
University of Huddersfield Repository

Iqbal, Saqib and Allen, Gary

Representing Aspects in Design

Original Citation

Iqbal, Saqib and Allen, Gary (2009) Representing Aspects in Design. In: Theoretical Aspects of
Software Engineering, 2009 TASE 2009, Third IEEE International Symposium on. IEEE, Tianjin,
China, pp. 313-314. ISBN 978-0-7695-3757-3

This version is available at http://eprints.hud.ac.uk/id/eprint/5517/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Representing Aspects in Design

Saqib Iqbal, Gary Allen
Department of Computing and Engineering

Univeristy of Huddersfield, Huddersfield, HD1 3DH, UK
s.iqbal@hud.ac.uk, g.allen@hud.ac.uk

Abstract

Identification of cross-cutting concerns (Aspects) in the
earliest phases of software development has gained in
popularity over recent years. Many approaches have
been suggested for identifying and representing
Aspects in abstraction and design structures. Since
these approaches are still relatively immature,
shortcomings such as overlooking or not properly
locating Aspects have been noted in almost all of these
approaches. This research proposes an Aspect-
Oriented Software Development Model which helps
identifying Aspects at the early stages of software
development and guides the way to interpret these
Aspects into Design elements and finally provides a
support to weave Aspects into Base program.

Keywords: Aspect-Oriented Programming, AOSD
Modeling, Identification of Aspects, Representation of
Aspects

1. Introduction

 Many essential system requirements, such as
efficiency, security, fault-tolerance, and
synchronization of threads, are difficult to handle,
especially in the implementation of large-scale systems.
The slightest mishandling of any of these requirements
can result in a big problem, or even disaster in the case
of safety critical systems. Such requirements are rarely
limited to one module or unit of a system, rather their
implementation spreads over a set of modules or sub-
modules. Their implementation, therefore, also
involves more than one programming unit. Hence their
code is scattered and tangled across the whole system,
and that is why they are known as cross-cutting (or
Aspectual) concerns of the system. The complex, yet
important nature of these Aspects has forced software
engineers to address them separately from the base
program. Aspect-oriented programming (AOP) [2] has
been proposed as a programming paradigm to handle

these cross-cutting concerns. Since its inception, a lot
of work has been carried out on the better
implementation of Aspects. There are plenty of tools
and technologies like AspectJ, AspectWorkz, and
Spring available which implement Aspects differently
according to the requirements and environments.

Aspects are usually handled in the implementation
phase. Their identification usually relies on the strength
of domain knowledge of the implementer. There has
been very little work in identifying Aspects at the
earlier stages of software development, although some
techniques have been proposed, like the AORE
(Aspect-Oriented Requirements Engineering) model by
Rashid et al [1] which builds on View Point Model [1],
and the COSMOS [3] model by S. Sutton which
proposes a technique to capture concerns in the early
stages. The problem with both of these techniques is
that they do not specifically capture cross-cutting
concerns; rather they talk about general concerns of the
system. Some of other related work can be found in [4],
[6] and [8]. All these techniques and models either
address modeling of Aspects or identifying general
concerns including non cross-cutting concerns (non
Aspects). There are some approaches which represent
Aspects in Use Case models. For example, Saiki and
Keya propose generating a use case model for Non
functional requirement (NFR or Aspects) [5]. Araújo
and Coutinho proposed developing a vision document
based on a viewpoint-oriented method to separate
Aspects from basic concerns [7], and Georgia et al
have proposed extensions in UML showing use cases
in the use case model and suggested techniques to
implement Aspects as use cases [9]. All these proposed
approaches lack a complete model of representing
Aspects from system initialization to its
implementation.

Our research focuses on developing efficient
procedures and well-defined set of activities to identify,
represent and weave Aspects in the Software Design.
We have proposed an Aspect-Oriented Software
Development model (Figure1) that represents Aspect
from the initialization of software to its

implementation. It suggests the identification of
Aspects in the Use Case Model and Sequence
Diagrams of the system. Use cases which involve
multiple use cases like included or extended use cases
may be considered as candidate aspects since they have
the probability of crosscutting representation in design
as well as in implementation. Similarly, the objects
which have communication with multiple objects and
which are represented in multiple sequence diagrams
may also be regarded as candidate aspects. Proper
specification of the candidate aspects can help
identifying actual Aspects. Once we have identified
Aspects which are to be implemented in the system, we
can include them in class diagram to represent their
relationship with classes of Base program.

Figure 1: AOSD Model

The proposed AOSD model represents Aspect in all
phases of software development and can help
identifying and tackling all the system Aspects in
traceable and evolvable manner.

2. References

[1] A. Rashid, A. Moreira, and J. Araujo, "Modularisation
and Composition of Aspectual Requirements," presented at
2nd International Conference on Aspect Oriented Software
Development (AOSD), Boston, USA, 2003.

[2] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-Oriented Programming. XEROX PARC
Technical Report, SPL97-008 P9710042. February 1997.

[3] S. M. Sutton, "Concerns in a Requirements Model - A
Small Case Study," presented at Early Aspects 2003
Workshop: Aspect-Oriented Requirements Engineering and
Architecture Design (held with AOSD 2003), Boston, USA,
2003.

[4] M. Katera and S. Katz. Architectural views of Aspects. In
Proceedings of the International Conference on
Aspectoriented Software Development, pages 1–10, 2003.

[5] M. Saeki and H. Kaiya. Transformation Based Approach
for Weaving Use Case Models in Aspect-Oriented
Requirements Analysis. In The 4th AOSD Modeling With
UML Workshop, Oct. 2003.

[6] X. Wang and Y. Lesperance. Agent-oriented
requirements engineering using congolog and i*. In
Submitted to AOIS-2001, Bi-Conference Workshop at
Agents 2001 and CAiSE’01., 2001.

[7] Araujo, J., Coutinho, P.: Identifying Aspectual use cases
using a viewpoint-oriented requirements method. In: Early
Aspects 2003: Aspect Oriented Requirements Engineering
and Architecture Design, Workshop of the 2nd Intl.
Conference on Aspect-Oriented Software Development,
Boston, MA (2003)

[8] J. Castro, M. Kolp, and J. Mylopoulos, ‘‘Towards
requirements-driven information systems engineering: the
TROPOS project,’’ Information Systems, vol. 27, pp. 365–
389, 2002.

[9] A. Rashid, B. Tekinerdo˘gan, A. Moreira, J. Ara´ujo, J.
Gray, J. G. Wijnstra, and P. Clements. Early Aspects:
Aspectoriented requirements engineering and architecture
design. In Workshop at AOSD-2002, 2002.

System Requirements
Specification (SRS)

Implementing Base
Classes

Aspects Definitions

Implementing
Aspectual Classes

Candidate Aspects

Representing Aspects in Class
Diagrams

Representing Aspects in
Sequence Diagrams

Use Case Model

weaving

