrom tags confirm the two purses’ roles in the transac-
tion, and the message bodies contain the (public) transac-
tion details, (consisting of the transaction amount, and the
transaction’s unique identifier (which is a quadruple con-
sisting of the two purses’ unique ids and the two purses’
internal sequence numbers)). On receipt of the startTo and
startFrom messages, the two purses execute pre-emptive
Aborts® to put them into the idle state. Beyond this point,
the transaction proceeds in secret.

The two purses execute the StartTo and StartFrom
events. These store the current transaction details and in-
crement the respective internal sequence numbers ready for
the next transaction (thus freezing the sequence numbers for
this one). After this, StartTo puts the To purse into the epv
state (expecting payment value) and causes it to send the
encrypted reqx message to the From purse, and StartFrom
puts the From purse into the epr state (expecting payment
request). The reqx message is assumed unforgeable, and
contains the transaction details.

Upon receipt of the reqx message, the From purse decre-
ments its balance, and sends an encrypted valg message
(with the same information as the regg) to the To purse,
going into the epa state (expecting payment ack). Upon re-
ceipt of the valg message, the To purse increments its bal-
ance, and sends an encrypted ackx message (with the same
information as the valk) to the From purse, going back into
the idle state. Upon receipt of the ackx message, the From
purse returns to the idle state.

The tag and contents of each message received are
checked against the current purse state. If there is anything
amiss, the purse can ignore the message or Abort.

2 An Abort resets the purse state to idle unconditionally, and, if the purse
state was either epv or epa previously, posts the details of the transaction
being abandoned in the (small) purse exception log.

To purse

ide—— W idle

epv
(SartTo)
startFrom
\ /Sar 13 \qu /ﬂ] K k(?kk
epr epa

— idle

ae—

From purse

Figure 3. The modified Mondex protocol.

3. The Mondex Denial of Service Attacks

The purse protocol can be proved to preserve the secu-
rity invariants mentioned earlier [21, 17]. Nevertheless, it
admits DOS attacks that adroitly avoid violating them.

The DOS attacks depend on the fact that all the needed
transaction details are public. Consider the following sce-
nario. An attacker obtains, or plausibly invents, the purse
id and sequence number of a genuine From purse, enabling
him to impursonate it, becoming a FakeFrom purse. He can
offer these details as part of transaction initiation to a victim
To purse. The To purse finds the details credible, embarks
on a transaction, and emits a reqx message. But the trans-
action has no genuine counterparty, so the expected reply
will not come, and the To purse has no option but to eventu-
ally Abort. Since it is in the critical epv state, it records the
transaction details in its log. After a few such episodes, the
log, which we noted in footnote 2 is small, fills up. At this
point the purse becomes disabled, since normal log avail-
ability (i.e. the ability to insert another entry) is crucial to
the preservation of the security invariants. So, with a full
log, new transactions cannot be started in case they fail.

We can go further. Suppose an attacker gets temporary
access to a genuine From purse, obtaining its id and se-
quence number. He then uses this in an instance of the pre-
ceding scenario, and collects the reqgx message that the To
purse issues. He then impursonates the To purse, becom-
ing a FakeTo purse. Assuming that the From purse has not
in the meantime engaged in any transactions, its sequence
number is as before. Therefore the FakeTo purse can ini-
tiate a transaction with a credible startFrom message, and
once the From purse is in the epr state, can offer it the pre-
viously collected reqx message obtained from the genuine
To purse. This is decrypted by the From purse, which finds
nothing amiss and thus decrements its balance and sends the
money in a valy message. Of course the attacker can use
this to give the money to the genuine To purse (provided it
has not yet Aborted?), but since he is an attacker, benefiting
the To purse is not his aim.

3Note that once the To purse has Aborted from the epv state, the subse-

The net result of this sequence of events is that the From
purse has been deprived of the amount of the fake trans-
action. The process worked, because the attacker in effect
played the role of the message transmission medium in a
genuine transfer. As far as the Mondex security invariants
g0, nothing is amiss, for the following reasons. Both purses
eventually have to Abort. Since the To purse is in epv and
the From purse is in epa, both purses log the transaction
when they Abort. The two log entries match, which is the
key criterion that enables the fact that that the Mondex sys-
tem lost the valg message in transit —a situation that is re-
coverable by design— to be deduced.

The big difference between these scenarios and the loss
of a valg message during a genuine transaction, is that ei-
ther or both purses’ owners may be unaware of what has
happened, and may thus eventually need to engage in a non-
standard recovery (i.e. one without the active co-operation
of both purses) to restore the missing funds. By contrast, in
a standard recovery, both purses readily co-operate in mak-
ing their logs available to the bank, in order that it may con-
firm the matching entries characteristic of this eventuality.

So, as in most DOS scenarios, the situation depends on
the relationship between the details of what has been for-
malised, and the wider requirements picture. The one fact
that we can pinpoint in the formal structures that singles out
the DOS scenarios, is that a genuine TO purse may be per-
suaded to start a transaction without a corresponding start
from a genuine From purse. This is a situation that is easy
to remedy with a small change in the purse protocol.

Fig. 3 shows what is needed. Instead of both of the start
events relying on completely public information, as above,
we keep the sequence numbers secret throughout, allow-
ing their use in a challenge-response exchange. Thus there
is only one external start message, the startFrom message.
This contains the purse ids and amount to be tranfered, but
not the sequence numbers. Its processing by the From purse
during the StartFrom event now causes the sending of a
starty message, this time encrypted, to the To purse, con-
taining purse ids, amount and From purse sequence num-
ber. Upon decryption by the To purse during the StartTo
event, the To purse sequence number is added to the startg
message contents to form the reqx message, for use in the
ensuing Reg event. When the reqx message is received by
the From purse, it can check that the correct From purse se-
quence number has been included, confirming that a prop-
erly constituted transaction is under way.

4. Coarse Grained Retrenchment

Retrenchment aims to bring some of the rigour charac-
teristic of formal refinement, to situations of system model

quent arrival of the missing valx message will be ignored.

evolution that fall outside refinement’s remit. It does this
by noting that the key element shared by all refinement
methodologies, is a simulation criterion, that via theoreti-
cal considerations specific to the refinement approach under
consideration, yield VCs, which turn out to be very similar
across approaches. Retrenchment manipulates the simula-
tion idea to make it more flexible and expressive.

Suppose we have an abstract system Abs and a con-
crete one Conc, both of which are viewed as transition sys-
tems. Suppose we have an abstract operation Opy (u, i, 0, u’)
(with before- and after- states u,u’ and input/output i, 0)
and a concrete operation Opc(v,j,p,v') (with before- and
after- states v, v' and input/output j, p). Suppose the abstract
and concrete state spaces are connected via a retrieve re-
lation R(u,v), and the I/O spaces via relations In(i,j) and
Out(o,p). Then, provided the ususal abstract-concrete ini-
tialisation holds, which demands that for every concrete ini-
tial state there is an abstract initial state such that the retrieve
relation holds between them, we say that Conc refines Abs
if the following forward simulation condition holds:

R(M7V) A OPC(V>j7P7V/) A 1)’[(17]) =
(3u',0 @ Ops(u,i,o,u’) A Out(o,p) A R(u',V')) (1)

Suitably fortified by additional conditions on inputs etc., (1)
is typically used in an inductive process that makes every
concrete run a realisation of some abstract one. This all
amounts to a straightforward form of model based refine-
ment.

In retrenchment, we focus on (1), seeking ways to make
it more widely applicable. We recognise that: (i) it may not
be appropriate to demand that all steps of a concrete op-
eration have abstract counterparts; (ii) some corresponding
pairs of steps may not be able to re-establish R(u, v), neces-
sitating an ‘escape clause’; (iii) not all properties of interest
regarding a corresponding pair of steps arise as pure ‘state
properties’, necessitating the presence of relations featuring
more variables. On this basis we generalise (1) to:

R(M, V) A WOp(iaja u, V) A Opc(vaj7p7 V/) = (3 Mla oe
Opa(u,i,o,u’) A (R(u',v') A Ogp(o,p,u'v',u,v,i,0))
V Cop(u'V',0,p,u,v,i,0))) 2)

In (2), the previous In(i,j) has become the operation(pair)-
specific ‘within relation’ W, (i,j,u,v), featuring all the
‘before’ information.* The previous Out(o,p) has become
the operation(pair)-specific ‘output relation” Og, (0, p, u'v’,
u,v,i,0), featuring both the ‘before’ and ‘after’ informa-
tion. And there is now also a ‘concedes relation’ Cop, (u'V',
0,p,u,v,i,0) in all the variables, occurring disjunctively,
allowing the description of exceptional cases. The collec-
tion of Wop, Ogp, Co, relations, indexed by operation pairs,
together with the retrieve relation R, is called the retrench-
ment data. This gives us conventional retrenchment.

“Note that the ‘op” in W, is shorthand for the pair (Op4, Opc).

Since (2) no longer re-establishes something in the con-
clusion that previously occurred in the hypotheses, it is less
obviously useful for inductively based reasoning — gener-
ally we need to add greater levels of detail to get global
results.

Thus far, we have tacitly assumed that individual oper-
ation calls correspond to individual steps of the transition
relation. Operations are thus like the events that we used to
describe the Mondex protocol. In coarse grained retrench-
ment we let an operation consist of several occurrences of
events, and we widen the range of variables that we per-
mit to occur in the various operation-specific elements of
the retrenchment data to include what is needed for writing
arbitrary temporal properties.

With this liberalisation, a number of issues that can be
quietly ignored in the single step world need to be consid-
ered. Do the steps that constitute an individual operation
call have to occur consecutively, or can they be interleaved
with other system activities? Does the system naturally par-
tition into the activities of a number of (more or less au-
tonomous) agents, or is the perspective whole-system? And
if the former, do the steps in an operation describe whole-
system state changes, or are they focused on just the local
states of the agents? These questions can have different an-
swers according to what is convenient for a given applica-
tion area. For us, the greatest convenience will come from
an agent-centric view, describing global state changes via
local, agent-centric state changes, with the assumption that
non-local state does not change during a step, and allowing
interleaving of other system actvities between the individ-
ual steps of an operation provided they do not modify the
state being used by the operation (which may of course be
easy to arrange in practice, or not).

5. The DOS Coarse Grained Retrenchment

The attacks that we described in Section 3 emerged dur-
ing the formal verification in [20] (to the extent that desir-
able properties of a secure protocol turned out to be un-
provable in the original Mondex protocol). In this paper
our principal concern is not that aspect, but with mod-
elling the relationship between DOS-vulnerable and DOS-
immune versions of the protocol via retrenchment.

We describe the phenomena of interest using a stripped
down version of the Mondex protocols. Since attacks come
from the environment and purses can only manipulate their
own state, it will be sufficient to restrict to a world of two
purses only, the earlier From and To purses. This enables us
to reduce transaction ids to just the From and To sequence
numbers, the purse ids becoming implicit. The state vari-
ables have names of the form XYvar where: X € {D,D}
represents DOS-vulnerable and DOS-immune protocols re-
spectively; Y € {F, T} represents the From and To purses

respectively; and var is the actual variable name. The state
variables we will need in our simplified system models are:
XYst (purse state); XYpd (payment details) — which is a
data structure consisting of Fseq, Tseq,amt (From and To
sequence numbers, and transaction amount); XYbal (purse
balance); XYnsn (the sequence number of the next transac-
tion); and XYlog (purse log).

The events have names of the form XYEvent where X and
Y are as before. When discussing a single event, provided
we retain the X and Y in the event name, we can suppress
them in the variable names since each event is executed by
a single purse, and purses can only manipulate their own
state. We write events thus:

beforeState -(input, EventName, output)> afterState
where predicate 3)

where the afterState variables are primed, and predicate
contains any facts that cannot be conveniently squeezed into
the signature. Variables not mentioned are assumed not to
change. With these conventions the Var event in the D sys-
tem model can be written as:

(epv, pd, bal) -(valg, DTVal, ackk)= (idle, pd, bal + pd.amt)
where valg.pd = pd = ackg.pd (€))

This makes it explicit that we are discussing the Val event
in the DOS-vulnerable model, which is executed by the To
purse. It takes an input which is a valg message, the ‘x’ sub-
script indicating that it is encrypted, and which contains a
payment details data structure. Provided that the To purse’s
payment details agree with those in the valg message, the
purse increments its balance by the transaction amount and
emits an ackx message, which again contains the same pay-
ment details. The pd, nsn and log variables don’t change.
Neither do the state variables of the From purse. Since we
only have the two purses, the source and destination of each
message can be implicit, so events’ inputs and outputs can
omit message addressing information.

The above establishes our conventions. We now set out
the ingredients of our investigation. We start with the DOS-
vulnerable model, in which the most significant events for
us are as follows.

(idle, pd, bal, nsn) -((Fseq, Tseq, amt), DF StartFrom,)
(epr,pd’, bal,nsn’)
where nsn = Fseq A amt < bal \ nsn’ > nsn N\
pd' = (Fseq, Tseq, amt) (5)

(idle, pd, bal, nsn) -((Fseq, Tseq,amt), DTStartTo, reqy)
(epv, pd', bal, nsn")
where nsn = Tseq A\ nsn’ > nsn A
pd' = reqg.pd = (Fseq, Tseq, amt) (6)
(st,pd, bal, nsn, log) -(, XYAbort,)> (st', pd, bal, nsn, log")
where st = (|log'| = MAX ? blocked : idle) N
log’" = log U (st € {epv,epa} ? {pd} : @) (7

In the above we left empty slots where I/O was absent, and
a single definition suffices for the Aborts of both From and
To purses, in both the D model and the D model below.
Note that in these Abort events, we have introduced the new
purse state blocked, which a purse enters when its log fills
to the maximum during the execution of the Abort, prevent-
ing new transactions (which are guarded on purses being
in the idle state). This goes beyond the modelling of [21],
described above, but is obviously relevant to our analysis.
The above D model events are complemented by event:

(epr,pd, bal) -(reqx, DFReq, valg) (epr, pd, bal — pd.amt)
where valg.pd = pd = reqg.pd ®)

and event DTVal in (4) above, and by event DFAck, which
just checks the incoming acky and returns to idle. Finally,
we will need the XYIncrease event:

(st,pd, bal, nsn) -(, XYIncrease,) (st, pd, bal, nsn")
where nsn’ > nsn)

which obviously just increases the local purse sequence
number, and is the same for both agents and both models.

For the DOS-immune model, aside from what has al-
ready been covered, we have the following.

(idle, pd, bal, nsn) -(amt, DF StartFrom, starty)>
(epr,pd’, bal, nsn')
where amt < bal A nsn’ > nsn N\
pd' .(Fseq,amt) = startx.pd = (nsn, amt) (10)

(idle, pd, bal, nsn) -(startg, DTStartTo, reqg)>
(epv, pd’, bal, nsn’)
where nsn’ > nsn A pd’ = reqg.pd =
(startg.Fseq, nsn, startg.amt) (11)

The Req event corresponding to the above is:

(epr, pd, bal) -(reqx, DFReq, valg)~ (epr, pd, bal — pd.amt)
where reqk.pd.(Fseq,amt) = pd.(Fseq,amt) N
valg.pd = pd' = reqy.pd (12)

and the Val and Ack events in the D model are like their D
model counterparts.

This completes our description of the models. Regarding
the gap between the two models, there are a number of ways
that it can be bridged using retrenchment. We will describe
the most useful of them, and comment on alternatives later.

We use coarse grained retrenchment, in which we speak
about the properties of specific collections of several events
of the underlying system model. In such circumstances
there are often very many sequencings of the events of in-
terest that are equivalent as far as what is intended goes, and
it is useful to be able to treat them together, regarding them
as different facets of the same thing. A convenient way of
accomplishing this is to use event structures [23, 18, 22],
as a notational device to subsume the different interleavings
arising from the execution of independent events. Partic-
ularly convenient are flow event structures (FES) [12] that

@) - (O

e

(@A) =~ @1V

T

CDFStartFranD —#— CDFAbvrtFD

Figure 4. A FES for the original Mondex pro-
tocol, highlighting the events of interest.

succinctly capture the fragments of behaviour of interest.

In a FES, there are events, connected by arrows and
hashed links. An arrow from one event to another indicates
causal dependence: the event at the head of the arrow can-
not execute until the event at the tail has executed. A hashed
link represents conflict: once the event at one end of the link
has executed, the event at the other end remains blocked
forever. Events may be executed as soon as all their needed
prior causes have been executed, and provided no event with
which they are in conflict has executed earlier. In this way,
a single FES diagram can represent a large number of exe-
cutions of sequences of events, depending on which choices
are made of which event to execute next, at various points.

Fig. 4 shows a FES for the original Mondex protocol,
with the events in rounded boxes. A line of dashes sepa-
rates the To purse events and the From purse events. We
have also separated the overall Abort event into its various
cases, depending on which ‘normal’ event it replaces (i.e. is
in conflict with). One can see how a successful run of the
protocol starts with the two Start events in either order, and
then proceeds sequentially.

Fig. 4 highlights the DTStartTo and DTAborty events
(the latter being in conflict with the DTVal event). These
are the events we need for the DOS scenario in the DOS-
vulnerable model.

Apparently, we gain nothing by using FESs here since
these two events are causally dependent. However, below,
we will see that not only are these two To purse events
needed, but we also need to be able to match up the change
in sequence number in the From purse in the other model.
Accordingly, we invite an occurrence of DFIncrease to the
party. As is clear from (9), the DFlIncrease event is inde-
pendent of DTStartTo and DTAborty, so it can occur before,
between, or after them. Now, this collection of events, the
original protocol event plus the addition of DFIncrease, can
make up the operation Opp, which we can simply write as a
set: Opp = {DFIncrease, DTStartTo, DTAborty }, since the

(B — 4~ (BFRbor)

-BTAbmtv — # — (DTVal |
S N 207 S Pz

I

|
-\
o

|

Figure 5. A FES for the modified Mondex pro-
tocol, highlighting the events of interest.

FES implicitly gives the allowed orderings.’

Fig. 5 similarly shows a FES for the modified Mon-
dex protocol, the events of interest being again highlighted.
Here the FES is more obviously useful, since it neatly cap-
tures the various ways in which DFAbortg can be sched-
uled with respect to DTStartTo and DTAborty, thus en-
coding three separate interleavings. From these ingredi-
ents we create an operation in the DOS-immune model:
Opy = {DFStartFrom, DFAbortg, DTStartTo, DTAborty }.

We set up a coarse grained retrenchment from Opp to
Opp. The issues to be confronted when creating a coarse
grained retrenchment are: (i) what are the useful coarse
grains to focus on — this has already been addressed in our
choice of Opp and Opy; (ii) what are the retrenchment data
for the retrenched operations — to which we turn now.

The retrieve relation gives a good measure of the extent
to which, when comparing behaviours of two different sys-
tem models, we want them to stay comparable, despite the
inevitable differences that will arise. Here is ours, Rg,:

Rop, = DYvar; = DYvar; A DYvarg = DYvars A ... (13)

This expresses equality between all D model variables and
their D model counterparts.

The within relation says what further facts we need con-
cerning before-data (particularly as regards inputs) in or-
der that the scenario that we wish to describe using this re-
trenchment is properly set up to execute. Here is ours, Wg,:

Wop = ip = (Fseq, Tseq, amt) A j5 = amt (14)

This expresses two facts: firstly that ip, the input to Opp
(which is the input to DTStartTo), is (Fseq, Tseq, amt), the

5When a collection of events makes up an operation, intermediate data
values need to be handled suitably: after-values of one event must be the
before-values of its successor; outputs of one event which are input by
another are similar. External I/O must be interpreted as I/O of the whole
operation. And so on.

complete transaction details; secondly that j5, the input to
Opy (which is the input to DTStartTo), is amt, i.e. just the
transaction amount, without the sequence numbers. So jz is
a projection of ip.

The other two relations of the retrenchment data, say
something about the state of affairs when the courses of
events in the two models spoken of in the retrenchment have
taken place.

The output relation gives a description of the state of af-
fairs, after the facts, under ‘normal running’, i.e. when the
retrieve relation has been re-established. Ours is Og,:

Oop = |DTlog' | = |DTlog| +1 A
|DTlog' | = |DTlog| +1 A
DTst' = DFst’ = DTst' = idle N
DFst' = DFst A
#DFStartFrom' = #DFStartFrom N\
#DFStartFrom' = #DFStartFrom + 1 (15)

This expresses the following facts: (i) in both models, both
To logs have an additional entry corresponding to the failed
To purse (spoof) transaction; (ii) nevertheless, after the way
that we have matched the scenarios in the two models, the
To purses in both models have returned to the idle state, as
has the From purse in the D model, whereas the From purse
in the D model has remained in the state it was in before;
(ii1) the number of occurrences of the DFStartFrom event in
the D model has remained constant, whereas the number of
occurrences of the DFStartFrom event in the D model has
incremented.

Finally the concedes relation. The concedes relation says
something about the state of affairs when the execution of
the events in the operations in question cannot re-establish
the retrieve relation. Ours is Cgp:

Cop = |DTlog' | =|DTlog| +1 A
|DTlog' | = |DTlog| +1 A
DTst' = DFst’ = DTst' = blocked N
DFst' = DFst A
#DFStartFrom' = #DFStartFrom N\
#DFStartFrom' = #DFStartFrom + 1 A
RestSame... (16)

This is very similar to the output relation (15). The notable
differences are that the expicitly mentioned state is blocked
rather than idle, and that we have included RestSame...
This is a shorthand for equalities for the after-values of
the remaining state variables not mentioned in (16), which
would have been taken care of routinely via R in the con-
junction R A Oy, in (2), in the previous case.

The preceding gives the bare bones of our retrenchment.
It is not hard to see that the VC (2) becomes provable with
these ingredients. Note that we have said nothing about
what we assume to be the appropriate relationship between
behaviours in the D and D models when our identified op-
erations are not executing. We have to fix a position on

this before we can make sensible statements about D and D
model behaviours in the large. Given the closeness of the
two models, the most natural thing to require is that other
than during the execution of the two big operations, events
in the two models correspond in a 1-1 manner.

With the relationship between the D and D models now
fully defined, we have a means of translating runs in one
model into runs in the other — only when this is precisely
known can we begin to address the question of what a prop-
erty of runs in one model ‘becomes’ in the other model,
i.e. how system properties translate.

The orientation of the VC (2), in which hypotheses about
D imply the existence of something in D, enables us to
translate runs of the D model into runs of the D model as
follows. Firstly, for simplicity, we restrict to runs which go
to completion; i.e. once a transaction has started it continues
through, either to success, or to the requisite Aborts. Sec-
ondly, given the ‘completion’ assumption, we can partition
the events in the run into sets, each of which consists of the
events for exactly one transaction. Thirdly, we observe that
while the end of one transaction can overlap with the begin-
ning of the next, transactions are effectively serial and we
have a well defined notion of ‘the next transaction’.

Fourthly, one builds a simulation in the D world, of the
D run as follows. For each successive transaction in the D
run, if it consists of a set of events other than those con-
stituting an Opg, we replace each D event by its D world
counterpart, thus creating a D world transaction that accu-
rately mimics the D world one. If however, the transaction
consists of a set of events which is an instance of Opyp, then
we have a choice. Either we proceed as in the previous
case, accurately reflecting the events of the D world one by
one in the D world, or we use the retrenchment of Op, and
replace the D world DFStartFrom and DFAborty events by
the D world DFIncrease event, introducing an instance of
DOS-inducing behaviour into the D world run.

Fixing this relationship between the worlds allows us to
write down some facts relating the D and D worlds. In a
homespun temporal notation we could have for instance:

Aﬁ Ep #OPE = #O0pp 17

This says that for all D world runs (Ap), there exists a D
world run (Ep) such that # Opy; (the number of occurrences
of the D world Opz) equals #Opp (the number of occur-
rences of the D world Opp). This is true since we could
replace every Opp by an Opp in the preceding simulation.
On the other hand, since we do not need to replace all of
them, equally true is:

ORestricting to a world of exactly one To purse and exactly one From
purse, and unidirectional money transfers, obviously facilitates this, but
even in a more complex setup, with many purses, each playing To and
From roles at various times, a suitable serial property survives, as one
would expect for a financial application. See [11].

A; Ep #0pp > #O0pp (18)
Another property of interest concerns the blocked state:
A; Ep O DTst = blocked = < DTst = blocked ~ (19)

This says that for all D world runs that eventually (<) reach
a blocked state for the To purse (DTst = blocked), there
exists a D world run that eventually also reaches blocked
for the To purse. (N.B. In both cases, the blocked state ef-
fectively ends the run since only Abort and Increase remain
enabled in the blocked state in our models.)

6. Conclusions

In this paper we developed a coarse grained approach
to retrenchment, and applied it to the DOS attacks that the
Mondex protocol is vulnerable to. We saw that the tech-
nique gave us a good way of capturing the evolution of
certain system properties. Lack of space prevented us ex-
ploring this as extensively as we would have liked, but the
work here showed that the approach we initiated holds great
promise for investigating the evolution of coarse-grained
and temporal system properties through relatively arbitrary
changes in the system model. This is, in general, certainly
a very challenging question, and one that will be pursued
more extensively elsewhere.

A final remark. In the whole of this paper we have been
exclusively concerned with functional properties. Can sim-
ilar techniques be used for non-functional properties of ap-
plications, such as the famed ‘-ilities’ beloved of the aspect
approach? The view of the author is that they can, pro-
vided one can quantify and compose the relevant aspect in-
formation in a suitable way. This would open the door to
a principled propagation of the aspect-relevant information
throughout the system structure, and as the system evolves.
The details of this also remain as future work.

References

[1] KIV Homepage. hitp://www.informatik.uni-augsburg.de/
lehrstuehle/swt/se/kiv.

[2] R.Banach, C. Jeske, and M. Poppleton. Composition Mech-
anisms for Retrenchment. J. Log. Alg. Prog., 75:209-229,
2008.

[3] R. Banach, C. Jeske, M. Poppleton, and S. Stepney. Re-
trenching the Purse: Finite Exception Logs, and Validating
the Small. In Software Engineering Workshop 30, pages
234-245, Layola College, Columbia, MD, 2006. IEEE.

[4] R. Banach, C. Jeske, M. Poppleton, and S. Stepney. Re-
trenching the Purse: Hashing Injective CLEAR Codes, and
Security Properties. In Second International Symposium on
Leveraging Applications of Formal Methods, pages 82-90,
Paphos, Cyprus, 2006. IEEE.

[5] R. Banach, C. Jeske, M. Poppleton, and S. Stepney. Re-
trenching the Purse: The Balance Enquiry Quandary, and

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

Generalised and (1,1) Forward Refinements. Fundamenta
Informaticae, 77:29-69, 2007.

R. Banach and M. Poppleton. Retrenchment: An Engineer-
ing Variation on Refinement. In 2nd Int. B Conference, vol-
ume 1393 of LNCS, pages 129-147. Springer, 1998.

R. Banach and M. Poppleton. Retrenchment and punctured
simulation. In Proc. IFM’99:Integrated Formal Methods
1999, pages 457-476. Springer, June 1999.

R. Banach and M. Poppleton. Sharp Retrenchment, Modu-
lated Refinement and Simulation. Formal Aspects of Com-
puting, 11:498-540, 1999.

R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Re-
trenching the Purse: Finite Sequence Numbers and the
Tower Pattern. In Formal Methods 2005, volume 3582 of
LNCS, pages 382-398. Springer, 2005.

R. Banach, M. Poppleton, C. Jeske, and S. Stepney. En-
gineering and Theoretical Underpinnings of Retrenchment.
Science of Computer Programing, 67:301-329, 2007.

R. Banach and G. Schellhorn. Atomic Actions, and their
Refinements to Isolated Protocols. Formal Aspects of Com-
puting, 2009. to appear.

G. Boudol. Flow Event Structures and Flow Nets. In Seman-
tics and Systems of Concurrent Processes, Proc. LITP-90,
pages 62-95. Springer LNCS 469, 1990.

W.-P. de Roever and K. Engelhardt. Data Refinement:
Model-Oriented Proof Methods and their Comparison.
Cambridge University Press, 1998.

Department of Trade and Industry. Information Technology
Security Evaluation Criteria, 1991.
http://www.cesg.gov.uk/site/iacs/itsec/media/formal-
docs/ltsec.pdf.

J. Derrick and E. Boiten. Refinement in Z and Object-Z.
FACIT. Springer, 2001.

ISO 15408, v. 3.0 rev. 2. Common Criteria for Information
Security Evaluation, 2005.

C. Jones and J. Woodcock (eds.). Special Issue on Mondex
Verification. Formal Aspects of Computing, 20(1):1-139,
2008.

M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event
Structures and Domains. Journal of Theoretical Computer
Science, 13:85-108, 1981.

Retrenchment Homepage.
http://www.cs.man.ac.uk/retrenchment.

G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and
W. Reif. A Systematic Verification Approach for Mondex
Electronic Purses using ASMs. In Dagstuhl Seminar on Rig-
orous Methods for Software Construction and Analysis, vol-
ume 5115 of LNCS. Springer, 2008.

S. Stepney, D. Cooper, and J. Woodcock. An Electronic
Purse: Specification, Refinement and Proof. Technical Re-
port PRG-126, Oxford University Computing Laboratory,
2000.

G. Winskel. Event Structures. In Brauer and Reisig and
Rozenberg, editor, Advances in Petri Nets, pages 325-392.
Springer LNCS 255, 1986.

G. Winskel and M. Nielsen. Models for Concurrency. In
S. Abramsky, D. Gabbay, and T. Maibaum, editors, Hand-
book of Logic in Computer Science Volume 4 Semantic Mod-
elling, pages 1-148. Oxford Univ. Press, 1995.

