Formal Reasoning about Concurrent Assembly Code with Reenant Locks

Ming Ful2

Hefei, 230027, China
{fuming, liyong @mail.ustc.edu.cn

Abstract—This paper focuses on the problem of reason-
ing about concurrent assembly code with reentrant locks.
Our verification technique is based on concurrent separatin
logic (CSL). In CSL, locks are treated as non-reentrant locls
and each lock is associated with a resource invariant, the
lock-protected resources are obtained and released throtg
acquiring and releasing the lock respectively. In order to
accommodate for reentrancy, we introduce some additional
notions into our specification language to describe reentra
level for each acquiring and releasing lock operation. Keeing
track of the reentrant level for each lock in the pre- and post
conditions enables the program logic to ensure that resouss
are not re-acquired upon reentrancy, thus resources ownedyba
thread are prevented from reintroducing in the postcondition.
Our framework is fully mechanized. Its soundness has been
verified using the Coq proof assistant. We demonstrate the
usage of our framework through giving a safety proof of a
simple program.

Keywords-reentrant
safety, program logic

locks, concurrent separation logic,

I. INTRODUCTION

Yu Zhand-?
1Department of Computer Science & Technology
University of Science & Technology of China

Yong Lit2
2Software Security Laboratory
Suzhou Instifat Advanced Study, USTC
Suzhou, 215123, China
yuzhang@ustc.edu.cn

of the mutual exclusive locks, it treats the part of shared
memory protected by the lock as private. Before releasing
the lock, it must ensure that the part of shared memory
is well-formed with regard to the corresponding invariant.
The ownership of lock-protected shared memory can be dy-
namically transferred among threads, the verificationesyst
ensures that a piece of shared memory is only accessed when
the associated lock is held. However, in the invariants of
CSL, locks are non-reentrant, we cannot directly apply CSL
to reason about concurrent programs with reentrant locks.

In order to adapt CSL to reasoning about concurrent
programs with reentrant locks, we build an abstract machine
model based on an assembly language with RISC-style
instructions and built-in Ibck 1”7 and "unlock | primitives,
and introduce additional specification constructs to tthee
reentrant level for each lock. Instead of using the high-
level parallel language proposed by Hoare [3], we use the
assembly language because it has cleaner semantics, which
makes our formulation much simpler. For instance, we do
not use variables, instead we only use register files and

It is difficult to write correct concurrent programs due to memory. Therefore we can have a quick formulation in

potential inter-thread interference at every program fpdin

Coq [4] without worrying about variable renaming issues.

order to reduce the complexity of concurrent programmingAlso we do not have to formalize the complicated syntactic
most popular modern languages — Java and C# provide higleonstraints enforced in CSL over shared variables. Another
level reentrant locking primitives, which ease concurrentimportant reason is that our work at low level can be
programming. However, it is difficult to use reentrant lockseasily applied to generate proof-carrying code (PCC) [5].
correctly and the incorrect usage can result in nasty cencuit seems unavoidable that the proof rule for acquiring a lock
rent errors like data races or deadlocks. Existing higlkllev distinguishes between initial acquires and re-acquirbss T
languages do not provide any effective mechanisms to avoiis needed because it is quite obviously unsound to simply
such errors, thus it is important to develop a verificationassume the resource invariant after a re-acquire. Thus, a
technique for reasoning about concurrent programs witlverification system for reentrant locks must keep track ef th
reentrant locks. The reentrant mechanism allows a thread t@entrant level for each lock that the current thread haids i

re-acquire a lock that it already holds. It is important hessa

the pre- and post conditions, and we have to enrich our spec-

it eliminates the possibility of a single thread deadlogkin ification language to achieve this requirement. Our system

itself on a lock that it already holds.

addresses the safety issues at assembly-level as PCC system

Concurrent separation logic(CSL) [1] is an extension ofdo. So we do not need to trust the complicated compilation
separation logic[2] for reasoning about shared memory and optimization and can have a smaller trusted computing
race-free concurrent programs. Separation logic is a pragr base to build executable PCC package for programs using
logic which is tailored to reason about the heap manipudatin reentrant locks. Furthermore, our formal model for reenitra
programs. In CSL, the shared memory is partitioned andocks is still general and similar to high-level ones. The
each part is protected by a unique mutual exclusive lockverification technique we describe at assembly-level can be
For each part of the partition, an invariant is assigned tdifted up to higher levels. This paper makes the following
specify its well-formedness. When a thread acquires oneontributions:

1) As far as we know, this paper first proposes a methodananipulates is disjoint from that d?, then we can reason
to adapt CSL to fitting for reasoning about concur-aboutC and its effect separately froi.
rent assembly code with reentrant locks. We present CSL introduces the concurrency rule based on separation
a program logic for reasoning about properties oflogic for reasoning about concurrent programs. The concur-
concurrent assembly code with reentrant locks, andency rule given below
\r/\(/aeena:g\ételgci(s).und with respect to the semantics of (0GR} {QIC{R}
2) We implement our framework using the Coq proof {Qu* Q2}Ca|Co{Ry + Re}
assistant, and prove an example under the frameworkiescribes how concurrent threads with disjoint heap re-
The result shows that the adapted inference rules cagources can be treated separately. As a concurrent program
be easily applied to verify the concurrent assemblyexecutes, heap resources must remain separated but the sep-
code with reentrant locks. aration need not be fixed : the ownership can be transferred
The rest of this paper is organized as follows: In section Il,among threads through locking operation. The rule below is
we explain the CSL and its limitation for verifying reenttan used to deal with the non-reentrant locks for transferrire t
locks. We describe the abstract machine we model and thewnership of shared resources.
program logic for reasoning about concurrentassembly code | is a resource invariant associated with a lock
with reentrant locks in section Ill. Section IV presents an F1—1 F {em
. , p} lock I1{I}
example that are written and proved under our framework.
Finally we discuss the related work and conclusion inHowever, we can not directly apply this rule to reason
section V and VI. about concurrent programs with reentrant locks. The main
problem is that a verification system for reentrant locks
Il. PRELIMINARIES has to distinguish between initial lock entries and reestri

We give a brief description of separation logic. A more because only after initial entries is it sound to assume a
careful treatment is in [1] and [6]. A simplified syntax for lock’s resource invariant. This means that initial lockreest
separation logic is shown in Fig. 1. need precondition requiring that the current thread has not

Here we briefly demonstrate the logical semantics for eacti€t held the acquired lock. In Fig. 2, a simple code sequence
construct in the syntax. BotA and B are assertions that 1S made up of two consecutive statements that acquire the
describe the heap.— v holds if the heap consists entirely Same lockl. Both the first and the second acquiring lock
of the binding of locatiorl to valuev. emp holds only on | operations lead to obtain additional resource satisfying
the empty heapA« B holds if the heap can be split into two invariant I. According to the frame rule and the above
disjoint parts such thad holds on one and B on the other. fule , the second acquiring lock operation requires that the
AAB holds if bothA andB hold on the entire heagpvB Postcondition bd 1. However separation logic treats |
holds if eitherA or B holds on the heapd x. B holds if ~ as a false assertion, and this leads to incorrect verificatio
there exists ax that B holds on the heapy x. A holds on The following sections show our technique for solving this
a heap that satisfies for all x. problem and adapting CSL to reasoning about concurrent

programs with reentrant locks.

AB = 1—v]|emp|A«B| AAB|AVB

|3XB|VXA {emp}
Figure 1. Syntax of Separation Logic (1) lock I'; . , . .
{1} (I is lock | 's resource invariant)
(2) lockl ;

The frame propertyof separation logic requires that if a
program does not go wrong in a particular state with heap
H, then it will not go wrong in a larger state with heap
HWH (the notion %" is used to merge two disjoint heaps
into a larger one, we give its formal definition in Fig. 6);
the effect will still be taken or, leaving the added heap

{I'«x1} (Wrong!!)

Figure 2. CSL does not Support Reentrant Locks

H' completely unaffected. Thus the separation conforms to I1l. THE FRAMEWORK
the following frame rule: .
A. Abstract Machine
__{QIC{R} Fig. 3 defines the abstract machine and the syntax of an
{P+QJC{P+R} assembly language. We extend CAP [7], [8] by adding built-
(no variable occurring free in P is modified by C) in primitives "lock I” and "unlock |” for reentrant locks. The

If C cannot modify the variables d?, and if the heap it whole worldW consists of a code hedfy a shared data heap

(Worldy W (C,H,TS,L) Clpe] def [1 1=C(pc) and 1 =j f or jr rs
((r'll'hre;dS(i: TS = Em,...,)@rn) P ;1 1 =C(pc) and I = C[pc+1]
ThreadStat] S = (H,T,L ; —
i def [b if x=a
(('-rrr?rgFDc; T; = (R,(pc,tid) . 0 (F{a~b})(x) = { F(x) othermise
r tid = m (nat numsand m> def /o
(COd(eHeag) C e gf/\,) l); S |H/ d;f (H ,ST,SL)
Hea H = {1l~w}? S|y = (S.H,S.T,L")
(LockMap L = {l~ (tid,n)}"
(Reengml_lg\l/gl]1% = '{(nat m}lmsand i>0) Figure 4. Definition of Representations
egFi = {r~wl?
(Registey r =10 |...| a1
(Labely £,1,pc == i (nat numg B. Operational Semantics
(WCkS | o ! (naI nums The operational semantics of each instruction is defined
(I ortd) ooz ! éga numy ddi in Fig. 5. The relatiomNexts, shows the transition of thread
(Instr) ! = @ b Yd;Ts; Tt | I{ZI 'Td:Ts¥W states by executing instruction The operational semantics
| su rd,rs,rtL rd’w(rfs) for most instructions are quite straightforward. Note the
| ft f(dl’w(rsl) |kTq Is It execution of instruction for acquiring locks. It allows a
| loc , | unioc lock to be re-acquired by one thread and does not lead
(InstrSeq T =G jE] s

to deadlock. There exist three different cases for exegutin
lock I: when| is not in the domain of. (means that is
free), the current threatlid can exclusively and successfully
acquire the lock, and set lock with pair value(tid, 1). tid
denotes that lock is held by thread:id and the reentrant
H, a thread sef'S which containsi threadqT,...,Tyn) and level "1” shows that the current program point is at the atiti

a shared lock mapping. lock entry of the locK. Shared resource can be obtained by

The code heaff is a partial mapping from code labels the threac_i through the initial lock acquiring. Wheris in

to instructions. The global shared he&pis modeled as the domain ofl and held by the current threadd, thread

a finite partial mapping from heap locations (natural ~ tid tries to re-acquired a held lock. Non-reentrant locking
numbers) to word values (natural numbers). The locking mechanism makes the current thread block and leads to
mapl is a finite mapping from reentrant locks to lock value deadlock, while our model avoids deadlock through setting
pairs "(tid,n)”, where the integetid identifies the thread the reentrant level in the lock pair value with the increment
holding the lock exclusively and the integeis the reentrant Of "1”. When L is held by the other thread, the current thread
level counting how often it currently holds the lock. blocks. The semantics for releasing locks is straightfodwa

. . the reentrant level makes acquiring and releasing operatio
The abstract machine has a fixed number of threads. Eac the same lock keep in pair.

threadT; contains a register fil®, a program countepc : . / y
and its thread identifietid. Here we allow each thread i Fig. 5 also define¢C,) ~- (C,§) and (W — W) for
to have its own register file and program counter, Whicht

is consistent with most implementation of thread IibraryOur semantics of the abstract machifi® — W') is not

wht(re]re tr(;e-reg|ster mf '3 S?;/]ed to t.hte exﬂ(;)éqtlon contex: V(\;heaeterministic: the state transition may be made by exegutin
a thread 1S preempted. ihe register IS represente any thread inW. Also, given aW, there may not always

as a total function from reglst_ers to words. Each th_read Sxist aW such that(W — W’) holds. If there is no such
program counterpc points to its current command in a

. i W, we say the program gets stuck @t. One important
shared code heaff. The set of mstructmns we plresent_ oal of our program logic is to show that verified programs
here are the commonly used subset in RISC machines wnﬁ

» oo ever get stuck.
additional reentrantidck |” and “unlock I” primitives for 9
synchronization. C. Program Logic

We define the instruction sequenteas a sequence of 1) Assertion LanguageFig. 6 shows the syntax and
sequential instructions ending with jump or return instruc semantics of the assertion language. We use the predicate
tions. C[pc] extracts an instruction sequence starting fromm over a heap and separation logic connecters our
pc in C, as defined in Fig. 4(F{a~ b})(x) is used assertion language. The assertioris a predicate over a
to formalize memory update in our operational semanticsthread state.

MacrosS | andS |, are defined for constructing thread Most of the definitions are simple and straightforward.
states by replacing the heap and the lock set respectively.Here we explain some special ones. The assertion:VV’

Figure 3. The Abstract Machine

he thread execution and the whole world execution respec-
ively. Note that relatiodC,S) ~ (C,S’) is deterministic but

NextS, S S where S=(H,(R,pc,tid),L)
if 1 = S =
add rq,rs,rt | (H, (R{rg~ R(rs)+R(zt)},pc+1,tid),L)
addi ryq,rs,w | (H, (R{rq~ R(rs)+w},pct+l,tid),L)
sub rq,rs, 1t | (H, (R{rg~ R(rs) —R(zt)},pc+1,tid),L)
Id rg,w(rs) (H, (R{rq ~ H(R(rs) +w)},pc+l,tid),L) if R(rs)+w € dom(H)
st rq,w(rs) (H{R(rs) + w~ R(xq)},(R,pc+1,tid),L) if R(rs)+w € dom(H)
(H, (R,pc+1,tid),L{l ~ (tid,1)}) if I ¢ dom(L)
lock | (H, (R,pc+1,tid),L{l ~ (tid,n+1)}) if L(l) = (tid,n)
(H, (R,pc,tid),L) otherwise
lock | (H, (R,pc+1,tid),L{l ~ (tid,n—1)}) if L(l) = (tid,n)An>1
unioc (H, (R, pc+1,tid),L/{l}) if L(1) = (tid,n)An=1
jf (H, (R, £,tid),L)
jr s (H, (R,R(rs),tid),L)
b (H, (R, £,tid),L) if R(rs)=R(rt)
€A TsTuE | (R, pett,tid),L) if R(rs) £ R(xi)
| =C(pe) NextS S§ THREADSTEP
(C,8)~(C,§)

ITy. Tk € TS A (C, (H, Tk, L)) ~

(C, (|, T, L))

(C,H,TS,L) — (C,H’, (T1

/
LT,

~— WORLDSTEP
.Tn),L)

Figure 5. Operational Semantics

(ThrdStatePrell a
(HeapPred m €

€ ThreadState— Prop
Heap — Prop

m = 1—V|true|emp | m*mp
| mAm [mVmp | IXm|VXm
a = |m] | owng(l,n) |r=v
|a1Ahap |a1Vaz |Ix a| VX a
true % AH.True
emp def AH.dom(H) =0
H 1H, & dom(Hj) Ndom(Hyz) =0
1y & AH.H = {1~ v}
muomie 2 { JLlhd conersioe
mp*mp = AHLIHy, Hp.(Hy @ H, = H) AmyHy AmH,
m] =" ASmSH
owng(l,n) L' AS.(k=S.T.t1d) AS.L(1) = (k,n)
r=v ' ASSTR(r) =v
Figure 6. Syntax and Semantics of the Assertion Language

holds only if the heap has only one cell at locatian

into two disjoint parts, andh; and my hold over each of
them respectively|m| means predicate over a thread state
containing a heap satisfying, we use this syntax to lift
predicates over heap to assertions specifying a threasl stat
Predicateowng(I,n) is used to specify thdtis held by the
threadk with corresponding reentrant level Here, we omit
the semantics of some straightforward connectors, such as
AV, eta

2) Program SpecificationWe use the mechanizedeta-
logic implemented in the Coq proof assistant as our specifi-
cation language. The logic corresponds to higher-ordec log
with inductive definitions.

(WorldSpet @ = ([W1,...,Wn],T)
(CdeSpea: LIJ = {(flval)v---a(fnvan)}
(LockINV T = {l~mn}*

(Well-formed Worldgl o [a1,...,an) F (C,H,TS,L)
(Well-formed Thread M+ {a}(C,H,T,L)
(Well-formed Code Hegp y,l - C: ¢/

(Well-formed Instr. Sey. W, - {a}pc: ;1
(Well-formed Instruction @, - {a}pc:1

Figure 7. Specification Constructs for the Program Logic

The specification constructs of our logic are presented in
Fig. 7. The world specificatiop contains a collection of

containing valuev. m; *xmp means the heap can be split code heap specifications for each thread and a specification

I" for lock-protected heap. Code heap specificatjpmaps to the ownership information of locks not held by the current
a code label to a predicate over thread stat& as the thread.

precondition of corresponding instruction sequence. The def [(tid,n) if L()=(tid,n)
specificationl” of a lock-protected heap maps a lock to an (Llzia)(l) = { undefined otherise

invariantm specifying the shared heap.

The last five judgments are used to define the well-form
world, well-formed thread, well-formed code heap, wel
formed instruction sequence and well-formed instructio
respectively. The inference rules for these judgments wil
be presented in the following subsection.

ed The rulecoHpr shows that a code heap is well-formed only
I- if each instruction sequence specifiedyihis well-formed
nwith respect to the imported interfaces specified witand
Ithe lock specification.

The ruleinsq shows that an instruction sequence is well-
formed if it is composed of a single instructioand another
instruction sequenck both of which are well-formed.

def
a ap = AS.a1 S—a» S
1= a2 1oaz A well-formed instructions includes the following cases

def

asxm = AS.3H1,Hp, (H1wWH> = S.H) Aa S|m, Am Hp with the order of Fig. 9.
Y oNexts, def AS.38,NextS, SS’ AY(S' . T.pc) ' e The ruleinsn - If the instructiont is not lock | or
) unlock I, it can execute for all thread states specified
V. xeS P(x) & { ‘;mP xes p !]‘: gig . by the current thread state predicateand the new
(%) #V.xeS. P(x) if S=Sw{x} modified thread state must satisfy the thread state
Figure 8. Auxiliary Definition predicate for the target address of instructigiven by
_ Y. We useloNextS, defined in Fig. 8 to specify the
3) Inference Rules:The inference rules for a program new modified state generated by executing instruction

and instructions are presented in Fig. 9. .
A world is well-formed with regard to a world specifica- « The ruleLock - We have a unified rule for reasoning

tion @ and thread state predicates . ..,an for each thread about instructionock | which may be executed at either
when the following conditions hold: the initial entry or reentry. The reentrant locks are
« There is a partition of the global heap inmg- 1 disjoint handy in the presence of polymorphism, i.e. where
parts, where the shared hei satisfies the invariants a given routine that executes lock is called both in
specified in[andHjy, ..., H, satisfy each thread state a context where the lock is free and where the lock
predicateay respectively. As in O’Hearn’s original work was previously acquired. In that sense, whether the
on CSL [1], we also require invariants specified’itio locking operation happens at the initial entry or reentry
be precise, denoted @&xecise(l’) defined as below. cannot be established statically, and the unified rule
Every thread of the world is required to be well-formed. Lock can support reasoning about the either case au-

Thus our system support thread-modular verification by ~ tomatically. The rule applies when lodkis acquired
decomposing the verification of multi-threaded program at the initial entry or reentry. The thread predicate
into that of its component threads. ((En'lk/_m) Y (Enlrelk/\emp)) is use(_j to enforces the
ownership transfer under the following two cases:
— If the current state satisfies the predicﬁ:ﬂik (de-
fined in Fig. 10) which ensures the lock is free and

Precise(m) % VHy,Hp, HL.H; C H — H, C H —
m H1 Am Hy — Hq = H>

Precise(I) v e dom(T"). Precise(I (1)) enables safely locking operation at the initial entry,
we can carry the knowledgein the postcondition
« The shared stat¢Hs, ,IL) satisfies the predicater, given by @ at the target address of instruction
which is defined below. The definition ofr is the The global invariant ensures that the part of heap
separating conjunction of invariants assigned to the protected byl satisfies the invariani.
locks which are free (not in the domain of the glohl — If the current state satisfies the predicate
It ensures that the shared heap are well-formed outside En'relk (defined in Fig. 10) which ensures the
critical region. Herev, is an indexed, finitely iterated lock is held by itself and enables safely locking
separating conjunction, which is formalized in Fig. 8. operation at the reentry, we can use the empty heap
def predicateemp to represent nothing is acquired at
ar = AS.(Vule{l [I ¢ dom(S.L)}. T(1)S.H the reentry. The part of heap protected lbyill
A thread is well-formed if the current thread state satis- not be reintroduced into the result state.
fies the preconditiora and both the code heap and the « The rule unLock is similar with the ruleLock, we
instruction sequence are required to be well-formed. Since use the predicatqé(En'unlk Am)V (En'reunlk A emp))

only specifies the private resource, we use "filter” operator to represent two different cases, one is that the invariant
"L|¢iq” formalized below to prevend from having access gets established and the lolék current reentrancy level

®[a1,...,an] F (C,H,TS,L) \ (Well-formed World)

o= ([W1,...,Yn],l) H=HswH;W...wH, Precise(l')
ar(Hs,_,L) W, F{ak}(C,Hy, Ty, L) for all ke {l,...,n}

WORLD

(p'[ala cee 7an] + (CaHv [Tlv s aTn]vL)

|W.MF{a}(CH,T,L)| (Well-formed Thread)
a (B, (R pe,t34). Llsa) W FCi0 WIF fapeiClpd _
Y, = {a}(C,H, (R,pc, tid),L)

W, r=C:y'| (Well-formed Code Heap)

v i H :

(pe,a) eW': W F{ajpe:Clpe]
Y,r=c:yf
W, M ={a}pc:I| (Well-formed Instr. Sequence)
W,r={a'}pc+1:T W{pc+i~a'}, I {alpc:1 <
IN
Y, {a}pc: ;I ©

W, {a}pc:1| (Well-formed Instruction)

I ¢ {lock l,unlock I} a=-oNextS,

INSN
W, {a}pc:1
asx ((Enllk Am)V (En'relk Aemp)) = WoNextSpck |
W,M{l ~ m} - {a}pc:lock | HocK
[[
a = (Yo NextSuniock 1) * ((Enypq3 Am)V (Enpo gy Aemp)) UNLOGK

W, M {l ~m} + {alpc : unlock |

Figure 9. Inference Rules

is 1; the other is that the specified heap is empty andnachine is proved following the syntactic approach [9].
the lockI's current reentrancy level is bigger than 1. From the "progress” and "preservation” lemmas, we can
The predicate enforces that the ownership of the wellguarantee that given a well-formed program under the com-
formed shared heap protected by the Idcknly be patible preconditions, the current instruction sequenie w
transferred from private part to the shared part at thébe able to execute without getting "stuck”. The soundness
last releasing and the middle unlocking operations doof our framework is formally stated as Theorem |II.3.

not change the domain of thread private heap. The

predicateEn) . and Enl._ .. defined in Fig. 10 | emma IIl.1 (Progress) For any world W =—
enables safely unlocking action taken on the curren{C H, (Ty,...,Tp),L), and if ,[a1,...,an] F W, then
state. for any thread T, there existH',T, and L' such that

def (C,(H,Tk,L)) ~ (Ca(Hlan(,Ll)).

Enl, = AS.I¢dom(SL)
Enlgye & AS.(ST.tid,_)=SL() Lemma Ill.2 (Preservation) @ = ([W1,...,n],[). If
< i = ¢ [a1,...,an) F W and W — W, then there exist
En| et AS.(S.T.tid,1) = S.L(I [a1, ...,
Dinlk def S.(8.T.tid,1) = S.L(I) a,...,a, such thatg, [a),...,a | F W'
En'reunlk = AS.3n,(S.T.tid,n)=S.L(I)An>1

Figure 10. Predicates for Enabling Instructions Theorem I11.3 (Soundness) @ = ([LlJla---,LlJn],r)- If there

exista, ..., an, such thatp, [a1,..., an] - W, then for any n>

4) SoundnessThe soundness of these inference rules0, there exist a worldV’ andaf, ..., a;, such thafW —" W’
with respect to the operational semantics of the abstradnd @, [a,...,a| - W'

We have mechanized the complete soundness proof in the def

Coq proof assistant. Interested readers can check out aur Co " def Ja,bx—ana=2b
implementation [10] for more detail. r = {l~mn}
—{[emp]}
IV. EXAMPLE lock I
—{[m] Aowng(l,1)}
In this section, we give an example to demonstrate 14 r1,X(ro);
the mechanized verification of safety properties(usudigy t —{3a,b.|x— a] Aownk(l,1) Arp =aAa=2b}
shared memory invariant in parallel program) for concurren addi ry,re, 1;
assembly code with reentrant locks. —{Ja,b.|x— a] Aowny(l,1) Ar; = a+1Aa= 2b}
A simple example is present in Fig. 11, which is the con- st r1,X(ro);

current code that computes the next even number according —{3a,b.|x— a+ 1] Aowng(l,1) Arp =a+1Aa= 2b}
to the current value stored in the shared memory location lock l;
x. The shared locatiow is protected by a reentrant lodk —{3a,b.|x— a+1] Aowng(l,2) Arp =a+1Aa=2b}

and the value stored in it is initialized with 0. In high level addi ry,ri, 1;
code, we unfold the inlined synchronized method located —{Ja,b.|x— a+ 1] Aowng(l,2) Aty =a+2Aa=2b}
from line 3 to line 5. The inlined method leads to acquiring st r1,X(ro);

the same lock which has been held by the caller. The lock —{3a b.|x+— a+ 2| Aownk(l,2) Ar; =a+2Aa=2b}
| is a reentrant lock, so this code will run correctly without ~—{3a’,b".|x+— a'| Aowng(I,2) Arp =a Ad =2b'}
deadlock. —{|m| Aowng(l,2)}

The corresponding assembly code and assertions are unlock I
given in Fig. 12. We verify the code in our framework. —{|m| Aowny(l,1)}
Following MIPS convention, we assunig always contains unlock I;
0. Assertions are shown as annotations enclosed{i}"; —{|emp|}
the shared memory locatiox protected by the reentrant
lock | specified by the invariants that requires the value
stored in shared location is eveda(b.x — aA a = 2b).
According to CSL, the shared memory is well-formed and
conforms to the invariant when the corresponding lock is
free. The precondition and postcondition for instructiams
the example are straightforward, it is trivial to apply the
inference rules in our framework to verify the assembly Many approaches have been proposed for reasoning about
code with assertions. Note that the ruleck is applied to properties of both sequential and concurrent programs [3],
reason about the acquiring lock operation at the initiatyent [11], [12], [13]. But most efforts on concurrent programs
and the rulereLock is applied to reason about the secondfocus on the non-reentrant lock-based programs and do
reacquiring lock operation. Only the first locking operatio not consider the reentrant locks. As we present in this
transfers the shared memory locatiofrom the shared part paper, there exist some differences between reasoning abou
to its private part and the second locking operation acquireconcurrent programs with non-reentrant locks and thoge wit
nothing but increasing the reentrancy level by 1. We use theeentrant locks.
rules REUNLOCK and uNLock to reason about the first and Peter O’Hearn [1], [6] proposed CSL, which applies the

Figure 12. Assembly Code with Assertions

V. RELATED WORK

second releasing operations respectively. local-reasoning idea from separation logic [14], [2] toifyer
shared-state concurrent programs with memory pointers.
Initially : [x] = 0; Separation logic assertions are used to capture ownerships
Thread ID : k of resources. Separating conjunction enforces the partiti
//x protected by lock 1 of resources. Verification of sequential threads in CSL is no
1: lock 1; different from verification of sequential programs. Memory
2: [x] = [x] + 1; modularity is supported by using separating conjunctiah an
3: lock 1; frame rules. However, the rule for acquiring and releasing
4: [x] := [x] + 1; resource in CSL cannot be directly applied to verify con-
5: unlock 1; current programs with reentrant mutual exclusive locks. We
6: unlock 1; adapt CSL to a concurrent assembly language with reentrant
locks.
Figure 11. Reentrant Lock Example In recent years, Shaet al. have developed CCAP[8],

CMAP[15] and SAGL[13] as extensions to the PCC frame-

work to verify properties of concurrent programs using [8] D. Yu and Z. Shao, “Verification of safety properties for
locks, which are treated as non-reentrant locks. And we concurrent assembly code,” iRroc. 2004 ACM SIGPLAN
present an extension to enable verification of concurrent '1”8% Conf. on Functional Prog. September 2004, pp. 175~
program using reentrant locks. '

A recent work [16] proposes a verification technique for [9] A. K. Wright and M. Felleisen, “A syntactic approach tqgy
a concurrent Java-like language with reentrant locks. The soundness|nformation and Computatigrvol. 115, no. 1, pp.
verification technique is based on permission accounting 38-94, 1994.
2E|;Jarat|on Iog!c. The essential d]ffgrences between [16] a>L10] M. Fu Y. Zhang, . and Y. Li “Formal

paper are: we focus on verifying concurrent gssembl reasoning about concurrent assembly code

code with reentrant locks and develop an extension to the with reentrant locks. Coq implementation.”
PCC framework; instead of using hand-writing proof, we http://ssg.ustcsz.edu.cn/vsync/papers/frcacrl,
provide machine-checkable proof for our framework. Jan 2009.

VI. CONCLUSION [11] S. Owicki and D. Gries, “Verifying properties of parlll

. . rograms: an axiomatic approacitCommun. ACMvol. 19,
In this paper we have presented a system for verifying 20.951 pp. 279-285, 1976lpp © M

concurrent programs using reentrant locks. We modeled an

assembly level machine with built-in reentrant lockingwpri [12] A. Cotsman, J. Berdine, B. Cook, N. Rinetzky, and M. 8agi

itives. We adapted concurrent separation logic to vergyin F'}f?ﬁﬂszgﬁss";mg ;‘?}rpsrg)éaffnéog‘:% ggg ETSff\%voF;?CLNcs

concurrent assembly code with reentrant Iocks_. We alsoused g, Springer-Verlag, November 2007. '

a simple example to demonstrate the effectiveness of our

framework. [13] X. Feng, R. Ferreira, and Z. Shao, “On the relationship

between concurrent separation logic and assume-guarantee
ACKNOWLEDGEMENT reasoning,” Dept. of Computer Science, Yale UniversityywNe
We thank Prof. Zhong Shao (Yale University) and anony- ~ aven. CT, Tech. Rep. YALEU/DCS/TR-1374 and Formula-
; . tion in Coq, January 2007.

mous referees for their suggestions and comments on an

earlier version of this paper. This research was supponted i[14] S. S. Ishtiag and P. W. O’Hearn, “Bl as an assertion laggu

part by the National Natural Science Foundation of China for mutable data structures,” iRroc. 28th ACM Symp. on

under Grant No. 90718026 and gifts from Intel Corporation. ~ Principles of Prog. Lang.2001, pp. 14-26.

'g‘ny opinions, flrr:dlngs,f arr:d Conhclu5|0n3 ((:jontalnedﬂln thIELéLS] X. Feng and Z. Shao, “Modular verification of concurrent
Pcume“t are those .0 the authors and do not reflect t assembly code with dynamic thread creation and terminAtion

views of these agencies. in Proc. ICFP’05 2005, pp. 254-267.

REFERENCES [16] C. Haack, M. Huisman, and C. Hurlin, “Reasoning about

[1] P.W. O’Hearn, “Resources, concurrency and local reimggh java’s reentrant locks,” iMPLAS '08: Proceedings of the 6th
iri P'roc. 15th’ Intl Conf. 'on Concurrency Theory (CON- Asian Symposium on Programming Languages and Systems

CUR'04), ser. LNCS, vol. 3170, 2004, pp. 49-67. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 171-187.

[2] J. C. Reynolds, “Separation logic: A logic for shared ahle
data structures,” ifProc. LICS’02 Jul. 2002, pp. 55-74.

[3] C. A. R. Hoare, “Towards a theory of parallel programming
in Operating Systems Techniqué&s A. R. Hoare and R. H.
Perrott, Eds. Academic Press, 1972, pp. 61-71.

[4] The Coq Development Team, “The Coq proof assistant ref-
erence manual,” The Coq release v8.0, Oct. 2004.

[5] G. Necula, “Proof-carrying code,” iroc. 24th ACM Symp.
on Principles of Prog. Lang. ACM Press, Jan. 1997, pp.
106-119.

[6] P. W. O’'Hearn, “Resources, concurrency, and local reaso
ing,” Theoretical Computer Scienceol. 375, no. 1-3, pp.
271-307, 2007.

[7] D. Yu, N. A. Hamid, and Z. Shao, “Building certified librias
for PCC: Dynamic storage allocation,” iRroc. 2003 Euro-
pean Symposium on Programming (ESOP,;08)ril 2003.

