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Abstract

Synchronizing sequences have been proposed in the late 60’sto solve testing problems on systems modeled by

finite state machines. Such sequences lead a system, seen as ablack box, from an unknown current state to a known

final one.

This paper presents a first investigation of the computationof synchronizing sequences for systems modeled by

bounded synchronized Petri nets. In the first part of the paper, existing techniques for automata are adapted to this

new setting. Later on, new approaches, that exploit the net structure to efficiently compute synchronizing sequences

without an exhaustive enumeration of the state space, are presented.

Index Terms

Discrete event systems, Petri nets, Testing.

I. I NTRODUCTION

Due to increasingly larger size and rising complexity, the need of checking systems’ performance increases and

testing problems periodically resurface.

These problems have been introduced by the pioneering paperof Moore [1], where the main focus is to understand

what can be inferred about the internal conditions of a system under test from external experiments. In hisgedanken-

experiment, the system under investigation is a fixed semi-automaton seen as a black box. Lee and Yannakakis [2]

have widely reviewed those problems and the techniques to solve them. They have stated five fundamental problems

of testing: i) determining the final state after a test; ii) state identification; iii) state verification; iv) conformance

testing; v) machine identification. Among these, the problem of determining the final state after a test is considered.

This problem has been addressed and essentially completelysolved using Mealy machines around 1960, using

homing sequences(HS) andsynchronizing sequences(SS).

The synchronization problem is the problem the reader dealswith in this work. It concerns how to drive a

system to a known state when its current state it is not known and when the outputs are not observable. This

problem has many important applications and is of general interest. It is of relevant importance for robotics and

robotic manipulation [3]–[5], when dealing with part handling and orienting problems in industrial automation

such as part feeding, loading, assembly and packing. The reader can easily see that for example every device part,
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when arriving at manufacturing sites, needs to be sorted andoriented before assembly. Synchronization protocols

have been developed to address global resource sharing in hierarchical real-time scheduling frameworks [6], [7].

An interesting automotive application can be found in [8]. Synchronization experiments have been done also in

biocomputing, where Benensonet al. [9], [10] have used DNA molecules as both software and hardware for finite

automata of nano-scaling size. They have produced a solution of 3 × 1012 identical automata working in parallel.

In order to synchronously bring each automaton to its ”ready-to-restart” state, they have spiced it with a DNA

molecule whose nucleotide sequence encodes a reset word. J¨urgensen [11] has surveyed synchronization issues

from the point of view of coding theory in real life communication systems. He has presented the concept of

synchronization in information channels, both in the absence and in the presence of noise. Synchronization is an

important issue in network time protocol [12], [13], where sharing of time information guaranties the correct internet

system functioning. Most of real systems, natural or man-built, have no integrated reset or cannot be equipped with.

That is the case of digital circuits, where a reset circuit not only involves human intervention but increases the cost

of the device itself reducing its effectiveness. In this field Choet al. [14] have shown how to generate test cases for

synchronous circuits with no reset. When classic procedures fail due to large circuit size or because a synchronizing

sequence does not exist, Luet al. [15] propose a technique based on partial reset, i.e., special inputs that reset a

subset of the flip-flops in the circuit leaving the other flip-flops at their current values. Hierons [16] has presented a

method to produce a test sequence with the minimum number of resets. Nowadays the synchronizing theory is a field

of very intensive research, motivated also by the famousC̆erný conjecture [17]. In 1964 Ján̆Cerný has conjectured

that (n − 1)2 is the upper bound for the length of the shortest SS for anyn−state machine. The conjecture is still

open except for some special cases [18], [5], [19]. Synchronization allows simple error recovery since, if an error

is detected, a SS can be used to initialize the machine into a known state. That is why synchronization plays a

key rôle in scientific contexts, without which all system behavior observations may become meaningless. Thus the

problem of determining which conditions admit a synchronization is an interesting challenge. This is the case of

the road coloring problem, where one is asked whether there exists a coloring, i.e., anedge labeling, such that the

resulting automaton can be synchronized. It was first statedby Adler in [20]. It has been investigated in various

special cases and finally a positive solution has been presented by Trahtman in [21], for which complexity analysis

are provided [22].

At present the problem of determining a synchronizing sequence has not yet been investigated for Petri net (PN)

models and only few works have addressed the broad area of testing in the PN framework.

The question of automatically testing PNs has been investigated by Jourdan and Bochmann in [23]. They have

adapted methods originally developed forFinite State Machines(FSMs) and, classifying the possible occurring types

of error, identified some cases wherefree choiceand1-safePNs [24] provide more significant results especially in

concurrent systems. Later the authors have extended their results also tok-safePNs [25]. Zhu and He have given an

interesting classification of testing criteria [26] — without testing algorithms — and presented a theory of testing

high-level Petri nets by adapting some of their general results in testing concurrent software systems.

In the PN modeling framework, one of the main supervisory control tasks is to guide the system from a given initial



marking to a desired one similarly to the synchronization problem. Yamalidouet al. have presented a formulation

based on linear optimization [27], [28]. Giuaet al. have investigated thestate estimation problem, proposing an

algorithm to calculate an estimate — and a corresponding error bound — for the actual marking of a given PN

based on the observation of a word. A different state estimation approach has been presented by Coronaet al. [29],

for labelled PNs with silent transitions, i.e., transitions that do not produce any observation. Similar techniques

have been proposed by Lingxiet al. in [30] to get a minimum estimate of initial markings, aimingto characterize

the minimum number of resources required at the initialization for a variety of systems.

This paper is focused on bounded synchronized PNs and the SS problem here is first investigated. The paper

shows how the Mealy machine approach [2] can be easily adapted to systems represented by the class of bounded

synchronized PNs. Synchronized PNs, as introduced by Moalla et al. in [31], are nets where a label associated with

each transition corresponds to an external input event whose occurrence causes the firing of all marking enabled

transitions having this label. Note that SSs are independent of the output and this makes the synchronized PN a

suitable model for such an analysis. Then the authors consider a special class of Petri nets calledstate machines

(SMs) [24], characterized by the fact that each transition has a single input and a single output arc. Note that this

model, albeit simple, is more general an automaton. In fact,while the reachability graph of a state machine with a

single token is isomorphic — assuming all places can be marked — to the net itself, as the number of tokensk in

the net increases the reachability graph grows askm−1, wherem is the number of places in the net. It is shown that

for strongly connected SM even in the case of multiple tokens, the existence of SS can be efficiently determined by

just looking at the net structure, thus avoiding the state explosion problem. These results are also extended to SMs

that are not strongly connected and to PN containing SM subnets. The effectiveness of the technique is proved via

a toolbox we developed on Matlab [32].

The paper is organized as follows. In Section II the background on automata with inputs and PNs is provided.

Section III presents the classic SS construction method forautomata with inputs. Section IV shows how to obtain SSs

by adapting the classic method developed for automata with inputs to bounded synchronized PNs, via reachability

graph construction. Section V proposes an original technique, based on path analysis, for efficiently determining

SSs on strongly connected SMs. Section VI presents a short discussion of algorithm complexity. The case of

non-strongly connected SMs is investigated in Section VII.In Section VIII our approaches are extended to nets

containing state machine subnets. In Section IX numerical results are presented, applying our tool to randomly

generated SMs. Finally, in Section X, conclusions are drawnand open areas of research are outlined.

II. BACKGROUND

A. Automata with inputs

An automaton with inputsΛ is a structure

Λ = (χ,E, δ),

whereχ andE are finite and nonempty sets of states and input events respectively, andδ ∶ χ ×E → χ is the state

transition function.



When the automaton is in the current statex ∈ χ and receives an evente ∈ E, it reaches the next state specified

by δ(x, e).

Note thatδ is usually assumed to be atotal function, i.e., a function defined on each element(x, e) of its domain.

In such a case the automaton is calledcompletely specified.

The number of states and input events are respectively denoted byn = ∣χ∣, p = ∣E∣. One can extend the transition

function δ from input events to sequences of input events as follows: a)if ε denotes the empty input sequence,

δ(x, ε) = x for all x ∈ χ; b) for all e ∈ E and for allw ∈ E∗ it holds thatδ(x,we) = δ(δ(x,w), e)1.

The transition functionδ can also be extended to a set of states as follows: for a set of statesχ′ ⊆ χ, an input

evente ∈ E yields the set of statesχ′′ = δ(χ′, e) = ⋃x∈χ′ δ(x, e).

A simple way to represent any automaton is a graph, where states and input events are respectively depicted as

nodes and labelled arcs.

An automaton with inputs is saidstrongly connectedif there exists a directed path from any node of its graph

to any other node.

The set of nodes of a non-strongly connected automaton can bepartitioned into its maximal strongly connected

components. A component is calledergodic, if its set of output arcs is included in its set of input arcs,transient,

otherwise.

An automaton contains at least one ergodic component and a strongly connected automaton consists of a single

ergodic component.

B. Place/Transition nets

In this section, it is recalled the PN formalism used in the paper. For more details on PNs the reader is referred

to [24], [33].

A Petri net (PN), or more properly aPlace/Transition net, is a structure

N = (P,T,Pre,Post) ,

whereP is the set ofm places,T is the set ofq transitions,Pre ∶ P × T → N andPost ∶ P × T → N are the pre

and post incidence functions that specify the weighted arcs.

A markingis a vectorM ∶ P → N that assigns to each place a nonnegative integer number of tokens; the marking

of a placep is denoted withM(p). A marked PN is denoted⟨N,M0⟩.

A transition t is enabled atM iff M ≥ Pre(⋅, t). An enabled transition may be fired yielding the marking

M ′ =M +Post(⋅, t) −Pre(⋅, t). The set of enabled transitions atM is denotedE(M).

M[σ⟩ denotes that the sequence of transitionsσ = t1 . . . tk is enabled atM andM[σ⟩M ′ denotes that the firing

of σ from M yieldsM ′.

A markingM is said to bereachablein ⟨N,M0⟩ iff there exists a firing sequenceσ such thatM0[σ⟩M . The

set of all markings reachable fromM0 defines thereachability setof ⟨N,M0⟩ and is denoted withR(N,M0).
1Here∗ denotes the Kleene star operator andE∗ represents the set of all sequences on alphabetE.



(a)

(b)

Figure 1. A synchronized PN (a) and a possible behavior (b).



Thepreset andpostset of a placep are respectively denoted●p andp●. One can define the set of input transitions

for a set of placeŝP as the set●P̂ = {t ∶ ∀p ∈ P̂ , t ∈ ●p}. Analogously the set of output transitions for a set of

placesP̂ is the setP̂ ● = {t ∶ ∀p ∈ P̂ , t ∈ p●}.

C. Synchronized Petri nets

A synchronized PN[33] is a structure⟨N,E, f⟩ such that: i)N is a P/T net; ii)E is an input alphabet of external

events; iii)f ∶ T → E is a labeling function that associates with each transitiont an input eventf(t).
Given an initial markingM0, a markedsynchronized PNis a structure⟨N,M0,E, f⟩.
One extends the labeling function to sequences of transitions as follows: if σ = t1t2 . . . tk then f∗(σ) =

f(t1)f(t2) . . . f(tk).
The setTe of transitions associated with input evente is defined as follows:Te = {t ∣ t ∈ T, f(t) = e}.

Equivalently all transitions inTe are said to be receptive to input evente.

The evolution of a synchronized PN is driven by input sequences as it follows. At markingM , transitiont ∈ T

is fired iff:

1) it is enabled, i.e.,t ∈ E(M);
2) the evente = f(t) occurs.

On the contrary, the occurrence of an event associated with atransitiont /∈ E(M) does not produce any firing. Note

that a single server semantic is here adopted, i.e., when input evente occurs, the enabled transitions inTe fire only

once regardless of their enabling degree.

One writesM
w
Ð→M ′ to denote the fact that the application of input event sequencew = e1 . . . ek from M drives

the net toM ′.

In Figure 1(a) is shown an example of synchronized PN. Note that labels next to each transition denote its

name and the associated input event. In Figure 1(b) the net evolution is presented over a possible input sequence

w = e2e1e1e2e2 starting from markingM0.

In the rest of the paper, the reader will only deal with the class of bounded synchronized PNs that also satisfy

the following structural restriction, that is common in theliterature to ensure the determinism of the model:

∄p s.t. t, t′ ∈ p● and f(t) = f(t′). (1)

When an event occurs in a deterministic net, all enabled transitions receptive to that event can simultaneously

fire. Thus an input sequencew = e1e2⋯ek ∈ E∗ drives a deterministic net through the sequence of markingsM0,

M1, M2, ⋯, Mk whereM0 is the initial marking and

Mi+1 =Mi + ∑
t∈Tei+1

⋂E(Mi)

(Post(⋅, t) − Pre(⋅, t)) .
Example1: Consider the PN of Figure 1(a) and letM = [2 0 1]T be the current marking. Transitionst1 and t3

are enabled and upon the occurrence of evente1 will simultaneously fire, yielding markingM ′ = [1 1 0]T . Note that

markings[0 1 1]T and[3 0 0]T , respectively obtained by the independent firing oft1 andt3, are never reachable.∎



A marked PN⟨N,M0⟩ is said to be bounded if there exists a positive constantk such that for allM ∈ R(N,M0),
M(p) ≤ k ∀p ∈ P . Such a net has a finite reachability set. In this case, the behavior of the net can be represented

by thereachability graph(RG), a directed graph whose vertices correspond to reachable markings and whose edges

correspond to the transitions and the associated event causing a change of marking.

The graph in Figure 3(a) (disregarding the dashed edges) is the reachability graph of the PN in Figure 1(a).

D. State machine Petri nets

Let first recall the definition of a state machine PN.

Definition 2 (State machine PN): [24] Astate machine(SM) PN is an ordinary PN such that each transitiont

has exactly one input place and exactly one output place, i.e.,

∣●t∣ = ∣t●∣ = 1 (∀t ∈ T ) ∎

Observe that a SMN = (P,T,Pre,Post) may also be represented by anassociated graphGN = (V,A) whose

set of verticesV = P coincides with set of places of the net, and whose set of arcsA corresponds to the set of

transitions of the net, i.e.,A ⊆ P ×P = {(pi, pj) ∣ ∃t ∈ T, pi = ●t, pj = t●}.
Such a graph can be partitioned into its maximal strongly connected components, analogously to the automata

with inputs. These components induce also a partition of theset of places of the corresponding SM.

Definition 3 (Associated graph): Given a SMN = (P,T,Pre,Post), let GN = (P,A) be its associated graph.

P can be partitioned intocomponentsas follows:

P = P1 ⊍⋯⊍Pk

such that for alli = 1, . . . , k andAi = A∩(Pi×Pi) it holds that(Pi,Ai) is a maximal strongly connected sub-graph

of GN . ∎

As discussed in Section II-A, componentsP1, . . . Pk can be classified as transient or ergodic components.

Definition 4 (Condensed graph): Given a SMN = (P,T, Pre,Post), its correspondingcondensed graphC(N)
is defined as a graph where each node represents a maximal strongly connected component and whose edges

represent the transitions connecting these components. ∎

In Figure 2(a) it is shown an example of a synchronized SM which is not strongly connected. Transient and

ergodic components are respectively identified by dashed and dotted boxes. For such a net the transient components

areTR1 = {p1}, TR2 = {p2, p3}, TR3 = {p4} and the ergodic components areER1 = {p5, p6} andER2 = {p7}.
The correspondingC(N) is shown in Figure 2(b), where subnets induced by each component are represented by

single nodes.

III. SYNCHRONIZING SEQUENCES FOR AUTOMATA WITH INPUTS

In this section, the SS classic construction is presented bythe aid of finite automata.



(a)

(b)

Figure 2. A not strongly connected PN (a) and its condensed graph (b).

Definition 5 (SSs on automata): Consider an automaton with inputsΛ = (χ,E, δ) and a statex̄ ∈ χ. The input

sequencēw is called synchronizing for statēx if it drives the automaton tōx, regardless of the initial state, i.e.,

∀x ∈ χ it holds thatδ(x,w) = x̄. ∎

The information about the current state ofΛ after applying an input sequencew is defined by the setφ(w) =
δ(χ,w), called thecurrent state uncertainty ofw. In other wordsw is a synchronizing sequence (SS) that takes

the automaton to the final statēx iff φ(w) = {x̄}.
The synchronizing tree method [34], [35] has been proposed to provide shortest SSs. Such a method is suitable

only for small size systems, since the memory required to build up the tree is high, and becomes useless when the

size grows. As a matter of fact the problem of finding shortestSSs is known to be NP-complete [18].

Two polynomial algorithms have been mainly used to provide SSs that are not necessarily the shortest. The so-

calledgreedyandcyclealgorithms, respectively of Eppstein [18] and Trahtman [36], that have equivalent complexity.

The greedyalgorithm [18] determines an input sequence that takes a given automaton, regardless of its initial

state, to a known target state: note that the target state is determined by the algorithm and cannot be specified by

the user. Here we propose a slightly different implementation of the greedy algorithm (see Algorithm 7), that takes

as input also a statēx and determines a sequence that synchronizes to that state.

This algorithm is later used as a building block to determinea SS to reach a given marking among those in the

reachability set of a bounded PN.

Definition 6 (Auxiliary graph): Given an automaton with inputsΛ with n states, letA(Λ) be itsauxiliary graph.

A(Λ) containsn(n + 1)/2 nodes, one for every unordered pair(x′, x′′) of states ofΛ, including pairs(x,x) of



(a)

(b)

Figure 3. The completely specified RG (a) and the corresponding auxiliary graph (b) of the PN in Figure 1(a).

identical states. There exists an edge from node(x′, x′′) to (x̂′, x̂′′) labeled with an input evente ∈ E iff δ(x′, e) = x̂′
and δ(x′′, e) = x̂′′. ∎

Algorithm 7: (Greedy computation of SSs on automata with inputs)

Input: An auxiliary graphA(Λ), associated with an automaton with inputsΛ = (χ,E, δ), and a target statēx ∈ χ.

Ouput: A SSw̄ for statex̄.

1. Let i = 0.

2. Let w0 = ε, the empty initial input sequence.

3. Let φ(w0) = χ, the initial current state uncertainty.

4. While φ(wi) ≠ {x̄}, do

4.1. i = i + 1.

4.2. Pick two statesx,x′ ∈ φ(wi−1) such thatx ≠ x′.

4.3. If there does not exist any path inA(Λ) from node(x′, x′′) to (x̄, x̄), stop the computation, there exists

no SS forx̄.

Else find the shortest path from node(x′, x′′) to (x̄, x̄) and letw be the input sequence along this path,

do

4.3.1. wi = wi−1w

4.3.2. φ(wi) = δ(φ(wi−1),w).
5. w̄ = wi. ∎

The following theorem provides a necessary and sufficient condition for the existence of a SS for a target final

state.

Theorem8: The following three propositions are equivalent.



1) Given an automaton with inputsΛ = (χ,E, δ), there exists a SS for statēx ∈ χ;

2) A(Λ) contains a path from every node(x′, x′′), wherex′, x′′ ∈ χ, to node(x̄, x̄);
3) Algorithm 7 determines a SS̄w for statex̄ ∈ χ at step 5., if there exists any SS.

M0 [200]T

M1 [010]T

M2 [101]T

Table I

MARKINGS OF THEPN IN FIGURE 1(A).

Proof: [1) implies 2)] If there exists a SS for statēx ∈ χ, there exists an input sequencew for x̄ s.t. for any

x′, x′′ ∈ χ it holds thatδ(x′,w) = δ(x′′,w) = x̄. Hence there exists a path labeledw from any(x′, x′′) to (x̄, x̄).
[2) implies 3)] Consider iterationi of the while loop of Algorithm 7. If there exists a path labeled w from any

(x′, x′′) to (x̄, x̄), then it holds thatδ({x′, x′′},w) = {x̄}. Hence the following inequality holds:

∣φ(wi)∣ = ∣δ(φ(wi−1)/{x,x′},w) ∪ {x̄}∣ ≤ ∣φ(wi)∣ − 1.
The existence of such a sequence for every couple of statesx′, x′′ ∈ χ assures that the current state uncertainty

will be reduced to singleton{x̄} after no more thann iteration.

[3) implies 1)] Since Algorithm 7 requires the current stateuncertainty to be singleton and uses it as a stop

criterium, if it terminates at step 5., then the sequence found is clearly a SS. ◻

One can easily understand that, when the automaton is not strongly connected, the above reachability condition

will be verified only when there exists only one ergodic component and there may exist a SS only for those states

belonging to this ergodic component.

IV. SYNCHRONIZING SEQUENCES FOR BOUNDED SYNCHRONIZEDPNS

When computing a SS for real systems modeled by automata, it is assumed that a complete description of the

model in terms of space-set, input events and transition function is given. The idea is that the test generator knows

all possible states in which the system may be.

A similar notion can be given for Petri nets, where equivalently one can say that the test generator knows a

”starting state”, i.e., a possible state, of the system and the initial uncertainty coincides with the set of states

reachable from this starting state.

In a synchronization problem via PNs, it is given a Petri netN and astarting markingM0. The current marking

M is unknown, but it is assumed to be reachable fromM0.

This starting marking, together with the firing rules, provides a characterization of the initial state uncertainty,

given byM0 = R(N,M0). The goal is to find an input sequence that, regardless of the initial marking, drives the

net to a known markingM̄ ∈ R(N,M0).



Given a synchronized PN⟨N,E, f⟩, a straightforward approach to determine a SS consists in adapting the existing

approach for automata to the reachability graph (RG).

It is easy to verify that this direct adaptation presents oneshortcoming that makes it not always applicable: the

greedy approach requires the graph to be completely specified, while in a RG of a PN this condition is not always

true. In fact, from a marking not all transitions are necessarily enabled, causing the RG of the PN to be partially

specified. In order to use the aforementioned approach it is necessary to turn its RGG into a completely specified

G̃.

Example9: Consider the PN in Figure 1(a). The current markingM = [2 0 0]T enables only transitiont1, then

all events not associated witht1 are not specified. Hence for that marking one adds a self loop labellede2 and so

on for the rest of the reachable markings. ∎

In Figure 3(a) is shown the RG of the PN in Figure 1(a). Note that dashed edges are added in order to make it

completely specified. In Figure 3(b) is shown the corresponding auxiliary graph of the RG in Figure 3(a).

One can summarize the modified approach for PNs in the following algorithm.

Algorithm 10: (RG computation of SSs on synchronized PNs)

Input: A bounded synchronized PN⟨N,E, f⟩, a starting markingM0 and a target markingM̄ .

Ouput: A SSw̄ for markingM̄ ∈ R(N,M0).
1. Let G be the reachability graph of⟨N,M0⟩.
2. Let G̃ be the modified reachability graph obtained by completingG, then by adding a self loop labellede,

i.e., ∀M ∈ G and∀e ∈ E s.t. ∄t ∈ Te ∩ E(M).
3. Construct the corresponding auxiliary graphA(G̃).
4. A SS for markingM̄ , if such a sequence exists, is given by the direct application of Algorithm 7 toA(G̃),

havingM̄ as target. ∎

The following proposition can now be stated.

Proposition11: Given a bounded synchronized PNN and a starting markingM0, there exists a SS leading to

a markingM̄ ∈ R(N,M0) iff the reachability condition on its auxiliary graphA(G̃) is verified, i.e., there is a path

from every node(Mi,Mj), with Mi,Mj ∈ R(N,M0), to node(M̄, M̄).
Proof: Consider a marked PN net⟨N,M0⟩ and its RGG. Given a markingM ∈ R(N,M0), a sequenceσ =

tj1tj2 . . . tjp generates the trajectoryM[tj1⟩M1[tj2 . . . tjp⟩Mp iff there exists an oriented pathγ =Mtj1M1tj2 . . . tjpMp

in G. The same equivalence holds between a synchronized PN and its completely specified RG̃G. Thus an input

sequencew = ej1ej2 . . . ejp drives the net fromM to Mp iff there exists an oriented pathγ =Mej1M1ej2 . . . ejpMp

in G̃.

Since the completely specified RG̃G can be considered as an automaton whose behavior is equivalent to that of

the synchronized PN, one can obtain a SS via Algorithm 7. ◻



V. SYNCHRONIZING SEQUENCES ON STRONGLY CONNECTED STATE MACHINES

Consider a strongly connected SM defined in Section II-D. Knowing the number of tokensk initially contained

in the net — regardless of their initial distribution — is sufficient to exactly determine the reachability set of the

net: in fact, the number of tokens will remain constant as thenet evolves and any distribution of thek tokens can

be reached.

If a SM is not strongly connected, knowing the number of tokens k initially contained in the net — but not their

initial distribution — will give a larger approximation of the reachability set that may be used to design a SS. The

knowledge of the number of tokens initially contained in each component — but not their initial distribution within

each component — will provide an exact characterization of the reachability set.

This new setting aims to determine a SS without constructingthe whole state-space. Hence a new formal definition

of SS for SMs has to be given.

Definition 12 (SS on state machine PNs): Given a synchronized SM⟨N,E, f⟩, assume that the initial marking

M0 is not given but is known to belong to a set

M0 = {M ∈ Nm ∣∑
i

M(pi) = k}.
w̄ is called ak-SS if for allM ∈M0 it holdsM

w̄
Ð→ M̄ . ∎

In this section, we first analyze the problem of determining a1-SS and then address the more generalk-SS,

starting from1-SS.

A. 1-SS on strongly connected state machines

In this subsection we present a particular technique to determine 1-SSs via sufficient conditions over the net

structure. Such a technique can be more efficient than the approach presented in Algorithm 10, as discussed later

in Section VI.

Let us first give the definition of directed path.

Definition 13 (Directed path): Given a SMN = (P,T, Pre,Post), an alternated sequence of places and

transitions ρ = ⟨p′0t′1p′1t′2⋯t′rp′r⟩ is called a directed pathif ∀i = 0, . . . r and ∀j = 1, . . . r it holds: i) p′i ∈ P

and t′j ∈ T ; ii) p′i ∈
●t′j+1 and t′j ∈

●p′i. A path non-containing any repeated place is calledelementary. ∎

The notion ofsynchronizing transition sequencefor a set of placeŝP and a specific placēp ∈ P̂ can now be

given.

Definition 14: (Synchronizing transition sequence)Given a synchronized SM⟨N,E, f⟩, letρ(P̂ , p̄) = ⟨p′0t′1p′1t′2⋯t′rp′r⟩,
with p̄ = p′r, be a directed path inN = (P,T,Pre,Post) that visits all places inP̂ ⊆ P and ends inp̄ ∈ P̂ , with

p̄ ≠ pj for j = 0,1, . . . , r − 1. Let σ be the firing sequence obtained by removing all places fromρ(P̂ , p̄). Such a

sequence is called asynchronizing transition sequencefor P̂ and p̄ if

C1) ∄t, t′ ∈ P̂ ● such thatt ∈ σ, t′ /∈ σ, and f(t) = f(t′).
C2) ∀p′i, p

′
k ∈ ρ(P̂ , p̄) ∶ if p′i = p′k and i < k it holds thatf(t′j) ≠ f(t′k) for j = 1, . . . k − 1. ∎



Figure 4. A strongly connected synchronized SM

In simple words, condition C1) requires that there is no transitions exitingP̂ and sharing the same label of a

transition inσ. Condition C2) requires that if a place is visited multiple times, its ingoing transition does not share

the same label with any of the transitions in the path.

A first result related to the existence of a SS for SMs with a single token can now be stated.

Proposition15: Consider a strongly connected synchronized SM⟨N,E, f⟩ containing a single token. Letσ be

a synchronizing transition sequence forP and p̄ ∈ P . Thenw̄ = f∗(σ) is a 1-SS for markingM̄ that assigns the

token to placēp, i.e.,

M̄ ∶ M̄(p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if p = p̄,

0 otherwise.

Proof: Let σ = t′1⋯t
′
r be the synchronizing transition sequence found andρ(P, p̄) = ⟨p′0t′1p′1t′2⋯t′rp′r⟩, with

p̄ = p′r, be the corresponding path (not necessarily elementary).

Let w̄ be the corresponding input event sequence, i.e.,w̄ = f∗(σ) = e′0⋯e′r.
We first prove that after the occurrence of evente1 the token can only be in a placep′k such thatk ≥ 1. Assume,

in fact, the token is initially in placep′i and evente′
1

occurs. Two different cases have to be treated. Ifi = 0, then

by definition ofσ, the token is certainly driven to placep′1. If i ≥ 1, two further sub-cases are possible: a) no output

transition ofp′i has labele1, i.e., Te1 ∩ p
′
i
● = ∅, and the token will not not move; b) an output transition ofp′i has

label e1 and its firing moves the token to some placep′j, with j > i.

The last result follows from conditions C1) and C2) of Definition 14. In fact, condition C1) assures that only

transitions belonging toσ are receptive toe1; thus the token can only be driven along the chosen path. Besides

condition C2) assures that the token cannot go back in the upstream path along the sequence.

By repeating this argument, we can show that after the application of eventei, for i = 2, . . . , r, the token can

only be in a placep′k such thatk ≥ i, hence this ensures that when all events in the input sequence w̄ have been

applied the token will be in placēp. ◻

Next algorithm shows how Proposition 15 can be effectively used to compute a1-SS. In this, functionτ ∶ P ×T →

T (resp.π ∶ P × T → P ) returns the set of transitions (resp. places) visited by directed pathρ. Functionstart ∶

P ×T → P determines the last place has been added toρ. For instance, consider the pathρ = ⟨prtrpr−1tr−1⋯t1p0⟩.



It holds thatτ(ρ) = {t1, t2,⋯, tr}, π(ρ) = {p0, p1, . . . , pr} andstart(ρ) = pr.

Algorithm 16: (STS computation of1-SSs on synchronized PNs)

Input: A SM PNN = (P,T,Pre,Post) and a target placēp.

Ouput: a 1-SSw that drives the token to placēp.

1. ρ = p̄, R = {ρ};
2. flag ∶= false;

3. while flag = false ∨ R ≠ ∅

a. pick ρ ∈R ∶ ∣ρ∣ =max
ρ′∈R
∣ρ′∣;

b. p ∶= start(ρ);
c. T ∶= ●p/(τ(ρ) ∪ p̄●);
d. while flag = false ∨ T ≠ ∅,

i. pick t ∈ T , ρ′ ∶= ●ttρ;

ii. if ρ′ does not satisfiy C2),then goto step3.d.v.

end if

iii. if π(ρ) = P ,

− if ρ′ satisfies C1),then flag ∶= true.

else, goto step3.d.v.

end if

end if

iv. R ∶=R∪ {ρ′}
v. T ∶= T /{t};
end while

e. R ∶=R/{ρ}.
end while

4. if flag = false,

a then no STS exists;

else

b pick ρ ∈R ∶ ∣ρ∣ =max
ρ′∈R
∣ρ′∣;

c let σ be the firing sequence obtained removing all places fromρ;

d w ∶= f∗(σ).
end if ∎

The algorithm computes a synchronizing transition sequence. It starts from desired placēp (step1.) and puts

the path of zero lengthρ = p̄ into R, which contains the set of path to be analyzed. The net is explored using a

backward search until either a STS has been found, i.e., theflag is true, or there are no more paths to analyze,

i.e.,R ≠ ∅ (step3.).



Once a pathρ is selected, we consider the set of transitionsT inputting its start placep that i) have not already

been visited in the path; ii) do not output from the final placep̄ (step3.c.).

For all new pathsρ′, obtained adding toρ one transition inT and its input place (step3.d.i.), we do the following.

First, we check condition C2) (step3.d.ii), which must hold for all prefixes of the final path. If it does not hold, we

discard the path going to step3.d.v.. Then we check ifρ′ contains all places: in this case, if it satisfies condition

C1) (step3.d.iii) we stop the algorithm (flag=true), else we discard it, goingto step3.d.v.. All new not discarded

paths, are added to setR to be later explored (step3.d.iv).

When all transitions inT have been evaluated, pathρ is then removed fromR (step3.e.).

In step4., if the flag is set to false, there is no1-SS constructible via the STS approach. Otherwise the path of

maximum length is contained inR and it defines an STS.

Paths are constructed via a depth-first-search, as ensured by the condition of step3.a. that always picks (one

of) the longest path(s). We could implement abreadth-first-searchby picking — at the same step — the shortest

ρ ∈ R, to ensure for the shortest STS solution if found.

Example17: Consider the strongly connected SM in Figure 4. The objective is to find a1-SS that leads the system

to the marking[0 0 0 1]T . Let ρ = ⟨p1t1p2t2p3t5p2t4p4⟩ be the directed path that contains all the places, ending in

p4, andσ = t1t2t5t4 the synchronizing transition sequence forP and placep4. Sequencēw = f∗(σ) = e1e2e5e4 is

a 1-SS. ∎

Note that condition C1) of Definition 14 is sufficient to assure the sequence to be a synchronizing one ifρ is an

elementary path.

The conditions given by Proposition 15 for the existence of a1-SS are sufficient but not necessary.

Although one determines a1-SS by just analyzing the net structure — avoiding then the RGand the auxiliary

graph construction and consistently reducing the complexity —, the conditions required are very restrictive.

In fact there are SMs for which those conditions do not hold but that still have a1-SS.

Example18: Consider again the strongly connected SM in Figure 4 with onetoken and supposef(t5) = f(t2) =
e2. This time one aims to find a1-SS that leads the system to the marking[1 0 0 0]T . There clearly exists no

synchronizing transition sequence with such a change of thelabeling function, hence no1-SS can be determined

by Proposition 15. Despite this, one easily finds the1-SS w̄ = e4e3 by the way of Algorithm 10. ∎

Note that, when conditions required by Proposition 15 do nothold, one can always determine a SS using

Algorithm 10, obviously with an increased complexity as shown later in Section VI.

B. k-SS on strongly connected state machines

We now consider the problem of determining ak-SS for nets with k tokens.

Proposition19: Consider a strongly connected synchronized SM⟨N,E, f⟩ containingk tokens.

Let σ be a synchronizing transition sequence forP and p̄ ∈ P andw = f∗(σ) a 1-SS.wk is a k-SS that moves

all k tokens to placēp, such that:



M̄ ∶ M̄(p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k if p = p̄,

0 otherwise.

Proof: Consider a first application ofw, at least one token is driven tōp. Because of condition C2) and of

the fact that the directed path does not pass throughp̄, none of the output transitions of this place is receptive to

some event inw. Hence every application ofw does not move the token from̄p and takes thek tokens at least

one by one to placēp. ◻

Example20: Consider the SM of Example 17, wherew = e1e2e5e4 is the1-SS previously found. Let the PN have

2 tokens. It holds thatw2 = e1e2e5e4e1e2e5e4 is a 2-SS, leading the net to the desired final markingM̄ = [0 0 0 2]T .

∎

The previous propositions show that determining a synchronizing transition sequence allows to readily construct

not only a1-SS but ak-SS for an arbitraryk. However not all SSs can be obtained in this way.

Thus we consider the following problem: given any arbitrary1-SS, constructed not from a synchronizing transition

sequence but by using Algorithm 10, does Proposition 19 apply so that we can use it to construct ak-SS?

Unfortunately this is not the case, as shown by the next example.

Example21: Consider the SM of Example 17 and letw = e3e1e2e5e4 be a1-SS for p4. Let the PN have 2

tokens. It is easy to see thatw2 is not a 2-SS, since only one token out of two would be driven top4. ∎

It is however possible to provide a sufficient condition for an arbitrary1-SS to ensure that, concatenating itk

times, ak-SS is obtained.

Proposition22: Consider a strongly connected synchronized SM⟨N,E, f⟩ containingk tokens. Letw be a1-SS

for a target markingM̄ , such thatM̄(p) = 1 if p = p̄, otherwiseM̄(p) = 0.

If for all t ∈ p̄ ● it holds thatf(t) /∈ w, i.e., sequencew does not contain any symbol labeling an output transition

of placep̄, thenwk is a k-SS for a target markingM̄k, such thatM̄k(p) = k if p = p̄, otherwiseM̄k(p) = 0.

Proof: During the first application ofw, at least one of the tokens is driven top̄. Any further application of

w moves top̄ at least one of the tokens not in this place, and does not move the tokens already in̄p, as none of

its output transitions is receptive to any event inw. Thuswk takes thek tokens to placēp. ◻

VI. A DISCUSSION ON COMPUTATIONAL COMPLEXITY

In this section we give an estimate of the computational complexity of both RG and STS approaches for1-SS

construction.

A. Complexity via reachability graph analysis

The greedyand thecyclealgorithms work both inO(n3 + ∣E∣n2) time, wheren and ∣E∣ are, resp., the number

of states and the input alphabet cardinality of the automaton. Proofs can be respectively found in [18] and [36].

Such algorithms are applicable to synchronized PNs by first exhaustively enumerating the state space of the net,

i.e., constructing its RG. Although alternative techniques are proposed to decrease its complexity (e.g. [37], [38]),



the RG generation suffers from the problem of exponential space and time complexity. In particular, for a SM the

reachability set of markings can significantly increase with the number of tokens under the following expression.

Theorem23: Given a strongly connected SMN = (P,T,Pre,Post), with k tokens, letm be the number of its

places. The RGG of this net has a number of nodes equal to:

(m + k − 1
m − 1

) ≤ 1

(m − 1)!km−1
Proof: Consider the given net once a new node is added. It can be easily shown that the reachability set

cardinality is given by the following formula:

∣G(m + 1, k)∣ = k

∑
i=0

∣G(m, i)∣ =
= ∣G(m,0)∣ + ∣G(m,1)∣ + . . . + ∣G(m,k)∣,

where ∣G(m, i)∣ is either the cardinality of the new obtained PN withk − i tokens in the added place or that one

of the initial PN with i tokens. Such results can be reported in a matrix form, obtaining the well known Pascal

matrix, that comes out from the Pascal’s triangle. The elements of the symmetric Pascal matrix are the binomial

coefficients, i.e., it holds that

(i + j − 2
i − 1

)
having i =m, j = k + 1. ◻

Considering the above result, one can state the following lemma.

Lemma24: Consider a strongly connected SM withk tokens. Letm be the number of its places andE be its

input alphabet. For such a net, Algorithm 10 requires a time

O(∣G(m,k)∣3 + ∣E∣∣G(m,k)∣2)
≤ O
⎛
⎝[

km−1

(m − 1)!]
3

+ ∣E∣ [ km−1

(m − 1)!]
2⎞
⎠ . ∎

B. Complexity via synchronizing transition sequences

We have shown in Proposition 15 a technique to compute a1-SS on a strongly connected net based on

synchronizing transitions sequences. Here we discuss the complexity of such a procedure.

To compute a synchronizing transition sequence one can proceed using a backward depth-first search from place

p̄ and verifying the conditions of Definition 14 over the labeling function.

It is known that a depth first search requiresO(bd) time [39], for explicit graphs traversed with repetition, having

a branching factorb and a depth search ofd.

Assume that a SM has a backward branching factor (the number of transitions inputting in a place) bounded by

φ = maxp∈P ∣●p∣. While exploring the net with possible repetitions of places, an upper bound for the depth search

length isq − 1, whereq is the number of net transitions. Thus a first very rough approximation of the needed time

is given byO(φq−1).



This time only depends on structural net parameters, does not grow with the number of tokens and is typically

smaller than the time required by Algorithm 10.

VII. SYNCHRONIZING SEQUENCES ON NON-STRONGLY CONNECTED STATE MACHINES

Consider now connected — but not necessarily strongly connected — state machines. It can be shown how the

existence of a SS depends on the interconnection between ergodic and transient components.

Proposition25: Consider a synchronized SM⟨N,E, f⟩ with µ transient components andη ergodic components.

If η > 1 there exists no SS for such a net.

Proof: Let the net have two ergodic componentsER′ andER′′. Consider two initial markingsM ′
0 andM ′′

0

both withk tokens such thatM ′
0

(resp.,M ′′
0

) assigns all tokens to the componentER′ (resp.,ER′′). Clearly there

exists no markingM̄ reachable from bothM ′
0 andM ′′

0 , hence no SS exists according to Definition 12. ◻

It is now proposed an algorithm to determine sequences for not strongly connected state machines having a single

ergodic component where the interconnection between transient components can be arbitrary.

It is first stated the following result.

Proposition26: Consider a SMN = (P,T,Pre,Post) with a single component ER and letC(N) be its

condensed graph. For each nodevi of C(N) associated with a transient componentTRi (with i > 0), let li

be the length of the longest path fromvi to nodev0 associated with the ergodic componentER. Then if there is

an edge(vi, vj) in C(N) it holds li > lj .

Proof: First observe thatC(N) is acyclic by construction and the nodev0 is reachable from any other node,

hencelj ∈ N is well defined for each nodevj (with j > 0). By definition, if (vi, vj) is an edge ofC(N), then

li ≥ lj + 1. ◻

The following algorithm for the one-token case allows to obtain a SS, such that a placēp in the single ergodic

component is marked.

Algorithm 27: (Computing a SS leading to p̄ ∈ ER)

Input: A synchronized PN⟨N,E, f⟩ containing1 tokens, withµ transient components and1 ergodic component.

Ouput: A SS w̄ for placep̄.

1. Let C(N) be the condensed graph ofN and associate ER with nodev0.

2. Label every other nodevi of C(N) with li, whereli is the length of the longest path fromvi to v0.

3. Let Σk be the set of nodes such thatΣk = {vi ∶ li = k}, thus for constructionΣ0 = {v0}.
4. Let w = ε.

5. For k=lmax:1

5.1. for all vi ∈ Σk,

5.1.1. pick any transitiont′ connectingvi to vj , beingvj ∈ Σk′ andk′ < k;

5.1.2. consider the strongly connected subnet associated with node vi. Determine a1-SSw′ for placep′,

wherep′ ∈ t′●;

6. Consider the strongly connected subnet associated with node v0. Let w be a1-SS for placep̄.



7. Let w = wf∗(σ). ∎

The algorithm starts taking into account the farthest nodesfrom ER. By definition of condensed graph, transient

nodes with the same label value are not connected. Hence at step 5.1.2. the application of each couple(w′, t′),
step by step, drives the token always nearer to ER until it reaches it.

We have remarked that a net with more than one ergodic component cannot have a SS, at least according to

Proposition 25. However, the knowledge of the initial tokendistribution among the net components may lead to

other interesting characterizations, provided of course the initial state uncertainty is redefined according to this new

information.

VIII. S YNCHRONIZING SEQUENCE ON NETS WITH STATE MACHINE SUBNETS

In the following we discuss some results on synchronized PNswhich do not belong to the class of SMs and

show how — under certain conditions — our approach can still be applied in this more general setting.

Proposition28: Consider a bounded synchronized PN⟨N,E, f⟩. Let P = Ps ∪ Pz andT = Ts ∪ Tz, such that

Ns = (Ps, Ts, P res, Posts) is a strongly connected SM subnet, wherePres andPosts are the restrictions ofPre

andPost to Ps × Ts.

Let w̄ be a SS that drives the subnetNs to a target markingM̄s. This sequencēw drivesN to a target marking

M̄ such that:

M̄(p) = M̄s(p) if p ∈ Ps,

if the two following conditions hold:

i) {T ●z ∪● Tz} ∩Ps = ∅;

ii) (∀e ∈ w̄) Te ∩P
●
z ∩ Ts = ∅.

Proof: Condition i) states that no transitiont ∈ Tz is connected to any placep ∈ Ps. This ensures that the

firing of a transition inTz cannot affect the marking of places inPs. Hence, given the special structure ofNs, the

following condition holds for any initial markingM0: (∀M ∈ R(N,M0)) ∑
p∈Ps

M(p) = ∑
p∈Ps

M0(p), i.e., the token

count in the SM component remains constant.

Let w̄ = e1e2⋯ek be a SS for subnetNs that yields a known markinḡMs from any reachable markingM of the

subnet. To prove the result, it is sufficient to show that at each stepi = 1, . . . , k the same sequence, applied toN

from any markingM ′, with M ′(p) =M(p) if p ∈ Ps, produces exactly the same transition firings that it produces

in Ns.

In fact, when a input symbolei ∈ w̄ is applied:

● all transitions that can fire inNs can also fire inN , because the additional placesPz in N cannot disable

these transitions since they do not belong to●Ts;

● no transition inP ●z can fire, because no transition inP ●z has labelei. ◻

Such a result can be further generalized to nets containing more than one state machine subnets.



(a) ∣NSTS ∣/∣NRG∣

❍
❍
❍
❍
❍❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 0,8 1 1 1 1 1 1 1 0,8 1

6 1 1 1 1 0,8 1 1 1 1 1

7 1 1 0,6 0,66 0,8 1 0,88 1 1

(b) ∣T̂STS ∣/∣T̂RG∣

❍
❍
❍
❍
❍❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.22 0.14 0.24 0.17 0.20 0.15 0.13 0.18 0.15 0.18 0.12 0.12 0.10

3 0.23 0.23 0.21 0.26 0.23 0.26 0.36 0.48 0.54 0.30 0.33 0.40 0.74

4 0.43 0.20 0.32 0.37 0.50 0.62 0.54 0.52 0.65 0.61 0.75 0.93

5 0.6 0.30 0.32 0.41 0.53 0.60 0.90 0.59 0.78 0.72 1.52

6 0.45 0.21 0.29 0.45 0.72 0.73 0.54 1.03 0.76 1.08

7 0.62 0.16 0.22 0.27 0.88 0.78 1,15 1,6 2,54

(c) ∣L̂STS ∣/∣L̂RG∣

❍
❍
❍
❍
❍❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.83 0.91 0.91 0.91 0.83 1.00 1.10 0.83 1.00 0.91 0.77 1.10 1.00

4 0.65 0.85 0.89 1.00 0.77 0.85 0.95 0.84 1.00 0.94 0.89 1.06

5 0.8 0.85 0.85 0.70 0.91 0.91 0.96 0.75 1.00 0.87 0.92

6 0.6 0.53 0.90 0.79 0.90 0.80 0.74 0.86 0.81 0.70

7 0.54 0.61 0.57 0.50 0.88 0.59 0,76 0,85 0,69

Table II

NUMERICAL RESULTS FOR RANDOMLY GENERATEDSM PNS (k = 1)



(a) ∣T̂STS ∣/∣T̂RG∣

❍
❍
❍
❍
❍❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.26 0.12 0.23 0.16 0.17 0.13 0.11 0.16 0.14 0.15 0.11 0.11 0.10

3 0.27 0.16 0.14 0.14 0.14 0.21 0.28 0.35 0.42 0.24 0.27 0.24 0.54

4 0.28 0.12 0.20 0.23 0.31 0.41 0.35 0.11 0.39 0.20 0.36 0.40

5 0.17 0.08 0.08 0.19 0.01 0.28 0.44 0.27 0.35 10
−3

0.75

6 10
−3

10
−3

0.09 0.02 10
−3

10
−3

0.20 10
−3

0.29 0.39

7 10
−3

10
−3

10
−3

0.05 0.05 10
−3

10
−3

10
−4

10
−3

(b) ∣L̂STS ∣/∣L̂RG∣

❍
❍
❍
❍
❍❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71

3 1.5 1.60 1.41 1.60 1.33 1.71 1.89 1.50 1.71 1.60 1.41 1.89 1.76

4 1.5 1.41 1.42 1.64 1.46 1.57 1.60 1.54 1.54 1.50 1.54 1.77

5 1.1 1.42 1.35 1.26 1.44 1.50 1.55 1.36 1.65 1.37 1.65

6 1.3 0.92 1.52 1.32 1.64 1.27 1.33 1.28 1.39 1.30

7 0.85 0.97 0.97 0.92 0.88 0.77 0,79 0,64 0,79

Table III

NUMERICAL RESULTS FOR RANDOMLY GENERATEDSM PNS (k = 2)



(a)

(b)

Figure 5. A synchronized PN (a) and its RG

Proposition29: Consider a bounded synchronized PN⟨N,E, f⟩. Let Ps ∪ Pz = P and Ts ∪ Tz = T , where

Ps =
n

⊍
i=1

Ps,i andTs =
n

⊍
i=1

Ts,i (here⊍ denotes the union of disjoint subsets). These sets are such that fori = 1,2, . . . n

Ns,i = (Ps,i, Ts,i, P res,i, Posts,i) is a strongly connected SM subnet.Pres,i andPosts,i are the restrictions to

Pre andPost to Ps,i × Ts,i.

For every subnetNs,i, let w̄i be a SS that drives the subnetNs,i to a target markingM̄s,i. The sequence

w̄ = w̄1w̄2 . . . w̄n drivesN to a target markingM̄ such that:

M̄(p) = M̄ ′
s,i with M̄s,i

w̄i+1w̄i+2⋯w̄n

ÐÐÐÐÐÐÐ→ M̄ ′
s,i if p ∈ Ps,i,

if the two following conditions hold:

i) {●Tz ∪ T
●
z } ∩Ps = ∅;

ii) (∀e ∈ w̄i) Te ∩P
●
z

i

⋂
j=1

Ts,j = ∅.

Proof: The proof follows along the same lines of the proof of Proposition 28 with just an additional consid-

eration. First we observe that condition ii) in Proposition29 is a generalization of condition ii) in Proposition 28:

the condition now must hold not only for the transitions of net i but also for those of all netsj with j < i. In fact,

the overall SS is composed by concatenation of the SSs for each state machine subnet. When we apply the SSwi

to the net, we assume that the markings of all subnetsj, for j < i are known but may change, as some transitions

in the already synchronized subnets may be receptive to an event e ∈ w̄i. However, condition ii) ensures that the

enabling condition of these transitions does not depend on the places inPz, whose marking is unknown, and the

marking reached after the application of evente is computable. ◻

Sequencēw determined in the previous proposition is a SS for the subnetNs. It also drives the complete model

N to a state where the marking of places inPs is known, while in general nothing can be said about the marking

of places inPz .



Example30: Consider the net in Figure 5(a). LetPs,1 = {p1, p2}, Ps,2 = {p3, p4}, Pz = {p5, p6}, Ts,1 = {t1, t2},
Ts,2 = {t3, t4} and thenTz = ∅. Ns is then the net depicted in Figure 5(a), without taking into account dashed

places and arcs. Let̄w1 andw̄2 be SSs that drives respectivelyNs,1 = (Ps,1, Ts,1, P res,1, Posts,1) to M̄s,1 = [0 1]T
andNs,2 = (Ps,2, Ts,2, P res,2, Posts,2) to M̄s,2 = [0 1]T . By separately analyzing the two subnets,w̄1 = w̄2 = e1

are obtained.̄w = w̄1w̄2 respects conditions i) and ii) of Proposition 29 and is therefore a SS forNs, i.e., it drives

the net to a markingM̄ that is either[1 0 1 0 1 0]T or [1 0 1 0 0 1]T , as can be seen by its RG in Figure 5(b).◻

IX. EXPERIMENTAL RESULTS

This section has two objectives. First, we compare the two algorithms we have presented for SS computation of

state machine Petri nets (reachability based versus path based) by applying them to randomly generated nets and

analyzing their performance. The model data and MATLAB programs can be downloaded from [32].

All simulations have been run on a mini Mac intel core Duo2, 2.53 GHz processor, with4 GB 1067 MhZ DDR3

RAM.

Randomly generated models have been previously adopted as avalidation method for synchronizing sequence

construction also by Roman [40].

For selected values ofm places,q transitions andk = 1,2 tokens, we randomly generate100 deterministic and

strongly connected synchronized SMs havingm = 2÷7 places,q =m÷15 transitions andk = 1,2 tokens. In all cases

the input alphabet has cardinalityf randomly chosen inq
m
÷ q. Note that q

m
is the minimal alphabet cardinality to

ensure the determinism for a SM havingm places andq transitions. For each net a place is randomly selected and

we use both Algorithm 10 (denoted RG) and Algorithm 10 (denoted by STS) to determine a SS to this place. The

algorithms are compared by means of three performance indexes:

NRG, NSTS : number of times the algorithm successfully terminates returning a SS;

T̂RG, T̂STS: average time required to compute the sequence;

L̂RG, L̂STS : average length of the sequences.

Finally the performance of the two approaches is evaluated by computing the ratio ofNSTS (resp.T̂STS and

L̂STS) to NRG (resp.T̂RG and L̂RG).

Results are shown in Table II for nets with one token and in Table III for the two token case. Note that the table

showingNSTS /NRG does not depend on the number of tokens and thus it is shown only for k = 1. Black cells

denote parameter values for which no strongly connected SM can be generated, i.e., form > q.

Table I(a) shows the ratioNSTS /NRG between the number of times a SS has been found using the STS and the

RG approach. In the previous sections we have mentioned thatwhile the RG approach always determines a SS if

any exists, the STS approach may fail to do so. Hence the valuein the table should be contained in the interval

[0,1]. We can observe, however, that over 88% of the table entries show a value of1, hence confirming that the

STS approach can find a solution in most cases and thus this result is not too restrictive.

Table I(b) shows the ratioTSTS /TRG between the execution time to compute a SS using the STS and the RG

approach for nets with one token. Here we expect the STS approach to be more efficient, as discussed in Section VI,



Figure 6. Suggested way to determine a SS for strongly connected SMs.

and this is confirmed from the fact that in almost all cases thetable entries are smaller than one. Only in a few

cases, for very large values ofm andq, we have that the RG method is faster than the STS one. This, webelieve,

it is due to our implementation of the STS approach that uses abrute force depth-first search.

Table II(a) shows the ratioTSTS /TRG between the execution time to compute a SS using the STS and the RG

approach for nets with two tokens. Here we see the main advantage of the STS method, that can use a1-SS to

determine ak-SS, while the RG method had a complexity that grows polynomially with k (and exponentially with

m), as discussed in Section VI. Here the advantage of the STS method is more noticeable for large values ofm

and q. Table I(c) and Table II(b) show the ratioLSTS/LRG between the average length of a SS computed using

the STS and the RG approach for nets with one or two tokens. This index is probably less significant than the

previous ones, although one may argue that the shortest the SS the less expensive is the synchronization (in terms

of costs or of time required). Here we can see that in the case of one token the STS approach in most of the cases

produces shorter SS, while the situation is the opposite for2 tokens. This is due to the fact that thek-SS obtained

by STS is alwaysk times longer than the corresponding1-SS, while shorter solutions may be obtained by the RG

approach.

On the base of these results, we can say that to compute a SS forstrongly connected Petri nets it is convenient

to first search for a STS based solution using Algorithm 16 andthen, if this fails, to use Algorithm 10. This is

summarized in the flowchart in Figure 6.

X. CONCLUSIONS AND FUTURE WORKS

In this paper, we have shown how automata techniques can be applied with minor changes to the class of bounded

synchronized PNs.

Also it has been proposed a method that allows to determine a Synchronizing Sequence for the class of

synchronized state machine PNs.



Our approach alleviates the state explosion problem also inthe case of multiple tokens, since the construction

of the reachability graph is not needed. We have shown by means of several examples how the computational time

does not increase as the number of tokens in the net increases

There is an open line for interesting future works. We plan toextend our approach to unbounded PNs, whose

behavior can be approximated with a finitecoverability graph(CG), by introducing anω component to denote a

place whose token content may be arbitrarily large.

Note that classic coverability methods construction cannot be directly applied to this class of PNs, that is why a

new algorithmic procedure for the CG construction has to be provided.
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