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Abstract—Concurrent engineering (CE) is a methodology applied to
product lifecycle development so that high quality, well designed products
can be provided at lower prices and in less time. Many research works
have been proposed for efficiently modeling of different domains in CE.
However, an integration of these works with consistent data flow is absent
and still in great demand in industry. In this paper, we present a generic
integration framework with a semantic feature model for knowledge
representation and reasoning across domains in CE. An implementation
of the proposed semantic feature model is presented to demonstrate its
advantage in knowledge representation by feature transformation across
domains in CE.

Note to Practitioners—In this paper, an important problem in manufac-
turing industry is addressed: how semantic features can be used across
different domains in CE. The proposed hierarchical feature model in this
paper offers a solution to two aspects in this problem: (a) how to capture the
specific knowledge consistently in different domains and (b) how to reuse
the existing data. The presented modeling approach is an attempt that uses
a semantic feature language representation in CE and sheds some light on
a practical solution to this difficult problem in industry.

Index Terms—Concurrent engineering, knowledge representation,
semantic features.

I. INTRODUCTION

In the manufacturing industry, the development of products needs
to go through all phases of product lifecycle [23]. The lifecycle in-
cludes design, manufacturing, assembly, inspection, maintenance, re-
cycle, and disposal, etc. In the past 20 years, many methods have been
proposed for different phases in product lifecycle. Several leading sys-
tems are computer-aided design (CAD), computer-aided process plan-
ning (CAPP), computer-integrated manufacturing (CIM), computer-
aided inspection planning (CAIP), assembly sequence planning (ASP),
product data management (PDM), and so on. These systems have been
successfully applied in many industrial activities. However, these sys-
tems use inconsistent data representations and applying these systems
in a sequential manner would make the process of product development
unnecessary long and inefficient.

Concurrent engineering has been proposed in the mid of 1990s as a
comprehensive philosophy in which simultaneous design of a product
and all its related processes in lifecycle are taken into consideration
in a parallel fashion [21], [23]. The methodology of concurrent
engineering needs an efficient and unified knowledge representation
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across various disciplines which supports different action behaviors in
a consistent way. An important application of a unified CE knowledge
representation is to facilitate making decisions by a cross-functional
product development team (CPDT). CPDT consists of representatives
from different departments in a company. Communication between
CPDT members is critical for product development in concurrent en-
gineering. Since representatives in CPDT have different backgrounds,
product descriptions with rich semantics are much better than the
raw engineering data for communication. However, most commercial
systems provide only rich engineering data but without semantic
meanings. As reviewed in the next section, so far the research on se-
mantic features in concurrent engineering achieves limited successes
in this direction.

Humans can freely communicate with their common language. Mo-
tivated by the rapid development of natural language processing in arti-
ficial intelligence and its applications in machine communications [22],
in this paper, we make an effort to model the multidiscipline data in
CE using a semantic feature language representation. The proposed
language representation is general and can serve as a unified frame-
work that consistently integrates previous novel work in different CE
domains, such as design by features [10], [14], process planning with
manufacturing features [8], automated visual inspection [7], PDES/
STEP-based integrated design and assembly planning [28], and so on.
The inference in the language by feature transformation gives a prac-
tical solution to optimally searching and taking actions in various do-
mains of product development.

II. RELATED WORK

Feature modeling has been shown to be a promising tool in con-
current product design [21]. A feature is referred to as a higher level
grouping of geometrical, topological and functional primitives into an
entity more suitable for use in design, analysis or manufacturing [4].
One of its key advantages is allowing the designers to store a variety
of heterogeneous information, such as material property, geometric
and manufacturing information, tolerance and performance require-
ment, in a feature model with prior knowledge. Early feature models
mainly concentrated on the geometric description [10], [19] and have
been widely used in parametric, history-based CAD/CAM commercial
systems.

To efficiently map between different product lifecycle phases, the
detailed features need to be abstracted and integrated into a generic
semantic model whose aspects are functionally significant. In a
concurrent engineering environment, it is also required to design and
modify different views of parts’ features across different functionality
domains, in an efficient and consistent way. Researches in this direc-
tion have attracted much attention and many works have been done.
To use features in an abstract level, some work focused on feature
validation and maintenance [3]. Chen and Hoffmann [5] studied the
feature editability and reevaluation problem using persistent name
matching techniques. Feature propagation, association and mapping
across domains are studied in [9], [25]. Although different feature
representation and manipulation techniques have been proposed, they
are exclusively used in some specified scenarios. A general, integrated
framework is still absent to characterize different techniques and make
efficient communication among heterogeneous data in industry.

Knowledge representation and reasoning in complex domains have
been studied in-depth in the field of artificial intelligence. Informally,
artificial intelligence is to make machines behave like human beings.
Semantic feature closely matches the way how human beings think
about the product design and development. This motivates us to use
feature language in concurrent engineering, in which usually intensive
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human intervention is required. Formal language [1] has proved to be
a powerful tool for facilitating feature modeling. Using grammar has
achieved some successes in automatic reasoning for product design and
manufacturing [6], [24]. However, these language representation tech-
niques have not been used in multidiscipline domains of concurrent
engineering.

Recently, ontology-based approaches have been introduced into CE
research. Patil et al. [20] proposed a product semantic representation
language PSRL to exchange semantics data between SolidWorks and
Unigraphics systems. PSRL is studied in domains including product
design and computer-aided process planning. National Institute of
Standards and Technology (NIST) develops a neutral ontology lan-
guage called PSL [26]. PSL is mainly used to transform manufacturing
process information between different software tools. In this paper,
we propose a hierarchical semantic model facilitated with a language
representation. A case study is depicted, showing an interesting
application that extends the feature language representation to a broad
range of domains in concurrent engineering.

III. OVERVIEW OF BASIC FRAMEWORK

Denote by � , a universal feature set in all phrases in concurrent en-
gineering. � is a collection of subsets of� that satisfies the conditions:

1) The set � and empty set � are in � ;
2) If ����� � � , then �� � �� � � ;
3) If ��� � � � ��� � � , then �� � � � � � �� � � � � 	 �.
� is called a topology on � and �� � � � forms a topological space

[2]. The operation * on � assigns each ordered pair 
�� �� of elements
of � one element � � � in � . The set � along with operation � forms
an algebraic structure [17] if the following properties are obeyed:

1) � � � is defined for every ordered pair 
�� �� of elements of � ;
2) � � � is uniquely defined;
3) � is closed under the operation *.
Akin to the geometric features defined in [10], an Invalid element is

included in � so that

� � � � � � ����	
� � ����	
� � � � ����	
��

Four commonly used operators in algebra are union ���, intersection
���, subtraction ���, and complement ��. To facilitate semantic
feature transformation using a language representation, we implement
these operations in a much restricted manner. Section IV-B presents
implementations of these restricted operations, i.e., equality ���,
grouping ����, reference ���, and comparison ���. These operators
suffice to capture the operations considered in this paper.

A semantic model is presented in Section IV to define the com-
plete feature set � in a consistent and hierarchical way. With the se-
mantic model, a feature language is used as a neutral, intermediate rep-
resentation for semantic intra and interoperability. One crux in feature
based product modeling in CE is about feature transformation across
domains. As an efficient solution that benefits from language descrip-
tion, a reasoning processing for feature transformation is presented in
Section VI with the aid of a reasoning table. The vocabulary of the lan-
guage includes:

1) Objects Obj that are either the product or parts in a product.
2) Features in � .

The grammar is defined as �� � ��������:

� 	 � �
����� � � 	 �������� �� ������ �����

��� � � ���� 	 ����� �� ��������

�������� �����

��� �� � � � 	 ����� �������� �����

��� � � ��� �� � � 	 �������

��� � � ��� �� � � 	 �������

�

Fig. 1. Feature transformation in pocket manufacturing: From four design fea-
tures (design feature � for stock and design features � �� �� for three
pockets, respectively) to three manufacturing features (� �� �� for three
pockets, respectively).

Fig. 2. String expansion in a feature based machining sequence generation.

where � is the feature graph of object ����� � is one of instances
of the vocabulary class, � means “or” and * is the operation set ��
������ ��. In this language representation, feature transformation
or reasoning is encoded in predicate string � � � � � .

For a simple illustrative example, Fig. 1 shows a stock and a
part. Four design features (�� for stock and ��� ��� �� for three
pockets in part, respectively) form the start symbol ���� . In a feature
based machining sequence generation, three manufacturing features
(�������� for three pockets, respectively) need to be generated
in an optimal order. The task-driven string expansion is illustrated
in Fig. 2. At first glance, the exhaustive expansion in Fig. 2 seems
inefficient and the graph will grow exponentially. Actually high
efficiency can be achieved by applying informed expansion with some
search strategies. In the example of pocket manufacturing, cost can be
assigned to each predicate, e.g., the machining cost to �� ��� ���

is estimated by removed material and used tools. By designing admis-
sible heuristic cost functions using problem-specified knowledge [11],
the well known �� search efficiently prunes unnecessary subtrees
from the graph [8] and the search for optimal solution can be done in
linear time [16].

To apply the proposed feature language for knowledge representa-
tion and data reuse, the feature list of a product is stored in data reposi-
tory of the system, e.g.,���� � ������������ for the part in Fig. 1.
If a particular view (manufacturing feature for an example) of product
data is inquired, the feature type is investigated in ����. If the view
does not exist, task-driven inference with reasoning table is performed.
Then, the data ���� � ������������ ��������� is updated and
stored. The feature model proposed in Section V establishes the rela-
tions and constraints among individual features. The following rela-
tionships can be retrieved from ����:

• ��� ��� �� and �� are pairwise dimensionally constrained;
• �� infers ��� �� and ��;
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• �� infers �� and ��;
• �� is inferred by �� and ��.

When the product data ���� is reused with modifications such as:
• �� is modified: (1) the constraints between ���� ��� and

������� are examined to verify whether this modification is
feasible or not and (2) the inferred feature �� is updated;

• �� is changed: the constraints in �� and �� that infer �� are
examined to verify whether this modification is feasible or not.

So the reused data is consistently updated in the repository.
To implement the feature language, a prototype concurrent environ-

ment that covers four typical domains including design, manufacturing,
assembly and inspection, is considered in this paper.

IV. A SEMANTIC FEATURE MODEL

In a CE environment, the semantic feature language is defined to be
a language used to represent and communicate information within or
across different domains, in terms of semantic features. The vocabulary
of the semantic feature language consists of the basic semantic features,
their children classes and five operators.

A. Semantic Features

A semantic feature is defined as a group of abstract data with
attributes:

����	
�� ��
��� ��� ����
���
 ��
����

����
���

���	�����	
 ���� ���
�

���
���
 ��
� ��� ����
��� 	��������
��� 
����

�

����
�� ��� ��
�
�� �

����
���

���	���� �

����
���

��	�����	
 ���� ��� ����
��� �	�����
�	� ��
����

���
�	� �����	�	
�

��	�� ������	�� 
��

where

��� � ����	 
����	� ���

�� � ����	 
�������	�

Other symbols used in this paper include

�� � ����	 
������ ���

� � � ����	 
���	������� �� 
	����� �����������

The above defined semantic feature is in an abstract class which co-
ordinates derived classes of the hierarchical features at different levels
and in different domains. The detailed descriptions of the abstract class
members are as follows.

Abstract data includes the name of the semantic feature and its type
which are used to identify corresponding features in various domains.
A semantic feature has two types of attributes: static and dynamic at-
tributes. Static attributes are constraints and their values are not allowed
to be modified. It is only valid within a specified domain and only af-
fects the feature classes derived from it. Dynamic attribute values can
be modified at any time within a reasonable range. When inherited in
a derived class, a dynamic attribute can become a static attribute.

Concurrent parameters of the semantic feature describe the feature’s
function and its relationships with features of other components. In
addition to setting up the constraints with other features, concurrent
parameter also enables the semantic feature supporting the conceptual
model of a product.

The data ��	�� ���� and ��	�� 
�� in concurrent parameter
establishes a graph structure in the ontology defined by the hierarchical
semantic model. When the product data is reused with modification, the
static attributes (constraints) of features in ��	�� ���� are checked
for verification and the features in ��	�� 
�� are updated.

B. Five Operators

1) Equality ���: Two features� and� are said to be equal, written
as � � �, if and only if � and � satisfy:

• represent the information in the same domain;
• are on the same detail level;
• all the corresponding abstract data and attributes have same data

types;
• all the corresponding abstract data and attributes have same equal

values.
If� � � does not exist, then� �� �. To satisfy the algebraic structure
of feature set description, � � � should return a composite feature in
� . So FALSE and TRUE are two features included in � .

2) Grouping ����: The grouping, � �� �, of two feature classes
combine all attributes of � and �, similar to the union operation in set
theory. Constraints on the two operands are:

• � �� �;
• The abstract data of � and � have the same data types and the

same values;
• � and � cannot be simultaneously in the same domain and at the

same detail level.
The constraints limit the operands such that grouping reflects infor-

mation of the same feature either in different domains, or in the same
domain but at different detail levels.

3) Reference ���: The reference, ���, of two feature classes, ma-
nipulates the first operand and retrieves information from the second
operand when necessary. Constraints on the two operands are:

• � �� �;
• The abstract data of � and � have the same data types and the

same values.
The constraint limits the operands being the same object of features

either in the same domain or in different domains. Copying a feature �
is achieved by ��	.

4) Comparison ��
�: The comparison, �� 
 �, of two features
� and � identifies the differences between the corresponding dynamic
attributes of � and �. Constraints on the two operands are:

1) Their abstract data has the same data types and values;
2) They belong to the same feature class and at the same detail level.
The comparison operator manipulates the dynamic attributes of the

operands only.
5) Reasoning ���: The reasoning, �� �, where A is a semantic

feature or a composite feature as input and feature B is output, means
that B is deduced from A based on available knowledge. The details of
reasoning process by feature transformation is presented in Section VI.

V. FEATURE TAXONOMY

From the most abstract semantic feature, the derived detail features
at different levels enrich the vocabulary of the language.

A. Design Feature

The design feature class meets the design-by-feature requirements
and carries the geometric information. A component in the design do-
main is described by a list of design features, a list of surfaces and
material information. The surface list covers all surfaces enclosing the
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volume of the component’s shape. Material information includes ma-
terial type, hardness and heat treatment methods. The syntax of design
feature is:

������ ���	
�� ��� � ���	
��� �����	���

����������������� �
���	��

����	�� ��� �����	����������	�	����

�������������
�� ���	�

���� �����	���

�������� ��� �� ��� �����	�

������ �
���	� ��� ���� 	��������������� 	���������

��
�� ����������

��� �����	�� ��� ��������������������	�����	���

�������� ������ �!!�

The geometry of a design feature covers its position, orientation, di-
mensions, geometric operators and surfaces that form the solid volume.
The topology of a design feature is the B-rep object provided by a solid
modeler [18].

The design quality is composed of dimensional tolerances, geo-
metric tolerances and surface finishing. Surface finishing is denoted
by a structure that contains the finishing value and a pointer to the
surface. For each dimension in the geometry of a design feature, the
dimensional tolerance is represented by a tolerance range whose upper
and lower boundary values are specified explicitly.

B. Manufacturing Feature

Manufacturing processes are normally divided into three sublevels:
primary, secondary and finishing. The primary process is for stock
production such as sand casting, forming such as rolling, injection
molding, joining such as welding and riveting, surface treatment, heat
treatment, etc. The secondary process covers machining processes.
The finishing process is related to cleaning, coating, plating and other
surface treatment processes. Manufacturing processes at each level
carry their own feature lists.
"��
� ���	
�� is a derived class of the abstract semantic feature

and is a base class in the manufacturing domain:

"��
� ���	
�� ���� ���	
��� �����������������

������� ���	
�� is a derived class of "��
� ���	
��, which
contains semantic information of stock generation:
���� ���	
�� ��� �"��
� ���	
��� ���������

�������� ���� ���	�

������� ���� ��� ����� �������� ��	��#�

���	
� #�	��

�� ��	��# ��� �$��	�����������	 ���#�%����

�
�� 	���	�&��	 	���	��	�����

��	
� #�	� ��� ��������	
���������
���

�&��# 	������	�����

�����#��� ���
� ���	
�� concerns machining processes:
��� � ���	
�� ��� �"��
� ���	
��� ������#����

���� ���� ���	�

��� ���� ��� ����� ��������	
� #�	��

�"�������� �����	���

��	
� #�	� ��� ���'��������#�� ����#�

����# ����#��$
	 #��	��

���	
� �������� ������ #����	����

����# #����	�������(	
�� ������

��	�����

"�������� ���� ��� �"���������������������)����

���#��	�����

��������� ���
� ���	
�� concerns finishing process:

������� ���	
�� ��� �"��
� ���	
��� �� ���������

������� ���� ���	�

������ ���� ��� ����� �����������	 ��	��#�

���	
� #�	��

�����	 ��	��# ��� �$�����$��	����	���	�����

��	
� #�	� ��� �����#��$�����

�����	 	�����������	�����

C. Assembly Feature

In assembly domain, a component is described by a list of assembly
features containing information on mating relations with other com-
ponents attached to it. Assembly feature is a derived class from the
abstract semantic feature and includes all information needed for as-
sembly, such as the tools used for assembly, mating location, mating
direction, assembly operations and assembly sequence, etc. The syntax
of assembly feature is:

*������� ���	
�� ��� � ���	
��� �"�	��� ����	��� ���	�

"�	��� ����	��� ��� ����� ��������	
� #�	��

�*������� �����	���

��	
� #�	� ��� �"�	��� ����	����

�"�	��� #����	��"�	��� �
���

�*������� ���
�����

�"�	��� �
�� �� �	��� ���	
���

����	
�� �� �	��� ��������	�

�*������� ��������	�

*������� �����	�� ��� ������	�� ��������	����	�����

D. Inspection Feature

The inspection strategy can be classified into online and offline in-
spection. Online inspection, which mostly happens in the manufac-
turing secondary process, monitors the machining quality during cut-
ting. Offline inspection is mainly the process of measuring dimensions,
tolerances and surface finishing of workpiece, after each manufacturing
setup.

In inspection domain, a component is described by a list of inspec-
tion features containing all criteria for quality control during and after
the manufacturing process. Similar to other domain specified features,
inspection feature is a derived class of the abstract feature including
all information related to inspection, such as tooling, inspection oper-
ation, machining setups between which inspection is undertaken, stan-
dard followed, reference and target values, etc. The syntax of inspection
feature is

������	 ���	
�� ��� � ���	
��� �������	 ���� ���	�

������	 ���� ��� ����� ��������	
� #�	��

�������	 �����	���

��	
� #�	� ��� ������� ������)�� ���	
���

�"�������� ��	
� �����	��#��#�

�"���
���� 	����������	 +��
��

������	 �����	�� ��� ��
���)���	� ���������	�����

E. Feature Hierarchy

With object-oriented approaches, more detailed features at different
levels and in different domains can be derived. We use the design fea-
ture as an example to derive more subtle children features. If form
features defined in PDES/STEP are used for design features, children
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TABLE I
PART OF A REASONING TABLE ON THE OPERATION � � � WITH THREE

ENTRIES WHICH ENCODE THE METHODS IN [10] AND [28], RESPECTIVELY

design features, i.e., additive feature, subtractive feature, protrusion,
primitive, join, depression and passage can be defined as:

�������� ��� � ��	�
� ������� ������������

���������� ��� � ��	�
� ������� ������������

�����	��� ��� � ��������� ����� ��������

��������� ��� � ��������� ������

���� ��� � ��������� ������ �����

����� ������������

�����		��� ��� � ����������� ������ �����

������������

��		�
� ��� � ����������� ������ �����

����� �����������������

VI. REASONING IN THE FEATURE LANGUAGE

The reasoning process in the proposed feature language is defined by
feature transformation. A semantic feature transformation describes a
process that derives unknown attributes of a feature in a domain from
the known features in the same or different domains, through proper
knowledge. The knowledge is dependent on available resources in a
particular factory and is encoded in a reasoning table: an example is
shown in Table I. The feature transformation has the following rules:

• A feature transformation consists of both semantic features and
operators.

• Semantic features are connected by operators in feature-operator-
feature syntax like � � �.

• Reasoning is depicted by the operator �.
• Operations in a feature transformation start from left and end at

right in a horizontal representation.
• The priority of operators from highest to lowest is ��� ���	�

���.
• Operators enclosed in parentheses have higher priority than the

unclosed part.
• Each feature transformation has one and only one reasoning op-

erator.
— The reasoning operator is the last operator in a feature transfor-

mation.
— The operand of reasoning operator can be a single feature or a

composition of features with other operators.
— The output of reasoning operator is a single feature.

Semantic feature transformation encapsulates various functional ac-
tivities across different domains in CE. The procedure of a task-driven
feature transformation is as follows.

Input: A product data  ��� , a task and a reasoning table
Output: The updated data  ��� containing the required task feature
Begin

1. Retrieve the �!����� ����� of feature list in  ��� .
2. While (the task is not done) do (�� search)

Fig. 3. An assembly model and its engineering drawing of metal block fixture,
consisting of a fixture base and a fixture clamp.

2.1. String expansion by ! 
 !���
2.2. String absorption by reasoning � 
 ! � ! ;
2.3. Update data �"���� ����� and �"���� ��� according
to the reasoning;

3. End while
4. Establish the relationship by updating the data �"���� �����

and �"���� ��� in both start features and task features.
5. Update product data  ��� by incorporating the task features.
6. End

VII. IMPLEMENTATION

The reasoning operator is implemented as a virtual function in the
hierarchical feature classes, which will activate different knowledge
bases and conduct different inference processes by checking the rea-
soning table. Various techniques, such as design for X (X stands for
manufacturing [8], [13], production [10], fixture [27], assembly [28],
inspection [7], recycling/disposal [12], optimal scheduling [15], etc.)
techniques, as well as factory-floor-specified resources, can be imple-
mented and generated into the reasoning table.

A proof-of-concept implementation of the proposed semantic fea-
ture model is presented. Fig. 3 shows an assembly model of a metal
block fixture, which consists of a fixture base and a fixture clamp. The
design features of fixture base and clamp are listed in Table II and il-
lustrated in Fig. 4. Given the design features of fixture base and clamp,
i.e., � � ��	� and � � �#���, the assembly feature of fixture product
is under investigation. In this case, the depth of the expanded tree rooted
at  ��� � �� � ��	�� � � �#���� is 3:

� � ��	�� � � ��	� 	���$ (1)

� � ��	��� � � ��	� 	���$� ��� � ������ ��	� (2)

� � ��	�	���� � ������ ��	��� � � �#����

� �		���#� ������ ��	� (3)

Reasoning operators (1), (2), and (3) are performed by invoking the
corresponding operations in Table I. For reasoning 1,

��	�
� ������ �� ��	�
� ������ 	

its attributes’ modifications are1:
a) ��� #�	��� � ��	��	�
� %�#����� � �� �
��� #�	��� � 	�.

b) � ����� � �� �� ��� #�	��� � 	�� � ����� � 	�.
For reasoning 2 in Table I

��	�
� ������ �����	�
� ������ 	� ��� � ������ �

the attribute modifications are:
a) � ����� � ��� � � 	� �� �����	����� � ��� � � 	�

�� ����� ��#�������� � ��� � � 	�

�� 	�� ����	&��
�� � ��� � � 	�� �'��(����&�����

���&����
 �������� �� �� ����&�� �� ���
�

�� 	����#� 	������ ���� 	������ ����� ������ ��)��

1� � � is used for �����	 ��
��� �
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TABLE II
DESIGN FEATURE LIST OF THE FIXTURE IN FIG. 3

Fig. 4. The isotropic view of the fixture base and clamp with the design feature
list in Table II.

Fig. 5. The fixture product reasoning from the data in Fig. 3.

b) ������������	 
 �� �� �������� �������� �

���� ������ 	���������� 
��	 	��������

c) �������� �������� �� ������ ���� �� ����� �

���� ����

d) ���� ����������	 
 �� �� �������� �������� ��

���� ������ 	�������� � ����� ��

For reasoning 3 in Table I

	 
 ������ � 
������ � ��

	 
 ��� �������� 
������ �

the attribute modifications are:

a) � ����	 
 �� ��

	���������	 
 ��

��

	���� ����������	 
 �� ��

���
 
��������	 
 ��

����� ����������	 
 ��� ������ ���
���

��

������ ���
 �� ���� 
������

��


������ �
 ���� �����������

�������� ���������

��

�������� ��������

b) �	 
 �� ��

������������	 
 �� ��

�������� ��������

�����������	 
 �� ��

������������	 
 ���

� ������ ����������

������ 	����������

����� ��

The snapshot of the final fixture product is illustrated in Fig. 5.

A. System Evaluation

Unigraphics Solutions UG NX5 is an integrated CAD/CAM/CAE
commercial system. We present both the proposed method and UG
NX5 solutions to a local company at Hong Kong. A cross-functional
team (CPDT) is employed in the company to address the product life-
cycle issues at the beginning of product development process.

The members in CPDT are interviewed. All engineers in CPDT
have experience on product design using SolidWorks and AutoCAD.
But they have not used UG NX before. The same task, fixture design,
was presented to the interviewees with both the proposed method and
UG NX5 solutions. The interviewees were asked to comment both
solutions.

All interviewees commented that the UG NX5 solution is powerful.
One manager further commented that there are mass engineering data
output from UG NX5 and he needs extraneous time to figure out the
meaning of these data by checking the software interfaces.

All interviewees also commented that the proposed method is good
for product process development. One senior engineer further com-
mented that a company-specified reasoning table is easy for generation
and maintenance: different departments can contribute and maintain
their own reasoning operations separately. As a comparison, if com-
pany-specified resources need to be considered in UG NX5, plug-in
modules have to be developed by the third party for UG NX5.

This preliminary user study shows that the proposed method gives
a unified knowledge representation and reasoning for CE with rich se-
mantic information. It will benefit a cross-functional product develop-
ment team (CPDT) that contains representatives from different depart-
ments and with different working experience.

B. Limitations of the Method and Future Work

As an attempt of introducing feature language representation into a
unified knowledge representation problem in the comprehensive CE
environment, there are still many works to do in the future. In the
case study, the depth of the expanded tree is only three. In real-world
situations, a huge ontological representation needs to be built for
feature hierarchy. This also results in a large reasoning table for
feature transformation. The expanded search tree may also have a
large branching factor even if �� search is applied. Consequently,
more advanced searching techniques including state-of-the-art pruning
should be applied to efficiently answer the inquiries.

VIII. CONCLUSION

In this paper, we describe semantic features in a language repre-
sentation, which is defined across different domains in a concurrent
engineering environment. The vocabulary of the language is spanned
by semantic hierarchical features and five fundamental operators. The
reasoning operations in the language is defined by the rules of feature
transformation, together with a reasoning table which can be tailored
for any company with limited and special factory resources. Using the
proposed feature language, well defined semantics features can be effi-
ciently induced across domains. A case study is presented to show the
potential of the proposed method.
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Dynamics of WIP Regulation in Large Production
Networks of Autonomous Work Systems

Neil A. Duffie and Leyuan Shi

Abstract—In this paper, dynamic behavior is compared for two methods
of local work in progress (WIP) regulation in autonomous work systems in
production networks. In one method, work systems do not share informa-
tion regarding the expected physical flow of orders between them; in the
other, order-flow information is shared to compensate for the variable dy-
namic effects of physical order-flow coupling. In both methods, the work
systems adjust production rate with the objective of maintaining a desired
amount of local WIP. A linear discrete-time dynamic model of the flow of
orders between work systems is used, which promotes identification of fun-
damental properties such as characteristic times and damping. The results
demonstrate the need for order-flow information sharing in establishing de-
sired network dynamic behavior. Examples are used to illustrate behavior
in the general case of omnidirectional order flows and the special case of
unidirectional order flows.

Note to Practitioners—In the type of production network analyzed in this
paper, each work system autonomously adjusts its production rate with the
objective of maintaining a desired amount of local work waiting to be pro-
cessed. It is known that production networks can exhibit unfavorable dy-
namic behavior; for example, oscillation of inventory in supply chains as
suppliers respond individually to variations in orders, leading to recom-
mendations that supply chains should be globally rather than locally con-
trolled. However, decentralized planning and control methods are an in-
creasingly important alternative. Dynamic models are used in this paper
to demonstrate the need for and benefits of order-flow information sharing
between the work systems to compensate for variations in the structure of
physical order flows in such networks. The goals are to avoid slow or oscil-
latory response to disturbances and to establish and maintain desired net-
work dynamic properties, particularly when the structure of order flows in
the network is omni-directional.

Index Terms—Autonomy, distributed control, dynamic modeling, pro-
duction systems.

I. INTRODUCTION

Production networks can exhibit unfavorable dynamic behavior. An
example is oscillation of inventory in supply chains as individual or-
ganizations respond individually to variations in orders, leading to rec-
ommendations that supply chains should be globally rather than locally
controlled and that information sharing should be extensive [1], [2].
Unfortunately, it is difficult to make all of the information necessary
for robust control available to a centralized planning and control entity,
especially when there are a large number of work systems in a produc-
tion network. It is now recognized that decentralized coordination can
be provided by logistic processes implemented by autonomous entities
that can be the logistic objects themselves [3]. Decentralized planning
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