
Requirements-Driven Self-Repairing against
Environmental Failures

Rui-Zhi Dong1 ∗, Xin Peng1 , Yi-Jun Yu2, Wen-Yun Zhao1
1 School of Computer Science, Fudan University, Shanghai 201203, China

2 Department of Computing, The Open University, Milton Keynes MK7, United Kingdom
Email: {09110240009, pengxin, wyzhao}@fudan.edu.cn; y.yu@open.ac.uk

Abstract— Self-repairing approaches have been proposed to
alleviate the runtime requirements satisfaction problem by
switching to appropriate alternative solutions according to the
feedback monitored. However, little has been done formally on
analyzing the relations between specific environmental failures
and corresponding repairing decisions, making it a challenge to
derive a set of alternative solutions to withstand possible envi-
ronmental failures at runtime. To address these challenges, we
propose a requirements-driven self-repairing approach against
environmental failures, which combines both development-time
and runtime techniques. At the development phase, in a stepwise
manner, we formally analyze the issue of self-repairing against
environmental failures with the support of the model checking
technique, and then design a sufficient and necessary set of
alternative solutions to withstand possible environmental failures.
The runtime part is a runtime self-repairing mechanism that
monitors the operating environment for unsatisfiable situations,
and makes self-repairing decisions among alternative solutions
in response to the detected environmental failures.

I. INTRODUCTION

The satisfaction of a requirement of software-intensive
systems relies on the assumptions about the behaviors of
both the software components and their environment [1], [2].
Accordingly, a system specification must be based on these
assumptions: specifically, environmental failures (i.e., envi-
ronmental components failing to meet relevant assumptions)
may cause either system failures or quality degradation. For
example, the performance of the service may degrade when
the available network bandwidth is less than what is expected.

To alleviate the problem of such failures, self-repairing [3],
[4] systems that automatically detect, diagnose, and repair
localized software and hardware problems have been proposed
as an important capability of self-management. Approaches
have been proposed to achieve the purpose of self-repairing
using requirements-driven reconfiguration [4], pre-defined
Event-Condition-Action (ECA) rules [5], [6] etc. Assume the
availability of alternative solutions for various potential fail-
ures, however, such approaches lack a systematic analysis of
the relationship between environmental failures and derivation
of the corresponding alternative solutions.

To derive alternative solutions from the analysis of fail-
ure conditions, in this paper, we propose a requirements-
driven self-repairing approach against environmental failures,
applying both development-time and runtime techniques. The
development-time part stepwise derives alternative solutions
by applying formal analysis with the support of a model

checker. The runtime part is a runtime self-repairing mecha-
nism that monitors the operating environment for unsatisfiable
situations, analyzes the aftereffects of any detected failures,
and makes switching decisions among alternative solutions in
response to environmental failures.

II. PRELIMINARIES

A. Problem Frames

In our approach, we use the Problem Frames (PF) approach
as our underlying modeling framework. The PF approach [1]
provides a basis for analyzing the structure of software prob-
lems and their context. In this approach, a software problem
comprises three set of descriptions: (1) a description of the
context in which the problem resides in term of known domain
properties of the world, denoted by W ; (2) a description of the
required properties of the world expressing the requirements
of the stakeholders, denoted by R; and (3) a description
specifying the software-to-be (namely machines) must do so
as to meet the requirements, denoted by S. The approach
defines requirements engineering as the problem of finding
the specification of the software-to-be to ensure the given
requirements in the given context.

The PF approach provides a series of tools to analyze the
structure of a software problem, involving context diagram and
problem diagram. A context diagram captures the environment
by decomposing a software problem intr physically connected
domains, whilst a problem diagram which specialises the
settings for the context helps to structure and analyze the
requirement.

After structuring a software problem, we must seek for a
solution to ensure the desired requirement under the given
context. Typically, we can use problem progression [1] to
derive a solution for a problem. Now several approaches
have been proposed to achieve problem progression, such as
requirements progression [7] etc.

B. Dependability Arguments with Trusted Bases

Based the PF approach, Kang et al [2] propose the concept
of trusted base to represent the subset of components in
the context which the satisfaction of a requirement relies
on. A trusted base for a requirement is a set of domains
and machines that are crucial to establish the requirements
regardless of how the domains outside the trusted base behave.

With the introduction of trusted base, the argument of the re-
quirements in the problem frames approach is transformed into
dependability arguments with trusted bases. The dependability
argument with trusted bases [2] refers to determining whether
or not the elements in the trusted base is sufficient to establish
the desired requirement.

Typically, the trusted base for a requirement can be automat-
ically derived by formalization tools (such as model checkers
and theorem proofers) which are capable of finding the un-
satisfiable core for a specific proposition. The unsatisfiable
core for a proposition [8] is the set of constraints crucial to
the satisfaction of the preferred proposition. Kang et al [2]
investigate the relationship between the unsatisfiable core and
trusted base, and find that the trusted base for a requirement
is the set of elements (namely, domains and machines) whose
constraints belong to the unsatisfiable core for the proposition
expressing the argument of the specified requirement.

III. RATIONALE

Considering the issue of runtime environmental failures, to
ensure the continuous satisfaction of the critical requirement
denoted by F , an intuitive self-repairing policy is to switch
to an alternative solution that can tolerate the detected envi-
ronmental failures and implement the same requirements with
possibly degraded quality. Therefore, the adaptation knowl-
edge base shall involve different ways to ensure F . Each
mean to meet F refers to a software problem, and involves
different machine specifications which depends on different
environmental components.
Definition 1: (Rephrased Requirement) Given Pi denoting a
software problem to find a solution to ensure F , Domains(Pi)
denoting the set of domains involved in Pi, DA(Pi) denoting
domain properties of elements in Domains(Pi), the rephrased
requirement denoted by Ri represents the rephrased expres-
sions of F in terms of domain properties of components within
Domains(Pi).

Next, we can develop a set of alternative solutions to ensure
F . Each solution depends on a different set of domains.
Therefore, considering the definition of trusted base, the
trusted base of F has multiple candidates.

Although the means to define alternative solution for a crit-
ical requirement has been determined, the criteria to evaluate
whether or not the current set of alternative solutions are
sufficient so as to withstand possible environmental failures
is kept unexplored. To deal with such issue, we introduce the
definition of rephrased model and try to adopt formal analysis.
Definition 2: (Rephrased Model) Suppose a set of alternative
solutions S (S= { S1, ..., Sn }) to meet F have been developed.
Given Pi denoting a software problem to find solution Si, a
rephrase model RM may be constructed by composing the
descriptions of every variant problems at present, together with
the rephrased requirementRF of F in terms of the domain
phenomena within RM .

After a rephrase model is developed, we update
TDA(RM,RF) and then evaluate its acceptance by domain
experts. If the current TDA(RM,RF) is acceptable, the

current set of alternative solutions is sufficient to ensure F .
Otherwise, more solutions are to be introduced. In this paper,
we adopt model checking technique to complete this task.

In order to define the monitoring requirements specifying
how to monitor environmental components, we introduce
the definition of Trusted Domain Assumption together with
Corollary 3.
Definition 3: (Trusted Domain Assumption) Given Pi denoting
a software problem to find a solution to ensure F , Ri denoting
the rephrased requirement of F , Si denoting a solution to meet
Ri, DA(Pi) representing the domain assumptions relevant to
Pi, the trusted domain assumptions TDA(Pi, Ri) are domain
assumptions crucial to the satisfaction of Si.

Considering the definitions of unsatisfiable core,
TDA(Pi, Ri) only involves a subset of constraints within the
unsatisfiable core of the argument of requirement Ri. As a
result, whenever the unsatisfiable core for the argument of Ri

is identified, TDA(Pi, Ri) can be determined.
Theorem 1: (Monitoring Condition) Given Si denoting a
solution to ensure the rephrased requirement Ri of F , Pi

denoting the software problem to find Si, ∀ d ∈ Domains(Pi)∩
TB(Pi, Ri) are domains to be monitored, and domain

assumptions in the set of TDA(Pi, Ri) are constraints
which shall be involved in the definition of the monitoring
requirement.

Next, to make preparation for runtime adaptation against
environmental failures, we define the rules concerning adap-
tion conditions and switching conditions. Here, the adaptation
conditions are determined by evaluating whether or not any
trusted domain assumptions become invalidated so as to de-
termine whether or not an adaptation is required, whilst the
switching conditions refer to find an alternative solution that
can tolerate the detected environmental failures.
Theorem 2: (Adaptation Condition) Given Si denoting a
solution currently adopted, FDA denoting the set of domain
assumptions which are detected to be invalidated during the
runtime, Pi representing the software problem to find Si, Ri

representing the rephrased requirement of F , an adaptation is
needed if and only if FDA ∩ TDA(Pi, Ri) ̸= Φ.

When an adaptation is required, we may transfer to another
solution which can tolerate the detected environmental failures.
Theorem 3: (Switching Condition) Suppose that the detected
environmental failures make the currently adopted solution Si.
Given i ̸= j, Si ̸= Sj , Sj denoting a candidate solution to en-
sure F , Ri representing the rephrased requirements of F in the
software problem Pi concerning finding Si, Rj representing
the rephrased requirements of F in the software problem Pj

concerning finding Sj , FDomains(Pi, Ri) denoting the set of
domains which are detected to misbehave during the runtime,
a shift from Si to Sj is applicable if FDomains(Pi, Ri) /∈
TB(Pj , Rj).
Proof. Because FDomains(Pi, Ri) /∈ TB(Pj , Rj), those
misbehaved domains do not belong to TB(Pj , Rj). Then, ac-
cording to the definition of trusted base, the invalided domains
have no aftereffect to the satisfaction of Ri. Therefore, a shift
from Si to Sj will ensure the continuous satisfaction of F . �

At runtime, there may be conditions that multiple alternative
solutions can be adopted. In such cases, we shall select
a solution with the best quality satisfaction guided by an
applicable utility function. Therefore, we shall investigate the
contribution links between quality requirements and a solution
in advance. Following the method of Pent et al [9], we may
investigate and specify the contribution relationships between
a solution and the preferred quality requirements.

IV. OUR APPROACH

In this section, we first present an overview of our approach,
and then introduce the two key techniques of our method, i.e.,
the derivation of alternative solutions at development time and
self-repairing decision making at runtime.

A. Overview

To achieve self-repairing against environmental failures, we
propose a requirements-driven approach as shown in Figure 1.
Our approach involves both development and runtime phases.
The objective of the development phase is to derive a series
of alternative solutions that can tolerate a comprehensive set
of environmental failures. At runtime, when environmental
failures are detected, the self-repairing mechanism analyzes
the impact and makes self-repairing decisions by switching to
an applicable solution accordingly.

Fig. 1. An overview of our approach

The development part of our approach begins with the
identification of the critical requirement F and its related
quality attributes. To ensure the satisfaction of F under dif-
ferent kinds of environmental failures at runtime, we take an
iterative process (as shown in Figure 2) to derive a set of
alternative solutions. Within each iteration, a variant problem,
which incorporates a new alternative solution for F, is derived
from the descriptions of the motivating problem for F . Based
on the description of all variant problems at present, we update
update trusted domain assumptions TDA(RM,RF) for F.
And then, we evaluate the acceptance of the current TDA(F).
After evaluation, if the current set of TDA(RM,RF) are
deemed to be acceptable or no more variant problems can be
derived, the iterative process for F ends with a set of alternative
solutions. Finally, for each of identified alternative solution, we
analyze its contributions to the preferred quality attributes. The
set of alternative solutions together with their trusted domain
assumptions and the annotated quality contributions are then
used as the knowledge base for runtime self-repairing.

The runtime part of our approach is a self-repairing mecha-
nism with a planning algorithm. When environmental failures
are detected at runtime, the planning process evaluates whether
or not the detected environmental failures have influences
on the solution currently adopted, and then makes switching
decisions by choosing an applicable solution if necessary.

Derive a variant

problem Pi for F

Update

TDA(RM, RF)

Determine the causes

of the counterexample

Raise

concerns

[alternative

domain

available]

i= i+1

[alternative

domain

unavailable]

a counterexample

 Static analysis

[TDA(F) is

acceptable]

Dependability Argument
Determine the

acceptance of

TDA(RM, RF)

Derive a solution

Si for Pi

Ri: rephrased requirement in Pi,

Pi

formal decriptions of

DA(Pi), Ri and Si

updated TDA(RM, RF),

updated RF,

Generate

TB(Pi, Ri)

F,

context model

TB(Pi, Ri)

formal

decriptions of

DA(Pi), Ri

and Si

[TDA(F) is

not acceptable]

i=1

Analyzing the newly derived variant problem

Formalize Pi

descriptions of Pi in natural language

Updating

TDA(RM, RF)

Fig. 2. Derivation of alterative solutions

B. Derivation of Alternative Solutions

1) Variant Problem Analysis
In the first iteration, based on the context model of the target

system, an initial variant problem is usually identified by con-
sidering the most typical context settings for F. In subsequent
iteration, when a new variant problem Pi is identified, we
rephrase the critical requirement F in terms of the phenomena
within Pi, resulting in a variant requirement Ri. Next, we
use the technique of requirements progression [7] to derive a
solution Si for Pi and the corresponding domain assumptions
DA(Pi, Ri).

2) Updating Trusted Domain Assumptions
To make preparation for the update of TDA(RM,RF),

we firstly formalize the descriptions of all variant problems at
present. In this paper, we choose Alloy [10] as our modeling
language. Alloy is a formal language based on first-order
relational logic with an analysis engine, Alloy Analyzer, which
allows bounded model checking and the discovery to finding
unsatisfiable core.

Next, based on the formal descriptions of available vari-
ant problems, we construct the rephrased model RM for
F , and update FM . Next, following the method described
in paper [11], we update the trusted domain assumptions
TDA(RM,RF).

3) Dependability Arguments
After that, we argument the acceptance of the trusted

domain assumptions TDA(RM,RF) with domain experts. If
the newly derived trusted domain assumptions are acceptable,
we are convinced that current set of alternative solutions
are sufficient to ensure F , and thus dependability arguments
are completed. Otherwise, we shall analyze the aftereffects

of those suspicious domain assumptions, and try to try to
introduce new environmental components taking place of
the domains which are relevant to those suspicious domain
assumptions.

For example, we may construct and run an assert in
Alloy expressing the situation that those suspicious domain
assumptions become invalid, and thus a counterexample is
returned. The analysis of the derived counterexample will
help determine what the substitute for domains concerning
suspicious domain assumptions should behave.

Considering that the characteristics of different domains
may differ a lot, we identify two patterns to cope with
such issue: (1)if the domains involving suspicious domain
assumptions have no substitutes due to some limitation, we
have to tolerate the failures of the domain; (2)otherwise,
alternatives for those domains are introduced.

C. Self-Repairing Decision Making at Runtime

In order to cope with such issue, a Runtime planning algo-
rithm(as shown in Figure 3) is proposed. In the control loop,
we firstly communicate with deployed sensors and/or monitors
to collect information about the operating environment, and
thus the occurrence of environmental failures are determined
(Line 1). Secondly, we evaluate the aftereffects of the detected
environmental failures by accessing whether or not any el-
ements in the set of invalidated environmental components
belong to the trusted base of the solution currently adopted
(Line 2). If the set of invalidated environmental components
do not intersect that of the trusted base, no adaptation is
required and thus the current solution is maintained (Line
3); otherwise, an adaptation action is required, and then an
applicable alternative solution is to be selected (Line 4-20).
To make preparation for finding an appropriate solution, we
firstly select a subset of applicable alternative solutions that are
free of detected environmental failures, and thus candidates are
filtered (Line 5-8). If there exist multiple competing alternative
solutions, we compare computed values of those candidates
across domain-specific utility function, and thus the alternative
with highest scores is chosen (Line 11-20). But if there is
no elements in the set of the computed candidates, we have
to tolerate detected failures (Line 9-10), and thus the current
solution is maintained.

V. CONCLUSION AND FUTURE WORK

To have a software system withstand environmental fail-
ures, a requirements-driven self-repairing method has been
proposed. Furthermore, we demonstrate our method on a
case study of a mobile application. Results of simulation
experiments show the effectiveness of our approach.

Since environmental failures are often a consequence of ac-
cumulating of ever-changing resources, we plan to investigate
the relationships between resource changes and environmental
failures, and to exploit the relationships between them by
sensitivity analysis with the support of the system dynamics
technique.

0

0 0

0

: F the preferred critical requirement,

 S the solution currrently adopted,

 P software problem to seek S ,

 R rephras

Input denoting

denoting

denoting the

denoting the 0

1

ed requirement of F in P ,

 S={S ,...,S } a set of candidate solutions for F,

 P the rephrased requirement of F in P ,

 representing the set of prefe

n

i i

denoting

denoting

Q rred quality factors,

 alternatives representing the set of filtered solutions

: candidate representing an applicable solution

1 ();

2 i

Output to ensure F

invalidDomains getFailedEnvComponent

0 0

0

0

f(invalidDomains TB(P , R) == null)

3 candidate = S ;

4 else{

5 (S){

6 (invalidDomains TB(P , R) == null)

7 let S alternativ

i

i

i

for each S

if

!

!

0

es;

8 }

9 if(#(alternatives) ==0){

10 candidate = S

11 }else{

12 int i, max =0;

13 for(each S alternatives){

14

j

 i=getUtilityValue(S , Q);

15 if(i >max)

16 max=i

17 }

18 }

19 (max,

j

candidate getSolution alte);

20 }

21 return candidate;

rnatives

Fig. 3. Runtime adaptation algorithm

REFERENCES

[1] M. Jackson, Problem frames: analysing and structuring software devel-
opment problems. Addison-Wesley, 2001.

[2] E. Kang and D. Jackson, “Dependability arguments with trusted bases,”
in Requirements Engineering Conference (RE), 2010 18th IEEE Inter-
national. IEEE, 2010, pp. 262–271.

[3] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41–50, 2003.

[4] Y. Wang and J. Mylopoulos, “Self-repair through reconfiguration:
A requirements engineering approach,” in Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE Computer Society, 2009, pp. 257–268.

[5] J. Keeney and V. Cahill, “Chisel: A policy-driven, context-aware,
dynamic adaptation framework,” in Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on. IEEE, 2003, pp. 3–14.

[6] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste, “Rain-
bow: Architecture-based self-adaptation with reusable infrastructure,”
Computer, vol. 37, no. 10, pp. 46–54, 2004.

[7] R. Seater, D. Jackson, and R. Gheyi, “Requirement progression in prob-
lem frames: deriving specifications from requirements,” Requirements
Engineering, vol. 12, no. 2, pp. 77–102, 2007.

[8] E. Torlak, F. Chang, and D. Jackson, “Finding minimal unsatisfiable
cores of declarative specifications,” FM 2008: Formal Methods, pp. 326–
341, 2008.

[9] X. Peng, Y. Yu, and W. Zhao, “Analyzing evolution of variability in
a software product line: from contexts and requirements to features,”
Information and Software Technology, vol. 10, no. 7, pp. 707–721, 2011.

[10] D. Jackson, Software Abstractions: logic, language and analysis. MIT
Press (MA), 2012.

[11] E. Kang, “A framework for dependability analysis of software systems
with trusted bases,” M. Eng. thesis, Massachusetts Institute of Technol-
ogy, Cambridge, USA, Feb. 2010.

