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Abstract

Synchronizing sequences have been proposed in the lateéds8alve testing problems on systems modeled by
finite state machines. Such sequences lead a system, sedslaak hox, from an unknown current state to a known
final one.

This paper presents a first investigation of the computatiosynchronizing sequences for systems modeled by
bounded synchronized Petri nets. In the first part of the papésting techniques for automata are adapted to this
new setting. Later on, new approaches, that exploit the tnettare to efficiently compute synchronizing sequences
without an exhaustive enumeration of the state space, asepted.

Index Terms
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I. INTRODUCTION

Due to increasingly larger size and rising complexity, tle@ch of checking systems’ performance increases and
testing problems periodically resurface.

These problems have been introduced by the pioneering paptore [1], where the main focus is to understand
what can be inferred about the internal conditions of a systader test from external experiments. In féxlanken-
experimentthe system under investigation is a fixed semi-automaten as a black box. Lee and Yannakakis [2]
have widely reviewed those problems and the techniquedve ftem. They have stated five fundamental problems
of testing: i) determining the final state after a test; igtstidentification; iii) state verification; iv) conformaac
testing; v) machine identification. Among these, the probéd determining the final state after a test is considered.
This problem has been addressed and essentially compkablgd using Mealy machines around 1960, using
homing sequencd$lS) andsynchronizing sequencé¢Ss).

The synchronization problem is the problem the reader dedts in this work. It concerns how to drive a
system to a known state when its current state it is not knomahvahen the outputs are not observable. This
problem has many important applications and is of genetaleast. It is of relevant importance for robotics and
robotic manipulation[[3]+[5], when dealing with part haimgl and orienting problems in industrial automation

such as part feeding, loading, assembly and packing. Thierean easily see that for example every device part,
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when arriving at manufacturing sites, needs to be sortedoaiedted before assembly. Synchronization protocols
have been developed to address global resource sharingrarthical real-time scheduling frameworks [6], [7].
An interesting automotive application can be found[ih [8fn&hronization experiments have been done also in
biocomputing, where Benense al. [9], [10] have used DNA molecules as both software and hareliar finite
automata of nano-scaling size. They have produced a solofi@ x 10'2 identical automata working in parallel.

In order to synchronously bring each automaton to its "re@dsestart” state, they have spiced it with a DNA
molecule whose nucleotide sequence encodes a reset wogkndén|[[11] has surveyed synchronization issues
from the point of view of coding theory in real life communtien systems. He has presented the concept of
synchronization in information channels, both in the abseand in the presence of noise. Synchronization is an
important issue in network time protocol[12], [13], whelasng of time information guaranties the correct internet
system functioning. Most of real systems, natural or maitt;thave no integrated reset or cannot be equipped with.
That is the case of digital circuits, where a reset circuttardy involves human intervention but increases the cost
of the device itself reducing its effectiveness. In thisdi€hoet al. [14] have shown how to generate test cases for
synchronous circuits with no reset. When classic procediai€due to large circuit size or because a synchronizing
sequence does not exist, lat al. [15] propose a technique based on partial reset, i.e., @peguts that reset a
subset of the flip-flops in the circuit leaving the other flipgb at their current values. Hierons [16] has presented a
method to produce a test sequence with the minimum numbesefs. Nowadays the synchronizing theory is a field
of very intensive research, motivated also by the fanfbelsny conjecture [17]. In 1964 Jffterny has conjectured
that (n — 1)? is the upper bound for the length of the shortest SS for.anstate machine. The conjecture is still
open except for some special cases [18], [5]) [19]. Syndhation allows simple error recovery since, if an error
is detected, a SS can be used to initialize the machine intoosvk state. That is why synchronization plays a
key rdle in scientific contexts, without which all systemmhbeior observations may become meaningless. Thus the
problem of determining which conditions admit a synchratian is an interesting challenge. This is the case of
theroad coloring problemwhere one is asked whether there exists a coloring, i.eedge labeling, such that the
resulting automaton can be synchronized. It was first stayeddler in [20]. It has been investigated in various
special cases and finally a positive solution has been pesséy Trahtman in [21], for which complexity analysis
are provided[[22].

At present the problem of determining a synchronizing segedas not yet been investigated for Petri net (PN)
models and only few works have addressed the broad areatioigtés the PN framework.

The question of automatically testing PNs has been invastiby Jourdan and Bochmann inl[23]. They have
adapted methods originally developed Fimnite State Machine§~SMs) and, classifying the possible occurring types
of error, identified some cases whédree choiceand 1-safePNs [24] provide more significant results especially in
concurrent systems. Later the authors have extended #=eilts also td:-safePNs [25]. Zhu and He have given an
interesting classification of testing criterla [26] — witltatesting algorithms — and presented a theory of testing
high-level Petri nets by adapting some of their generalltes$n testing concurrent software systems.

In the PN modeling framework, one of the main supervisontimmasks is to guide the system from a given initial



marking to a desired one similarly to the synchronizatioobpgm. Yamalidowet al. have presented a formulation
based on linear optimizationh [27], [28]. Giw al. have investigated thetate estimation problenproposing an
algorithm to calculate an estimate — and a correspondiny émwund — for the actual marking of a given PN
based on the observation of a word. A different state esiimatpproach has been presented by Cotrel. [29],

for labelled PNs with silent transitions, i.e., transisothat do not produce any observation. Similar techniques
have been proposed by Lingat al. in [30] to get a minimum estimate of initial markings, aimit@characterize
the minimum number of resources required at the initiatirafor a variety of systems.

This paper is focused on bounded synchronized PNs and thed@®m here is first investigated. The paper
shows how the Mealy machine approach [2] can be easily adaptsystems represented by the class of bounded
synchronized PNs. Synchronized PNs, as introduced by Keahl. in [31], are nets where a label associated with
each transition corresponds to an external input event evibosurrence causes the firing of all marking enabled
transitions having this label. Note that SSs are independiethe output and this makes the synchronized PN a
suitable model for such an analysis. Then the authors censicdpecial class of Petri nets callstdte machines
(SMs) [24], characterized by the fact that each transitiag & single input and a single output arc. Note that this
model, albeit simple, is more general an automaton. In fabile the reachability graph of a state machine with a
single token is isomorphic — assuming all places can be ndarkeo the net itself, as the number of tokénin
the net increases the reachability graph grows™as!, wherem is the number of places in the net. It is shown that
for strongly connected SM even in the case of multiple tokémes existence of SS can be efficiently determined by
just looking at the net structure, thus avoiding the stafdasion problem. These results are also extended to SMs
that are not strongly connected and to PN containing SM dabfie effectiveness of the technique is proved via
a toolbox we developed on Matlab [32].

The paper is organized as follows. In Sectidn Il the backgdoon automata with inputs and PNs is provided.
Sectior 1] presents the classic SS construction methodiftomata with inputs. SectignllV shows how to obtain SSs
by adapting the classic method developed for automata wihts to bounded synchronized PNs, via reachability
graph construction. Sectidn] V proposes an original tearmidpased on path analysis, for efficiently determining
SSs on strongly connected SMs. Section VI presents a shectighion of algorithm complexity. The case of
non-strongly connected SMs is investigated in Sedfion WISection[VIIl our approaches are extended to nets
containing state machine subnets. In Seclioh IX numerieslilts are presented, applying our tool to randomly

generated SMs. Finally, in Sectifd X, conclusions are dranth open areas of research are outlined.

Il. BACKGROUND
A. Automata with inputs
An automaton with inputs\ is a structure

A=(x,E,0),

wherey and E are finite and nonempty sets of states and input events tasggcandd : y x £ — x is the state

transition function.



When the automaton is in the current state y and receives an evente F, it reaches the next state specified
by 6(z,e).

Note thatd is usually assumed to betatal function i.e., a function defined on each eleménie) of its domain.

In such a case the automaton is caltemnpletely specified

The number of states and input events are respectively eéeéfgtr = |x|, p = |E|. One can extend the transition
function ¢ from input events to sequences of input events as followsf a)denotes the empty input sequence,
0(xz,e) =z for all z € x; b) for all e ¢ E and for allw € E* it holds thatd(z, we) = 6(5(x,w), e)d.

The transition functiord can also be extended to a set of states as follows: for a seatesg’ ¢ x, an input
evente € E yields the set of stateg” = 6(x’, €) = Uzey 9(, €).

A simple way to represent any automaton is a graph, wheresstatd input events are respectively depicted as
nodes and labelled arcs.

An automaton with inputs is saistrongly connectedf there exists a directed path from any node of its graph
to any other node.

The set of nodes of a non-strongly connected automaton cgafigioned into its maximal strongly connected
components. A component is calledyodig if its set of output arcs is included in its set of input antansient
otherwise.

An automaton contains at least one ergodic component armbraght connected automaton consists of a single

ergodic component.

B. Place/Transition nets

In this section, it is recalled the PN formalism used in thpgyaFor more details on PNs the reader is referred
to [24], [33].

A Petri net (PN), or more properly Blace/Transition netis a structure
N =(P,T, Pre, Post) ,

where P is the set ofm places,T is the set ofg transitions,Pre: P xT — N and Post: P xT — N are the pre
and post incidence functions that specify the weighted. arcs

A markingis a vectorM : P — N that assigns to each place a nonnegative integer numbekerigpthe marking
of a placep is denoted withM (p). A marked PN is denote@V, M,).

A transitiont is enabled atM iff M > Pre(-,t). An enabled transition may be fired yielding the marking
M' =M + Post(-,t) — Pre(-,t). The set of enabled transitions &f is denotedS (M).

M][o) denotes that the sequence of transitienst; ...t is enabled af\/ and M [o)M' denotes that the firing
of o from M yields M’.

A marking M is said to bereachablein (N, M,) iff there exists a firing sequence such thatMy[o)M. The
set of all markings reachable froi, defines thereachability setof (IV, My) and is denoted wittR(N, My).

IHere » denotes the Kleene star operator dfi#l represents the set of all sequences on alphabet
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Figure 1. A synchronized PN (a) and a possible behavior (b).



Thepreset andpostset of a placep are respectively denotég andp®. One can define the set of input transitions
for a set of places as the setP = {t:Vpe P, te *p}. Analogously the set of output transitions for a set of

placesP is the setP* = {t:Vpe P, te p°}.

C. Synchronized Petri nets

A synchronized PN33] is a structuré N, E, f) such that: i)N is a P/T net; ii)E is an input alphabet of external
events; iii) f : T — E is a labeling function that associates with each transitian input eventf (¢).

Given an initial markingM,, a markedsynchronized PNs a structure(N, My, E, f).

One extends the labeling function to sequences of transitias follows: ifo = tit5...tx then f*(o) =
f)f(t2) .. f(te).

The setT, of transitions associated with input eventis defined as followsT, = {¢t | ¢t € T, f(t) = e}.
Equivalently all transitions iff, are said to be receptive to input event

The evolution of a synchronized PN is driven by input seqesras it follows. At markingV/, transitiont e T
is fired iff:

1) itis enabled, i.e.t € E(M);

2) the evenk = f(t) occurs.

On the contrary, the occurrence of an event associated vifinaitiont ¢ £(M) does not produce any firing. Note
that a single server semantic is here adopted, i.e., whan aygnte occurs, the enabled transitions’i fire only
once regardless of their enabling degree.

One writesM —> M’ to denote the fact that the application of input event sec@en= ¢ .. . e;, from M drives
the net toM’.

In Figure[1(@) is shown an example of synchronized PN. No#& l#bels next to each transition denote its
name and the associated input event. In Figure] 1(b) the méaten is presented over a possible input sequence
w = egeje1eges Starting from markingh.

In the rest of the paper, the reader will only deal with thesglaf bounded synchronized PNs that also satisfy

the following structural restriction, that is common in tliterature to ensure the determinism of the model:

p s.t. t,t" ep®and f(t) = f(t). Q)

When an event occurs in a deterministic net, all enabledsitians receptive to that event can simultaneously
fire. Thus an input sequenee= ejes---¢;, € E* drives a deterministic net through the sequence of markidgs
My, Ms, -+, My, where M is the initial marking and

M1 = M; + > (Post(-,t) — Pre(-,t)).
teTe,,, NE(M;)

Example 1: Consider the PN of Figufe I{a) and I&f = [201]” be the current marking. Transitioms andt;
are enabled and upon the occurrence of eventill simultaneously fire, yielding marking/’ = [110]%. Note that

markings[011]% and[300]7, respectively obtained by the independent firing oaindt3, are never reachablm.



A marked PN(V, M,) is said to be bounded if there exists a positive constasich that for allM € R(N, M),
M(p) <k Vpe P. Such a net has a finite reachability set. In this case, thevi@hof the net can be represented
by thereachability graph(RG), a directed graph whose vertices correspond to reéehadrkings and whose edges
correspond to the transitions and the associated eveningaashange of marking.

The graph in Figur@ 3(k) (disregarding the dashed edgebgiseachability graph of the PN in FigJre 1(a).

D. State machine Petri nets

Let first recall the definition of a state machine PN.
Definition 2 (State machine PN): [ [24] Atate machinéSM) PN is an ordinary PN such that each transitibn

has exactly one input place and exactly one output placg, i.e
[*t] = t*] =1 (VteT) ]

Observe that a SMV = (P, T, Pre, Post) may also be represented by associated graplgy = (V, A) whose
set of verticesV’ = P coincides with set of places of the net, and whose set of Arcerresponds to the set of
transitions of the net, i.eAd < P x P ={(p;,p;) | It e T,p; =°t,p; =t°}.

Such a graph can be partitioned into its maximal stronglynested components, analogously to the automata
with inputs. These components induce also a partition ofstiteof places of the corresponding SM.

Definition 3 (Associated graph): Given a SM = (P, T, Pre, Post), let Gy = (P, A) be its associated graph.

P can be partitioned intaomponentas follows:
P=Pu-uPy

such thatforalli = 1,...,k and A; = An(P;x P,) it holds that(P;, A;) is a maximal strongly connected sub-graph
of Gn. [}

As discussed in Sectidn T3A, componen®s, ... P, can be classified as transient or ergodic components.

Definition 4 (Condensed graph): Given a SM= (P, T, Pre, Post), its correspondingondensed grapfi( V)
is defined as a graph where each node represents a maximaigtreonnected component and whose edges
represent the transitions connecting these components. ]

In Figure[2(@) it is shown an example of a synchronized SM twh&not strongly connected. Transient and
ergodic components are respectively identified by dashddlatted boxes. For such a net the transient components
areTRy ={p1}, TRz = {p2, p3}, TR3 = {ps} and the ergodic components adR; = {ps, ps} and ERy = {p7}.

The corresponding (V) is shown in Figur¢ 2(b), where subnets induced by each coemiare represented by

single nodes.

IIl. SYNCHRONIZING SEQUENCES FOR AUTOMATA WITH INPUTS

In this section, the SS classic construction is presenteth®aid of finite automata.



Figure 2. A not strongly connected PN (a) and its condensaghg(b).

Definition 5 (SSs on automata): Consider an automaton with inputs(y, F,d) and a statez € x. The input
sequencep is called synchronizing for stat if it drives the automaton t@, regardless of the initial state, i.e.,
Vx € x it holds thatd(z,w) = Z. |

The information about the current state dfafter applying an input sequenceis defined by the sep(w) =
d(x,w), called thecurrent state uncertainty ob. In other wordsw is a synchronizing sequence (SS) that takes
the automaton to the final stateiff ¢(w) = {z}.

The synchronizing tree method [34], [35] has been proposqitdvide shortest SSs. Such a method is suitable
only for small size systems, since the memory required tdhup the tree is high, and becomes useless when the
size grows. As a matter of fact the problem of finding shor&Ss is known to be NP-complete [18].

Two polynomial algorithms have been mainly used to provi®s $hat are not necessarily the shortest. The so-
calledgreedyandcyclealgorithms, respectively of Eppsteln [18] and Trahtmiar],[86t have equivalent complexity.

The greedyalgorithm [18] determines an input sequence that takes engautomaton, regardless of its initial
state, to a known target state: note that the target statetésrdined by the algorithm and cannot be specified by
the user. Here we propose a slightly different implemeatatf the greedy algorithm (see Algoritim 7), that takes
as input also a state and determines a sequence that synchronizes to that state.

This algorithm is later used as a building block to detern@n®S to reach a given marking among those in the
reachability set of a bounded PN.

Definition 6 (Auxiliary graph): Given an automaton with inpukswith n states, let4(A) be itsauxiliary graph

A(A) containsn(n + 1)/2 nodes, one for every unordered pdit’, 2"") of states ofA, including pairs(z,z) of
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Figure 3. The completely specified RG (a) and the correspgndixiliary graph (b) of the PN in Figufe_Ifa).

identical states. There exists an edge from npdexz") to (', ") labeled with an input evente F iff 6(z',¢) = &’

and d(z",¢) = 3", n

Algorithm 7: (Greedy computation of SSs on automata with inputs)

Input: An auxiliary graph.A(A), associated with an automaton with inputs- (, £, ), and a target stat& « x.

Ouput: A SSw for statez.

1.

5.

Lets=0.

2. Letwy = ¢, the empty initial input sequence.
3.
4. While ¢(w;) # {z}, do

Let ¢(wo) = x, the initial current state uncertainty.

41 i=1+1.
4.2. Pick two statese,x’ € ¢(w;—1) such thatr # 2.
4.3. If there does not exist any path.ii(A) from node(z’,z") to (z,z), stop the computation, there exists
no SS forz.
Else find the shortest path from node’, z”) to (z,z) and letw be the input sequence along this path,
do
43.1. w; = wiqw
4.3.2. ¢(w;) = 6(Pp(wi-1),w).

W = w;. |

The following theorem provides a necessary and sufficientlition for the existence of a SS for a target final

state.

Theorem8: The following three propositions are equivalent.



1) Given an automaton with inputs = (x, E,9), there exists a SS for stafec x;
2) A(A) contains a path from every node’, "), wherexz’, 2" € x, to node(z, z);

3) Algorithm[7 determines a S8 for statez ¢ y at step 5., if there exists any SS.

My | [200]T

M, | [010]T

My | [101]T
Table |

MARKINGS OF THEPN IN FIGURE[I(A)]

Proof: [1) implies 2)] If there exists a SS for stafee y, there exists an input sequeneefor z s.t. for any
x' 2" € x it holds thatdé(z',w) = §(z",w) = Z. Hence there exists a path labeledrom any (z’,z") to (z, z).
[2) implies 3)] Consider iteration of the while loop of Algorithn{V. If there exists a path laléle from any
(«',2") to (z,z), then it holds that ({z',2" },w) = {z}. Hence the following inequality holds:

[p(wi)| = 16(d(wi-)\{, 2"}, w) u{F} < |p(w;)] - 1.

The existence of such a sequence for every couple of state§ € y assures that the current state uncertainty
will be reduced to singletokz} after no more tham iteration.

[3) implies 1)] Since Algorithnil7 requires the current statecertainty to be singleton and uses it as a stop
criterium, if it terminates at step 5., then the sequencadas clearly a SS. O

One can easily understand that, when the automaton is motgéyr connected, the above reachability condition
will be verified only when there exists only one ergodic comguat and there may exist a SS only for those states

belonging to this ergodic component.

IV. SYNCHRONIZING SEQUENCES FOR BOUNDED SYNCHRONIZEPNS

When computing a SS for real systems modeled by automats,aissumed that a complete description of the
model in terms of space-set, input events and transitiontiom is given. The idea is that the test generator knows
all possible states in which the system may be.

A similar notion can be given for Petri nets, where equivillenne can say that the test generator knows a
"starting state”, i.e., a possible state, of the system dn&initial uncertainty coincides with the set of states
reachable from this starting state.

In a synchronization problem via PNs, it is given a Petri Neand astarting markingM,. The current marking
M is unknown, but it is assumed to be reachable frafm

This starting marking, together with the firing rules, pa®s a characterization of the initial state uncertainty,
given by My = R(N, My). The goal is to find an input sequence that, regardless ofitialimarking, drives the
net to a known marking/ € R(N, My).



Given a synchronized PNV, E, f), a straightforward approach to determine a SS consistsaptand the existing
approach for automata to the reachability graph (RG).

It is easy to verify that this direct adaptation presents sim@rtcoming that makes it not always applicable: the
greedy approach requires the graph to be completely spkoifitgile in a RG of a PN this condition is not always
true. In fact, from a marking not all transitions are necelsanabled, causing the RG of the PN to be partially
specified. In order to use the aforementioned approach idessary to turn its RG into a completely specified
g.

Example9: Consider the PN in Figufe I{a). The current markivig= [2 0 0]7 enables only transition;, then
all events not associated with are not specified. Hence for that marking one adds a self labgllede; and so
on for the rest of the reachable markings. [

In Figure[3(d) is shown the RG of the PN in Figlire JL(a). Note¢ deshed edges are added in order to make it
completely specified. In Figufe 3{b) is shown the correspapduxiliary graph of the RG in Figufe 3[a).

One can summarize the modified approach for PNs in the fatigwigorithm.

Algorithm 10: (RG computation of SSs on synchronized PNSs)

Input: A bounded synchronized P{W, E, f), a starting markingM, and a target marking\/.
Ouput: A SSw for marking M € R(N, My).
1. Let G be the reachability graph dqfV, M).
2. Let G be the modified reachability graph obtained by completinghen by adding a self loop labelled
e, VM eGandVee E s.t. it e T.nE(M).
3. Construct the corresponding auxiliary gragiiG).
4. A SS for marking), if such a sequence exists, is given by the direct applioatioAlgorithm[7 to A(G),

having M as target. n

The following proposition can now be stated.

Proposition11: Given a bounded synchronized PN and a starting marking\/y, there exists a SS leading to
a markingM € R(N, My) iff the reachability condition on its auxiliary grapd(G) is verified, i.e., there is a path
from every nodé M;, M;), with M;, M; € R(N, M), to node(M, M).

Proof: Consider a marked PN n¢tV, M) and its RGG. Given a markingM € R(N, M), a sequence =
tjit;e ... t;p generates the trajectofy [t;1) M [t2 . . . ¢, ) M, iff there exists an oriented path= Mt ;1 Mitjo ...t M,
in G. The same equivalence holds between a synchronized PN saedritpletely specified R@. Thus an input
sequencey = ej1€j2 . . . €5, drives the net from\/ to M, iff there exists an oriented path= Me;1 Mieja ... ejp My
inG.

Since the completely specified RGcan be considered as an automaton whose behavior is equitalthat of

the synchronized PN, one can obtain a SS via Algorithm 7. O



V. SYNCHRONIZING SEQUENCES ON STRONGLY CONNECTED STATE MACHBES

Consider a strongly connected SM defined in Sedfionl Il-D.Wwing the number of tokens initially contained
in the net — regardless of their initial distribution — is icient to exactly determine the reachability set of the
net: in fact, the number of tokens will remain constant asrtéeevolves and any distribution of thetokens can
be reached.

If a SM is not strongly connected, knowing the number of takkrinitially contained in the net — but not their
initial distribution — will give a larger approximation ohé reachability set that may be used to design a SS. The
knowledge of the number of tokens initially contained infreaomponent — but not their initial distribution within
each component — will provide an exact characterizatiorhefreachability set.

This new setting aims to determine a SS without constru¢tiagvhole state-space. Hence a new formal definition
of SS for SMs has to be given.

Definition 12 (SS on state machine PNs): Given a synchronized SM, f), assume that the initial marking

My is not given but is known to belong to a set
Mo ={M eN™| Z]\/f(pi) =k}.

w is called ak-SS if for all M € M it holds M M. [
In this section, we first analyze the problem of determining-8S and then address the more genér8lS,

starting from1-SS.

A. 1-SS on strongly connected state machines

In this subsection we present a particular technique toraéte 1-SSs via sufficient conditions over the net
structure. Such a technique can be more efficient than thevapip presented in Algorithin 110, as discussed later
in Section V.

Let us first give the definition of directed path.

Definition 13 (Directed path): Given a SMV = (P,T, Pre, Post), an alternated sequence of places and
transitions p = (p(tipits--t.p.) is called adirected pathif Vi = 0,...r and Vj = 1,...r it holds: i) p; € P
andt} e T’ ii) Pl € *t%,, and t;- € *p;. A path non-containing any repeated place is callddmentary ]

The notion ofsynchronizing transition sequendéer a set of places® and a specific placg € P can now be
given.

Definition 14: (Synchronizing transition sequend@)ven a synchronized SKN, E, f), let p(P, p) = (pht} pth--t.pl),
with p = p’,, be a directed path inV = (P, T, Pre, Post) that visits all places inP ¢ P and ends inp ¢ P, with
p#p; for j=0,1,...,r-1. Let o be the firing sequence obtained by removing all places fp@ﬁﬁ,ﬁ). Such a
sequence is called synchronizing transition sequent@ P and p if
C1) #t,t' € P* such thatt e o, t' ¢ o, and f(t) = f(').

C2) Vpl,pj, € p(P,p): if p} =pj, andi < k it holds thatf(¢;)  f(t}) for j=1,...k-1. n



Figure 4. A strongly connected synchronized SM

In simple words, condition C1) requires that there is noditions exiting? and sharing the same label of a
transition ino. Condition C2) requires that if a place is visited multiglaés, its ingoing transition does not share
the same label with any of the transitions in the path.

A first result related to the existence of a SS for SMs with glsirioken can now be stated.

Proposition15: Consider a strongly connected synchronized WM FE, f) containing a single token. Let be
a synchronizing transition sequence fBrand p € P. Thenw = f*(o) is a 1-SS for markingM that assigns the
token to placep, i.e.,

N M) - Lif p=p,

0 otherwise.

!
T

Proof: Let o = ¢}--t,. be the synchronizing transition sequence found atl, p) = (p(tipitst.p..), with
P = p.., be the corresponding path (not necessarily elementary).

Let @ be the corresponding input event sequence, dies,f* (o) = e(--el..

We first prove that after the occurrence of eventhe token can only be in a plagg such that: > 1. Assume,
in fact, the token is initially in place; and evenk) occurs. Two different cases have to be treated.40, then
by definition of s, the token is certainly driven to plagg. If i > 1, two further sub-cases are possible: a) no output
transition ofp] has labelk, i.e., T, np,* = @, and the token will not not move; b) an output transitionppthas
labele; and its firing moves the token to some plage with j > i.

The last result follows from conditions C1) and C2) of Defmit[I4. In fact, condition C1) assures that only
transitions belonging ta are receptive ta;; thus the token can only be driven along the chosen pathdBesi
condition C2) assures that the token cannot go back in thizagms path along the sequence.

By repeating this argument, we can show that after the agic of evente;, for i = 2,...,r, the token can
only be in a placey, such thatk > 4, hence this ensures that when all events in the input sequerave been
applied the token will be in placg. O

Next algorithm shows how Propositibn]15 can be effectivelgdito compute a-SS. In this, functiorr : PxT —

T (resp.w: P xT — P) returns the set of transitions (resp. places) visited bgatied pathp. Functionstart :
P xT — P determines the last place has been added for instance, consider the paitk: (p,t,pr_1t,-1--t1po)-



It holds thatr(p) = {t1,t2, -, t-}, 7(p) = {po,p1,---,pr} @andstart(p) = p,.
Algorithm 16: (STS computation of-SSs on synchronized PNs)
Input: A SM PNN = (P, T, Pre, Post) and a target placep.
Ouput: a 1-SSw that drives the token to plage
1 p=p, R={p};
2. flag:= false;
3. while flag = false v R + &
a. pick pe R : |pl = max o'},
b. p:= start(p);
¢ T="p\(r(p) up"):
d. while flag = false v T + @,
i. pickteT, p' =" ttp;
ii. if o’ does not satisfiy C2xhen goto step3.d.v.
end if
ii. if 7(p) =P,
— if p’ satisfies Cl)then flag := true.
else, goto step3.d.v.
end if
end if
iv. R:=Ru{p’}
v. T:=T\{t};
end while
e R:=R\{p}.
end while
4. if flag = false,
a then no STS exists;

else

b pick pe R+ |o] = max|p’;
¢ let o be the firing sequence obtained removing all places fppm
d w:=f*(0).
end if [
The algorithm computes a synchronizing transition segeettcstarts from desired placge (stepl.) and puts
the path of zero length = p into R, which contains the set of path to be analyzed. The net isoexglusing a
backward search until either a STS has been found, i.e.fie is true, or there are no more paths to analyze,

i.e., R+ (step3.).



Once a patlp is selected, we consider the set of transitiGhiputting its start place that i) have not already
been visited in the path; ii) do not output from the final placéstep3.c.).

For all new pathg’, obtained adding tp one transition irff” and its input place (step.d.i.), we do the following.
First, we check condition C2) (stepd.ii), which must hold for all prefixes of the final path. If it doestinold, we
discard the path going to stefd.v.. Then we check ify’ contains all places: in this case, if it satisfies condition
C1) (step3.d.iii) we stop the algorithm (flag=true), else we discard it, gdimgtep3.d.v.. All new not discarded
paths, are added to s& to be later explored (step.d.iv).

When all transitions irff” have been evaluated, pathis then removed fronRk (step3.e.).

In step4., if the flag is set to false, there is 1eSS constructible via the STS approach. Otherwise the pfath o
maximum length is contained iR and it defines an STS.

Paths are constructed via a depth-first-search, as ensyrdtelrondition of stef8.a. that always picks (one
of) the longest path(s). We could implemenbeadth-first-searchoy picking — at the same step — the shortest
p € R, to ensure for the shortest STS solution if found.

Example 17: Consider the strongly connected SM in Figure 4. The objedsito find al-SS that leads the system
to the marking[0001]7. Let p = (p1t1patapstspataps) be the directed path that contains all the places, ending in
p4, ando = tytotst, the synchronizing transition sequence forand placeps. Sequences = f*(o) = ejesesey is
al-SS. [ ]

Note that condition C1) of Definitioh 14 is sufficient to asstine sequence to be a synchronizing oneig an
elementary path.

The conditions given by Propositign]15 for the existence ®£$S are sufficient but not necessary.

Although one determines &SS by just analyzing the net structure — avoiding then the&R@ the auxiliary
graph construction and consistently reducing the comyylexd, the conditions required are very restrictive.

In fact there are SMs for which those conditions do not holtlithat still have al-SS.

Example 18: Consider again the strongly connected SM in Figure 4 withtoken and supposg(ts) = f(t2) =
es. This time one aims to find a-SS that leads the system to the markjig00]%. There clearly exists no
synchronizing transition sequence with such a change ofatheling function, hence n®-SS can be determined
by Propositiori I5. Despite this, one easily finds thR8Sw = e4e3 by the way of Algorithn{ID. |

Note that, when conditions required by Propositiod 15 do Imoid, one can always determine a SS using

Algorithm[10Q, obviously with an increased complexity as\whdater in SectiofVI.

B. k-SS on strongly connected state machines

We now consider the problem of determining:&5S for nets with k tokens.
Proposition19: Consider a strongly connected synchronized @ME, f) containingk tokens.
Let o be a synchronizing transition sequence @randp e P andw = f*(0) a 1-SS.w* is a k-SS that moves

all k& tokens to place, such that:



it ) - { kif p=p.
0 otherwise.

Proof: Consider a first application af, at least one token is driven @ Because of condition C2) and of
the fact that the directed path does not pass thrgygione of the output transitions of this place is receptive to
some event inv. Hence every application ab does not move the token fromand takes the&: tokens at least
one by one to place. O

Example 20: Consider the SM of Example L7, where= e;ezesey is thel1-SS previously found. Let the PN have
2 tokens. It holds that? = ejezesesereaesey is a 2-SS, leading the net to the desired final marking [0002]%.

]

The previous propositions show that determining a syndhimg transition sequence allows to readily construct
not only al1-SS but ak-SS for an arbitraryk. However not all SSs can be obtained in this way.

Thus we consider the following problem: given any arbitred$S, constructed not from a synchronizing transition
sequence but by using Algorithin]10, does Propositioch 19yappl that we can use it to constructkaSS?
Unfortunately this is not the case, as shown by the next el@mp

Example21: Consider the SM of Example L7 and let= ezejeseses be al-SS forpy. Let the PN have 2
tokens. It is easy to see that is not a 2-SS, since only one token out of two would be drivep,to ]

It is however possible to provide a sufficient condition for @bitrary1-SS to ensure that, concatenatingit
times, ak-SS is obtained.

Proposition22: Consider a strongly connected synchronized(®WFE, f) containingk tokens. Letv be al-SS
for a target markingM, such thatM (p) = 1 if p = p, otherwiseM (p) = 0.

If for all ¢ € p* it holds thatf(t) ¢ w, i.e., sequence does not contain any symbol labeling an output transition
of placep, thenw” is a k-SS for a target marking/;, such thati(p) = k if p = p, otherwiseM,(p) = 0.

Proof: During the first application ofv, at least one of the tokens is drivengoAny further application of
w moves top at least one of the tokens not in this place, and does not nimvéokens already ip, as none of

its output transitions is receptive to any eventin Thusw” takes thek tokens to place. ]

VI. A DISCUSSION ON COMPUTATIONAL COMPLEXITY

In this section we give an estimate of the computational derify of both RG and STS approaches fB:SS

construction.

A. Complexity via reachability graph analysis

The greedyand thecycle algorithms work both inO(n? + |E[n?) time, wheren and |E| are, resp., the number
of states and the input alphabet cardinality of the automa®oofs can be respectively found in [18] ahd![36].
Such algorithms are applicable to synchronized PNs by fiishestively enumerating the state space of the net,

i.e., constructing its RG. Although alternative technisjaee proposed to decrease its complexity (é.d. [37], [38]),



the RG generation suffers from the problem of exponentiatspand time complexity. In particular, for a SM the
reachability set of markings can significantly increasenvite number of tokens under the following expression.
Theorem23: Given a strongly connected SW = (P, T, Pre, Post), with k tokens, letn be the number of its
places. The RGj of this net has a number of nodes equal to:
("l )
Proof: Consider the given net once a new node is added. It can bey edmilvn that the reachability set

cardinality is given by the following formula:

k

G(m+1,k)| = 3 1G(m, )| =
=0
=1G(m,0)|+|G(m, )| +...+|G(m, k)|,
where|G(m, )| is either the cardinality of the new obtained PN with i tokens in the added place or that one
of the initial PN with ¢ tokens. Such results can be reported in a matrix form, oiptithe well known Pascal

matrix, that comes out from the Pascal’s triangle. The etémef the symmetric Pascal matrix are the binomial

(i+j—2)
1—1

havingi =m, j =k + 1. O

coefficients, i.e., it holds that

Considering the above result, one can state the followingria.
Lemma?24: Consider a strongly connected SM withtokens. Letr be the number of its places arid be its

input alphabet. For such a net, Algoritim] 10 requires a time

O(Ig(m, k)’ +|EllG(m, k)*)

gt ] gt )
SO([(m—l)!] +'E'[<m—1>!] ) "

B. Complexity via synchronizing transition sequences

We have shown in Proposition 115 a technique to compute38 on a strongly connected net based on
synchronizing transitions sequences. Here we discussatimplexity of such a procedure.

To compute a synchronizing transition sequence one carepdogsing a backward depth-first search from place
p and verifying the conditions of Definitidn L4 over the labelifunction.

It is known that a depth first search requi@gh?) time [39], for explicit graphs traversed with repetitiomving
a branching factob and a depth search af

Assume that a SM has a backward branching factor (the nunibearwsitions inputting in a place) bounded by
¢ = maxpep |*p|. While exploring the net with possible repetitions of plgcan upper bound for the depth search
length isq — 1, whereq is the number of net transitions. Thus a first very rough axipration of the needed time

is given byO(¢?1).



This time only depends on structural net parameters, doegrow with the number of tokens and is typically

smaller than the time required by AlgoritHm] 10.

VIlI. SYNCHRONIZING SEQUENCES ON NONSTRONGLY CONNECTED STATE MACHINES

Consider now connected — but not necessarily strongly atiede— state machines. It can be shown how the
existence of a SS depends on the interconnection betweediergnd transient components.

Proposition25: Consider a synchronized S{W, E, f) with u transient components anglergodic components.
If n > 1 there exists no SS for such a net.

Proof: Let the net have two ergodic compone#®’ and ER". Consider two initial markings/) and M’
both with k tokens such thad/| (resp.,M() assigns all tokens to the compondnk’ (resp.,ER"). Clearly there
exists no marking\/ reachable from bottdZ/ and M/, hence no SS exists according to Definition 12. ]

It is now proposed an algorithm to determine sequences fiostrnangly connected state machines having a single
ergodic component where the interconnection betweeniéainsomponents can be arbitrary.

It is first stated the following result.

Proposition26: Consider a SMN = (P, T, Pre, Post) with a single component ER and I€(N) be its
condensed graph. For each nodeg of C(INV) associated with a transient componéhR?; (with < > 0), let ;
be the length of the longest path framto nodev, associated with the ergodic compondnR. Then if there is
an edge(v;,v;) in C(N) it holdsi; > ;.

Proof: First observe tha€ (V) is acyclic by construction and the nodg is reachable from any other node,
hencel; € N is well defined for each node; (with j > 0). By definition, if (v;,v;) is an edge oC(N), then
li>1;+1. o

The following algorithm for the one-token case allows toaibta SS, such that a plagein the single ergodic
component is marked.

Algorithm 27: (Computing a SS leading to p € ER)

Input: A synchronized PN N, E, f) containingl tokens, withy, transient components aridergodic component.

Ouput: A SSw for placep.

1. Let C(N) be the condensed graph of and associate ER with nodg.

2. Label every other node; of C(NN) with I;, wherel; is the length of the longest path from to vg.
3. Let X be the set of nodes such thaf, = {v; : I; = k}, thus for constructiort = {vo}.

4. Letw=e.

5. For k=,,,02:1

5.1. for all v; € Xy,
5.1.1. pick any transitiont’ connectingy; to v;, beingv; € ¥y andk’ < k;
5.1.2. consider the strongly connected subnet associated witk modetermine al-SSw’ for placep’,
wherep’ € t'*;

6. Consider the strongly connected subnet associated wite npd_et w be al-SS for placep.



7. Letw=wf*(o). [

The algorithm starts taking into account the farthest nddes ER. By definition of condensed graph, transient
nodes with the same label value are not connected. Hencemtst.2. the application of each cougle’,t’),
step by step, drives the token always nearer to ER until ithes it.

We have remarked that a net with more than one ergodic compaamnot have a SS, at least according to
Proposition 2b. However, the knowledge of the initial toldistribution among the net components may lead to
other interesting characterizations, provided of counseinitial state uncertainty is redefined according to th&a/n

information.

VIIl. SYNCHRONIZING SEQUENCE ON NETS WITH STATE MACHINE SUBNETS

In the following we discuss some results on synchronized ®Nigh do not belong to the class of SMs and
show how — under certain conditions — our approach can silapplied in this more general setting.

Proposition28: Consider a bounded synchronized PN, E, f). Let P = P;u P, andT = T, uT., such that
N, = (Ps,Ts, Preg, Posty) is a strongly connected SM subnet, whétee, and Post, are the restrictions oPre
and Post to P, x T%.

Let w be a SS that drives the subn¥t to a target marking\Z,. This sequence drives N to a target marking
M such that:

M(p) = My(p) if pePs,

if the two following conditions hold:
i) {T?V*T.}nPs = @;
i) (Veew) Ten P nTs=g.

Proof: Condition i) states that no transitiane 7', is connected to any plagee P,. This ensures that the
firing of a transition inT, cannot affect the marking of places . Hence, given the special structure §f, the
following condition holds for any initial markingZo: (VM € R(N,My)) >, M(p) = Y. My(p), i.e., the token
count in the SM component remains constant. e v

Let w = ejeqp---e;, be a SS for subneV, that yields a known marking/, from any reachable markingy/ of the
subnet. To prove the result, it is sufficient to show that ahestep: = 1,. ..,k the same sequence, appliedXo
from any markingM’, with M'(p) = M (p) if p € Ps, produces exactly the same transition firings that it preguc
in N,.

In fact, when a input symbal; € w is applied:

« all transitions that can fire iVy can also fire inN, because the additional placés in N cannot disable

these transitions since they do not belongd1g;

« NO transition inP; can fire, because no transition ¥ has labele;. o

Such a result can be further generalized to nets containiorg ithan one state machine subnets.
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NUMERICAL RESULTS FOR RANDOMLY GENERATEDSM PNs (k = 1)

3 4 5 6 7 8 9 10 11 12 13 14 15
m

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

11| 1 1 1 1 1 |os8| 1

111] 1] 08 1 1 1 1 1

1 1|06 | 0,66 | 0,8 1 0,88 1 1

®) ITs7s |/ Trel
a 3 4 5 6 7 8 9 10 11 12 13 14 15
m
2 0.22 0.14 0.24 0.17 | 0.20 0.15 0.13 0.18 0.15 0.18 0.12 0.12 0.10
3 0.23 | 0.23 | 0.21 | 0.26 | 0.23 | 0.26 | 0.36 | 0.48 | 0.54 | 0.30 0.33 0.40 0.74
4 0.37 | 0.50 | 0.62 | 0.54 | 0.52 | 0.65 0.61 0.75 0.93
5 0.32 | 0.41 | 0.53 | 0.60 | 0.90 | 0.59 0.78 0.72 1.52
6 0.21 | 0.29 | 0.45 | 0.72 | 0.73 | 0.54 1.03 0.76 1.08
7 0.62 | 0.16 | 0.22 | 0.27 | 0.88 | 0.78 1,15 1,6 2,54
© [Lsrs ILracl
a 3 4 5 6 7 8 9 10 11 12 13 14 15
m
2 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00 1.00 | 1.00 1.00 1.00 1.00
3 0.83 | 0.91 | 0.91 | 0.91 | 0.83 | 1.00 | 1.10 | 0.83 1.00 | 0.91 0.77 1.10 1.00
4 1.00 | 0.77 | 0.85 | 0.95 | 0.84 | 1.00 0.94 0.89 1.06
5 0.85 | 0.70 | 0.91 | 0.91 | 0.96 | 0.75 1.00 0.87 0.92
6 0.53 | 0.90 | 0.79 | 0.90 | 0.80 | 0.74 0.86 0.81 0.70
7 0.54 | 0.61 | 0.57 | 0.50 | 0.88 | 0.59 | 0,76 | 0,85 | 0,69
Table I




@) [Tsts|/|Tral

3 4 5 6 7 8 9 10 11 12 13 14 15

0.26 | 0.12 | 0.23 | 0.16 | 0.17 | 0.13 | 0.11 0.16 | 0.14 | 0.15 | 0.11 0.11 0.10

0.27 | 0.16 | 0.14 | 0.14 0.14 0.21 0.28 0.35 0.42 0.24 0.27 0.24 0.54

0.31 | 0.41 0.35 | 0.11 0.39 | 0.20 | 0.36 | 0.40

0.19 | 0.01 | 028 | 0.44 | 0.27 | 0.35 | 1073 | 0.75

0.09 | 0.02 | 1073 | 1073 | 0.20 | 1073 | 0.29 | 0.39

103 | 1073 | 0.05 | 0.05 | 1072 | 1073 | 107* | 1073

(b) |Ls7s L ral

3 4 5 6 7 8 9 10 11 12 13 14 15

171 | .71 | 171 | 171 | 1071 | 171 | 1071 | 171 | 1.71 | 1.71 1.71 1.71 1.71
1.5 1.60 | 1.41 | 1.60 | 1.33 | 1.71 | 1.89 | 1.50 | 1.71 | 1.60 | 1.41 1.89 1.76
1.64 | 1.46 | 1.57 | 1.60 1.54 | 1.54 1.50 1.54 1.77
1.35 | 1.26 | 1.44 | 1.50 | 1.55 | 1.36 | 1.65 1.37 1.65
092 | 1.52 | 1.32 | 1.64 | 1.27 | 1.33 | 1.28 1.39 1.30
0.8 | 097 | 097 | 092 | 0.88 | 0.77 | 0,79 | 0,64 | 0,79
Table 11l
NUMERICAL RESULTS FOR RANDOMLY GENERATEDSM PNs (k = 2)
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Figure 5. A synchronized PN (a) and its RG

Proposition29: Consider a bounded synchronized RN, E, f). Let P,u P, = P andT, u T, = T, where
P, = Lnj P, ; andT, = Lnj T, ; (hereld denotes the union of disjoint subsets). These sets aresacfoti =1,2,...n
Ngi lzzl(Psﬂ-,Ts,i,Pre;:,Postm) is a strongly connected SM subnétre, ; and Post, ; are the restrictions to
Pre and Post to P, ; x T ;.

For every subnetV, ;, let w; be a SS that drives the subnat ; to a target markingZ\Zfs,i. The sequence
W = W1Ws . .. W, drivesN to a target markingl/ such that:

Wil W42 Wn

M(p):MS'J- with M ; M;,i if pePsg,

if the two following conditions hold:
i) {*T.uT2}nPs =2,
iy (Veew) T.nP*(\Ts, = 2.

Proof: The proof foll(;v_vls along the same lines of the proof of Propmsi28 with just an additional consid-
eration. First we observe that condition ii) in PropositZ8his a generalization of condition ii) in Proposition| 28:
the condition now must hold not only for the transitions of héut also for those of all nets with j < 4. In fact,
the overall SS is composed by concatenation of the SSs fér €ate machine subnet. When we apply theugS
to the net, we assume that the markings of all subpefsr j < are known but may change, as some transitions
in the already synchronized subnets may be receptive to ant e w;. However, condition ii) ensures that the
enabling condition of these transitions does not depencherplaces inP,, whose marking is unknown, and the
marking reached after the application of evenis computable. O

Sequencev determined in the previous proposition is a SS for the subhett also drives the complete model
N to a state where the marking of placeslinis known, while in general nothing can be said about the marki

of places inP,.



Example 30: Consider the net in Figufe 5{a). L&t 1 = {p1,p2}, Ps.2 = {p3,pa}, P: = {05,106}, Ts.1 = {t1,t2},
Ts2 = {ts,ts} and thenT, = @. N, is then the net depicted in Figufe §(a), without taking inteaunt dashed
places and arcs. Let; andw, be SSs that drives respective 1 = (Ps1,Ts 1, Pres 1, Posts 1) to Mg, =[01]7
and Ny 2 = (Ps2,Ts 2, Preso, Posts2) t0 Mg o = [0 1]%. By separately analyzing the two subnets, = w; = ¢;
are obtainedw = w; w5 respects conditions i) and ii) of Propositibn 29 and is tfeeea SS forV,, i.e., it drives
the net to a marking/ that is either{101010]” or [101001]7, as can be seen by its RG in Figlire 5(b).o

IX. EXPERIMENTAL RESULTS

This section has two objectives. First, we compare the tgordhms we have presented for SS computation of
state machine Petri nets (reachability based versus patdpay applying them to randomly generated nets and
analyzing their performance. The model data and MATLAB pangs can be downloaded from [32].

All simulations have been run on a mini Mac intel core Dy@.53 GHz processor, with GB 1067 MhZ DDR3
RAM.

Randomly generated models have been previously adoptedvalidation method for synchronizing sequence
construction also by Romah [40].

For selected values of, places,q transitions and: = 1,2 tokens, we randomly generat@0 deterministic and
strongly connected synchronized SMs having 2+ 7 placesg = m+15 transitions and = 1, 2 tokens. In all cases
the input alphabet has cardinalifyrandomly chosen i = . Note thatZ is the minimal alphabet cardinality to
ensure the determinism for a SM havingplaces and transitions. For each net a place is randomly selected and
we use both Algorithri 10 (denoted RG) and Algorithm 10 (deddiy STS) to determine a SS to this place. The

algorithms are compared by means of three performance ésdex

Ngra, Nsrs: number of times the algorithm successfully terminatesrrehg a SS;
Tre, Tsts: average time required to compute the sequence;

Lre, Lsrs: average length of the sequences.

Finally the performance of the two approaches is evaluageddmputing the ratio ofVsys (resp.Tsrs and
Ls7s) t0 Ngg (resp.Tre and Lyg).

Results are shown in Talléd Il for nets with one token and inelBfor the two token case. Note that the table
showing Ngrs/Nre does not depend on the number of tokens and thus it is shownfonk = 1. Black cells
denote parameter values for which no strongly connected &Mbe generated, i.e., fon > g.

Table I(a) shows the ratidVsrs/Nre between the number of times a SS has been found using the QiltBan
RG approach. In the previous sections we have mentioneduhié¢ the RG approach always determines a SS if
any exists, the STS approach may fail to do so. Hence the vmaltlee table should be contained in the interval
[0,1]. We can observe, however, that over 88% of the table entniew & value ofl, hence confirming that the
STS approach can find a solution in most cases and thus thil isi0t too restrictive.

Table I(b) shows the rati@'sTs/Trc between the execution time to compute a SS using the STS anRGh

approach for nets with one token. Here we expect the STS appito be more efficient, as discussed in Se¢fidn VI,
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Algorithm 10
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Figure 6. Suggested way to determine a SS for strongly coatheégMs.

and this is confirmed from the fact that in almost all casest#éisde entries are smaller than one. Only in a few
cases, for very large values of andq, we have that the RG method is faster than the STS one. Thibglieve,
it is due to our implementation of the STS approach that udesute force depth-first search.

Table ll(a) shows the ratifss/Trc between the execution time to compute a SS using the STS andGh
approach for nets with two tokens. Here we see the main agganif the STS method, that can usé-8S to
determine &-SS, while the RG method had a complexity that grows polymdlgnivith k£ (and exponentially with
m), as discussed in SectiénlVI. Here the advantage of the STtBoshés more noticeable for large valuesof
and ¢. Table I(c) and Table lI(b) show the ratibsrs/Lrs between the average length of a SS computed using
the STS and the RG approach for nets with one or two tokens ifkliex is probably less significant than the
previous ones, although one may argue that the shortest3haeSless expensive is the synchronization (in terms
of costs or of time required). Here we can see that in the chea@token the STS approach in most of the cases
produces shorter SS, while the situation is the opposit@ fimkens. This is due to the fact that theSS obtained
by STS is always: times longer than the corresponditxpS, while shorter solutions may be obtained by the RG
approach.

On the base of these results, we can say that to compute a S8dogly connected Petri nets it is convenient
to first search for a STS based solution using Algorifhrh 16 eah, if this fails, to use Algorithrh 10. This is

summarized in the flowchart in Figuré 6.

X. CONCLUSIONS AND FUTURE WORKS

In this paper, we have shown how automata techniques cangiecith minor changes to the class of bounded
synchronized PNs.
Also it has been proposed a method that allows to determingreh®onizing Sequence for the class of

synchronized state machine PNs.



Our approach alleviates the state explosion problem algbercase of multiple tokens, since the construction
of the reachability graph is not needed. We have shown by snehgeveral examples how the computational time
does not increase as the number of tokens in the net increases

There is an open line for interesting future works. We plarextend our approach to unbounded PNs, whose
behavior can be approximated with a finieverability graph(CG), by introducing anv component to denote a
place whose token content may be arbitrarily large.

Note that classic coverability methods construction cafweodirectly applied to this class of PNs, that is why a

new algorithmic procedure for the CG construction has to towided.
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