
Computing Repairs from Active Integrity
Constraints

Luı́s Cruz-Filipe
Patrı́cia Engrácia

Escola Superior Náutica Infante D. Henrique
Paço d’Arcos, Portugal
CMAF, Lisboa, Portugal

Graça Gaspar
Isabel Nunes

Faculdade de Ciências, Universidade de Lisboa
Lisboa, Portugal

LabMag, Lisboa, Portugal

Abstract—Repairing an inconsistent knowledge base is a well-
known problem for which several solutions have been proposed
and implemented in the past. In this paper, we start by looking
at databases with active integrity constraints – consistency
requirements that also indicate how the database should be
updated when they are not met – as introduced by Caroprese et
al. We show that the different kinds of repairs considered by those
authors can be effectively computed by searching for leaves of
specific kinds of trees. Although these computations are in general
not very efficient (deciding the existence of a repair for a given
database with active integrity constraints is NP -complete), on
average the algorithms we present make significant reductions on
the number of nodes in the search tree. Finally, these algorithms
also give an operational characterization of different kinds of
repairs that can be used when we extend the concept of active
integrity constraints to the more general setting of knowledge
bases.

I. INTRODUCTION

Database dependencies have been since long a main tool in
the fields of relational and deductive databases [1], [3], used
to express integrity constraints on databases. They formalize
relationships between data in the database that need to be
satisfied so that the database conforms to its intended meaning.

Whenever an integrity constraint is violated, the database
must be repaired in order to regain consistency. Repairing
a database consists in inserting or deleting tuples (update
actions), so that the resulting database satisfies all of the
integrity constraints. In most cases, there are many different
candidate sets of update actions that can be used to repair
a database, leading to different revised consistent databases.
Being able to restrict the set of database “repairs” to those
considered the most “adequate”, in some sense, is therefore
an important task in order to automate maintenance of the
consistency of databases.

Minimality of change – not containing unnecessary actions
– is commonly accepted as a very important characteristic of
a repair [6], [10], however it is not enough to narrow down
the set of possible repairs sufficiently. It is also important that
the database designer may be able to express, for each given
integrity constraint, his preferred repair action(s).

Active integrity constraints (denoted hereafter by AICs),
first proposed in [7], are special forms of production rules
that encode both an integrity constraint and preferred update
actions to be performed whenever the former is violated. In [4]

the authors study AICs and define a declarative semantics
for them, defining the class of founded repairs. That work
is extended in [5], and, as a result of the effort to clarify
the relation between the semantics of AICs and revision
programming [8], the more restricted class of justified repairs
is defined. Informally, justified repairs are the repairs that are
the most strongly grounded in the given database and the
given set of AICs, that is, those considered most “adequate”
in the sense that they result strictly from combinations of the
preferences expressed by the database designer for each of the
integrity constraints and from the principle of minimal change.

The most common approach to processing integrity con-
straints in database management systems is to use active rules
(a kind of event-condition-action rules, or ECAs [9]), for
which rule processing algorithms have been proposed and a
procedural semantics has been defined. However, in opposition
to AICs, their lack of declarative semantics makes it difficult to
understand the behaviour of multiple ECAs acting together and
to evaluate, in a principled way, the rule-processing algorithms.

Our work starts from the definitions of founded and justified
repairs, given by Caroprese at al. [5], and shows how those
repairs can be effectively computed by searching for leaves of
specific kinds of trees, thus giving an operational characteri-
zation of those kinds of repairs. Although these computations
are in general not very efficient (deciding the existence of a
repair for a given database with active integrity constraints is
NP -complete), on average the algorithms we present make
significant reductions on the number of nodes in the search
tree.

To extend active integrity constraints and the computations
of repairs from the context of databases to the more general
context of knowledge bases, one has to take into account that
the violation of integrity constraints can originate not just
from data explicitly represented, but also from data derived
from rules or axioms in the knowledge base. Therefore, we
introduce the notion of generalized active integrity constraint,
which relaxes the relation between the two parts of an active
integrity constraint – the integrity constraint part and the
update action part – by taking into account the structure of
the knowledge base itself. We then discuss how the various
kinds of trees that we have defined for computing repairs of
databases can (or cannot) be generalized to knowledge bases to

capture the most adequate repairs in that more general context.
The remainder of the paper is organized as follows: Sec-

tion II summarizes the fundamental notions underlying AICs;
Section III shows how repairs can be straightforwardly com-
puted by a tree-generating algorithm; Section IV restricts the
construction of descendant nodes in the previous algorithm
to obtain trees that correspond to the notions of founded
and justified repair. This correspondence is not precise – the
trees compute some extra (non-founded or non-justified) weak
repairs – but this is to be expected, since our algorithm runs
in non-deterministic polynomial time, whereas the problem
of existence of founded or justified repairs is Σ2

P -complete.
Section V generalizes AICs to a more encompassing setting of
knowledge bases; finally, Section VI summarizes the achieve-
ments described in this paper.

II. BACKGROUND

Constraint checking has been an area of active research
since long, with the most effort being put in detecting incon-
sistencies, preventing violation of constraints, and answering
queries over inconsistent databases in a meaningful way.
Among the work in this field, a substancial amount deals with
repairing databases that do not satisfy the desired constraints.

In this paper we focus on a particular approach: that of ac-
tive integrity constraints (AICs, for short), as proposed in [5].
For space limitations, we will not discuss other approaches
to the problem of constraint checking that are not directly
relevant for this work. In the last section, we discuss how
AICs can be applied in the more general setting of knowledge
bases. Throughout the whole presentation, we strictly follow
the notation introduced in [5]; in particular, all definitions in
this section are taken from that article.

In the framework of AICs, databases are considered to be
subsets of some finite set At of propositional atoms, and
integrity constraints are clauses of the form L1, . . . , Lm ⊃ ⊥,
where Li are all literals in the propositional language gener-
ated by At, with intended meaning that the conjunction of all
Lis must not hold.

Any database I, being a subset of At, can be regarded as
a propositional interpretation. I entails literal L, I |= L, if L
is a and a ∈ I or L is not a and a /∈ I. I satisfies integrity
constraint r , I |= r, if I 6|= L for some L in r. Moreover, I
satisfies a set η of integrity constraints, I |= η, if it satisfies
each integrity constraint in η.

Whenever I does not satisfy a set η of integrity constraints,
I may be updated by inserting and deleting atoms, through
update actions of the form +a and −a, where a ∈ At, stating
that a is to be inserted in or deleted from At, respectively.
As expected, the result of updating I by means of a set U of
update actions is the database I ◦ U = (I ∪ {a | +a ∈ U}) \
{a | −a ∈ U}. A set of update actions is consistent if it does
not contain both +a and −a, for any a ∈ At.

Given a database I and a set η of integrity constraints, the
problem of database repair is to determine how to update I
so that it satisfies η.

Definition 1 Let I be a database and η a set of integrity
constraints. A weak repair for 〈I, η〉 is a consistent set U of
update actions such that:
• ({+a | a ∈ I})∪{−a | a ∈ At \ I})∩U = ∅ (U consists

of “essential” update actions only);
• I ◦ U |= η (constraint enforcement).
A repair for 〈I, η〉 is a weak repair U such that, for every

U ′ ⊆ U , if I ◦ U ′ |= η, then U ′ = U (minimality of change).

The problem of existence of a weak repair is NP -
complete [5], and so is the one of existence of a repair.1

The formalism of AICs was designed to address the problem
of guiding the process of selection of a repair. The literal
corresponding to an action α, lit(α), is a if α = +a and
not a if α = −a, while the update action corresponding to a
literal a, ua(a), is +a if L = a and −a if L = not a. The dual
of a is not a, and conversely. Denoting the dual of L by LD,
an active integrity constraint is an expression r of the form
L1, . . . , Lm ⊃ α1 | . . . | αk where the Li (in the body of r,
body (r)) are literals and the αj (in the head of r, head (r))
are update actions, and{

lit(α1)D, . . . , lit(αk)D
}
⊆ {L1, . . . , Lm} .

The set lit(head (r))D contains the updatable literals of r. The
non-updatable literals of r form the set nup(r) = body (r) \
lit (head (r))

D.
The head of a rule is meant to be given a disjunctive

interpretation; therefore, I |= r if I |= lit(α) for some α
in the head of r whenever I |= nup(r).2

In order to distinguish repairs that are “supported” by a
given set of AICs, in the sense that they somehow comply with
the update actions in the rules, Caroprese et al. introduced the
notion of founded repairs.

Definition 2 Let I be a database, η a set of active integrity
constraints and U a consistent set of update actions.
• An update action α is founded w.r.t. 〈I, η〉 and U if there

is r ∈ η such that α ∈ head (r), I ◦ U |= nup(r), and
I ◦ U |= lit(β)D for every β ∈ head (r) \ {α}.

• U is founded w.r.t. 〈I, η〉 if all of its elements are founded
w.r.t. 〈I, η〉 and U .

• U is a founded (weak) repair for 〈I, η〉 if U is a (weak)
repair for 〈I, η〉 and U is founded w.r.t. 〈I, η〉.

We will use the following equivalent characterization of
founded update action: α is founded w.r.t. 〈I, η〉 and U if
there is r ∈ η such that α ∈ head (r) and I ◦U |= L for every
L ∈ body (r) \ {lit(α)}.

Notice that founded repairs are not minimal founded weak
repairs, but rather founded weak repairs that are minimal

1Due to space limitations, we defer the presentation of examples of these
concepts to the next section.

2Because of the syntactic restrictions of AICs, this is actually equivalent
to saying that I 6|= L for some L ∈ body (r); but the form presented above
reflects the “operational” view of AICs: if the non-updatable atoms in the
body of a rule hold, then some action must be taken to guarantee that the
integrity constraint is satisfied.

among all repairs. An example of a minimal founded weak
repair that is not a founded repair can be found in [5].

While the problem of existence of a weak founded repair
is again NP -complete, the problem of existence of founded
repairs has higher complexity – it is Σ2

P -complete.
Situations may arise in which the support for the actions in

a founded repair is circular – an action α is supported by a
rule rα whose body holds because of another action β, in turn
supported by a rule rβ whose body holds because of α.

In order to disallow these circular dependencies, [5] in-
troduced justified repairs for a set of AICs. This definition
requires some auxiliary notions.

A set U of update actions is closed under r if nup(r) ⊆
lit(U) implies head (r) ∩ U 6= ∅. U is closed under a set η of
AICs if it is closed under every r in η. Note that, in particular,
every founded weak repair for 〈I, η〉 is closed under η.

An update action +a (respectively, −a) is a no-effect action
w.r.t. (I, I ◦ U) if a ∈ I ∩ (I ◦ U) (respectively a /∈ I ∪ (I ◦
U)) – intuitively, the action does not change I. The set of
all no-effect actions with respect to (I, I ◦ U) is denoted by
ne (I, I ◦ U).

A set U of update actions is then a justified action set if
it is precisely the set of update actions forced or “justified”
by the set of AICs and the no-effect actions with respect to
the database in its two versions, the pre-repair and the post-
repair [5]. The formal definition follows.

Definition 3 Let I be a database and η a set of AICs. A
consistent set U of update actions is a justified action set
for 〈I, η〉 if U is a minimal set of update actions containing
ne (I, I ◦ U) and closed under η.

If U is a justified action set for 〈I, η〉, then U \ne (I, I ◦ U)
is a justified weak repair for 〈I, η〉.

In particular, it is shown in [5] that justified repairs are always
founded. However, the formal definition of justified repairs is
not very intuitive. Part of the purpose of this paper is to give
an operational characterization of justified repairs and show
that it coincides with the above formal definition.

Existence of justified weak repairs or justified repairs for
〈I, η〉 is again a Σ2

P -complete problem. However, [5] also
introduces normalized active integrity constraints: these are
AICs whose head contains at most one action. The authors
show that, when η is a set of normalized AICs, the problem of
existence of justified (weak) repairs for 〈I, η〉 becomes NP -
complete.

III. FINDING REPAIRS OF INCONSISTENT DATABASES

In this section we present an algorithm for computing
repairs of a database I not satisfying a set of integrity
constraints η. The idea is simple: we look at each integrity
constraint that is not being satisfied and attempt to fix the
database.

At this stage, we are not concerned specifically with active
integrity constraints (although all the work in this section
applies to them). Therefore, if r is not satisfied, then negating

any of the literals in body (r) is a possibility of repair. We
therefore build a tree as follows.

Definition 4 Let I be a database and η be a finite3 set
of (active) integrity constraints. The repair tree of 〈I, η〉 is
constructed as follows.
• Each node is a set of repair actions.
• A node is consistent if it does not contain both an action

and its dual.
• Each edge is labeled with a rule.
• The root of the tree is the empty set ∅.
• For each consistent node n and rule r, if I ◦n 6|= r then

for each L ∈ body (r) the set n′ = n ∪
{
ua(L)D

}
is a

child of n, with the edge from n to n′ labeled by r.

In order to illustrate this construction, we discuss some
examples.

Example 1 Consider the following set η of active integrity
constraints.

r1 :a, b ⊃ −a | −b r2 :a, not b ⊃ −a
r3 :not a, b ⊃ −b

Given the database I = {a, b}, the repair tree for 〈I, η〉 is
the following.

∅
r1

ww
r1
��

{−a}
r3

yy
r3
��

{−b}
r2
��

r2

%%
{−a,+a}
×

{−a,−b} {−b,−a} {−b,+b}
×

Observe that both consistent leaves contain a repair (in fact,
the only one) for 〈I, η〉.

Example 2 Consider the following set η of active integrity
constraints.

r1 :a ⊃ −a r2 :a, b ⊃ −b

Given the database I = {a, b}, the repair tree for 〈I, η〉 is
the following.

∅
r1

yy
r2
��

r2

&&
{−a} {−a} {−b}

r1
��

{−b,−a}

In this case there are three leaves, all consistent. The leaves
{−a} correspond to the only repair for 〈I, η〉, while {−a,−b}
is a weak repair for the same pair.

3From a practical perspective, it does not make sense to assume that either
I or η is infinite; still, finiteness of η is relevant for some theoretical properties
we discuss. We will assume without stating explicitly that this is the case.

We now prove some simple results about repair trees.

Lemma 1 The repair tree for 〈I, η〉 is finite.

Proof. First note that the number of rules not satisfied at
each node is always finite. Furthermore, each rule has a
finite number of literals in its body. Therefore, the number
of descendants of any node is finite.

If there is an edge from n to n′ labeled by r, then (by
construction of n′) rule r is satisfied in n′ and in any of its
descendants. Since the number of rules is finite, this means
that the depth of the tree is also finite.

Therefore the repair tree for 〈I, η〉 is finite. �

Note that the number of nodes in this tree can be enormous.
If η has k rules each with exactly m literals, and all rules are
independent (in the sense that fixing one does not affect any
of the others), then all leaves of the tree lie at depth k and
nodes at height h have m×(k−h) descendants, giving a total
number of nodes of magnitude O

(
mkk!

)
. We can improve this

substantially, however, by identifying nodes corresponding to
the same set, thereby reducing the number of nodes in the tree
to 2p, where p is the number of different literals occurring in
the bodies of rules in η. In either case, the total number of
nodes does not depend on I, as was already noted in [5].

A more interesting result is the following.

Lemma 2 Every consistent leaf of the repair tree for 〈I, η〉
is a weak repair for 〈I, η〉.

Proof. By construction, if there is a rule in η that is not
satisfied in node n, then n is not a leaf. Therefore, leaves
satisfy all rules in η, and hence correspond to weak repairs
for 〈I, η〉. �

In particular, if the set of constraints η is inconsistent, then
the repair tree for 〈I, η〉 has no consistent leaves.

Note that an inconsistent node can never produce consistent
leaves. Therefore, from this point onwards we will omit
inconsistent nodes from the repair tree. Consistency of a
generated node is decidable in linear time (on the number
of repair actions in the node), so this can only improve the
complexity of all algorithms discussed below.

The reason for calling this tree a repair tree is more
profound: every repair for 〈I, η〉 corresponds to a leaf in the
repair tree; so by constructing the repair tree for 〈I, η〉 we can
immediately decide whether there are repairs for 〈I, η〉, and
determine who they are.

Theorem 1 Let U be a repair for 〈I, η〉. Then there is a
branch of the repair tree for 〈I, η〉 that ends with leaf U .

Proof. Note that U is finite. We show that there is a branch of
the tree whose nodes are ∅ = U0,U1, . . . ,Un = U , i.e. Ui+1

is obtained from Ui by adding an action in U \ Ui.
The only issue is showing that we can always find Ui+1

as described, for i < n. Since U is a repair (and not a weak

repair), Ui cannot be a repair; therefore, there are some rules
which are not satisfied in I ◦Ui. Let r be one of these rules; if
the body of r does not contain literals fixed by update actions
in U \Ui, then I ◦U does not satisfy r, which is absurd since
U is a repair. Therefore, such a Ui+1 exists. �

This result also provides an alternative proof of the already
known fact that deciding whether there is a (weak) repair for
〈I, η〉 can be solved in non-deterministic polynomial time.
Note that by finding all leaves of the repair tree we can also
identify all repairs for 〈I, η〉 – namely, they are the leaves that
are not a superset of any other leaf.

IV. ACTIVE INTEGRITY CONSTRAINTS AND JUSTIFIED
REPAIRS

As the authors of [5] discuss, the purpose of introducing
active integrity constraints (AICs) is to allow one to express
preferences on how the database should be repaired when the
integrity constraints are not met. The construction presented
in the previous section does not take these preferences into
account, as it ignores the head of rules.

To deal with these preferences, the authors introduced the
notion of founded repair: a repair that is “compatible” with
the heads of the AICs. Intuitively, one should be able to
compute founded repairs by looking at the AICs currently
being violated and following the suggestions in their heads.
However, even this does not work, as the following example
shows.

Example 3 Consider the database I = {a, b} together with
the following set η of active integrity constraints.

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the rules that are not satisfied, one
is led to the set {+c}, which is a founded repair for 〈I, η〉.
However, the set {−a,−b} is also a founded repair for the
same pair.

The issue is – again – that, in this set, the action −a is
supported by rule r1 because of the presence of −b, which
in turn is supported by rule r2 because of the presence of
−a. One might argue that {+c} is a better repair: indeed,
following the authors’ original route, it can be seen that {+c}
is a justified repair for 〈I, η〉, while {−a,−b} is not.

Simply restricting the construction of the repair tree to re-
flect the preferences expressed by the heads of active integrity
constraints, however, is not enough to obtain only justified
repairs. In some situations, we may still obtain founded repairs
that are not justified, as the following example shows.

Example 4 Consider the following variation of Example 1,
where η is

r′1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Constructing a variation of the repair tree of 〈I, η〉 contain-
ing only the edges that connect nodes differing by an action on
the head of the rule labeling them, one obtains the following
tree.

∅
r′1��

{−a}
r3��

{−a,−b}

Notice that we also omitted edges leading to inconsistent
nodes, as discussed earlier. The set {−a,−b} is a founded
repair for 〈I, η〉, but, as discussed in [5], it is not justified.

The intuition behind justified repairs seems to be that one
should go one step further: the rule leading to the introduction
of an action in a would-be repair should be the same rule
supporting that action in the final repair. This turns out to
be too restrictive, however, as one can easily find examples
where justified repairs exist but they would not be found by
this approach – Example 1 is such an example. Since the
definition of justified repair does not directly refer to support
for actions, but to justified action sets, which in turn look at the
non-updatable literals in the rules’ bodies, we use a technique
from [2] to keep track not only of the actions introduced at
each step, but also of the non-updatable assumptions made
when introducing the actions. The justified repair tree for
〈I, η〉 is then defined as follows.

Definition 5 Let I be a database and η be a set of active
integrity constraints. The justified repair tree of 〈I, η〉 is
constructed as follows.

• Each node n is a pair of sets of repair actions Un,Jn.
• Each edge is labeled with a rule.
• The root of the tree is ∅, ∅.
• For each node n and rule r, if I ◦Un 6|= r, then for each
α ∈ head (r) there is a descendant n′ of n, with the edge
from n to n′ labeled by r, where:

– Un′ = Un ∪ {α};
– Jn′ = (Jn ∪ {ua(nup(r))}) \ Un.
– If Un′ is inconsistent, then n′ is removed.
– If Un′ ∩ (Jn′)

D 6= ∅, then n′ is removed.

Note that we do not add actions in Un to Jn. The reason for
this is that the definition of justified action set only takes into
account non-updatable atoms on which the action set has no
effect.

Reconsider the previous example.

Example 5 The justified repair tree for 〈I, η〉 as in Example 4

is the following.
∅, ∅

r′1
��

{−a}, {+b}

r3

��
{−a,−b}, {+b}

×
Now this tree has no valid leaves, as desired.

On the other hand, in Example 1 all repairs are justified.
Indeed, the justified repair tree for 〈I, η〉 in that situation is
the following.

∅, ∅
r1

ww
r1

''
{−a}, ∅

r3��

{−b}, ∅
r2��

{−a,−b}, ∅ {−b,−a}, ∅

Note that, in the applications of rules r2 and r3, their sets
of non-updatable literals ({not b} and {not a}, respectively)
correspond to actions already in the update part of the node
to which they were applied.

In fact, we can show that every justified repair of 〈I, η〉 is
computed by the justified repair tree for 〈I, η〉.

Theorem 2 Let U be a justified repair for 〈I, η〉. Then there
is a leaf n in the justified repair tree for 〈I, η〉 such that
U = Un.

Proof. Suppose U is a justified repair for 〈I, η〉 and let J be

{nup(r)∩ lit(ne (I, I ◦ U)) | ua(nup(r)) ⊆ U ∪ne (I, I ◦ U)}

The idea is as follows: we will use J to “guide” the
construction of the branch of the tree leading to U ; the choice
of J is directly connected to the definition of justified action
set. Note that, by construction, U is disjoint from the actions
dual to the literals in J .

Clearly the root node satisfies Uroot = ∅ ⊆ U and Jroot =
∅ ⊆ J . We show that whenever Un ⊆ U and Jn ⊆ J the tree
has a descendant n′ of n such that Un′ ⊆ U and Jn′ ⊆ J .

Let n be a node of the justified repair tree for 〈I, η〉 such
that Un ⊆ U and Jn ⊆ J . If Un = U , then we are done.
Otherwise, n must have descendants, since Un cannot be a
repair (it is a proper subset of U , which is a repair). Suppose
I ◦ Un 6|= r and assume that nup(r) \ lit(U) 6⊆ J . We show
that Un ∪ ne (I, I ◦ U) is closed for r.

Observe that

ua(nup(r)) = (ua(nup(r)) ∩ Un)︸ ︷︷ ︸
⊆ Un ⊆ U

∪ (ua(nup(r)) \ Un)︸ ︷︷ ︸
⊆ ne (I, I ◦ Un)

.

Since ne (I, I ◦ Un) = ne (I, I ◦ U) ∪ (U \ Un)
D, actions in

ua(nup(r)) coming from the second of the above sets must

be in either ne (I, I ◦ U) or in (U \ Un)
D. If the former

were the case for every action, then ua(nup(r)) ⊆ U ∪
ne (I, I ◦ U), whence nup(r) ∩ lit(ne (I, I ◦ U)) = nup(r) ∩
lit (ne (I, I ◦ Un)) ⊆ J , which contradicts our hypothesis.

Therefore, there is an action in ua(nup(r)) ∩ (U \ Un)
D,

whence ua(nup(r)) 6⊆ Un ∪ ne (I, I ◦ U) and therefore Un ∪
ne (I, I ◦ U) is closed for r.

But if Un ∪ne (I, I ◦ U) is closed for every rule applicable
in node n, then Un∪ne (I, I ◦ U) is closed for η: a rule is not
applicable in node n if either one of its non-updatable literals
is contradicted in I ◦ Un or Un contains an action in the head
of r. This cannot be the case, since U is a justified repair for
〈I, η〉. Therefore, there is a rule r applicable in node n and
such that nup(r) \ lit(U) ⊆ J ; this leads to a node further
down in the tree still satisfying the required conditions. �

Interestingly, in the previous proof it does not suffice to
show that there is a branch leading to U . The following
example shows that there may be invalid paths to the justified
repair that are pruned; the usage of J is therefore essential to
guarantee the existence of a path to a leaf that is not pruned.

Example 6 Consider the database I = {a, b} with the
following set η of active integrity constraints.

r1 :a, b ⊃ −a r3 :b, c ⊃ −b
r2 :a, c ⊃ −a r4 :− c ⊃ +c

In this case, there is one justified repair for 〈I, η〉: U =
{−a,−b,+c}. The justified repair tree for 〈I, η〉 is the fol-
lowing.

∅, ∅
r1

ww

r4

��

{−a}, {+b}

r4

��
{−a,+c}, {+b}

r3

��
{−a,+c,−b}, {+b}

×
{+c}, ∅

r1

xx

r2

��

r3

%%
{+c,−a}, {+b}

r3

��

{+c,−a}, ∅

r3

��

{+c,−b}, ∅

r2

��
{+c,−a,−b}, {+b}

×
{+c,−a,−b}, ∅ {+c,−b,−a}, ∅

There are four leaves in this tree, but only two are not
pruned, pointing out that the support for the actions is
provided by r2, r3 and r4, but not by r1.

As was shown in [5], the problem of deciding whether there
exists a justified repair for 〈I, η〉 is Σ2

P -complete. This means

that we expect the justified repair tree for 〈I, η〉 to contain
leaves that do not correspond to justified repairs (or even to
justified weak repairs): since the tree can be constructed in
polynomial time, a non-deterministic Turing machine would
be able to decide existence of justified repairs in polynomial
time, which would imply that NP = Σ2

P .

Example 7 Let I be the empty database and take η to be the
following set of AICs.

r1 :not a, b ⊃ +a

r2 :a, not b ⊃ +b

r3 :not a, not b, not c ⊃ +a | +b | +c
r4 :not c ⊃ +c

The justified repair tree for 〈I, η〉, omitting inconsistent nodes
from the construction, is the following.

∅, ∅
r3

ss r3ww
r3
��

r4

''
{+c}, ∅ {+a}, ∅

r2

ww
r4
��

{+b}, ∅
r1
��

r4

''

{+c}, ∅

{+a,+b}, ∅
r4
��

{+a,+c}, ∅
r2
��

{+b,+a}, ∅
r4
��

{+b,+c}, ∅
r1
��

{+a,+b,+c}, ∅ {+a,+c,+b}, ∅ {+b,+a,+c}, ∅ {+b,+c,+a}, ∅

All of the leaves correspond to valid nodes. The set U = {+c}
is a justified repair for 〈I, η〉 (actually, the only one), but
U ′ = {+a,+b,+c} is a weak repair for 〈I, η〉 that is not
justified: the set {+c} is closed under η and contains the no-
effect actions of U ′.

In the case of normalized AICs, where heads of rules may
contain at most one action, the problem of existence of justified
repairs is NP -complete. In this case, the leaves of the justified
repair tree for 〈I, η〉 are always justified weak repairs.

Lemma 3 Let I be a database and η be a set of normalized
AICs. Then every leaf of the justified repair tree for 〈I, η〉
contains a founded weak repair.

Proof. Since the first set of every leaf of the justified repair
tree for 〈I, η〉 corresponds to a leaf of the repair tree for 〈I, η〉,
by Lemma 2 it is a weak repair for 〈I, η〉. We only need to
show that it is founded.

Let α be an action in the update set of that leaf. The rule
r labeling the edge from n to n′ in the step where α was
introduced provides support for α. Indeed, α ∈ head (r) by
construction; furthermore, since every literal a 6= lit(α) in
body (r) is not updatable (α is the only action in the head of r),
either ua(a) ∈ Un or ua(a) ∈ Jn′ . In the first case, ua(a) ∈ U ,
since Un ⊆ U . In the second case, ua(a) ∈ Jleaf , where leaf is
the leaf in question; since this leaf was not pruned, this means
that a ∈ I and that ua(a)D 6∈ U . In either case, I ◦ U |= a.
Therefore r supports α in U . �

Theorem 3 In the conditions of Lemma 3, every leaf of the
justified repair tree for 〈I, η〉 contains a justified repair for
〈I, η〉.

Proof. By Lemma 3, we already know that every leaf of
the justified repair tree for 〈I, η〉 is founded for 〈I, η〉. Let
U be the weak founded repair in a leaf and assume that U is
not a justified repair for 〈I, η〉; since founded weak repairs
are always closed, this means that there is U ′ ⊆ U such that
U ′ ∪ ne (I, I ◦ U) is closed under η.

Let α ∈ U\U ′. For every rule r containing α in its head and
such that I◦(U\{α}) satisfies every literal in the body of r ex-
cept for lit(α)D, necessarily ua(nup(r)) 6⊆ U ′ ∪ ne (I, I ◦ U):
if ua(nup(r)) ⊆ U ′ ∪ ne (I, I ◦ U), then there is an action
β ∈ head (r) such that β ∈ U ′ ∪ ne (I, I ◦ U), which is
absurd: β cannot be α (since α /∈ U ′ and α /∈ ne (I, I ◦ U)),
but then I ◦ (U \ {α}) |= lit(β)D. Note also that there is
at least one such rule, since U is founded. Therefore there
exists β ∈ ua(nup(r)) such that β 6∈ U ′∪ne (I, I ◦ U), hence
β ∈ U \ U ′. In other words: for every α ∈ U \ U ′, if a rule
supports α in U then α is not applicable in U ′.

Now consider the branch from the root to this particular leaf.
Uroot = ∅ ⊆ U ′. At each stage, either we introduce an action
in U ′ or an action in U \U ′. In the first case, we maintain the
invariant Un ⊆ U ′; in the second case, we introduce an action
α by applying a rule that does not support α in U . But the
proof of Lemma 3 shows that the rule introducing an action
is always supported in leaves that are not pruned, which is a
contradiction. Therefore, U \ U ′ = ∅, whence U is a justified
weak repair. But if η is normalized then justified weak repairs
are necessarily repairs (Theorem 4 in [5]), so U is a justified
repair. �

In short: the justified repair tree for 〈I, η〉 contains all
justified repairs and, if η is normalized, it only contains
justified repairs. We now present two examples showing that,
if η is not normalized, (1) there may be weak justified repairs
that are not in the justified repair tree for 〈I, η〉; and (2) there
may be weak justified repairs in the justified repair tree for
〈I, η〉, so the tree does not contain only repairs.

Example 8 Let I and η be, respectively, the empty database
and the following set of active integrity constraints.

r1 : not a, b ⊃ +a | −b r2 : a, not b ⊃ −a | +b

The justified repair tree for 〈I, η〉 is empty, since the empty
set (at the root) is trivially a (justified) repair. However, the
set {+a,+b} is also a weak justified repair for 〈I, η〉, which
is not in the tree.

Example 9 Consider the following variation of Example 7:
I is again the empty database, but the rules in η are the
following.

r1 :not a, b, c ⊃ +a | −b
r2 :a, not b, c ⊃ −a | +b

r3 :not a, not b, not c ⊃ +c | +a | +b
r4 :not c ⊃ +c

Now the only justified repair is still U = {+c}, but the
weak repair U ′ = {+a,+b,+c} is also justified. The justified
repair tree for 〈I, η〉, omitting inconsistent nodes from the
construction, is the following.

∅, ∅
r3

ss r3vv
r3
��

r4

&&
{+c}, ∅ {+a}, ∅

r4
��

{+b}, ∅
r4
��

{+c}, ∅

{+a,+c}, ∅
r2
��

{+b,+c}, ∅
r1
��

{+a,+c,+b}, ∅ {+b,+c,+a}, ∅

At this stage, we have presented direct algorithms to com-
pute repairs and justified repairs for inconsistent databases
with (active) integrity constraints. Since the general problem of
finding these repairs is at least NP -complete, in the worst case
our algorithms are asymptotically equivalent to the techniques
presented in [4] (namely, translating the context to production
rules and computing a stable model of these).

However, the general case is not the worst case. We feel
that the presentation and discussion of these algorithms serves
several purposes. First, these algorithms operate directly on the
database and the integrity constraints, requiring significantly
less overhead in their execution. Second, they provide insight
into the definitions of founded and justified repair, which are
not very intuitive in the first place. Third, as we will show
in the next section, they allow a refinement of the notion
of founded support which can be readily adapted to a more
general notion of active integrity constraint.

V. AICS OUTSIDE THE DATABASE WORLD

Due to their syntactic nature, active integrity constraints
are restricted to the setting of database-like knowledge bases.
We now show how, using the operational characterizations of
repairs presented in the previous sections, we can generalize
AICs and repairs to more general contexts.

Before proceeding, we take a new look at Examples 3
and 4, which are both examples of what the authors of [5]
call “circularity of support”, and thus are both rejected by the
notion of justified repair. We feel differently about these two
situations. While Example 3 contains a very counterintuitive
repair {−a,−b}, which is hard to defend (none of the con-
straints violated at any stage suggests that either a or b should
be removed), Example 4 has a rule clearly suggesting that −a
should be applied, although that rule is not the one providing
support for −a in the final repair.

The notion of well-founded repair tree for 〈I, η〉 captures
this distinction: this is a tree built like the justified repair tree
for 〈I, η〉, but omitting the sets Jn (and therefore including
more branches). Note that the well-founded repair tree for
〈I, η〉 contains all justified repairs for 〈I, η〉, as well as some
founded (weak) repairs that are not justified, but will not

contain circularities of support where none of the actions is
motivated by violated AICs – see Example 4. Furthermore,
this is the tree that is suitable for generalizations outside the
database world.

Let KB be a knowledge base over some logic, e.g. a set
of first-order formulas or a description logic knowledge base.
A generalized active integrity constraint (gAIC) over KB is a
rule r of the form ϕ ⊃ α satisfying the following conditions.
• The body of the rule, ϕ, is a decidable condition over the

logic underlying KB, i.e. there is an algorithm to decide
whether Γ |= ϕ for any knowledge base Γ.

• The action α is such that Γ◦α |= ¬ϕ for every Γ, where
Γ ◦ α is the result of updating Γ with the action α.4

As a simple, yet relevant, example, we can take KB to
be a description logic knowledge base and allow α to be
±C(t) or ±R (t1, t2), representing the addition or removal
of an instance of a concept or role to the knowledge base.
However, the relationship between the left- and right-handside
of the gAICs for KB can take into account the structure of the
knowledge base itself. For example, if KB contains the axiom
C v D for concepts C and D, then ¬D(t) ⊃ +C(t) would
be a valid gAIC.

Given KB and a set η of gAICs over KB, we can define the
well-founded repair tree for 〈KB, η〉 in a similar way as for
AICs over databases: each node is a set of actions; for each
node, each rule whose body is not satisfied after updating KB
with the node’s actions generates a descendant obtained by
adding the action in the head of the rule to the current node.
Consistent leaves (where logic consistency is required) are
guaranteed to repair the knowledge base, in the sense that all
gAICs are satisfied, and we define minimal repairs occurring
in the tree to be the well-founded repairs of 〈KB, η〉. This
straightforwardly generalizes the earlier definitions: if KB is
a database, then AICs over KB are gAICs over that database,
and the well-founded repair tree for 〈KB, η〉 coincides with
the one defined earlier.

Also note that both the repair tree and the justified repair
tree are not readily generalizable. The size of the repair tree
now depends on the size of KB and not of η, since there is no
syntactic relationship between conditions and actions allowed
in rules, which makes it unusable in practice. As for justified
repair trees, their definition is directly related to the specific
syntactic structure of AICs: the notion of non-updatable atom
in the body of a rule has no counterpart in this more general
setting. However, the well-founded repair tree is the “right”
generalization since it captures the most adequate notion of
repair, as argued above.

VI. CONCLUSIONS AND FUTURE WORK

We introduced an operational semantics for active integrity
constraints, showing how repairs and justified repairs for a
database I with a set of AICs η can, under the right conditions,
be computed by a search in an adequately constructed tree.

4Note that it does not suffice to guarantee this condition for KB, since α
must be able to repair ϕ even after KB has been updated.

The complexity of the algorithms we present is the best
that can be hoped, since existence of the different kinds of
repairs is an NP - or Σ2

P -complete problem. In the first case
– finding repairs or justified repairs for a normalized η –,
the trees exactly compute the desired kinds of (weak) repairs
(possibly requiring an inclusion test, which does not affect
the overall complexity); in the second case – searching for
justified repairs with possibly non-normalized AICs –, the
trees can compute all repairs, but one must still verify whether
they are justified (which is again an NP -complete problem).
Our algorithms also provide more intuition on the different
semantics of repairs, since they follow the original idea behind
AICs: that the actions in their heads should “guide” the search
for repairs. Also note that these algorithms are suitable for
parallel computation, since each branch is independent of the
remaining ones; and all the well-known search techniques for
trees can be applied especially if one only wishes to find one
viable repair.

Furthermore, while attempting to build similar trees to
compute founded repairs, we were driven to the notion of
well-founded repair tree, which provides a more fine-grained
characterization of founded, but non-justified repairs, distin-
guishing essential circularity of support from support that is
indeed circular when one considers the final repair, but can be
motivated by the heads of violated active integrity constraints.

The notion of well-founded repair tree also allowed us
to define analogues of active integrity constraints in a more
general setting of knowledge bases, namely description logics
where reasoning techniques are available, and give operational
semantics for these generalized AICs. We intend to pursue
this idea by implementing these algorithms on top of existing
ontologies.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

[2] G. Antoniou, C.V. Damasio, B. Grosof, I. Horrocks, M. Kifer,
J. Maluszynski, and P.F. Patel-Schneider. Combining rules and ontolo-
gies: A survey. Technical Report IST506779/Linköping/I3-D3/D/PU/a1,
Linköping University, 2004. available at http://rewerse.net/publications/.

[3] C. Beeri and M.Y. Vardi. The implication problem for data dependencies.
In Proceedings of the 8th Colloquium on Automata, Languages and
Programming, pages 73–85, London, UK, 1981. Springer-Verlag.

[4] L. Caroprese, S. Greco, C. Sirangelo, and E. Zumpano. Declarative
semantics of production rules for integrity maintenance. In S. Etalle
and M. Truszczynski, editors, ICLP, volume 4079 of Lecture Notes in
Computer Science, pages 26–40. Springer, 2006.

[5] L. Caroprese and M. Truszczyński. Active integrity constraints and
revision programming. Theory Pract. Log. Program., 11(6):905–952,
November 2011.

[6] J. Chomicki. Consistent query answering: Five easy pieces. In
T. Schwentick and D. Suciu, editors, ICDT, volume 4353 of LNCS,
pages 1–17. Springer, 2007.

[7] S. Flesca, S. Greco, and E. Zumpano. Active integrity constraints. In
E. Moggi and D. Scott Warren, editors, PPDP, pages 98–107. ACM,
2004.

[8] V.W. Marek and M. Truszczynski. Revision programming. Theor.
Comput. Sci., 190(2):241–277, 1998.

[9] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann, 1996.

[10] M. Winslett. Updating Logical Databases. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

