
 1



Abstract—This paper presents a requirement-based bidding

language for agent-based scheduling. The language allows agents

to attach their valuations directly to scheduling performance

requirements. Compared with general bidding languages, the

proposed one reduces agents’ valuation and system’s

communication complexities. In addition, it results in efficient

winner determination problem models. Experimental results

show that the requirement-based language exhibits superior

winner determination performance in terms of problem-solving

speed and scalability.

Note to Practitioners— e-Markets, such as auctions, are useful

tools for scheduling resources among independent participants

(agents). We propose a requirement-based bidding language

which concisely and naturally expresses scheduling requirements.

The key benefit of adopting this language in the design of agent-

based scheduling systems is reduced computational complexities,

which makes the systems more responsive to large scale, dynamic

and distributed scheduling problems.

 Index Terms—Agent-based scheduling, economic based

negotiation mechanisms, bidding language

I. INTRODUCTION

Combinatorial auctions have been used as a negotiation

mechanism for designing agent-based scheduling systems

where self-interested agents compete for the use of resource

time [1-3]. Among others, a key component that impacts the

systems’ computational complexities is the bidding language

in which agents express their valuations over scheduling

outcomes. Kalagnanam and Parkes reviewed four areas of

computational constraints which restrict the space of feasible

combinatorial auction mechanisms [4]. Among the four areas,

three (i.e., communication complexity, valuation complexity

and winner determination complexity) are affected by the

design of the bidding language [5]. Based on the structures of

their atomic propositions, general bidding languages for

combinatorial auctions can be classified into two types:

and [6]. languages use bundles of items with associated

prices as atomic propositions and combine them using logical

connectives. languages allow bids that are logical formulae

where items are taken as atomic propositions and combined

using logical connectives. As an example, should a bidder

desire (for price) any two adjacent hours in a four-hour

window, she can express her preferences in either . In

 , she needs to formulate 3 atomic bids and connect them

C. Wang is with Concordia Institute for Information Systems Engineering,

Concordia University, 1515 Ste Catherine West, EV 007.649, Montreal,

Quebec, H3G 1M8, Canada (phone: 1-514-8482424 ext. 5628; fax: 1-514-
8483171; e-mail: cwang@ciise.concordia.ca).

using logical connective to form a compound bid:

〈{ } 〉 〈{ } 〉 〈{ } 〉. In , such

preferences are expressed in a logical bid of the form:

〈() () () 〉. While and

 only allow agents to express their valuations on bundles or

formulae of items, web-based bidding interfaces for

procurement applications are much more expressive in terms

of representing complex side constraints and discount

schedules [7, 8]. However, those interfaces are intended to be

used by human sourcing experts rather than software agents.

Since and only allow distinct items, in order to apply

them to scheduling auctions, the continuous scheduling time

line must be discretized, such that the processing time of

resources can be converted to a set of distinct time units [1, 2,

9]. If agents need to reveal their full valuations, such as the

case in Vickrey-Clarke-Groves (VCG) mechanisms, general

bidding languages require valuations on all time unit

bundles, where is the number of time units available for

bidding. In many realistic scheduling settings, to assure time

precision, cannot be too small. Given that the number of

bundles to be evaluated grows exponentially in the number of

time units, general languages can inflict heavy burdens on the

auctions in terms of bids valuation, winner determination, and

communication.

This paper presents a requirement-based bidding language.

Compared with general languages, the proposed language

allows agents to attach their valuations directly to the

performance requirement of a schedule. By avoiding

expressing valuations on a large number of bundles, agents’

valuation and communication complexities are reduced

accordingly. The proposed language also results in efficient

winner determination models which improve problem-solving

speed and scalability. In the next section, we present a

scheduling auction model which extends the factory

scheduling model described in [2]. The scheduling auction is a

typical job shop scheduling setting. We use this model as the

base environment for comparing bidding languages in terms of

the complexities they impose on the auction.

II. SCHEDULING AUCTION

The scheduling auction consists of a set of agents. Each

agent has a set of jobs to be processed. Each job

requires the processing of a sequence of operations

(). An operation has a specified processing

time , and its execution requires the exclusive use of a

designated resource for the duration of its processing. Each

job is constrained by a release time by which the job

is available for processing, and a deadline by which the job

Chun Wang, Member IEEE

Requirement-Based Bidding Language for

Agent-Based Scheduling

 2

must be completed. For a feasible schedule with completion

time , , the agent obtains a value () .

For any completion time outside (, () . () is

determined by the agent’s internal mechanism which is

language independent. We assume that, for an agent, () is

given for any . There are precedence constraints among

operations of a job, but there are no precedence constraints

among jobs. An allocation of processing time to jobs forms a

schedule for agent , denoted . An agent’s valuation over

jobs in is additive, that is () ∑ ()
.

According to the additive valuation, as long as a schedule

completes one job within (, its value to the agent is

positive. The objective of the auction is to maximize social

welfare, the sum of () across all agents.

Fig. 1 shows an example of the scheduling auction with

three resources () controlled by the auctioneer.

Agent A has job1() and job 2 () to be

processed. Agent B has job 3 () and job 4

() to be processed. Arrows with solid lines represent

the precedence constraints between operations; arrows with

dotted line link operations to their designated processing

resources. The scheduling auction can be an abstract model of

various scheduling settings. In a manufacturing firm, for

example, each sales agent may have a set of jobs to be

processed. They may “compete” with each other for the

limited processing resources to satisfy their customers’

requirements. The auction can also be seen as a general model

of some agent-based scheduling environments described in the

literature, in which an agent represents only one job[10].

III. THE REQUIREMENT-BASED BIDDING LANGUAGE

In the scheduling auction, an agent’s valuation on a

schedule depends on the extent to which the schedule satisfies

its performance requirement. Ideally, a bidding language

should provide the expressiveness which allows agents to

explicitly attach their valuations to performance requirements.

However, and do not provide such expressiveness

since they only allow an item or a bundle of items in their

atomic propositions. We present a requirement-based bidding

language, namely , to address this limitation of general

bidding languages in the domain of scheduling.

As in and , the basic structure of is an atomic

proposition. atomic proposition is more concise in terms

of representing scheduling problems. It consists of a

description of the job to be completed, a quality requirement

and the price that the agent is willing to pay given the

requirement is satisfied. The quality of a schedule can be

evaluated by many types of scheduling criteria [11]. In our

scheduling auction, we use the completion time of a job as the

measure. Formally, an atomic proposition can be represented

by a 3-tuple <Job, Completion-Time, Price>.

Job specifies a sequence of operations and their required

processing time on resources. The release time of the job and

other processing constraints are also specified. Deadline of the

job is not specified here. It will be expressed in the

Completion-Time. For many scheduling models, existing

general scheduling problem description languages, such as the

one proposed in [12], can be used to describe the job

specification. Since we focus on resource allocation in this

paper, in our scheduling auction model a job is described as a

set of resource and processing time pairs. For example, job 3

in Fig.1 can be presented as (() () ()

), which means it needs to be processed by , and

 in sequence after the release time 5, and the processing

times are 23, 15 and 18.

Completion-Time is the time range that constraints the

completion of a schedule. For example, if the Completion-

Time is (, its semantic interpretation is that the job is

required to be completed after time 20 and before 40.

Price is the amount of money that the agent is willing to pay

given that the schedule of the jobs satisfies Completion-Time

requirement. For example, the atomic proposition
〈 (〉 is interpreted as the agent is willing to

pay $100 if the completion time of the job is within (.
Expressing a simple atomic proposition using or

usually requires a compound XOR-bid with a possibly large

size. For example, to represent 〈 (〉 in , we

need to compute the set of all eligible schedules, denoted ,

such that each completes within (. We then

connect the set of schedules as an XOR-bid:

〈 〉, where each is a bundle of time

units. The sizes of and are usually not small in

scheduling auctions with multiple resources and multiple

operation jobs, such as the case in the example of Fig.1. If

is used, in addition to the XOR-bid, the time units in each

 need to be joined by | |-1 conjunction connectives.

By connecting atomic bids using XOR, we can express

an agent’s values on different levels of Completion-Time. For

example, we can use the following compound bid

〈 (〉 〈 (〉 to express

the valuation: If the job is completed between (, the

agent is willing to pay ; if completed within (,
the price is reduced to . It is worth to note that atomic

bids in each of the three languages can be connected by XOR

and/or OR to form compound bids. The key difference of the

three bidding languages is the structure of their atomic bids.

IV. VALUATION, COMMUNICATION AND WINNER

DETERMINATION COMPLEXITIES

In this section we compare valuation, communication and

winner determination complexities of and . We use the

benchmark VCG mechanism as our auction setting. VCG is a

type of one-shot auction. It motivates agents to submit their

complete valuations truthfully and computes optimal

solutions. In addition to the comparison between and ,

Fig. 1 Example of the Scheduling Auction Model

 3

we also analyze the suitability of as a bidding language for

the scheduling auction.

A. Valuation Complexity

In the case of , agents have to implicitly express their

valuation by attaching values to bundles of time units. In a

standard combinatorial auction setting, an agent must evaluate

 bundles, where is the number of items sold in the

auction. The valuation complexity in is the computation

needed to evaluate the bundles of time units. We first define

the value of a bundle to an agent. For a bundle , if a

schedule , we say is covered by . In many cases, a

bundle can cover several schedules of an agent. We define the

value of a bundle as the value of the best schedule which the

bundle covers.

Definition 1: Let be the set of schedules of an agent

covered by . The valuation of the agent on bundle , denoted

 (), is said to be the value of the best schedule
 ,

such that for any , (
) ().

In the scheduling auction, computing the valuation of a

bundle to an agent is to solve the problem: Given a set of jobs

to be allocated to a bundle of time units, what is the best value

that a feasible schedule can possibly achieve? Answering this

question is equivalent to solving a job shop scheduling

problem with availability constraints (JSPAC), which is NP-

hard [13]. This proves:

Proposition 1: In the scheduling auction with completion

time as the performance measure, computing an agent’s

valuation on a bundle is NP-hard.

While requires an agent to solve an NP-hard

optimization problem to determine its value on a bundle,

does not need to evaluate bundles. Since () is given,

valuation complexity in is trivial. It just involves the

assignment of () to for . The maximum

number of positive () is . From agents’ perspective,

 has the advantage of avoiding the hard job shop scheduling

problem during the valuation phase. However, this does not

mean the complexity of scheduling jobs to resources has been

eliminated in a model. In fact, this computation burden is

shifted to the auctioneer’s winner determination problem

(WDP). In WDP, the auctioneer has to determine the

winning bids and, at the same time, schedule jobs to resources.

However, even with the extra task of job scheduling, as shown

later in this section, WDP is still more efficient than the

standard WDP in terms of solving speed and scalability.

B. Communication Complexity

Communication complexity is concerned with the size of

the messages that must be sent by agents in order to compute

the outcome of an auction. In combinatorial auctions, a full

valuation requires agents to determine the value of

bundles, which is exponential in the number of items.

However, not all of them need to be sent to the auctioneer.

Since we assume a VCG auction setting, an agent’s optimal

strategy is to bid for the bundles for which it has a positive

value. In the scheduling auction, if a bundle does not cover a

feasible schedule for at least one job of an agent, it is called an

infeasible bundle to the agent. Those infeasible bundles have

zero value to the agent and need not be sent. A job can have

a set of many feasible schedules, denoted (). For a

 (), let () denote the set of bundles that cover

 , () { | }, where the universe of discourse is

the set of bundles. Also, let () denote the union of

 (), for all (), which is ⋃ () () . Note

that if an agent only has one job to be processed, the set of

feasible bundles it needs to send is ().

Let’s now consider the sizes of () and (). By

definition, () contains all super sets of . Its size can be

computed from the formula | ()| | |. Since | | is

the number of the processing time units required by job and

is a constant for a job, the size of () is (). Since

 () (), it follows that the size of () is at least

 (), which proves the following proposition.

Proposition 2: If an agent only has one job to be processed,

the number of feasible bundles it needs to send to the

auctioneer is at least ().

Given agents’ additive valuation over jobs, it is also true

that if an agent has multiple jobs, its number of feasible

bundles is still at least (). We prove this statement by

showing that adding more jobs will not decrease the feasible

bundle set (or equivalently, increase the infeasible bundle set)

of an agent.

Proposition 3: Given a set of resource time units, adding a

new job will not increase an agent’s infeasible bundle set.

Proof. Let () contains feasible bundles of agent

given the set of jobs . Accordingly ()̅̅ ̅̅ ̅̅ ̅̅ ̅ contains

infeasible bundles. Suppose that after adding a new job ,

 (⋃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ will increase. In this case, at least one bundle has

to be moved from () to (⋃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. However, according

to the additive valuation of agents, each bundle in ()

covers a feasible schedule of at least one job in . Therefore

no bundle can be moved from () to (⋃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The

proposition is proved by contradiction.

In fact, adding a new job will likely decrease an agent’s

infeasible bundle set (or increase its feasible bundle set)

because a previously infeasible bundle may now be able to

cover the newly added job. Compared with , the

communication complexity of is much lower. In , an

agent only needs to send | | XOR bids each for a job in .

Now we take a close look at the scenario where the agent has

only one job to complete. To schedule the sequence of

operations (
) in (), three

constraints have to be satisfied:

 (1)

 (2)

 (3)

where is the starting time of ; is the processing

time of . The starting time of an operation could vary in

different feasible schedules. By counting the number of

combinations of feasible starting time of all operations, we can

calculate the number of feasible schedules using the following

formula:

 4

∑ ∑ ∑

 (4)

For the set of randomly generated jobs (used in the

experiments which we will describe in the next subsection),

the average number of feasible schedules for one job is around

six hundred thousand and the number increases to a million if

we extend the deadlines of jobs by five percent. According to

Proposition 3, adding more jobs will likely increase the

agent’s communication complexity.

C. Winner Determination Complexity

Winner determination complexity refers to the amount of

computation required to compute the global schedule. We

compare the complexities of WDP and WDP through

experiments. WDP is a standard combinatorial auction

problem (CAP) formulated in[14]. Here, we formulate

WDP as a mixed integer program.

1) WDP Formulation

Suppose that each agent submits a set of bids for

its jobs. Bids from all agents form a set . The WDP involves

the selection of a subset of such that the sum of the values of

the selected bids is maximized and that all scheduling

constraints are satisfied. To model the competition of jobs for

resources, we define =1 if two operations and

 need to be processed on the same resource and

 otherwise. Using the following variables:

 the starting time of the operation of the bid of job

 {

 {

The WDP can be formulated as follows.

 ∑ (

)

subject to

 (5)

 () (6)

 (7)

 + (8)

 + (9)

 { } { } and (10)

where , , ; is a large

finite positive number. The set of constraints (5) ensures that

the operations of a bid do not start before its release time. The

set of constraints (6) ensures that an operation does not start

before the previous operation of the same bid is completed.

The set of constraints (7) is a set of logical constraints saying:

If two bids

and

are selected in the schedule, and operations

 and are to be processed on the same resource

(), and precedes (), then

 . These constraints ensure that, at most, one

operation can be processed by a particular resource at a time,

where is a large positive constant, which is used for the

linearization of the logical constraint “if”. The minimum value

of depends on the problem instance. In general, a

 () (), where and , is large

enough to enforce the logical “if” constraint. Constraints (8)

and (9) ensure the values assigned to the two related

variables and

are consistent, that is, if

and are to be processed on the same resource,

then . Constraints (10) are non-

negative and integer constraints.

To prove the NP-hardness of the model, construct a special

case by randomly picking an atomic bid from each XOR bid

and replacing the XOR bid with this atomic bid. Also assume

that all jobs must be scheduled on one resource. In this case,

the decision version of the special case is equivalent to the job

Fig. 4 RL WDP scalability over jobs and operations

Fig. 3 Runtime of BL WDP and RL WDP over operations

Operation number= 2

0.1

1

10

100

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Operation Number=3

0.1

1

10

100

1000

10000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Operation Number=4

0.1

1

10

100

1000

10000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Operation number=5

0.1

10

1000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Operation number= 2

0.1

1

10

100

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Operation Number=3

0.1

1

10

100

1000

10000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Operation Number=4

0.1

1

10

100

1000

10000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Operation number=5

0.1

10

1000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s)

LR

LB

Job number=2

0.1

1

10

2 3 4 5 6

Number of operations

T
im

e
(s

)

LR

LB

Job number=3

0.1

1

10

100

1000

10000

2 3 4 5 6

Number of operations

T
im

e
 (

s
) LR

LB

Job number=4

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations

T
im

e
 (

s
)

LR

LB

Job number=5

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations

T
im

e
 (

s
) LR

LB

Job number=2

0.1

1

10

2 3 4 5 6

Number of operations

T
im

e
(s

)

LR

LB

Job number=3

0.1

1

10

100

1000

10000

2 3 4 5 6

Number of operations

T
im

e
 (

s
) LR

LB

Job number=4

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations

T
im

e
 (

s
)

LR

LB

Job number=5

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations

T
im

e
 (

s
) LR

LB

Fig. 2 Runtime of BL WDP and RL WDP over jobs

0.1

1

10

100

2 3 4 5

Number of operations

T
im

e
 (
s
)

Job# = 2

Job# = 3

Job# = 4

Job# = 5

Job# = 6

Job# = 7

0.1

1

10

100

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s
)

Op# = 2

Op# = 3

Op# = 4

Op# = 5

 5

shop interval selection problem, which is NP-complete [15].

2) A Computational Study

We evaluate the complexities of winner determination

problems formulated in and through experiments.

CPLEX 10.1 was used to solve the winner determination

models. We design our scheduling test problems based on a

suite of job shop CSP benchmark problems developed in [16].

While the job shop CSP benchmark problems are constraint

satisfaction problems, we add a price parameter to construct

the scheduling auction problem set. The price of job is

randomly drown from a uniform distribution on (

), where is the average duration of all jobs, and is

the duration of job . A problem set was randomly generated

to include different sizes of problems (determined by the

number of jobs in a problem and the number of operations in a

job). In these problems the number of operations ranges from

2 to 6; the number of jobs ranges from 2 to 7. In each problem

instance, the number of resources is equal to the number of

operations.

The experiments were conducted on a 2.8 GHz Pentium PC.

We first constructed WDP and WDP based on the

description of a problem instance. Then we solved the two

WDPs using CPLEX 10.1 respectively. In Fig. 2 to 4, each

point in each plot is the average runtime for 10 problem

instances with the same numbers of jobs and same numbers of

operations in each instance.

We present the experimental results from two perspectives:

(1) given a fixed number of operations in the problems, how

runtime changes when the number of jobs increases and (2)

given a fixed number of jobs, how runtime change when the

number of operations increases. As shown in Fig. 2, for the

first two groups of problems (operation number=2 and

operation number=3), the runtime of WDP and WDP are

initially close. As the number of jobs increases, the difference

increases quickly. For the rest two groups of problems

(operation number=4 and operation number=5), WDP is

more than 10 times faster than WDP even at the size of 2

jobs. WDP can be 100 to 1000 times slower when the

number of jobs reaches 7. Fig. 3 presents the results from a

different angle: WDP does not scale well when the number

of operations increases. On the contrary, the runtime of

 WDP is virtually unaffected when the number of

operations increases from 2 to 5 in all four groups of

problems. The scalability characteristics of WDP are

further illustrated in Fig. 4. The scalability of WDP

remains good when the number of jobs is less than 5. As the

number of jobs increases beyond 5, the scalability of WDP

decreases with a higher rate. Along the number of

operations WDP scales very well at all job number levels.

D. Complexities of

 and take an item or a bundle of items as atomic

proposition, which does not allow agents to explicitly express

their valuation on scheduling performance requirements.

Because an agent has to evaluate the bundles in both

cases, and are identical in terms of valuation

complexity. Compared with , representing a schedule in

is rather unnatural. For example, to represent a feasible

schedule in , all time units in need to be joined

together by | | conjunction connectives. If bundle-level

languages such as are used, then we can treat as a

bundle without placing any connectives between time units. It

is reported in [6] that preferences involving disjunction and

sharable resources can be expressed much more compactly in

 than in . However, this is not the case in the scheduling

auction, where agents’ valuations exhibit strong

complementarities. To represent complementary preferences

using , time units in a feasible bundle need to be connected

by connective (conjunction) and the feasible bundles are

connected by XOR, which is essentially the same structure

used by . Since a large number of conjunction connectives

have to be added to join time units in feasible schedules,

incurs a higher level of communication complexity in the

scheduling auction than does. Based on the previous

comparison between and , it can be concluded that

has a lower level of communication complexity than does.

In terms of winner determination, a direct integer program

formulation of the WDP exhibits superior performance

than that of for several problem distributions[17].

However, the performance on XOR bids which are required in

scheduling auction is not reported in [15]. The idea of the

direct formulation is to exploit the specific structure of

logically specified bids represented in to solve problems

more effectively. However, the bids in scheduling auction are

“flat” bundles. Representing them using does not provide

scheduling specific structural information that can be

exploited by a winner determination algorithm. On the

contrary, the requirement-based language preserves the

scheduling specific structure, which opens the door to the

design of specialized, high-performance scheduling winner

determination algorithms. As we have shown in the

experiments, even a general optimization package can benefit

significantly from the preservation of scheduling specific

problem structures.

V. CONCLUSIONS

When agent’s valuations on schedules are represented in

general bidding languages, scheduling specific structural

information is lost. Agents have to attach their valuations to

“flat” bundles, which leads to drastically increased valuation,

communication, and winner determination complexities. We

compared the general bidding languages and our requirement-

based bidding language in terms of their complexity

implications to agent-based scheduling. We show that the

requirement-based language provides concise, natural

representations of agents’ valuations and reduces system’s

communication complexity. An interesting finding is that

although the auctioneer has to solve winner determination and

scheduling problems concurrently when adopting ,

WDP formulated by incorporating scheduling specific

modeling techniques can be more efficient than the standard

 WDP in terms of solving speed and scalability.

Acknowledgements

Thanks to Hamada Ghenniwa and Weiming Shen for their

 6

helpful discussions and the anonymous referees for their

suggestions.

REFERENCES

[1] E. Kutanoglu and S. D. Wu, "On combinatorial

auction and Lagrangean relaxation for distributed

resource scheduling," IIE Transactions, vol. 31, pp.

813-826, 1999.

[2] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J.

K. MacKie-Mason, "Auction protocols for

decentralized scheduling," Games and Economic

Behavior, vol. 35, pp. 271-303, 2001.

[3] J. Collins and M. Gini, "Scheduling tasks using

combinatorial auctions: The magnet approach,"

Business Computing, vol. 3, p. 263, 2009.

[4] J. Kalagnanam and D. C. Parkes, "Auctions, Bidding

and Exchange Design," in Handbook of Quantitative

Supply Chain Analysis: Modeling in the E-Business

Era, D. Simchi-Levi, S. D. Wu, and M. Z. Shen,

Eds.: Kluwer Academic Publishers, 2004.

[5] N. Nisan, "Bidding languages for combinatorial

auctions " in Combinatorial Auctions, Cramton,

Shoham, and Steinberg, Eds.: MIT Press, 2006.

[6] C. Boutilier and H. H. Hoos, "Bidding languages for

combinatorial auctions," in Proc. 17th International

Joint Conference on Artificial Intelligence, Seattle,

Washington, 2001, pp. 1211–1217.

[7] T. Sandholm, "Expressive Commerce and Its

Application to Sourcing: How We Conducted $35

Billion of Generalized Combinatorial Auctions," AI

Magazine, vol. 28, pp. 45-58, 2007.

[8] T. S. Chandrashekar, Y. Narahari, C. H. Rosa, D. M.

Kulkarni, J. D. Tew, and P. Dayama, "Auction-Based

Mechanisms for Electronic Procurement,"

Automation Science and Engineering, IEEE

Transactions on, vol. 4, pp. 297-321, 2007.

[9] L. Hoong Chuin, Z. J. Zhao, G. Shuzhi Sam, and L.

Tong Heng, "Allocating Resources in Multiagent

Flowshops With Adaptive Auctions," Automation

Science and Engineering, IEEE Transactions on, vol.

8, pp. 732-743, 2011.

[10] W. Shen, "Distributed manufacturing scheduling

using intelligent agents," IEEE intelligent systems,

pp. 88-94, 2002.

[11] M. Pinedo, Scheduling: Theory, Algorithms, and

Systems: Prentice Hall, 2002.

[12] S. F. Smith and M. A. Becker, "An ontology for

constructing scheduling systems," in Working Notes

of 1997 AAAI Symposium on Ontological

Engineering, Stanford, CA, 1997.

[13] P. Mauguière, J. Billaut, and J. Bouquard, "New

Single Machine and Job-Shop Scheduling Problems

with Availability Constraints," Journal of Scheduling

vol. 8, pp. 211-231, 2005.

[14] S. de Vries and R. V. Vohra, "Combinatorial

auctions: a survey," INFORMS Journal on

Computing, vol. 15, pp. 284-309, 2003.

[15] J. M. Keil, "On the complexity of scheduling tasks

with discrete starting times " Operations Research

Letters, vol. 12, pp. 293-295, 1992.

[16] N. Sadeh and M. S. Fox, "Variable and value

ordering heuristics for the job shop scheduling

constraint satisfaction problem," Artificial

Intelligence, vol. 86, pp. 1-41, 1996.

[17] C. Boutilier, "Solving concisely expressed

combinatorial auction problems," in the Proceedings

of Eighteenth National Conference on Artificial

Intelligence (AAAI-02) Edmonton, Alberta, Canada,

2002, pp. 359-366.

