
1

Algorithms for Routing an Unmanned Aerial
Vehicle in the presence of Refueling Depots

Kaarthik Sundar1, Sivakumar Rathinam2

Abstract—We consider a single Unmanned Aerial Vehicle (UAV) routing
problem where there are multiple depots and the vehicle is allowed to refuel
at any depot. The objective of the problem is to find a path for the UAV such
that each target is visited at least once by the vehicle, the fuel constraint is
never violated along the path for the UAV, and the total fuel required by
the UAV is a minimum. We develop an approximation algorithm for the
problem, and propose fast construction and improvement heuristics to solve
the same. Computational results show that solutions whose costs are on an
average within 1.4% of the optimum can be obtained relatively fast for the
problem involving 5 depots and 25 targets.

Note to Practitioners
The motivation for this paper stems from the need to develop

path planning algorithms for small UAVs with resource con-
straints. Small autonomous UAVs are seen as ideal platforms
for many monitoring applications. Small UAVs can fly at low
altitudes and can avoid obstacles or threats at low altitudes more
easily. These vehicles can also be hand launched by an indi-
vidual without any reliance on a specific type of terrain. Even
though there are several advantages with using small platforms,
they also come with other resource constraints due to their size
and limited payload. This article addresses a path planning prob-
lem involving a small UAV with fuel constraints, and presents
fast and efficient algorithms for finding good feasible solutions.

Keywords— Traveling Salesman Problem, Unmanned Aerial Vehicle,
Fuel Constraints, Heuristics.

I. INTRODUCTION

Path planning for small Unmanned Aerial Vehicles (UAVs)
is one of the research areas that has received significant atten-
tion in the last decade. Small UAVs have already been field
tested in civilian applications such as wild-fire management [1],
weather and hurricane monitoring [2], [3], and pollutant estima-
tion [4] where the vehicles are used to collect relevant sensor
information and transmit the information to the ground (con-
trol) stations for further processing. Compared to large UAVs,
small UAVs are relatively easier to operate and are significantly
cheaper. Small UAVs can fly at low altitudes and can avoid ob-
stacles or threats at low altitudes more easily. Even in military
applications, small vehicles [5] are used frequently for intelli-
gence gathering and damage assessment as they are easier to fly
and can be hand launched by an individual without any reliance
on a runway or a specific type of terrain.

Even though there are several advantages with using small
platforms, they also come with other resource constraints due to
their size and limited payload. As small UAVs typically have
fuel constraints, it may not be possible for an UAV to complete

1. Graduate Student, Mechanical Engineering, Texas A & M University, Col-
lege Station, TX 77843.

2. Assistant Professor, Mechanical Engineering, Texas A & M University,
College Station, TX 77843. srathinam@tamu.edu.

a surveillance mission before refueling at one of the depots. For
example, consider a typical surveillance mission where a vehi-
cle starts at a depot and is required to visit a set of targets. To
complete this mission, the vehicle may have to start at the de-
pot, visit a subset of targets and then reach one of the depots
for refueling before starting a new path. One can reasonably
assume that once the UAV reaches a depot, it will be refueled
to full capacity before it leaves again for visiting any remaining
targets. If the goal is to visit each of the given targets at least
once, then the UAV may have to repeatedly visit some depots in
order to refuel again before visiting all the targets. In this sce-
nario, the following Fuel Constrained, UAV Routing Problem
(FCURP) naturally arises: Given a set of targets, depots, and an
UAV where the vehicle is initially stationed at one of the depots,
find a path for the UAV such that each target is visited at least
once by the vehicle, the fuel constraint is never violated along
the path for the UAV, and the travel cost for the vehicle is a min-
imum. The travel cost is defined as the total fuel consumed by
the vehicle as it traverses its path. Please refer to figure 1 for an
illustration of this problem. If the UAV is modeled as a Dubins’
vehicle [6] with a bound on its turning radius, it is possible that
the travel costs are asymmetric. Asymmetry means that the cost
of traveling from target A to target B may not be equal to the
cost of traveling from target B to target A.

Initial Depot

Target

Depot

Fig. 1. A possible path for the UAV which visits all the targets while visiting
some depots for refueling. Note that a depot can be visited any number of times
for refueling while some depots may not be visited at all.

FCURP is a generalization of the Asymmetric Traveling
Salesman Problem (ATSP) and is NP-Hard. Therefore, the main
objective of this article is to develop an approximation algorithm
and heuristics to solve the FCURP. A α-approximation algo-
rithm for an optimization problem is an algorithm that runs in
polynomial time and finds a feasible solution whose cost is at
most α times the optimal cost for every instance of the prob-
lem. This guarantee α is also referred to as the approximation
factor of the algorithm. Currently, there are no constant fac-
tor approximation algorithms for the ATSP even when the costs
satisfy the triangle inequality. The approximation factors of the

2

existing algorithms for the ATSP either depend on the number
of targets [7],[8],[9] or the input data[7]. For example, the well
known covering algorithm for the ATSP in [7] has an approxi-
mation factor of log(n) where n is the number of targets. There
are also data dependent algorithms [7] with the approximation
factors that depend on maxi,j

cij
cji

where cij denotes the cost of
traveling from vertex i to vertex j.

When the travel costs are symmetric and satisfy the triangle
inequality, authors in [10] provide an approximation algorithm
for the FCURP. They assume that the minimum fuel required
to travel from any target to its nearest depot is at most equal to
La
2 units where a is a constant in the interval [0, 1] and L is the

fuel capacity of the vehicle. This is a reasonable assumption, as
in any case, one cannot have a feasible tour if there is a target
that cannot be visited from any of the depots. Using these as-
sumptions, Khuller et al. [10] present a 3(1+a)

2(1−a) -approximation
algorithm for the problem. In this article, we generalize this
result for the asymmetric case.

FCURP is related to a more general search problem with un-
certainties [11] where the fuel constraints are posed as a restric-
tion on the time spent by the vehicle between any two successive
depots on its path. The authors in [11] discretize time and space,
and develop heuristics based on the shortest path algorithms.
There are also variants of the vehicle routing problem that are
closely related to the FCURP. For example, in [12], [13], the
authors address a symmetric version of the arc routing problem
where there is a single depot and a set of intermediate facilities,
and the vehicle has to cover a subset of edges along which cus-
tomers are present. The vehicle is required to collect goods from
the customers as it traverses the given set of edges and unload
the goods at the intermediate facilities. The goal of this problem
is to find a tour of minimum length that starts and ends at the de-
pot such that the vehicle visits the given subset of edges and the
total amount of goods carried by the vehicle never exceeds the
capacity of the vehicle at any location along the tour. One of the
key differences between the arc routing problem and the FCURP
is that there is no requirement that any subset of edges must be
visited in the FCURP. There are also similar problems [14], [15]
addressed in the literature where each customer is located at a
distinct vertex (instead of being present along the edges) and
the vehicle is required to collect goods from the customers and
deliver them at the intermediate facilities. FCURP is also differ-
ent from the single depot vehicle routing problems addressed in
[16], [17], [18] where there are additional length, travel-time or
capacity constraints.

In the context of the above results, the following are the con-
tributions of this article for the FCURP:
1. An algorithm with an approximation factor of (1+a+2aβ) log(|T |)

(1−a)

where T represents the set of targets, and a and β are data de-
pendent constants (presented in section III).
2. Fast construction and improvement heuristics to improve
upon the solutions found by the approximation algorithm (pre-
sented in section IV).
3. A mixed-integer linear program to find an optimal solution
for the FCURP (presented in section V). This optimal solution
will then be used to corroborate the quality of solutions pro-
duced by the approximation algorithm and the heuristics.
4. Computational results to compare the performance of all the

algorithms with respect to the quality of the solutions produced
by the algorithms and their respective computation times (pre-
sented in section VI).

II. PROBLEM STATEMENT

Let T denote the set of targets and D represent the set of
depots. Let s ∈ D be the depot where the UAV is initially
located. The FCURP is formulated on the complete directed
graph G = (V,E) with V = T ∪ D. Let fij represent the
amount of fuel required by the vehicle to travel from vertex i ∈
V to vertex j ∈ V . It is assumed that the fuel costs satisfy the
triangle inequality i.e., for all distinct i, j, k ∈ V , fij + fjk ≥
fik.

Let L denote the maximum fuel capacity of the vehicle. For
any given target i ∈ T , we will assume that there are depots d1
and d2 such that fd1i + fid2

≤ aL where a is a fixed constant
in the interval [0, 1]. This is a reasonable assumption, as in any
case, target i cannot be visited by the vehicle if there are no
depots d1 and d2 such that fd1i +fid2 > L. We will also assume
that it is always possible to travel from one depot to any another
depot (either directly or by passing through some intermediate
depots) without violating the fuel constraints. Given two distinct
depots d1 and d2, let l�d1,d2

denote the minimum fuel required
to travel from d1 to d2. Then, let β be a constant such that
l�d2,d1

≤ βl�d1,d2
for all distinct d1, d2 ∈ D.

A path for the vehicle is denoted by a sequence of ver-
tices (v1, v2, · · · , vk) visited by the vehicle where vi ∈ V for
i = 1, · · · , k. A tour for the vehicle is defined as a path that
starts and terminates at the same vertex. The travel cost associ-
ated with any collection of edges present in the tour is defined
as the sum of the fuel required to travel all the edges in the col-
lection. Without loss of generality, we will assume that there is
a target exactly at the location of the initial depot; therefore, a
tour visiting all the targets can be transformed to a tour visiting
all the targets and the initial depot and vice versa.

The objective of the problem is to find a tour such that
• the tour starts and terminates at the initial depot,
• the UAV visits each target at least once,
• the fuel required to travel any part of the tour which starts at a
depot, visits a subset of targets and ends at the next depot must
be at most equal to L, and,
• the travel cost associated with the edges in the tour is a mini-
mum.

x
y

L− Cx

Depot

Target

The shortest path from x to y

L− By

Fig. 2. The first step of the approximation algorithm: The solid edges represent
the shortest path PATHxy from target x to target y, and the cost of traveling
this path is denoted by lxy .

3

Indirect path

Direct path

Target

(a)A sample tour covering all the targets obtained using
the covering algorithm with lxy as the cost metric.

Edges in an indirect path

Target

Depot

A strand of the tour

(b)The indirect edges in the tour are replaced with the corre-
sponding shortest paths.

Fig. 3. An illustration of the second step of the approximation algorithm.

III. APPROXIMATION ALGORITHM

We refer to this approximation algorithm as Approx. There
are three main steps in Approx. The first step of Approx aims
to find a path for the vehicle to travel from any target x ∈ T
to any other target y ∈ T such that the path can be a part of a
feasible tour for the FCURP, the path satisfies all the refueling
constraints and the travel cost associated with the path is a min-
imum. Note that the maximum amount of fuel available for the
vehicle when it reaches target x in any tour is L − mind fdx.
Also, in any feasible tour, there must be at least mind fyd units
of fuel left when the vehicle reaches target y so that the vehi-
cle can continue to visit other vertices along its tour. Define
Cx := mind fdx and Bx := mind fxd for any x ∈ T . The first
step of the Approx essentially finds a feasible path of least cost
(also referred as the shortest path) such that the vehicle starts at
target x with at most L − Cx units of fuel and ends at target y
with at least By units of fuel. If there is enough fuel available
for the vehicle to travel from x to y (or, if L−Cx −By ≥ fxy),
the vehicle can directly reach y from x while respecting the fuel
constraints. In this case, we say that the vehicle can directly
travel from x to y and the shortest path (also referred to as the
direct path) is denoted by PATH(x, y) := (x, y). The cost of
traveling this shortest path is just fxy .

If the vehicle cannot directly travel from x to y (if L− Cx −
By < fxy), the vehicle must visit some of the depots on the way
before reaching target y. In this case, we find a shortest path
using an auxiliary directed graph, (V �, E�), defined on all the
depots and the targets x, y, i.e., V � = D ∪ {x, y} (illustrated
in figure 2). An edge is present in this directed graph only if
traveling the edge can satisfy the fuel constraint. For example,
as the vehicle has at most L − Cx units of fuel to start with,
the vehicle can reach a depot d from x only if fxd ≤ L − Cx.
Therefore, E� contains an edge (x, d) if the constraint fxd ≤
L − Cx is satisfied. Similarly, the vehicle can travel from a
depot d to target y only if there are at least By units of fuel
remaining after the vehicle reaches y. Therefore, E� contains

an edge (d, y) if the constraint fdy ≤ L − By is satisfied. In
summary, the following are the edges present in E�:

E� :=





{(x, d) : ∀d ∈ D, fxd ≤ L− Cx},�{(d1, d2) : ∀d1, d2 ∈ D, fd1d2 ≤ L},�{(d, y) : ∀d ∈ D, fdy ≤ L−By}.
(1)

Any path starting at x and ending at y in this auxiliary graph
will require the vehicle to carry at most L − Cx units of fuel at
target x, satisfy all the fuel constraints and reach target y with
at least By units of fuel left. Also, we let the cost of traveling
any edge (i, j) ∈ E� to be equal to fij (as defined in section
II). Now, we use Dijkstra’s algorithm [19] to find a shortest path
to travel from x to y. This shortest path (also referred to as the
indirect path using intermediate depots) can be represented as
PATH(x, y) := (x, d1, d2, · · · , y).

In the second step (illustrated in figure 3) of Approx, we use
the shortest path computed between any two targets to find a tour
for the vehicle. To do this, let lxy denote the cost of the shortest
path PATH(x, y) that starts at x and ends at y. The following
covering algorithm [7] is used to obtain a tour which visits each
of the targets at least once. Suppose G�

o represent the collection
of edges chosen by the covering algorithm. Initially, G�

o is an
empty set.
• Let T � := T . Find a minimum cost cycle cover, C, for the
graph (T �, E�

T) with E�
T := {(x, y) : x, y ∈ T �} and lxy as the

cost metric. A cycle cover for a graph is a collection of edges
such that the indegree and the outdegree of each vertex in the
graph is exactly equal to one. A minimum cost cycle cover is
a cycle cover such that the sum of the cost of the edges in the
cycle cover is a minimum. This step can be solved in at most
O(|T �|3) steps using the Hungarian algorithm [7]. Add all the
edges found in C to G�

o.
• If the cycle cover consists of at least two cycles, select exactly
one vertex from each cycle and return to step 1 with T � contain-
ing only the selected vertices. If the cycle cover C consists of
exactly one cycle go to the next step.
• The collection of edges in G�

o represents a connected Eule-
rian graph spanning all the targets where the indegree and the
outdegree of each target is the same. Given an Eulerian graph,
using Euler’s theorem, one can always find a tour such that each
edge in G�

o is visited exactly once. This tour is the output of the
covering algorithm.
If there is any edge (x, y) in this tour such that the vehicle cannot
directly travel from x to y, (x, y) is replaced with all the edges
present in the shortest path, PATH(x, y), from x to y. After
replacing all the relevant edges with the edges from the shortest
paths, one obtains a Hamiltonian tour, TOUR, which visits each
of the targets at least once and some of the intermediate depots
for refueling. This tour may still be infeasible because there may
be a sequence of vertices that starts at a depot and ends at the
next depot on the tour which may not satisfy the fuel constraints.
To correct this, we further augment this tour with more visits to
the depots as explained in the next step of the algorithm.

In the last step of Approx (illustrated in figure 2), the entire
tour, TOUR, obtained from the second step is decomposed into
a series of strands. A strand is a sequence of adjacent vertices in
the tour that starts at a depot, visits a set of targets and ends at

4

Target

Depot

(a)An infeasible strand from a tour.

PATH(ntx ,mtx) := Shortest path from ntx to mtx

t1 t2 t3d1 d2

nt1

mt1

nt2

mt2

nt3

mt3

(b)The infeasible strand is modified by adding refuel trips
at all the targets in the strand.

t1 t2 t3d1 d2

nt2

mt2

nt3

mt3

(c)Removal of the refuel trip at t1 does not make the
strand infeasible. Therefore, the refuel trip at t1 is per-
manently removed.

t1 t2 t3d1 d2

nt3

mt3

(d)When the refuel trip at t2 is removed, the strand be-
comes infeasible. Hence, the refuel trip at t2 is manda-
tory.

t1 t2 t3d1 d2

nt2

mt2

(e)Removal of the refuel trip at t3 does not make the
strand infeasible. Hence, the refuel trip at t3 is perma-
nently removed.

t1 t2 t3d1 d2

nt2

mt2

(f)The edges incident on the targets are then shortcut as
the fuel costs satisfy the triangle inequality.

Fig. 4. The greedy procedure to convert an infeasible strand to a feasible strand.

a depot. TOUR must be infeasible if the total fuel required to
travel any one of these strands is greater than the fuel capacity
of the vehicle (L). Hence, in this step, all the infeasible strands
are identified, and a greedy algorithm is applied to each infea-
sible strand to transform it to a feasible strand (refer to figure
4). We present some definitions before we outline the greedy
algorithm. A depot, mx, is referred as a nearest starting depot
for x if fmxx = mind fdx. Similarly, a depot nx is referred as a
nearest terminal depot for x if fxnx

= mind fxd. As in the sec-
ond step of the algorithm, given any two depots ds, df ∈ D, one
can find a path of least cost that starts from ds, visits some inter-
mediate depots (if necessary) and ends at df while satisfying all
the fuel constraints 1. Let the sequence of all the depots in this
path be denoted by PATH(ds, df) := (ds, d1, d2, · · · , dk, df)
where d1, d2, · · · , dk ∈ D are the intermediate depots visited
by the vehicle.

The greedy algorithm works as follows (refer to figure 4):
Consider an infeasible strand represented as (d1, t1, · · · , tk, d2)
where d1 and d2 are the two depots of the strand and t1, · · · , tk
are the targets. For each target t in this infeasible strand, we add
a refueling trip such that
• The vehicle visits a nearest terminal depot nt after leaving t.
• The vehicle uses the sequence of depots specified in
PATH(nt,mt) to travel from nt to mt where mt is the nearest

1Apply Dijkstra’s algorithm on the graph (D,Ed) where E := {(i, j) :
i, j ∈ D, fij ≤ L} and the cost of traveling from vertex i ∈ D to vertex
j ∈ D is cij .

starting depot for t, and finally returns to t after refueling.
After adding all the refueling trips, the modified strand can be
denoted as (d1, t1, PATH(nt1 ,mt1), t1, t2, PATH(nt2 ,
mt2), t2, . . . , PATH(ntk ,mtk), tk, d2). Now, each of the refu-
eling trips is chosen sequentially in the order they are added and
is shortcut if the strand that results after removing the refueling
trip still satisfies the fuel constraint (refer to figure 4).

A. Analysis of the Approximation Algorithm

Lemma III.1: Approx always produces a feasible solution
for the FCURP.

Proof: Consider the greedy procedure presented in the
last step of the Approx which attempts to convert an infeasible
strand (d1, t1, t2, · · · , tk, d2) into a feasible path for the vehicle.
The edges (d1, t1) and (tk, d2) in this strand belong to indirect
paths while the remaining edges belong to direct paths. The
vehicle can always travel from d1 to t1 and still have enough
fuel at t1 to reach its nearest terminal depot as edge (d1, t1)
was added according to the fuel constraints in (1). Therefore,
once the vehicle reaches t1, due to our assumptions on the fuel
costs, there always exists a refueling trip such that the vehicle
starts at t1, visits the depots nt1 , mt1 before returning to t1 with
the maximum amount of fuel possible at t1. As a result, the
vehicle must be able to reach t2 with sufficient amount of fuel
remaining to reach the nearest terminal depot nt2 . Again, there
exists a refueling trip such that at the end of this trip, the vehicle
can return to t2 with the maximum amount of fuel possible at

5

t2. The above arguments can be repeatedly used for each target
in the infeasible strand to show that the vehicle must be able
to reach d2 using the modified strand while satisfying the fuel
constraints. Therefore, the greedy procedure can always convert
any infeasible strand into a feasible path and hence, the Approx
finds a feasible solution to the FCURP.

The cost of the final solution (say TOURf) obtained by
Approx is upper bounded by the sum of the cost of TOUR and
the cost of all the refueling trips. So, in order to bound the cost
of TOURf , we need to bound the cost of TOUR, the number
of refueling trips and the cost of each refueling trip in terms of
the optimal cost of the FCURP. In the following lemma, we first
bound the cost of TOUR.

Lemma III.2: Let cost(TOUR) denote the total fuel required
to travel all the edges in TOUR. Then, cost(TOUR) is at most
equal to log(|T |) × Copt where Copt is the optimal cost of the
FCURP.

Proof: The cost of TOUR is equal to the sum of the cost
of all the cycle covers spanning all the targets with lxy as the
cost metric. Now, consider any minimum cost cycle cover C
spanning the targets t1, t2, · · · , tm. Without loss of generality,
we also let (t1, t2, · · · , tm) denote the sequence in which the
targets in C are visited in an optimal solution to the FCURP.
The minimum cost, lti,ti+1

, of traveling from target ti to ti+1

(computed in the first and the second step ofApprox) must be at
most equal to the cost of traveling from ti to ti+1 in the optimal
solution of the FCURP. Therefore, the minimum cost of a TSP
tour visiting any subset of targets using lxy as the metric must
be at most equal to Copt. Since the problem of computing a
minimum cost cycle cover is a relaxation to the TSP, it follows
that the cost of any optimal cycle cover computed in the second
step of Approx must be at most equal to Copt. The number
of iterations in the covering algorithm is at most log(|T |) as the
number of selected targets in any two successive iterations of the
covering algorithm reduces by half. Hence, the cost of TOUR
which is the same as the total cost of all the cycle covers is at
most equal to log(|T |) × Copt.

In the following lemma, we bound the number of refueling
trips needed to make TOUR feasible.

Lemma III.3: The number of refueling trips needed by the
vehicle is upper bounded by 2cost(TOUR)

(1−a)L .

Proof: Let I = (d1, t1, t2, · · · , d2) represent an infeasible
strand in TOUR that requires additional refueling trips and let
cost(I) denote the total fuel required to travel the edges con-
necting any two adjacent vertices in I . Given any two vertices
u, v ∈ I and the segment Iuv of I starting at u and ending at v,
let cost(u, v) denote the total fuel required to travel the edges
connecting any two adjacent vertices in Iuv . Let the greedy pro-
cedure add refueling trips at targets v1, v2, · · · , vk to make I
feasible. Then, cost(d1, v2) must be greater than L − Bv2

(re-
call that for any target x, Cx := mind fdx andBx := mind fxd);
if this is not the case, the refueling trip at target v1 is unnecessary
and can be removed. Similarly, cost(v1,v3) must be greater than
L − Cv1

− Bv3
, else, the refueling trip at v2 is avoidable and

can be removed. Repeating the above arguments for the pairs
of vertices (v2, v4), · · · , (vk−2, vk) and (vk−1, d2), we get, the

following inequalities:

cost(d1, v2) > L−Bv2
,

cost(v1, v3) > L− Cv1 −Bv3 ,

cost(v2, v4) > L− Cv2
−Bv4

,

...
...

...
cost(vk−2, vk) > L− Ck−2 −Bvk

,

cost(vk−1, d2) > L− Ck−1.

Now, the number of refueling trips can be bounded in the fol-
lowing way:

2cost(I) ≥ cost(d1, v2) +

k−2�

i=1

cost(vi, vi+2) + cost(vk−1, d2)

≥ kL− Cv1 −
�

x=v2,··· ,vk−1

(Bx + Cx) −Bvk
. (2)

For any target x, as there are depots �d and d such that f�dx +
fxd ≤ aL, we have Cx +Bx = mind fdx + mind fxd ≤ f�dx +
fxd ≤ aL. Using this bound for each target in (2), we get

2cost(I) ≥ kL− aL− (k − 2)aL− aL (3)
≥ k(1 − a)L. (4)

As a result, the number of refueling trips for strand I is up-
per bounded by 2cost(I)

(1−a)L . Therefore, the total number of re-
fueling trips for the infeasible strands is upper bounded by

2
(1−a)L

�
I cost(I) ≤ 2

(1−a)Lcost(TOUR).
The following theorem provides an approximation factor for

Approx which depends on the size of the problem and the input
data.
Theorem III.1: Approx solves the FCURP with an ap-

proximation factor of (1+a+aβ) log(|T |)
1−a L in O(|D|2|T |2 +

|T |3log(|T |)) steps.
Proof: The cost of the solution, TOURf , obtained by

Approx is upper bounded by the sum of the cost of TOUR
and the cost of all the refueling trips. Note that the cost of the
refueling trip at any target xmust be equal to fx�d1

+f�d1
�d2

+f�d2x

where the depots �d1, �d2 are such that fx�d1
= mind fxd, f�d2x =

mind fdx. From the assumptions in section II, we get,

fx�d1
+ f�d1

�d2
+ f�d2x ≤ fx�d1

+ βf�d2
�d1

+ f�d2x

≤ fx�d1
+ β(f�d2x + fx�d1

) + f�d2x

= (1 + β)(f�d2x + fx�d1
)

≤ (1 + β)aL.

Using lemma III.3, we can conclude that the total cost of all
the refueling trips must be at most equal to (1 + β)aL ×
2cost(TOUR)

(1−a)L = 2(1+β)a
(1−a) cost(TOUR). Therefore, the to-

tal cost of TOURf is upper bounded by cost(TOUR) +
2(1+β)a
(1−a) cost(TOUR) = (1+a+2βa)

(1−a) cost(TOUR). Using

lemma III.2, we get, cost(TOURf) ≤ (1+a+2βa)
(1−a) log(|T |)Copt.

Also, the number of steps involved in the algorithm is domi-
nated by the first and second step of Approx. For any given

6

pair of targets x and y, the Dijkstra’s algorithm requires at
most O(|D|2) steps to compute lxy . As a result, the total num-
ber of steps required to implement the first step of Approx is
O(|D|2|T |2). The second step of Approx runs the Hungarian
algorithm for at most log(|T |) iterations. Hence, the number of
steps required to implement the second step is O(|T |3log(|T |)).
Therefore, the total number of steps involved in Approx is
O(|D|2|T |2 + |T |3log(|T |)).

IV. CONSTRUCTION AND IMPROVEMENT HEURISTICS

The construction heuristic we propose is exactly the same as
Approx except for its second step. Specifically, we replace the
covering algorithm in the second step of Approx with the Lin-
Kernighan-Helgaun (LKH) heuristic [20]. We then use the so-
lution obtained using the construction heuristic as an initial fea-
sible solution for the improvement heuristics. The improvement
heuristics relies on a combination of a k−opt heuristic and a
depot exchange heuristic to improve the quality of the tour ob-
tained by the construction heuristic. A k−opt heuristic is a local
search method which iteratively attempts to improve the quality
of a solution until some termination criteria are met. The depot
exchange heuristic aims to replace some depots in the tour with
refueling depots not present in the tour in order to obtain better
feasible solutions. A flow chart of the overall procedure is pre-

Begin

T = Tour from construction heuristic

Perform k−opt followed by Depot exchange on T

T1 = New tour

Is Cost(T1)≥Cost(T) T = T1

Output T

End

No

Yes

Fig. 5. Overall procedure in the improvement heuristic.

sented in figure 5. In the following subsections, we explain the
k−opt and the depot exchange heuristic in detail.

A. k−opt
We will first give some basic definitions involved in a k−opt

heuristic, and then see how it is applicable to the FCURP. A
tour S2 is defined to be in the k−exchange neighborhood of the
tour S1 if S2 can be obtained from S1 by replacing k edges in
S1 with k new edges. A tour S2 is said to be obtained from a
feasible tour S1 by an improving k�−exchange if S2 is in the
k�−exchange neighborhood of S1, is feasible and has a travel
cost lower than S1. The k−opt heuristic starts with a feasible
tour and iteratively improves on this tour making successive im-
proving k�−exchanges for any 2 ≤ k� ≤ k until no such ex-
changes can be made.

u v x y

(a)Given segment of a tour.

u v x y

(b)Edges (u, v) and (x, y) are removed.

u v x y

(c)New edges are added to construct a new segment.

Fig. 6. Possible 2-exchange move.

b p q ua v

(a)Given segment of a tour.

b p q ua v

(b)Edges (a, b), (p, q) and (u, v) are removed.

b p q ua v

(c)One possible way of adding new edges to construct a new seg-
ment.

Fig. 7. Possible 3-exchange move.

Algorithm 1 : Pseudo code for the k−opt algorithm
Notations: Let cost(T) denote the sum of the cost of traveling
all the edges in the tour T. Let n denote the search span of a
segment.
1: T∗ ← Initial feasible tour.
2: T ← T∗.
3: loop
4: Nd ← Number of visits to the depots in T.
5: for i = 1, · · · , Nd do
6: S(i, n) ← segment of T centered at the ith depot visited

in T.
7: Find a tour R such that for 2 ≤ k� ≤ k,
8: R is obtained by replacing k� edges in the segment

S(i, n) with k� new edges;
9: R is the best improving k�−exchange of T.
10: If cost(R) < cost(T), T ← R.
11: end for
12: if cost(T∗) ≤ cost(T) then
13: break;
14: else
15: T∗ ← T.
16: end if
17: end loop
18: Output T∗ as the solution.

7

A critical part of developing a k−opt heuristic deals with
choosing an appropriate k�−exchange neighborhood for a tour.
One way to choose this is to consider all possible subsets of k�

edges in the tour and try an improving k�−exchange. Initial im-
plementations showed us that substantial improvements in the
quality of the tour were obtained when the k�−exchanges where
performed around the refueling depots in the tour. In view of
this observation, we define a segment of span n as a sequence of
2n + 1 adjacent vertices of the tour centered around a depot.
A segment can be denoted by (s1, . . . , sn, d, sn+1, . . . , s2n),
where d is the depot around which the segment is centered. Fol-
lowing the definition of a segment, one can infer that the number
of possible segments in a feasible tour is equal to the number of
visits by the UAV to all the depots.

The k�−exchange neighborhood in each iteration is restricted
to one of the segments of the given tour. Given a segment, k�

edges are deleted from the segment, and subsequently k� new
edges are added to form a new segment as shown in figures 6 and
7. The updated tour is then checked for feasibility to ensure that
the UAV never runs out of fuel. The pseudo code for the k−opt
heuristic is shown in algorithm 1. An illustration for 2−opt and
3−opt is shown in Figures 6 and 7.

B. Depot Exchange Heuristic

Given a tour, we consider the depots in the order in which
they are visited by the UAV and substitute each of them with a
(possibly) new refueling depot in order to obtain a better feasible
solution. For a given depot d in the tour, suppose v1 and v2 are
the vertices that are visited immediately before and after visiting
d in the tour. The heuristic replaces d with a new depot dr :=
argmin

u∈D
cv1u + cuv2

if the new tour is feasible and reduces

the total cost. The new tour then acts as the current feasible
solution and the above procedure is repeated for each depot until
no further improvements can be done.

V. MIXED INTEGER PROGRAMMING FORMULATION

Let xij denote an integer decision variable which determines
the number of directed edges from vertex i to j in the network;
that is, xij is equal to q if and only if the vehicle travels q times
from vertex i to vertex j. As the costs satisfy the triangle in-
equality, without loss of generality, we can assume that there is
an optimal solution such that each target is visited exactly once
by the vehicle. Therefore, we restrict xij ∈ {0, 1} if either ver-
tex i or vertex j is a target.

The collection of edges chosen by the formulation must re-
flect the fact that there must be a path from the depot to every
target. We use flow constraints [21] to formulate this connec-
tivity constraint. In these flow constraints, the vehicle collects
|T | units of a commodity at the depot and delivers one unit of
commodity at each target as it travels along its path. Enforcing
that these commodities can be routed through the chosen edges
ensures there is a path from the depot to every target. Suppose
pij denotes the amount of commodity flowing from vertex i to
vertex j. Also, let ri represent the fuel left in the vehicle when
the ith target is visited. The FCURP can be formulated as a

mixed integer linear program as follows:

min
�

(i,j)∈E

cij xij

subject to Degree constraints:
�

i∈V \{k}
xik =

�

i∈V \{k}
xki ∀k ∈ V, (5)

�

i∈V \{k}
xik = 1 ∀k ∈ T, (6)

Capacity and flow constraints:
�

i∈V \{s}
(psi − pis) = |T |, (7)

�

j∈V \{i}
(pji − pij) = 1 ∀i ∈ T, (8)

�

j∈V \{i}
(pji − pij) = 0 ∀i ∈ D \ {s}, (9)

0 ≤ pij ≤ |T |xij ∀i, j ∈ V, (10)

Fuel constraints:

rj − ri + fij ≤M(1 − xij) ∀i, j ∈ T, (11)
rj − ri + fij ≥ −M(1 − xij) ∀i, j ∈ T, (12)
rj − L+ fij ≥ −M(1 − xij) ∀i ∈ D and j ∈ T, (13)
rj − L+ fij ≤M(1 − xij) ∀i ∈ D and j ∈ T, (14)

ri − fij ≥ −M(1 − xij) ∀i ∈ T and j ∈ D, (15)

0 ≤ ri ≤ L ∀i ∈ T,

xij ∈{0, 1} ∀ i, j ∈ V, either i or j is a target,
xij ∈{0, 1, 2, · · · , |T |} ∀ i, j ∈ D. (16)

Equation (5) states that the in-degree and out-degree of each
vertex must be the same, and equation (6) ensures that each tar-
get is visited once by the vehicle. Note that these equations
allow for the vehicle to visit a depot any number of times for
refueling. The constraints in (7)-(10) ensure that there are |T |
units of commodity shipped from the depot and the vehicle de-
livers exactly one of commodity at each target. In equations,
(11)-(15), M denotes a large constant and can be chosen to be
equal to L + maxi,j∈V fi,j . If the UAV is traveling from tar-
get i to target j, equations (11) and (12) ensure that the fuel left
in the vehicle after reaching target j is rj = ri − fij . If the
UAV is traveling from depot i to target j, equations (13), (14)
ensure that the fuel left in the vehicle after reaching target j is
rj = L − fij . If the UAV is directly traveling from any target
to a depot, constraint (15) states that the fuel remaining at the
target must be at least equal to the amount required to reach the
depot.

VI. COMPUTATIONAL RESULTS

We considered problems of size ranging from 10 targets to
25 targets with increments in steps of 5. For each problem size,

8

50 instances were generated and all the targets were chosen ran-
domly from a square area of 5000 × 5000 units. In addition,
all the instances of the problem have 5 depots chosen at fixed
locations in the square area. All the simulations were run on a
Dell Precision T5500 workstation (Intel Xeon E5630 processor
@ 2.53GHz, 12GB RAM).

The simulations were performed for a fixed wing vehicle with
minimum turning radius constraints. A vehicle traveling at a
constant speed with a bound on its turning radius is referred to
as the Dubins’ vehicle [6]. In the simulations, the minimum
turning radius of the vehicle is chosen to be 100 units and the
angle of approach for each target is selected uniformly in the in-
terval [0, 2π] radians. Given the approach angles at the targets,
the minimum distance required to travel between any two tar-
gets subject to the turning radius constraints of the vehicle was
solved by Dubins in [6]. For the simulations, the maximum fuel
capacity L was 4500 units and we assumed that the fuel spent is
directly proportional to the distance traveled by the vehicle.

The formulation presented in section V was solved to opti-
mality using IBM ILOG CPLEX optimization software [22].
The average time required to find an optimal solution in CPLEX
was nearly 2 hours for problem instances with 25 targets and
5 depots. On the other hand, the average time required to find
a feasible solution using the approximation algorithm and the
heuristics was less than 2 seconds for each tested instance. The
quality of a solution produced by applying an algorithm on

an instance I is defined as 100 × Calgorithm
I −Coptimal

I

Coptimal
I

where

Calgorithm
I is the cost of the solution found by the algorithm

and Coptimal
I is the cost of the optimal solution for an instance

I . The approximation algorithm and the heuristics were coded
using Python 2.7.2 [23]. We used a search span of 4 for the
improvement heuristics as it gave a good trade off between the
solution quality and the computation time available.

The average quality of the solutions produced by the approxi-
mation algorithm and the heuristics for the instances is shown in
the figure 9. From the figure, it is clear that the average quality of
the solutions produced by the improvement heuristic is much su-
perior compared to the average quality of the solutions found by
the construction heuristic or the approximation algorithm. The
depot-exchanges played a substantial part in improving the qual-
ity of the solutions found by the improvement heuristics; in par-
ticular, on an average, the depot exchange improved the solution
quality by 0.14%, 0.66%, 0.78% and 1.10% for problems with
10, 15, 20 and 25 targets respectively. The feasible solution pro-
duced by the improvement heuristic was also used as an initial
feasible solution for the formulation in CPLEX. The formula-
tion was then solved in CPLEX with a time bound of 10 seconds.
Using the feasible solution produced by the heuristic as a start-
ing point, CPLEX was able to further improve the quality of the
solutions as shown in figure 9. Specifically, for instances with
25 targets and 5 depots, CPLEX was further able to improve
the average solution quality of the instances to 1.39%. These
computational results show that the proposed algorithms can be
effectively used in conjunction with standard optimization soft-
ware like CPLEX in order to obtain high quality solutions for
the FCURP. Considering that the FCURP is a difficult problem
to solve, these results indicate that the approach proposed in this

article is promising. Figures 8 show the paths found by the pro-
posed algorithms for a Dubins’ instance.

0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

L
en

gt
h

(m
)

500

1000

1500

2000

2500

3000

3500

4000

4500

L
en

gt
h

(m
)

Length (m)

Depots
Targets

(a)Optimal solution

0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

Length (m)

L
en

gt
h

(m
)

Depots
Targets

(b)Approximation algorithm

0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

Length (m)

L
en

gt
h

(m
)

Depots
Targets

(c)Solution found by the improvement heuristic

0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

Length (m)

L
en

gt
h

(m
)

Depots
Targets

(d)Solution found by using CPLEX after 10 seconds
with the solution in (b) as an initial feasible solution

Fig. 8. The paths found by the algorithms for a Dubins’ instance with 25 nodes.

9

10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Number of Targets

D
ev

ia
tio

n
fr

om
O

pt
im

um
(%

)

Approximation algorithm
Construction heuristic
Improvement heuristic
CPLEX with initial feasible solution in10s

Fig. 9. Average quality of solutions produced by the proposed algorithms.

VII. CONCLUSIONS

An approximation algorithm and fast heuristics were devel-
oped to solve a generalization of the single vehicle routing prob-
lem with fuel constraints. A mixed-integer, linear program-
ming formulation was also proposed to find optimal solutions
to the problem. Future work can be directed towards developing
branch and cut methods, and can address problems with multi-
ple, heterogeneous vehicles.

REFERENCES

[1] T. Zajkowski, S. Dunagan, and J. Eilers, “Small UAS communications
mission,” in Eleventh Biennial USDA Forest Service Remote Sensing Ap-
plications Conference, Salt Lake City, UT, 2006.

[2] E. W. Frew and T. X. Brown, “Networking issues for small unmanned
aircraft systems,” Unmanned Aircraft Systems, pp. 21–37, 2009.

[3] J. A. Curry, J. Maslanik, G. Holland, J. Pinto, G. Tyrrell, and J. Inoue, “Ap-
plications of aerosondes in the arctic,” Bull. Am. Meteorol. Soc, vol. 85,
no. 12, pp. 1855–1861, 2004.

[4] C. E. Corrigan, G. C. Roberts, M. V. Ramana, D. Kim, V. Ramanathan,
et al., “Capturing vertical profiles of aerosols and black carbon over the
indian ocean using autonomous unmanned aerial vehicles,” Atmospheric
Chemistry and Physics, vol. 8, no. 3, pp. 737–747, 2008.

[5] “Soldiers train with raven UAV’s, united states army.” [Online]. Available:
http://www.army.mil/article/5644/soldiers-train-with-raven-uavs/

[6] L. E. Dubins, “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents,”
American Journal of Mathematics, vol. 79, no. 3, pp. 497–516, July 1957,
ArticleType: research-article / Full publication date: Jul., 1957 / Copyright
1957 The Johns Hopkins University Press.

[7] A. M. Frieze, G. Galbiati, and F. Maffioli, “On the worst-case performance
of some algorithms for the asymmetric traveling salesman problem,” Net-
works, vol. 12, no. 1, pp. 23–39, 1982.

[8] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, “Approximation
algorithms for asymmetric TSP by decomposing directed regular multi-
graphs,” Journal of the ACM (JACM), vol. 52, no. 4, pp. 602–626, 2005.

[9] M. Blaser, “A new approximation algorithm for the asymmetric TSP with
triangle inequality,” ACM Transactions on Algorithms (TALG), vol. 4,
no. 4, p. 47, 2008.

[10] S. Khuller, A. Malekian, and J. Mestre, “To fill or not to fill: The gas
station problem,” in Algorithms ESA 2007, L. Arge, M. Hoffmann, and
E. Welzl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
vol. 4698, pp. 534–545.

[11] P. B. Sujit and D. Ghose, “Two-agent cooperative search using game mod-
els with endurance-time constraints,” Engineering Optimization, vol. 42,
no. 7, pp. 617–639, 2010.

[12] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno, “Tabu search
heuristics for the arc routing problem with intermediate facilities under
capacity and length restrictions,” Journal of Mathematical Modelling and
Algorithms, vol. 3, no. 3, pp. 209–223, 2004.

[13] M. Polacek, K. F. Doerner, R. F. Hartl, and V. Maniezzo, “A variable neigh-
borhood search for the capacitated arc routing problem with intermediate
facilities,” Journal of Heuristics, vol. 14, no. 5, pp. 405–423, 2008.

[14] E. Angelelli and M. Grazia Speranza, “The periodic vehicle routing prob-
lem with intermediate facilities,” European Journal of Operational Re-
search, vol. 137, no. 2, pp. 233–247, 2002.

[15] B. Crevier, J. F. Cordeau, and G. Laporte, “The multi-depot vehicle rout-
ing problem with inter-depot routes,” European Journal of Operational
Research, vol. 176, no. 2, pp. 756–773, 2007.

[16] E. D. Taillard, G. Laporte, and M. Gendreau, “Vehicle routeing with mul-
tiple use of vehicles,” The Journal of the Operational Research Society,
vol. 47, no. 8, pp. pp. 1065–1070, 1996.

[17] Q. H. Zhao, S. Y. Wang, K. K. Lai, and G. Xia, “A vehicle routing prob-
lem with multiple use of vehicles,” Advanced Modeling and Optimization,
vol. 4, no. 3, pp. 21–40, 2002.

[18] J. O. Royset, W. M. Carlyle, and R. K. Wood, “Routing military air-
craft with a constrained shortest-path algorithm,” Military Operations Re-
search, vol. 14, no. 3, pp. 31–52, 2009.

[19] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[20] S.-H. Lin, “Finding optimal refueling policies in transportation networks,”
in Algorithmic Aspects in Information and Management, R. Fleischer and
J. Xu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol.
5034, pp. 280–291.

[21] T. Magnanti and L. Wolsey, “Optimal trees,” Universit catholique de Lou-
vain, Center for Operations Research and Econometrics (CORE), Tech.
Rep., Jan. 1994.

[22] “IBM - ILOG: CPLEX optimization studio 12.2.” [Online]. Available:
http://www.ilog.com/products/cplex

[23] “Python programming language (v.2.7.2).” [Online]. Available:
http://www.python.org/psf/

