IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY 2010 189

Clear and Precise Specification of Ecological Data
Management Processes and Dataset Provenance

Leon J. Osterweil, Lori A. Clarke, Aaron M. Ellison,
Emery Boose, Rodion Podorozhny, and Alexander Wise

Abstract—With the availability of powerful computational and commu-
nication systems, scientists now readily access large, complicated derived
datasets and build on those results to produce, through further processing,
yet other derived datasets of interest. The scientific processes used to create
such datasets must be clearly documented so that scientists can evaluate
their soundness, reproduce the results, and build upon them in responsible
and appropriate ways. Here, we present the concept of an analytic web,
which defines the scientific processes employed and details the exact appli-
cation of those processes in creating derived datasets. The work described
here is similar to work often referred to as “scientific workflow,” but em-
phasizes the need for a semantically rich, rigorously defined process defi-
nition language. We illustrate the information that comprises an analytic
web for a scientific process that measures and analyzes the flux of water
through a forested watershed. This is a complex and demanding scientific
process that illustrates the benefits of using a semantically rich, executable
language for defining processes and for supporting automatic creation of
process provenance metadata.

Note to Practitioners—The Internet and associated computing capabil-
ities have made it possible for scientists to derive novel datasets through
complex processing of existing datasets that may be collected from many
locations. But scientists rarely document dataset provenance - the set of
processes and a description of how those processes were used - to allow
derived datasets to be recreated. Enabling such recreation is an essential
part of repeatable science, and thus it is imperative that any dataset
generated by scientific computation include provenance metadata, doc-
umentation of the precise way in which that dataset was produced.
Provenance metadata can help assure that scientists and others un-
derstand the value and limitations associated with using that data, but
creating provenance metadata is a difficult and time-consuming problem.
This paper describes an approach for helping scientists deal with the
production and management of their datasets, including the automated
generation of provenance metadata. The approach is based on the use of
a precisely defined process definition language. The language is relatively
clear and easy for scientists to understand, yet it is precise enough to
support their control of the application of computing capabilities to the
generation of datasets, and is also an aid to the management and under-
standing of these datasets. This paper illustrates these ideas by providing
a case study of a specific problem in ecological dataset production and
metadata provenance generation.
scientific

Index Terms—Dataset provenance, definition,

workflow.

process

Manuscript received March 31, 2008; revised October 13, 2008 and January
19, 20009. First published August 04, 2009; current version published January 08,
2010. This paper was recommended for publication by Associate Editor Y. Yang
and Editor Y. Narahari upon evaluation of the reviewers’ comments. This work
was supported in part by the National Science Foundation under Award CCR-
0205575, Award CCR-0427071, and Award IIS-0705772. Any opinions, find-
ings, and conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

L. J. Osterweil, L. A. Clarke, and A. Wise are with the Department of Com-
puter Science, University of Massachusetts, Amherst, MA 01003 USA (e-mail:
ljo@cs.umass.edu; clarke @cs.umass.edu; wise @cs.umass.edu).

A. M. Ellison and E. Boose are with Harvard Forest, Harvard University, Pe-
tersham, MA 01366 USA (e-mail: aellison@fas.harvard.edu; boose @fas.har-
vard.edu).

R. Podorozhny is with Texas State University, San Marcos, TX 78666 USA
(e-mail: rp31 @txstate.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2009.2021774

I. INTRODUCTION

A. The Problem

Modern computation and communication systems have dramatically
changed the way in which science is done. These systems enable sci-
entists to work with datasets and to create models of their research sub-
jects that are far larger and more detailed than were possible in the past.
Faster computing speeds enable far more ambitious analyses of these
models, leading to the production of far greater quantities of derived
scientific datasets. Ever faster global networks make these datasets ac-
cessible to scientists around the world. While these new computational
and communications capabilities have opened up the possibility of ex-
citing new research, they have also led to new challenges and prob-
lems. When new datasets are produced by complex processes, they
are often promulgated without adequate documentation describing how
they were produced. If scientists are to make appropriate use of the
datasets produced by others and avoid misuse by inappropriate appli-
cation of subsequent processing, then it is imperative that they know
how such datasets were produced. Indeed, before scientific results can
be accepted, they should be reproduced by other scientists, as repro-
ducibility is fundamental to science.

An obvious way to address these challenges is to associate with each
dataset, as an annotation, a precise description of the dataset. Such an-
notations, essentially data items that describe data, are called metadata.
There have already been many calls for the use of metadata, which typ-
ically document such details as the date of generation of a dataset, the
name of the investigator, and perhaps some specifications of the hard-
ware and software systems used, as well as details of the individual data
items (variable name, numerical format, unit of measurement, etc.).
We argue that it is necessary to go further. We suggest that an addi-
tional type of metadata, process provenance metadata, be attached to
all datasets, and when necessary to individual data items. The benefits
of such process provenance metadata include facilitating reproduction
of the data by others, expedited identification of data items and datasets
of interest, and better understanding of which forms of subsequent pro-
cessing should, and should not, be applied to data items and datasets.

B. Analytic Webs

The totality of data produced and consumed by a working scientific
team, combined with all the processes used to transform and analyze
those data, comprise a scientific data processing enterprise, that can be
formally represented by what we call an analytic web [6], [12], [22].
An analytic web should provide facilities for producing and accessing
all such data as well as its associated metadata. We propose that ana-
lytic webs be realized by two types of closely interrelated graph struc-
tures, namely dataset derivation graphs (DDGs) and process deriva-
tion graphs (PDGs). The purpose of a DDG is to organize datasets into
a structure based upon the way in which the datasets are derived from
each other. The purpose of a PDG is to define precisely the processes
by which these derivations are performed. Moreover, execution of a
PDG results in the automatic creation of a DDG for each input dataset
upon which the PDG is executed.

In this paper, we provide a concrete example of an analytic web,
using the Little-JIL process definition language [8], [29], [30], to de-
fine a PDG and to produce the DDG. We use this example to illustrate
why rich semantic language features are needed to support scientific
workflow.

II. MOTIVATING EXAMPLE

Measuring and forecasting water flux and storage in the ecosystem is
of tremendous importance to society, and a central focus of major sci-

1545-5955/$26.00 © 2009 IEEE

Authorized licensed use limited to: Harvard University SEAS. Downloaded on January 25, 2010 at 16:03 from IEEE Xplore. Restrictions apply.

190 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY 2010

entific investigation efforts, such as NEON (http://www.neoninc.org/)
and the Waters Network (http://www.watersnet.org/). Such fore-
casts require detailed hydrological measurements of natural and
human-dominated ecosystems. These measurements come from
networks of real-time sensors and are subjected to elaborate real-time
adjustments and to considerable, perhaps iterative, postprocessing
over ensuing months or years.

A group of ecologists at the Harvard Forest Long-Term Ecolog-
ical Research site (http://harvardforest.fas.harvard.edu/) is designing a
real-time system to calculate change in water storage using the water
balance equation: dS = P — ET — @, where equation inputs come
initially from five real-time data streams.

 Precipitation (P): 15-min precipitation totals (P1, P2) mea-
sured at two rain gauges to guard against missing data due to
sensor drift and failure.

¢ Surface Discharge (Q): 15-min average stream flow values mea-
sured at a stream gauge.

« Evapotranspiration (ET): 30-min average ET values measured
at an eddy-flux tower.

* Photosynthetically active radiation (PAR): 30-min average
PAR values which can be used to estimate ET when it cannot be
accurately measured directly

This system will incorporate three features that are typical of virtu-
ally any sensor network and raise challenging issues for dataset devel-
opment and provenance documentation.

1) Real-time quality control entails nontrivial processing, much of

it determined on the fly, which may cause different data items in
a dataset to have different process provenance. For example, such
systems may incorporate duplicate sensors (here, P1 and P2),
and elaborate rules for value selection. Thus, in this case, two
precipitation measurements are taken, with rules about what to
do when one sensor fails to deliver a value, and different actions
to be taken if the values differ by different specified amounts.
Regularly scheduled postprocessing of data (e.g., after 30 days)
is used so that individual imputed data values can be computed
using models that take into account values coming from both pre-
ceding and subsequent measurements.
Alternative past measurements also may become available and
may then be included in additional datasets. This may be desir-
able, for example, to make use of recent measurements that did
not arrive in time for real-time processing, to correct earlier mea-
surements as a result of later detection of sensor drift, or to replace
or impute faulty or missing values with measurements from other
sources.

Our experience showed that these features significantly complicated
attempts to model the Water Flux data processing process and that pow-
erful process modeling language features helped to address these com-
plications.

2

~

3

~

III. PROPOSED MODEL OF AN ANALYTIC WEB

In this section, we describe formalisms used to define the graphs
comprising analytic webs.

A. Dataset Derivation Graph

A DDG documents the specific data items or dataset instances
created when a dataset developer applies processes, using specific
tools and subprocesses on specific input data items or dataset in-
stances. A DDG thus is a representation of the process provenance
metadata needed to specify precisely how a dataset was generated and
to support reproduction of the dataset by other scientists. The DDG
illustrated here uses rectangles to represent specific data items and
dataset instances and ovals to represent specific tools or subprocess

~ . /
- Tief <

. Inmal Data S

Sensor data

/ “Select Values Select Values

rom Sensor data/ Cons:denng first /
‘ S crealed Models s
R —) T
Selected data 1 / T
h /

Initial Models

| [selected data 2 } I W
7? . / Select Values
— “Create Models \/ I Considering secory
\from Selscted data 1/ ~Create Models —_Models -

,‘ \Emm Se/ected data 2~ /
]
| Newly created / { Selected data 3}
|@and ET Models Semnd /
Qand ET Models /

“Apply New\ /
< —Models // Apply Secon?) /
J\Aodel&
\ A A “ . T
Q,ET 1
— QET 2

Fig. 1. DDG showing the complete provenance of Selected data 3.

instances. There is an edge from each data item and dataset instance
node to the process instance node from which it was derived. Each
oval process instance node is connected by one or more edges to the
data item(s) and dataset instance(s) that it used as input(s) to derive the
indicated output data item or dataset instance. Each time a process is
executed, a new set of data items and dataset instances is created, and
these data items and dataset instances, as well as the process instances
that created them, must be added as nodes of the evolving DDG. Each
DDG node instance can be stored independently with a unique URL
for identification.

To make this clearer, Fig. 1 illustrates a DDG that could have been
generated by executing a sequence of tools and subprocesses. This
DDG shows the result of two iterations through a processing loop, re-
sulting in the creation of three instances of Selected data, denoted
here by Selected data 1, Selected data 2, and Selected data 3.
Selected data 1 is simply the set of data items that resulted from
filtering initial real-time data using specific filtering models. This gen-
erally results in a dataset where some data item values are missing,
most often due to intentional deletion. Selected data 2 results from
applying to those dataset models that have been created as a conse-
quence of examining Selected data 1, thereby filling in missing data
item values and replacing others. Selected data 3 results from ap-
plying subsequently created models to Selected data 2. Although not
shown, each of the data items and tools represented in this figure would
also contain metadata annotations with detailed information such as
the version of the tool, execution platform, parameter settings, scien-
tists involved, and date of creation or derivation. This DDG provides
documentation of the exact processing steps that were taken to produce
these datasets.

B. Process Derivation Graphs

A PDG is a precise representation of the procedural steps that might
be used to process data items and datasets in a scientific process. Many
different formalisms could be used to define PDGs. But our example
suggests that semantic issues, such as concurrency, abstraction, excep-
tion handling, and agent specification, are important to the clear spec-
ification of actual scientific processes. In this paper, we use Little-JIL,
a visual process definition language, originally developed for defining
software engineering processes, to define PDGs.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on January 25, 2010 at 16:03 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY 2010 191

/ Develop Data /\
! sensor data
1sensor data linitial models
A ! data
initial models %
Tdata tmodels ; I models
W/ Getlnitial Data A\ Get Initial Models A\ \/ Get Revised Data /\
! selected data
| sensor data, initial models s ﬂe)
R 1selected data . SNEWmOdei
{ data ! selected data % selected data
| models tnew models | new models

| data { data Get Revised Data

W SelectValues A\

Tmodels }models
X/ Create Models /\ N/ Apply Models /\ -

Fig. 2. Little-JIL PDG whose execution could generate the DDG in Fig. 1.

C. Little-JIL as a PDG Definition Language

A process is defined in Little-JIL using hierarchically decomposable
steps [29], [30] where a step represents a task to be done by an assigned
agent. A step, moreover, is much like a procedure, in that it is defined
once in a process, but can then be invoked from other points in the
process simply by reference to that step. This facility encourages the
creation of modules and their reuse and also supports iteration through
the recursive invocation of a step from within the step itself. Fig. 2
shows a Little-JIL definition of a PDG whose execution could generate
the DDG shown in Fig. 1. We use this example to illustrate some key
features of Little-JIL.

A Little-JIL step is represented by a solid black rectangle on top of
which is a small disc, annotated by a specification of the types of the
step’s parameters. Thus, the step Get Revised Data requires two ar-
guments, the first is used both as input and output, and is of type data,
and the second is used only as input and is of type models. Each nonroot
step is connected to its parent by an edge annotated with the arguments
passed between parent and child. Thus, the step Get Revised Data
receives from its parent the arguments Sensor data (generated by
Get Initial data and used as input and output) and Initial models
(generated by Get Initial Models and used as input). The right arrow
in Get Revised Data’s step bar indicates that its four substeps are
executed in left to right order. Note that Get Revised Data is called
recursively, and the presence of a Kleene star on the edge to the re-
cursive call creates an iteration that produces the successive instances
of Selected data shown in Fig. 1. On exiting the recursion, the final
value of Selected data becomes the new value of Sensor data.

Comparison of Figs. 1 and 2 indicates the need for both the DDG
and PDG graph types. A PDG shows how artifacts can be created, but
a DDG documents the precise way in which specific artifact instances
have been created by a particular process execution. Thus, for example,
Fig. 2 defines specific step sequences and a specific recursion. How-
ever, it does not indicate how many times the recursion will continue.
Indeed, until more details of the leaf steps are elaborated (not done here
due to lack of space) it is impossible to know how a recursion is ter-
minated. The DDG in Fig. 1, however, is a precise documentation of
the two iterations, leading to the generation of the three successive in-
stances of Selected data.

Little-JIL incorporates a number of other language features many of
which are particularly effective in supporting the definition of scien-
tific processes. Those used in subsequent examples in this paper are
described here briefly.

1) Resources and Agents: Each Little-JIL step specifies the type
of agent responsible for the step’s execution. Little-JIL agents may be
either humans or automated devices and, in some cases, either might
be appropriate.

2) Substep Cardinality: An edge between a Little-JIL parent and
substep may be annotated by a cardinality specification defining the
number of times the substep is instantiated. This may be a fixed number,
aKleene * (for zero or more times), a Kleene + (for one or more times),
or a Boolean expression.

3) Step Sequencing: Every nonleaf step has a sequencing badge
(an icon in the left portion of the step bar; e.g., the right arrows in
Fig. 2), which defines the order in which its substeps execute. A se-
quential step (right arrow) indicates that substeps are executed sequen-
tially from left to right. A parallel step (equal sign) indicates that sub-
steps can be executed in any (possibly arbitrarily interleaved) order.
A choice step (circle slashed with a horizontal line) indicates that the
agent executing the step chooses among any of the step’s substeps. A
try step (right arrow with an X on its tail) mandates a sequence in which
substeps are to be tried until one is successful.

4) Channels: Channels are used to synchronize steps and to deliver
artifacts produced by identified source step(s) to identified destination
step(s).

5) Requisites: Requisites are optional steps that enable the
checking of a specified condition, either as a precondition for step
execution or as a postcondition to assure that step execution has
been completed acceptably. A requisite it represented iconically an
arrowhead either to the left or the right of the step bar.

6) Exception Handling: A Little-JIL step can define exceptional
conditions when some aspects of the step’s execution fail (e.g., one of
the step’s requisites is violated). This violation triggers execution of a
matching exception handler associated with the parent of the step that
throws the exception. Exception handlers are steps attached by a red
edge to a red X on the right side of a parent step bar. They define how
thrown exceptions are to be handled. An edge connecting an exception
handler to its parent is annotated with the type of the exception being
handled and an indication of how execution is to continue after the
exception has been handled.

7) Scoping and Recursion: The parent step and all of its descen-
dants represent a scope, specifying what data are considered local to
that scope. This is particularly useful in defining the context for recur-
sive execution of a Little-JIL step.

IV. USING LITTLE-JIL TO DEFINE AND EXECUTE A
PDG AND TO CREATE A DDG

We now use Little-JIL to define the Water Budget process precisely
and to illustrate semantic features that are useful in addressing some
of the difficult features of this process. Most parameter and artifact
annotations are omitted from these examples to make them easier to
read and save space.

A. The Sensor Data Management Step: Use of Decomposition and
Concurrency

The step Sensor Data Management (Fig. 3) is at the heart
of the Water Budget process. It is a parallel step decomposed into
three substeps: Get Measurements, which collects data from the
sensors in real time; Process Data, which preprocesses the data; and
Model Stream Data Gen, which applies models to the real time
data to build datasets. Because the step is a parallel step, each of its
substeps is able to execute asynchronously, as the problem domain
demands. The collected data and created models are communicated
between substeps, both as parameters and via channels that are de-
clared in Sensor Data Management and are thus accessible to all
of its substeps. Here, we describe a representative set of steps, their
Little-JIL definitions, and the DDGs that could be generated by their
execution.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on January 25, 2010 at 16:03 from IEEE Xplore. Restrictions apply.

192 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY 2010

O

v Sensor Data Management A

*
*

Process Data

Get Measurements

v Model Stream Data Gen A

@ @
v Select Model A V Update Models A

@
V Gen New ET Model A VGen New Q Model A

Fig. 3. Sensor Data Management step.

B. The Get Measurements Step: Support for Multiple Data Streams

The Get Measurements step (Fig. 4) reads and processes
the values from the sensors and sends the results to the real
time input stream. This is done by having the different subpro-
cesses, Get Met Station Data, Get Flux Tower Data, and
Get Stream Gauge Data, take responsibility for examining data
from three different sources. Each of these substeps can execute
independently and in parallel with the other two, and each may throw
a different type of exception if difficulties arise with their sensors.

The Get Met Station Data step has two substeps, Get P1 and
Get P2, each of which deals with one of the two precipitation gauges.
The substeps that acquire the individual data items are responsible
for annotating each data item with some provenance information. At
present this consists of rudimentary metadata, specifically a date/time
stamp and a quality flag.

C. Handle MS Sensor Timeout Step: Use of Exception Management

Each Get measurements substep acquires data from its sensors
and also defines what is to be done if exceptional conditions arise. The
Get Met Station Data step deals with situations where some, or
all, of the expected data items do not arrive by throwing an exception.
For example, the substep Get P1 attempts to obtain a reading from
meteorological sensor 1. If this access succeeds, then the value is
passed as P1 annotated with the observation date and time and with
the measured quality attribute. The Get P1 step is also responsible,
however, for determining when new P1 data is not available and
then, subsequently, for throwing an exception that is to be handled
by Handle MS Sensor Timeout step, passing the identifier of
this sensor (namely sensor 1) as a parameter. The other two substeps
of the Get Measurements step, Get Flux Tower Data and
Get Stream Gauge Data, carry out their responsibilities similarly
to Get Met Station Data.

The Handle MS Sensor Timeout step (Fig. 5) is the han-
dler for the Sensor Timeout exception that can be thrown in the
Get Met Station Data step. It begins by choosing, based on
the value of the input parameter, Reread Precipitation 1 or
Reread Precipitation 2. If this succeeds, then the output of this step
is annotated with the date and time and the “measured” quality flag. If
the step fails (e.g., because the sensor is inoperative), a Sensor Down
exception is thrown and the Sensor Down handler executes the
Get Airport step to obtain the reading from a local airport. If the
Get Airport step also fails, it throws an exception, caught by the
Put Null Reading step of the Get Airport exception handler, to
produce a null value for P1 (or P2) and a quality flag “missing.”

D. Using the Process Definition to Create the DDG

The above process results in the creation of two data items, P1 and
P2 each of which might have been derived in a number of different
ways. Specifically (using P1 as the specific example), we have the fol-
lowing.

1. P1 arrives in a timely fashion and is recorded.

2. P1 does not arrive in time, a timeout exception is thrown,
Reread Precipitation is executed, and P1 is obtained.

3. P1 does not arrive in time, a timeout exception is thrown,
Reread Precipitation is executed, P1 still does not arrive, a
Sensor Down exception is thrown, the Airport Read step is
executed, and P1 arrives.

4. P1 does not arrive in time, a timeout exception is thrown,
Reread Precipitation is executed, P1 still does not arrive, a
Sensor Down exception is thrown, the Airport Read step is
executed, P1 does not arrive, an Airport Data Read Failure
exception is thrown, the Put Null Value step is executed,
providing a null value for P1

The differences among these four possibilities are important and thus
the current process attaches to P1 a quality flag having one of the fol-
lowing values:

missing—no measured value is available;

estimated—a measured value is available from another location

(e.g., the airport);

measured—the measured value is available.
Using this process, P1 is annotated as measured in the first two cases,
(making it impossible to distinguish between them), as estimated in the
third case (but without documenting the measurement location), and
as missing in the fourth case, again leaving out the details describing
what alternatives had been tried. We note, however, that each of the
four different sequences of process steps can be thought of as a different
trace through the process, illustrating the importance of annotating each
value with process provenance information, as provided in the DDG.

Examples of the DDGs that represent cases 3 and 4 are shown in
Fig. 6. Note that the boxes in this figure represent actual data instances,
namely the actual data values that are bound at execution time to the
type specifications in the process definition. Thus, for example, one
of the boxes at the top of Fig. 6 is annotated by sensorl null @ “tryl
time” indicating that this box represents the actual (null) value that was
delivered at the specific time, “tryl time.”

The ovals in Fig. 6 represent the process step instances that were
the actual producers and consumers of the actual data items. Thus,
there is an oval labeled Get Airport that indicates that an instance
of the Get Airport step was used to generate the data item in the box
shown below this oval. This step instance represents the instance of
Get Airport that was invoked as the process’s response to the two
null readings. Two arrows from this oval connect it to two boxes, rep-
resenting the fact that the values represented by these boxes were used
as inputs to the step represented by that oval. In this case, the use that
is made of these data items is simply to note that they are both null,
causing the Get Airport step to be executed to produce this output.
Other ovals may make more substantive use of their inputs in gener-
ating their outputs. Thus, for example, in the left-hand DDG of Fig. 6
the result of the execution of the instance of the Get Airport step is an
actual value, annotated with date and time information, which is taken
as the final value of P1. In this case, no actual step is used to generate
that value, and instead the DDG indicates that the value is produced
as a consequence of the parameter binding operation that occurs as an
integral part of the execution of every step. The fact that this oval does
not represent an actual step is indicated by the use of italics in its an-
notation. In the other case, a null reading is obtained, and a null value
is then the final value of P1. Thus, such DDGs provide more useful

Authorized licensed use limited to: Harvard University SEAS. Downloaded on January 25, 2010 at 16:03 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY 2010 193

©

/ Get Measurements &

Y/ Get Met Station Data /\

T/ Get Stream Gauge Data/\

V Getbt AV GetP2 A HandieMsSensorTmeout |V GetFluxTower Data A\

Y GetQ /\ '/ Handle SG Timeout A

V Gam AV GetPAR A GetVPD AV GetUstar AVHandleFTSensorTimeoutA

Fig. 4. Get Measurements step.

Y/ Handle MS Sensor Timeout A\

Sensor Down
W/ Choose Source A\ W senset Do

&

Y/ Reread Precipitation 1 AV Reread Precipitation 2 A\ {7 Get Airport A\ Puthull Reading A\

Fig. 5. Handle MS Sensor Timeout exception handler step.

Read
Sensort
@'try1 time”

Read
Sensor1

Read
Sensor1
@try2 time”

Sensor1 Sensor1 Sensor1
Null Null Null
"try1 time” "try2 time” "try1 time” "try2 time”
Get Get
/ Airport / Airport
Airport Datum Airport Null
@"airport try time” @"airport try time”

Put Null
Reading

Get Airport
Successful Airport Read
after two sensor nulls

Unsuccessful Airport Read
after two sensor nulls

Fig. 6. DDG of the original acquisition of P1.

information about the provenance of the resulting value of P1 than a
mere annotation, measured, estimated, or missing.

V. EVALUATION

The example processes in Section IV have illustrated how an an-
alytic web provides provenance information and highlights some se-
mantic capabilities, such as hierarchical decomposition, procedural in-
vocation, concurrency, and exception management that are needed to
define modern scientific processes. There is a striking similarity be-
tween these needs of the scientific community and what is generally
provided by modern programming languages. This supports our intu-
ition that scientific processes bear some strong similarities to computer
software, and thus the challenges of defining them have strong par-
allels with the challenges of programming complex software systems.
Scientific processes, however, also require specifications that are easily
understood by scientists, which suggests the value of a visual represen-
tation. Thus, it is not surprising to find that a visual process language
that incorporates the salient control features of a modern programming
language can be an effective tool for defining scientific processes.

The example processes in Section IV also show how DDGs can be
built incrementally as the execution traces of a scientific process, cap-
tured as directed acyclic graphs. Since these DDGs increase in depth
as process execution progresses, the DDGs derived from executing
lengthy processes can become large and cumbersome. However, al-
though the pictorial depiction of an entire DDG is large, its internal
representation is a typical tree-like structure that should be amenable
to terse internal representation. In addition, different, terse views of the
full DDG could be provided in response to focused queries.

VI. RELATED WORK

There are numerous other scientific workflow projects, many of
which have been presented at meetings, such as [9], [25], and [28].
Most of these projects (e.g., Kepler [2], [3], [19], Taverna [21], [31],
and JOpera [17], [23]) base their specification of process flow upon the
use of various kinds of data flow graphs (DFGs). For example, Kepler
is based upon Ptolemy II [5], [11], [24], which uses a powerful and
flexible DFG structure to specify how datasets can be moved between
processing capabilities. Kepler integrates a broad range of support
tools that help with such key activities as specification, execution,
and visualization of scientific data processes. Chimera [10], [15], [16]
was one of the earliest scientific workflow systems. It emphasized

Authorized licensed use limited to: Harvard University SEAS. Downloaded on January 25, 2010 at 16:03 from IEEE Xplore. Restrictions apply.

194 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY 2010

the use of pictorial visualizations to represent scientific processes.
Chimera’s pictorial representations were also in the form of a DFG.
Taverna [21], [31] is a more recent system that seems to focus on
supporting the integration of web services, particularly for the creation
of bioinformatics applications. Taverna’s integration mechanism is a
workflow notation that is also based upon a DFG formalism. More
recently, JOpera [17], [23] has suggested the use of XML to specify
scientific workflows as plug-ins that could be integrated using Eclipse.
JOpera workflows also are based upon the use of a DFG formalism
to represent scientific processes. Teuta [13], [14] represents scientific
processes through UML diagrams that offer some features, such as
limited forms of concurrency, that go beyond the semantic features of
a basic DFG. We believe that the Water Budget process described here
illustrates aspects of scientific processes that cannot be easily captured
using DFGs. Other UML diagrams can be effective in capturing some
of these features, such as agent specification (using “swim lanes”), and
some forms of concurrency, message passing, and exception handling.
Too often, however, this requires the use of different UML diagrams,
which seems less desirable than Little-JIL’s ability to capture all of
this using a single diagram.

Much work is also aimed at documenting the provenance of scien-
tific datasets. Many of the approaches to provenance documentation
are summarized in [26] and [27]. Indeed, these approaches have been
compared to each other more formally in [20]. These approaches seem
to fall generally into two categories. In one approach (e.g., [1], [7], and
[18]), each data artifact generated by execution of a scientific process
is stored in a database, and the artifact’s provenance can then be ob-
tained by recursively querying the database. The second approach en-
tails building a derivation graph on the fly as execution of the scien-
tific process proceeds (e.g., Kepler [4] and [15]). Our own approach
falls into this latter category. We note that these two approaches are es-
sentially equivalent to each other. Both collect provenance information
by documenting the execution trace that has led to the creation of the
data artifact being documented. In the former, the provenance struc-
ture is created on demand, and in the latter, the derivation structure is
built incrementally. Again, the Water Budget examples illustrate how
a more precise process definition can lead to a very precise model of
data provenance, as illustrated with the DDGs generated here.

VII. FUTURE WORK

We believe that the semantic features in Little-JIL present a useful
starting point for considering the features that should be incorporated
into languages for defining the PDG. Further investigation of the es-
sential requirements for the semantics of a PDG is needed. Specific de-
tails of DDGs also require further evaluation. For example, we need to
evaluate various internal representations of DDGs to determine how to
store them efficiently while still supporting efficient creation of needed
visual representations. Moreover, datasets represented by the nodes of
the DDG could be regenerated from scratch or cached to expedite gen-
eration of subsequent datasets. Specific strategies for determining when
and what to cache should be the subject of future research. While DDGs
can be used as the basis for the creation and attachment of process meta-
data to datasets, further research is needed to determine how this is done
best.

The value of an analytic web will be greatly enhanced by the avail-
ability of tool sets that support such capabilities as the creation of the
PDG, the execution of the PDG, the automatic creation of the DDG,
viewing and querying these graph structures, and reasoning about the
soundness of the scientific processes defined.

Considerably more value would be obtained by creating a facility for
supporting the automation of some or all of the parts of a process de-
fined by a PDG. Indeed, because Little-JIL is an executable process lan-
guage, PDGs defined in Little-JIL can then be executed by Juliette, the

Little-JIL interpreter. A crude early prototype system, SciWalker was
used to show that this is possible. SciWalker delivered datasets to tools,
human participants, and subsystems as prescribed by the PDG, and also
picked up outputs produced by participants to move them forward to
next processing steps. SciWalker, however, did not produce DDGs. We
now have plans to produce SciWalker 2, which would carry the Sci-
Walker capabilities much farther. Specific goals of SciWalker 2 include
automatic generation of DDGs from the executions of a Little-JIL PDG,
optimizers to reduce the size of DDGs, viewers to help users under-
stand Little-JIL PDGs and DDGs, analyzers to support the need for
users to understand their Little-JIL PDGs and to identify process de-
fects, and visual editors to support both building new Little-JIL PDGs
and modifying them. Indeed, our view of SciWalker 2 is that it should
be essentially an environment that integrates diverse tools in support of
the definition, execution, and analysis of scientific processes defined in
Little-JIL.

Finally, we believe that the best way to make progress in developing
the ideas just outlined is to continue to create analytic webs to rep-
resent scientific processes of various kinds. Our work with ecological
processes is encouraging, yet preliminary. We hope that there will be
much more work of this sort, not just in ecology, but also in the repre-
sentation of processes in a wide range of other sciences.

ACKNOWLEDGMENT

The authors are grateful to many colleagues who supported this work
and contributed key ideas. In particular, they wish to thank E. Riseman,
A. Hanson, D. Jensen, D. Foster, J. Hadley, P. Kuzeja, H. Schultz,
B. Rawert, G. Avrunin, and M. Raunak for their advice, support, en-
couragement, and many stimulating conversations.

REFERENCES

[1] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff, “Tioga-2: A di-
rect manipulation database visualization environment,” in Proc. Int.
Conf. Data Eng., 1996, pp. 208-217.
I. Altintas, C. Berkley, E. Jaeger, M. J. B. Ludischer, and S. Mock,
“System demonstration, Kepler: An extensible system for design and
execution of scientific workflows,” in Proc. 16th Int. Conf. Scientific
Stat. Database Manage., 2004, pp. 423-424.
I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C.
Amoreira, Y. Potier, and B. Ludéscher, “A framework for the design
and reuse of grid workflows,” in Proc. Int. Workshop on Scientific Appl.
Grid Comput., 2005, pp. 119-132, series Lecture Notes in Computer
Science, nr 3, Springer-Verlag GmbH, 2005. ISBN 3-540-25810-8.
I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance collection
support in the Kepler scientific workflow system,” in Proc. Int. Prove-
nance and Annotation Workshop, Provenance and Annotation of Data,
2006, vol. 4145, pp. 118-132.
P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao, “Modeling
of Sensor Nets in Ptolemy II: Information Processing in Sensor
Networks,” in Proc. Inf. Process. Sensor Netw. (ISPN), Apr. 26-27,
2004, pp. 359-368.
[6] E. R. Boose, A. M. Ellison, L. J. Osterweil, L. A. Clarke, R. Podor-
ozhny, J. L. Hadley, A. Wise, and D. R. Foster, “Ensuring reliable
datasets for environmental models and forecasts,” Ecol. Inform., vol.
2, no. 3, pp. 237-247, 2007.
P. Buneman, S. Khanna, and W. C. Tan, J. Van den Bussche and V.
Vianu, Eds., “Why and where: A characterization of data provenance,”
in Proc. Int. Conf. Database Theory, 2001, pp. 316-330.
[8] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M. Sutton,
Jr, and A. Wise, “Little-JIL/Juliette: A process definition language and
interpreter,” in Proc. 22nd Int. Conf. Softw. Eng., Limerick, Ireland,
Jun. 2000, pp. 754-757.
B. F. Cooper and R. S. Barga, in Proc. IEEE Int. Workshop on Workflow
and Data Flow for Scientific Applications SIGMOD Record, 2006, vol.
35, pp. 54-56.
[10] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, J. Nabrzyski, J.
Schopf, and J. Weglarz, Eds., “Workflow management in GriPhyN,”
in Proc. 14th Int. Conf. Scientific Stat. Database Manage., 2003.

[2

—

3

—

[4

[inar)

[5

—_

[7

—

[9

—

Authorized licensed use limited to: Harvard University SEAS. Downloaded on January 25, 2010 at 16:03 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 1, JANUARY 2010 195

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. A. Edwards and E. A. Lee, “The semantics and execution of a syn-
chronous block-diagram language,” Sci. Comput. Progr., vol. 48, no.
1, pp. 21-42, Jul. 2003.

A. M. Ellison, L. J. Osterweil, J. L. Hadley, A. Wise, E. Boose, L. A.
Clarke, D. R. Foster, A. Hanson, D. Jensen, P. Kuzeja, E. Riseman,
and H. Schultz, “Analytic webs support the synthesis of ecological data
sets,” Ecology, vol. 87, no. 6, pp. 1345-1358, Jun. 2006.

T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, and H.
Truong, “ASKALON: A tool set for cluster and grid computing,” Con-
curr. Comput.: Pract. Exp., vol. 17, no. 2-4, pp. 143-169, 2005.

T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M.
Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek, “ASKALON:
A grid application development and computing environment,” in Proc.
6th IEEE/ACM Int. Workshop Grid Comput., Nov. 2005, pp. 122-131.
1. T. Foster, J.-S. Voeckler, M. Wilde, and Y. Zhao, “Chimera: A virtual
data system for representing, querying, and automating data deriva-
tion,” in Proc. 14th Int. Conf. Scientific Stat. Database Manage., 2002,
pp. 37-46.

1. T. Foster, J.-S. Vockler, M. Wilde, and Y. Zhao, “The virtual data
grid: A new model and architecture for data-intensive collaboration,”
in Proc. Conf. Innovative Data Systems Research, 2003, p. 11.

T. Heinis, C. Pautasso, and G. Alonso, “Mirroring resources or map-
ping requests: Implementing WS-RF for grid workflows,” in Proc. 6th
IEEE Int. Symp. Cluster Comput. Grid (CCGrid2006), Singapore, May
2006, pp. 497-504.

D. P. Lanter, “Design of a lineage-based meta-data base for GIS,” Car-
togr. Geogr. Inf. Syst., vol. 18, no. 4, pp. 255-261, 1991.

B. Ludischer, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M.
Jones, E. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the Kepler system,” Concurr. Comput.: Pract. Exp., vol. 18, no.
10, pp. 1039-1065, 2006.

L. Moreau et al., “The first provenance challenge,” in Concurrency and
Computation: Practice and Experience. New York: Wiley, 2007.

[21]

[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: A
tool for the composition and enactment of bioinformatics workflows,”
Bioinform. J., vol. 20, no. 17, pp. 3045-3054, 2004.

L. J. Osterweil, A. Wise, L. A. Clarke, A. M. Ellison, J. L. Hadley,
E. Boose, and D. R. Foster, “Process technology to facilitate the con-
duct of science,” in Proc. Software Process Workshop, Lecture Notes
in Computer Science, 2005, vol. 3840, pp. 403—415.

C. Pautasso and G. Alonso, “The JOpera visual composition language,”
J. Vis. Lang. Comput., vol. 16, pp. 119-152, 2005.

[Online]. Available: http://ptolemy.eecs.berkeley.edu/ptolemyll/

P. Herrero, M. S. Pérez, and V. Robles, Eds., in Proc. 1st Int. Workshop
Scientific Applications of Grid Comput., SAG 2004, Beijing, China,
Sep. 20-24, 2004, Revised Selected and Invited Papers. Lecture Notes
in Computer Science 3458 Springer 2005, ISBN 3-540-25810-8.

Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data prove-
nance techniques,” Comput. Sci. Dept., Indiana Univ., Bloomington,
IN, Tech. Rep. 612, 2005.

Y. L. Simmbhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-Science,” SIGMOD Rec., vol. 34, no. 3, pp. 31-36, 2005.

Proc. 16th Int. Conf. Scientific and Statistical Database Management
(SSDBM 2004), Jun. 21-23, 2004. Santorini Island, Greece, IEEE
Computer Society, ISBN 0-7695-2146-0.

A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and
S. M. Sutton, Jr, “Using little-JIL to coordinate agents in software en-
gineering,” in Proc. Autom. Softw. Eng. Conf., 2000, pp. 155-163.

A. Wise, Little-JIL 1.5 Language Rep., Dept. Comput. Sci., Univ.
Massachusetts, Amherst, MA, UM-CS-2006-51, 2006.

K. Wolstencroft, T. Oinn, C. Goble, J. Ferris, C. Wroe, P. Lord, K.
Glover, and R. Stevens, “Panoply of utilities in Taverna,” in Proc. 1st
IEEE Int. Conf. E-Science and Grid Technol. (E-Science) , 2005, pp.
156-162.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on January 25, 2010 at 16:03 from IEEE Xplore. Restrictions apply.

