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 

Abstract—This paper presents a requirement-based bidding 

language for agent-based scheduling. The language allows agents 

to attach their valuations directly to scheduling performance 

requirements. Compared with general bidding languages, the 

proposed one reduces agents’ valuation and system’s 

communication complexities. In addition, it results in efficient 

winner determination problem models. Experimental results 

show that the requirement-based language exhibits superior 

winner determination performance in terms of problem-solving 

speed and scalability.  

Note to Practitioners— e-Markets, such as auctions, are useful 

tools for scheduling resources among independent participants 

(agents). We propose a requirement-based bidding language 

which concisely and naturally expresses scheduling requirements. 

The key benefit of adopting this language in the design of agent-

based scheduling systems is reduced computational complexities, 

which makes the systems more responsive to large scale, dynamic 

and distributed scheduling problems.  

  Index Terms—Agent-based scheduling, economic based 

negotiation mechanisms, bidding language 

I. INTRODUCTION 

Combinatorial auctions have been used as a negotiation 

mechanism for designing agent-based scheduling systems 

where self-interested agents compete for the use of resource 

time [1-3]. Among others, a key component that impacts the 

systems’ computational complexities is the bidding language 

in which agents express their valuations over scheduling 

outcomes. Kalagnanam and Parkes reviewed four areas of 

computational constraints which restrict the space of feasible 

combinatorial auction mechanisms [4]. Among the four areas, 

three (i.e., communication complexity, valuation complexity 

and winner determination complexity) are affected by the 

design of the bidding language [5]. Based on the structures of 

their atomic propositions,  general bidding languages for 

combinatorial auctions can be classified into two types:     

and   [6].    languages use bundles of items with associated 

prices as atomic propositions and combine them using logical 

connectives.    languages allow bids that are logical formulae 

where items are taken as atomic propositions and combined 

using logical connectives. As an example, should a bidder 

desire (for price  ) any two adjacent hours in a four-hour 

window, she can express her preferences in either         . In 

   , she needs to formulate 3 atomic bids and connect them 

 
C. Wang is with Concordia Institute for Information Systems Engineering, 

Concordia University, 1515 Ste Catherine West, EV 007.649, Montreal, 

Quebec, H3G 1M8, Canada (phone: 1-514-8482424 ext. 5628; fax: 1-514-
8483171; e-mail: cwang@ciise.concordia.ca).  

using logical connective     to form a compound bid:   

〈{     }  〉    〈{     }  〉   〈{     }  〉. In   , such 

preferences are expressed in a logical bid of the form: 

〈(     )   (     )    (     )  〉. While    and 

   only allow agents to express their valuations on bundles or 

formulae of items, web-based bidding interfaces for 

procurement applications are much more expressive in terms 

of representing complex side constraints and discount 

schedules [7, 8]. However, those interfaces are intended to be 

used by human sourcing experts rather than software agents.  

Since     and    only allow distinct items, in order to apply 

them to scheduling auctions, the continuous scheduling time 

line must be discretized, such that the processing time of 

resources can be converted to a set of distinct time units [1, 2, 

9]. If agents need to reveal their full valuations, such as the 

case in Vickrey-Clarke-Groves (VCG) mechanisms, general 

bidding languages require valuations on all      time unit 

bundles, where   is the number of time units available for 

bidding. In many realistic scheduling settings, to assure time 

precision,   cannot be too small. Given that the number of 

bundles to be evaluated grows exponentially in the number of 

time units, general languages can inflict heavy burdens on the 

auctions in terms of bids valuation, winner determination, and 

communication.  

This paper presents a requirement-based bidding language. 

Compared with general languages, the proposed language 

allows agents to attach their valuations directly to the 

performance requirement of a schedule. By avoiding 

expressing valuations on a large number of bundles, agents’ 

valuation and communication complexities are reduced 

accordingly. The proposed language also results in efficient 

winner determination models which improve problem-solving 

speed and scalability. In the next section, we present a 

scheduling auction model which extends the factory 

scheduling model described in [2]. The scheduling auction is a 

typical job shop scheduling setting. We use this model as the 

base environment for comparing bidding languages in terms of 

the complexities they impose on the auction.  

II. SCHEDULING AUCTION 

The scheduling auction consists of a set of agents. Each 

agent   has a set of jobs    to be processed. Each job      

requires the processing of a sequence of operations      

(      ). An operation      has a specified processing 

time     , and its execution requires the exclusive use of a 

designated resource for the duration of its processing. Each 

job      is constrained by a release time    by which the job 

is available for processing, and a deadline    by which the job 
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must be completed. For a feasible schedule with completion 

time   ,          , the agent obtains a value   (  )   . 

For any completion time outside (      ,   (  )   .   (  ) is 

determined by the agent’s internal mechanism which is 

language independent. We assume that, for an agent,   (  ) is 

given for any   . There are precedence constraints among 

operations of a job, but there are no precedence constraints 

among jobs. An allocation of processing time to jobs forms a 

schedule for agent  , denoted   . An agent’s valuation over 

jobs in    is additive, that is   (  )  ∑   (  )    
. 

According to the additive valuation, as long as a schedule 

completes one job within (      , its value to the agent is 

positive. The objective of the auction is to maximize social 

welfare, the sum of   (  ) across all agents. 

Fig. 1 shows an example of the scheduling auction with 

three resources (        ) controlled by the auctioneer. 

Agent A has job1(              ) and job 2 (         ) to be 

processed. Agent B has job 3 (              ) and job 4 

(         ) to be processed. Arrows with solid lines represent 

the precedence constraints between operations; arrows with 

dotted line link operations to their designated processing 

resources. The scheduling auction can be an abstract model of 

various scheduling settings. In a manufacturing firm, for 

example, each sales agent may have a set of jobs to be 

processed. They may “compete” with each other for the 

limited processing resources to satisfy their customers’ 

requirements. The auction can also be seen as a general model 

of some agent-based scheduling environments described in the 

literature, in which an agent represents only one job[10].  

III. THE REQUIREMENT-BASED BIDDING LANGUAGE 

In the scheduling auction, an agent’s valuation on a 

schedule depends on the extent to which the schedule satisfies 

its performance requirement. Ideally, a bidding language 

should provide the expressiveness which allows agents to 

explicitly attach their valuations to performance requirements. 

However,     and     do not provide such expressiveness 

since they only allow an item or a bundle of items in their 

atomic propositions. We present a requirement-based bidding 

language, namely   , to address this limitation of general 

bidding languages in the domain of scheduling. 

As in     and    , the basic structure of    is an atomic 

proposition.     atomic proposition is more concise in terms 

of representing scheduling problems. It consists of a 

description of the job to be completed, a quality requirement 

and the price that the agent is willing to pay given the 

requirement is satisfied. The quality of a schedule can be 

evaluated by many types of scheduling criteria [11]. In our 

scheduling auction, we use the completion time of a job as the 

measure. Formally, an atomic proposition can be represented 

by a 3-tuple <Job, Completion-Time, Price>. 

Job specifies a sequence of operations and their required 

processing time on resources. The release time of the job and 

other processing constraints are also specified. Deadline of the 

job is not specified here. It will be expressed in the 

Completion-Time. For many scheduling models, existing 

general scheduling problem description languages, such as the 

one proposed in [12], can be used to describe the job 

specification. Since we focus on resource allocation in this 

paper, in our scheduling auction model a job is described as a 

set of resource and processing time pairs. For example, job 3 

in Fig.1 can be presented as ((     ) (     ) (     )  

    ), which means it needs to be processed by   ,    and 

   in sequence after the release time 5,  and the processing 

times are 23, 15 and 18.  

Completion-Time is the time range that constraints the 

completion of a schedule. For example, if the Completion-

Time is (      , its semantic interpretation is that the job is 

required to be completed after time 20 and before 40. 

Price is the amount of money that the agent is willing to pay 

given that the schedule of the jobs satisfies Completion-Time 

requirement. For example, the atomic proposition 
〈    (           〉 is interpreted as the agent is willing to 

pay $100 if the completion time of the job is within (      .   
Expressing a simple    atomic proposition using    or     

usually requires a compound XOR-bid with a possibly large 

size. For example, to represent 〈    (           〉 in   , we 

need to compute the set of all eligible schedules, denoted     , 

such that each        completes within (      . We then 

connect the set of schedules as an XOR-bid: 

         
〈      〉, where each        is a bundle of time 

units. The sizes of   and      are usually not small in 

scheduling auctions with multiple resources and multiple 

operation jobs, such as the case in the example of Fig.1. If    

is used, in addition to the XOR-bid, the time units in each 

       need to be joined by | |-1 conjunction connectives.   

By connecting    atomic bids using XOR, we can express 

an agent’s values on different levels of Completion-Time. For 

example, we can use the following compound bid 

〈    (           〉   〈    (              〉  to express 

the valuation: If the job is completed between (       , the 

agent is willing to pay    ; if completed within (        , 
the price is reduced to      . It is worth to note that atomic 

bids in each of the three languages can be connected by XOR 

and/or OR to form compound bids. The key difference of the 

three bidding languages is the structure of their atomic bids. 

IV. VALUATION, COMMUNICATION AND WINNER 

DETERMINATION COMPLEXITIES 

In this section we compare valuation, communication and 

winner determination complexities of    and   . We use the 

benchmark VCG mechanism as our auction setting. VCG is a 

type of one-shot auction. It motivates agents to submit their 

complete valuations truthfully and computes optimal 

solutions. In addition to the comparison between    and   , 

Fig. 1 Example of the Scheduling Auction Model 
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we also analyze the suitability of    as a bidding language for 

the scheduling auction. 

A. Valuation Complexity 

In the case of   , agents have to implicitly express their 

valuation by attaching values to bundles of time units. In a 

standard combinatorial auction setting, an agent must evaluate 

     bundles, where   is the number of items sold in the 

auction. The valuation complexity in    is the computation 

needed to evaluate the bundles of time units. We first define 

the value of a bundle to an agent. For a bundle  , if a 

schedule     , we say    is covered by  . In many cases, a 

bundle can cover several schedules of an agent. We define the 

value of a bundle as the value of the best schedule which the 

bundle covers. 

Definition 1: Let   be the set of schedules of an agent 

covered by  . The valuation of the agent on bundle  , denoted 

  ( ), is said to be the value of the best schedule   
   , 

such that for any     ,   (  
 )    (  ).  

In the scheduling auction, computing the valuation of a 

bundle to an agent is to solve the problem: Given a set of jobs 

to be allocated to a bundle of time units, what is the best value 

that a feasible schedule can possibly achieve? Answering this 

question is equivalent to solving a job shop scheduling 

problem with availability constraints (JSPAC), which is NP-

hard [13]. This proves:   

Proposition 1: In the scheduling auction with completion 

time as the performance measure, computing an agent’s 

valuation on a bundle is NP-hard. 

While    requires an agent to solve an NP-hard 

optimization problem to determine its value on a bundle,    

does not need to evaluate bundles. Since   (  ) is given, 

valuation complexity in    is trivial. It just involves the 

assignment of   (  ) to    for          . The maximum 

number of positive   (  ) is      . From agents’ perspective, 

   has the advantage of avoiding the hard job shop scheduling 

problem during the valuation phase. However, this does not 

mean the complexity of scheduling jobs to resources has been 

eliminated in a    model. In fact, this computation burden is 

shifted to the auctioneer’s winner determination problem 

(WDP). In    WDP, the auctioneer has to determine the 

winning bids and, at the same time, schedule jobs to resources. 

However, even with the extra task of job scheduling, as shown 

later in this section,   WDP is still more efficient than the 

standard   WDP in terms of solving speed and scalability. 

B. Communication Complexity 

Communication complexity is concerned with the size of 

the messages that must be sent by agents in order to compute 

the outcome of an auction. In combinatorial auctions, a full 

valuation requires agents to determine the value of      

bundles, which is exponential in the number of items. 

However, not all of them need to be sent to the auctioneer. 

Since we assume a VCG auction setting, an agent’s optimal 

strategy is to bid for the bundles for which it has a positive 

value. In the scheduling auction, if a bundle does not cover a 

feasible schedule for at least one job of an agent, it is called an 

infeasible bundle to the agent. Those infeasible bundles have 

zero value to the agent and need not be sent. A job   can have 

a set of many feasible schedules, denoted   ( ). For a 

      ( ), let   (  ) denote the set of bundles that cover 

  ,   (  )  { |    }, where the universe of discourse is 

the set of      bundles. Also, let   ( ) denote the union of 

  (  ), for all      ( ), which is ⋃   (  )     ( ) . Note 

that if an agent only has one job   to be processed, the set of 

feasible bundles it needs to send is   ( ).  

Let’s now consider the sizes of   (  ) and   ( ). By 

definition,   (  ) contains all super sets of   . Its size can be 

computed from the formula |  (  )|     |  |. Since |  | is 

the number of the processing time units required by job   and 

is a constant for a job, the size of   (  ) is  (  ). Since 

  (  )    ( ), it follows that the size of   ( ) is at least 

 (  ), which proves the following proposition. 

Proposition 2: If an agent only has one job to be processed, 

the number of feasible bundles it needs to send to the 

auctioneer is at least  (  ). 

Given agents’ additive valuation over jobs, it is also true 

that if an agent has multiple jobs, its number of feasible 

bundles is still at least  (  ). We prove this statement by 

showing that adding more jobs will not decrease the feasible 

bundle set (or equivalently, increase the infeasible bundle set) 

of an agent. 

Proposition 3: Given a set of resource time units, adding a 

new job will not increase an agent’s infeasible bundle set. 

Proof. Let   (  ) contains feasible bundles of agent   

given the set of jobs   . Accordingly    (  )̅̅ ̅̅ ̅̅ ̅̅ ̅ contains 

infeasible bundles. Suppose that after adding a new job   , 

  (  ⋃   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ will increase. In this case, at least one bundle has 

to be moved from   (  ) to   (  ⋃  )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. However, according 

to the additive valuation of agents, each bundle in   (  ) 

covers a feasible schedule of at least one job in   . Therefore 

no bundle can be moved from   (  ) to   (  ⋃   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The 

proposition is proved by contradiction.   

In fact, adding a new job will likely decrease an agent’s 

infeasible bundle set (or increase its feasible bundle set) 

because a previously infeasible bundle may now be able to 

cover the newly added job. Compared with   , the 

communication complexity of    is much lower. In   , an 

agent only needs to send |  | XOR bids each for a job in   .  

Now we take a close look at the scenario where the agent has 

only one job to complete. To schedule the sequence of 

operations (            
) in   (        ), three 

constraints have to be satisfied:  

                                     (1) 

                                         (2) 

     
         

                (3)  

where     is the starting time of     ;      is the processing 

time  of     . The starting time of an operation could vary in 

different feasible schedules. By counting the number of 

combinations of feasible starting time of all operations, we can 

calculate the number of feasible schedules using the following 

formula:  
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∑ ∑  ∑  
       

     
                

              

              

              

          (4) 

For the set of randomly generated jobs (used in the 

experiments which we will describe in the next subsection), 

the average number of feasible schedules for one job is around 

six hundred thousand and the number increases to a million if 

we extend the deadlines of jobs by five percent.  According to 

Proposition 3, adding more jobs will likely increase the 

agent’s communication complexity.  

C. Winner Determination Complexity 

Winner determination complexity refers to the amount of 

computation required to compute the global schedule. We 

compare the complexities of    WDP and    WDP through 

experiments.    WDP is a standard combinatorial auction 

problem (CAP) formulated in[14]. Here, we formulate    

WDP as a mixed integer program. 

1)     WDP Formulation 

Suppose that each agent submits a set of        bids for 

its jobs. Bids from all agents form a set  . The WDP involves 

the selection of a subset of   such that the sum of the values of 

the selected bids is maximized and that all scheduling 

constraints are satisfied. To model the competition of jobs for 

resources, we define           =1 if two operations      and 

       need to be processed on the same resource and 

             otherwise. Using the following variables: 

     the starting time of the operation   of the bid of job   

   {
                      
                          

 

           {
                                    

                                                   
 

The   WDP can be formulated as follows. 

   ∑     (     
      

)
   

 

subject to 

                                 (5) 

                    (    )                                        (6) 

                             

                                                                          (7)   

          +                                  (8) 

          +                                  (9) 

           {   }    {   } and               (10) 

where       ,     ,                ;   is a large 

finite positive number. The set of constraints (5) ensures that 

the operations of a bid do not start before its release time. The 

set of constraints (6) ensures that an operation does not start 

before the previous operation of the same bid is completed. 

The set of constraints (7) is a set of logical constraints saying:  

If two bids  
 
and   

 
are selected in the schedule, and operations 

     and        are to be processed on the same resource 

(            ), and      precedes        (            ), then 

                . These constraints ensure that, at most, one 

operation can be processed by a particular resource at a time, 

where   is a large positive constant, which is used for the 

linearization of the logical constraint “if”. The minimum value 

of   depends on the problem instance. In general, a   

   (  )     (    ), where     and         , is large 

enough to enforce the logical “if” constraint. Constraints (8) 

and (9) ensure the values assigned to the two related 

variables            and            

 

are consistent, that is, if      

and        are to be processed on the same resource, 

then                         . Constraints (10) are non-

negative and integer constraints.  

To prove the NP-hardness of the model, construct a special 

case by randomly picking an atomic bid from each XOR bid 

and replacing the XOR bid with this atomic bid. Also assume 

that all jobs must be scheduled on one resource. In this case, 

the decision version of the special case is equivalent to the job 

Fig. 4 RL  WDP scalability over jobs and operations 

Fig. 3 Runtime of BL WDP and RL  WDP over operations 
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Fig. 2 Runtime of BL WDP and RL  WDP over jobs 
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shop interval selection problem, which is NP-complete [15]. 

2) A Computational Study 

We evaluate the complexities of winner determination 

problems formulated in    and    through experiments. 

CPLEX 10.1 was used to solve the winner determination 

models. We design our scheduling test problems based on a 

suite of job shop CSP benchmark problems developed in [16]. 

While the job shop CSP benchmark problems are constraint 

satisfaction problems, we add a price parameter   to construct 

the scheduling auction problem set. The price of job   is 

randomly drown from a uniform distribution on  (        

    ), where    is the average duration of all jobs, and     is 

the duration of job  . A problem set was randomly generated 

to include different sizes of problems (determined by the 

number of jobs in a problem and the number of operations in a 

job). In these problems the number of operations ranges from 

2 to 6; the number of jobs ranges from 2 to 7. In each problem 

instance, the number of resources is equal to the number of 

operations.  

The experiments were conducted on a 2.8 GHz Pentium PC. 

We first constructed   WDP and   WDP based on the 

description of a problem instance. Then we solved the two 

WDPs using CPLEX 10.1 respectively. In Fig. 2 to 4, each 

point in each plot is the average runtime for 10 problem 

instances with the same numbers of jobs and same numbers of 

operations in each instance.   

We present the experimental results from two perspectives: 

(1) given a fixed number of operations in the problems, how 

runtime changes when the number of jobs increases and (2) 

given a fixed number of jobs, how runtime change when the 

number of operations increases. As shown in Fig. 2, for the 

first two groups of problems (operation number=2 and 

operation number=3), the runtime of    WDP and   WDP are 

initially close. As the number of jobs increases, the difference 

increases quickly. For the rest two groups of problems 

(operation number=4 and operation number=5),    WDP is 

more than 10 times faster than    WDP even at the size of 2 

jobs.   WDP can be 100 to 1000 times slower when the 

number of jobs reaches 7. Fig. 3 presents the results from a 

different angle:    WDP does not scale well when the number 

of operations increases. On the contrary, the runtime of 

   WDP is virtually unaffected when the number of 

operations increases from 2 to 5 in all four groups of 

problems. The scalability characteristics of    WDP are 

further illustrated in Fig. 4. The scalability of    WDP 

remains good when the number of jobs is less than 5. As the 

number of jobs increases beyond 5, the scalability of    WDP 

decreases with a higher rate. Along the number of 

operations   WDP scales very well at all job number levels. 

D. Complexities of     

   and    take an item or a bundle of items as atomic 

proposition, which does not allow agents to explicitly express 

their valuation on scheduling performance requirements. 

Because an agent has to evaluate the      bundles in both 

cases,    and    are identical in terms of valuation 

complexity. Compared with   , representing a schedule in    

is rather unnatural. For example, to represent a feasible 

schedule    in   , all time units in    need to be joined 

together by |  |    conjunction connectives. If bundle-level 

languages such as    are used, then we can treat    as a 

bundle without placing any connectives between time units. It 

is reported in [6] that preferences involving disjunction and 

sharable resources can be expressed much more compactly in 

   than in   . However, this is not the case in the scheduling 

auction, where agents’ valuations exhibit strong 

complementarities. To represent complementary preferences 

using   , time units in a feasible bundle need to be connected 

by connective   (conjunction) and the feasible bundles are 

connected by XOR, which is essentially the same structure 

used by   . Since a large number of conjunction connectives 

have to be added to join time units in feasible schedules,    

incurs a higher level of communication complexity in the 

scheduling auction than    does. Based on the previous 

comparison between    and   , it can be concluded that    

has a lower level of communication complexity than    does. 

In terms of winner determination, a direct integer program 

formulation of the    WDP exhibits superior performance 

than that of    for several problem distributions[17]. 

However, the performance on XOR bids which are required in 

scheduling auction is not reported in [15]. The idea of the 

direct    formulation is to exploit the specific structure of 

logically specified bids represented in    to solve problems 

more effectively. However, the bids in scheduling auction are 

“flat” bundles. Representing them using    does not provide 

scheduling specific structural information that can be 

exploited by a winner determination algorithm. On the 

contrary, the requirement-based language preserves the 

scheduling specific structure, which opens the door to the 

design of specialized, high-performance scheduling winner 

determination algorithms. As we have shown in the 

experiments, even a general optimization package can benefit 

significantly from the preservation of scheduling specific 

problem structures.      

V. CONCLUSIONS 

When agent’s valuations on schedules are represented in 

general bidding languages, scheduling specific structural 

information is lost.  Agents have to attach their valuations to 

“flat” bundles, which leads to drastically increased valuation, 

communication, and winner determination complexities. We 

compared the general bidding languages and our requirement-

based bidding language in terms of their complexity 

implications to agent-based scheduling. We show that the 

requirement-based language provides concise, natural 

representations of agents’ valuations and reduces system’s 

communication complexity. An interesting finding is that 

although the auctioneer has to solve winner determination and 

scheduling problems concurrently when adopting   ,     

WDP formulated by incorporating scheduling specific 

modeling techniques can be more efficient than the standard 

   WDP in terms of solving speed and scalability.  
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