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Abstract— The emerging collective motions of swarms of
interacting agents are a subject of great interest in application
areas ranging from biology to physics and robotics. In this
paper, we conduct a careful analysis of the collective dynamics
of a swarm of self-propelled heterogeneous, delay-coupled
agents. We show the emergence of collective motion patterns
and segregation of populations of agents with different dynamic
properties; both of these behaviors (pattern formation and
segregation) emerge naturally in our model, which is based
on self-propulsion and attractive pairwise interactions between
agents. We derive the bifurcation structure for emergence of
different swarming behaviors in the mean field as a function of
physical parameters and verify these results through simulation.

NOTE TO PRACTITIONERS

Our research deals with understanding the emerging be-
haviors of groups of simple, interacting agents. The mo-
tivation for studying this subject is twofold: first, under-
standing the mechanisms that govern collective motions of
biological organisms in processes like wound healing, cancer
growth, flocking and herding, etc. Second, the application
of our insights to synthesis of controllers for swarms of
autonomous robotic agents to perform surveillance or mon-
itoring in uncertain environments. Swarming behavior is
typically modeled for groups of identical agents, under the
assumption that sensing and processing times are negligibly
small. We incorporate the real-world complications of (1)
finite sensing/processing time, which appears as a delay
in our model of agent motion, and (2) differences in the
dynamical capabilities of swarming agents. We conduct a
theoretical analysis of the collective motions of the swarm.
We show the emergence of large-scale patterns in the swarm
motion as a function of the physical parameters or the swarm,
as well as segregation of the agents into separate groups
where all agents in a given group have identical dynamics.

I. INTRODUCTION

The dynamics of aggregates, or swarms, of interacting
mobile agents form an active area of study for biological,
physical, and synthetic systems. Simple rules of interaction
between agents can lead to a wide range of complex ag-
gregate behaviors, even in the absence of leader agents and
global motion strategy [1]. The emergence of rich collective

behaviors from simple interactions is, in fact, a wide-spread
phenomenon in many application domains. In biology, the
formation of aggregates is common on a wide range of
spatio-temporal scales, for organisms ranging from bacteria
to fish to birds and humans [2]–[6]. In robotics, aggregates of
locally interacting agents have been proposed as a means to
create scalable sensor arrays for surveillance and exploration
[7], [8]; and for formation of reconfigurable modal systems,
in which a group of simple agents can be used to accomplish
a task that would be impossible for any agent individually,
as in [9]–[11].

Understanding the dynamical characteristics of swarm be-
havior is essential for algorithm design and implementation.
There is a wide range of existing works which model the
dynamics of swarms on the level of individual agents [4]–[6],
[12], as well as using continuum models [3], [13], [14]. It has
been shown that, under the right conditions, swarms converge
to organized steady-state behaviors; and furthermore, that
environmental noise and/or processing delay acting on agent
dynamics can lead to formation of new steady-state motions,
or phase transitions between between co-existing steady
states [1], [15], [16]. Noise is used to model effects of envi-
ronmental disturbance and unknown interaction dynamics in
robotic systems. Delays are important in biological modeling
of population dynamics, blood cell production, and genetic
networks [17]–[19], etc.; and in mathematical models of
robot networks where communication and processing delays
must be taken into account [20].

Most existing works assume that the swarm is made
up of agents with identical dynamics. However, real-world
swarms often include agents with varying dynamical prop-
erties, which leads to new collective behaviors. In biological
systems, heterogeneity arises quite naturally when, for ex-
ample, motion or sensing capabilities in an age-structured
swarm vary significantly with age. A more striking example
is that of of predator-prey interactions between a herd of
prey animals and an individual or small group of predators,
where there are distinct time-scale differences in the motion
of predator and prey animals [6]. Another systems where
heterogeneity plays a significant role is the segregation of
intermingled cell types, as during growth and development
of an organism. It has been shown that segregation can be
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achieved simply by introducing heterogeneity in intercell
adhesion properties [21], [22], or by increasing the intercell
attraction between self-propelled cells of a single type [23].

An approach based on the cell segregation model in [23]
is used in [24] to design a potential-based controller that
achieves segregation in swarms of self-propelled autonomous
robots. Heterogeneity also appears in robotic systems when
individual robots with disparate capabilities are used together
to achieve a common goal, as in [11]. Certain robots in the
swarm may lack capabilities that are costly to implement.
Stranieri et al [25], for example, show that flocking behavior
can be achieved when a fraction of the agents lack the ability
to align their velocities with those of their neighbors. Addi-
tionally, heterogeneity may arise over time as some agents
in the swarm malfunction. For example, [26] introduces
an observer to judge the overall “health” of a swarm, as
individual agents lose speed from energy dissipation.

In this paper we carry out a systematic analysis of the mo-
tion of a swarm composed of heterogeneous agents, using the
methodology outlined in [1]. We extend the model in [1] and
analyze the dynamical behaviors of a heterogeneous swarm
of delay-coupled agents, where the swarm is divided into
two distinct populations with different motion capabilities.
The inspiration for our model comes from the idea of using
swarms of autonomous mobile agents as sensor platforms
to survey/monitor an area of interest. Such agents may have
different dynamical properties if, for example, some agents
but not others are equipped with a particular sensor package
that interferes with their motion. The package may be too
expensive or otherwise impractical to mount on all swarm
agents. Overall, allowing for heterogeneity in dynamical
behaviors of swarm agents gives greater flexibility in system
design, and is therefore desirable not only from a theoretical
but also from a practical point of view.

The research presented here gives a general approach of
modeling and analysis that can be used to understand the
effects of individual agent dynamics on the collective motion
of swarms. We know that swarms of self-propelled delay-
coupled agents exhibit self-ordering and pattern formation,
and that the collective patterns formed depend on the model
parameters [1], [15]; furthermore, we observe in simulation
that heterogeneity in the swarm composition leads to segrega-
tion of the individual swarm populations. We will show how
collective motion patterns (translation, ring formation, and
rotation about a common center of mass) and segregation
of individual populations emerge in a basic but general
swarming model.

II. PROBLEM STATEMENT

Consider a swarm of delay-coupled self-propelled agents,
or robots, comprised of two distinct populations (1 and 2),
following a single motion strategy, but with heterogeneous
dynamics. The agents in Population 2 are less “maneuver-
able” in the sense that they are not able to accelerate as
rapidly as those in Population 1. This setup models co-
deployment of small, fast agents, and larger, slower agents
in a given area. Let κ1 and κ2 be the inverse mass of agents

in Populations 1 and 2, respectively. We scale units so that
κ1 = 1 and κ2 = κ ∈ (0, 1).

Let rki ∈ R2 denote the position of the ith agent in
Population k (k = 1, 2); let N1 and N2 denote the number
of agents in Populations 1 and 2, respectively; and let N =
N1 + N2 be the total number of agents in the swarm. The
agents have self-propulsion and are globally attracted to each
other in a symmetric fashion, with coupling coefficient a,
however, there is a delay τ in sensing of agent positions. For
notational convenience, we introduce the following notation:
let κ1 = 1 and κ2 = κ. The motion of the agents is governed
by the following set of delay differential equations (dots
denote differentiation with respect to time):

r̈1
i = κ1

(
1−

∥∥ ṙ1
i

∥∥)2 ṙ1
i (1a)

− aκ1

N

(
N1∑

j 6=i,j=1

(r1
i (t)− r1

j (t− τ))

+

N2∑
j=1

(r1
i (t)− r2

j (t− τ))

)
r̈2
i = κ2

(
1−

∥∥ ṙ2
i

∥∥)2 ṙ2
i (1b)

− aκ2

N

(
N1∑
j=1

(r2
i (t)− r1

j (t− τ))

+

N2∑
j 6=i,j=1

(r2
i (t)− r2

j (t− τ))

)
.

The first term in the above equations represents the self-
propulsion of swarm agents, while the second models pair-
wise attraction between all agents in the swarm. This sim-
plified model does not include short-range repulsion or other
collision-avoidance strategies; however, earlier studies with
homogeneous swarms indicate that the collective dynamics
of the swarm are not significantly altered by the introduction
of short-range repulsion terms.

The goal is now to characterize the steady-state motions
of this system. Following the approach in [1], we begin by
considering the dynamics in the limit where the number of
agents goes to infinity.

III. MEAN-FIELD APPROXIMATION

Since basic collective swarm motions. as observed in sim-
ulation, consist of translation and rotation, the steady-state
motions of the centers of mass of the individual populations
are a means to characterize the motion of the overall group.
Let R1 and R2 ∈ R2 denote the position of the centers of
mass of Populations 1 and 2, respectively:

Rk(t) =
1

Nk

Nk∑
i=1

rki (t), k = 1, 2. (2)

As in [1], we assume that the deviations of the robots from
the centers of mass of their respective populations are small.
We analyze the steady-state motions of the swarm in the
limit as Nk →∞ for k = 1, 2.
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The positions of the agents in each population can be
written relative to the respective center of mass as

rki (t) = Rk(t) + δrki (t). (3)

Note that
N1∑
i=1

δr1
i (t) =

N2∑
i=1

δr2
i (t) = 0. (4)

For convenience, we introduce the notation

k̄ =

{
2 for k = 1

1 for k = 2.
(5)

Substituting (3) into (1a) and simplifying the resulting ex-
pression using (4) allows us to write the equations of motion
in terms of Rk and δrk:

R̈k + δr̈ki = κk

(
1−

∥∥∥ Ṙk + δṙki

∥∥∥2
)

(Ṙk + δṙki )

− aκk
N

(
(Nk − 1)(Rk(t)−Rk(t− τ)

+ δrki (t)) + δrki (t− τ)

+Nk̄(Rk(t)−Rk̄(t− τ) + δrki (t))
)
.

(6)

Summing the equations for δrki over i = 1, . . . , Nk, and
dividing through by Nk, we get the equation of motion for
the centers of mass of Population k:

R̈k = κk

(
1−

∥∥∥ Ṙk(t)
∥∥∥2
)
Ṙk(t)

− κk
Nk

Nk∑
i=1

(∥∥ δṙki ∥∥2
Ṙk(t)

+
[∥∥ δṙki (t)

∥∥2
+ 2〈Ṙk(t), δrki (t)〉

]
δrki (t)

)
− aκk

N

(
(N − 1)Rk(t)

− (Nk − 1)Rk(t− τ)−Nk̄Rk̄(t− τ)
)
,

(7)

where 〈·, ·〉 denotes the dot product in R2.
We now take the limit N →∞, while keeping the fraction

of agents in Population 1,

c = N1/N, (8)

constant. Under the assumption of small deviations of the
agents from the centers of mass of the respective popula-
tions, terms in δrki can be neglected. We get the following
equations for the motion of the center of mass of Population
k (k = 1, 2):

R̈k = κk

(
1−

∥∥∥ Ṙk(t)
∥∥∥2
)
Ṙk(t)

− aκk
(
Rk(t)− cR1(t− τ)− (1− c)R2(t− τ)

)
.

(9)

Let [Xk, Yk] = Rk and [Uk, Vk] = Ṙk denote, respectively,
the position and velocity of the center of mass of population
k = 1, 2. Let superscript τ denote a delay τ , so that Xτ (t) =

X(t− τ). The equations of motion can be written in terms
of Xk, Yk, Uk, and Vk as

Ẋk = Uk (10a)

Ẏk = Vk (10b)

U̇k = κk(1− U2
k − V 2

k )Uk

− aκk(Xk − cXτ
1 − (1− c)Xτ

2 ) (10c)

V̇k = κk(1− U2
k − V 2

k )Vk

− aκk(Yk − cY τ1 − (1− c)Y τ2 ). (10d)

The system in (10) has an invariant stationary solution given
by

X1 = X2 = X0, Y1 = Y2 = Y0

U1 = U2 = 0, V1 = V2 = 0,
(11)

as well as a translating solution where the center of mass
travels in a straight line at constant velocity.

A. Bifurcation of the stationary solution

About the stationary solution, the system exhibits a num-
ber of Hopf bifurcations for different values of the parameters
a, c, κ, and τ . To find the locations of these bifurcation
points, consider the linearization of the dynamics (10) about
the stationary solution (without loss of generality, we choose
X0 = Y0 = 0). The linearized dynamics are

Ẋk = Uk (12a)

Ẏk = Vk (12b)

U̇k = κkUk − aκk
(
Xk − cXτ

1 − (1− c)Xτ
2

)
(12c)

V̇k = κkVk − aκk
(
Yk − cY τ1 − (1− c)Y τ2

)
. (12d)

Let ξ = [X1, Y1, U1, V1, X2, Y2, U2, V2]T . The above
system takes the form ξ̇ = Lξ, where L is a linear operator.
Let ν denote an eigenvector of L; then a solution starting at ν
can be expressed as eλtν. This equation can only be satisfied
if the matrix M(λ; a, c, κ, τ) is singular, where M = λI−L.
That is, λ must satisfy 0 = detM = D2, where

D(λ; a, c, κ, τ) = (λ2 − λ+ a)(λ2 − κλ+ aκ)

− ((κ+ c− κc)λ2 − κλ+ aκ)ae−λτ .
(13)

Hopf bifurcations of the mean-field equations occur when
Re(λ) = 0. Setting λ = iω gives D(iω; a, c, κ, τ) = 0
which allows us to solve for parameter values of where Hopf
bifurcations occur. Solutions in terms of a and τ , for different
values of c and κ, are shown by the solid blue lines in Fig.
1.

Below the first Hopf bifurcation curve, the mean-field
predicts a stationary state which corresponds to a ring state
in the full swarm dynamics. This is similar to the ring
state described in [1], where swarm agents circle about a
stationary center of mass in either direction, with constant
radius and speed. The first Hopf bifurcation in the mean-
field approximation gives rise to a rotating state analogous
to the one in [1], in which the centers of mass of the swarm



4

0 2 4 6
0

2

4

6

a

τ

(a) κ = 0.2 and c = 0.2

0 2 4 6
0

2

4

6

a

τ

(b) κ = 0.6 and c = 0.2

0 2 4 6
0

2

4

6

a

τ

(c) κ = 0.9 and c = 0.2

0 2 4 6
0

2

4

6

a

τ

(d) κ = 0.2 and c = 0.5

0 2 4 6
0

2

4

6

a

τ

(e) κ = 0.6 and c = 0.5

0 2 4 6
0

2

4

6

a

τ

(f) κ = 0.9 and c = 0.5

0 2 4 6
0

2

4

6

a

τ

(g) κ = 0.2 and c = 0.7

0 2 4 6
0

2

4

6

a

τ

(h) κ = 0.6 and c = 0.7

0 2 4 6
0

2

4

6

a

τ

(i) κ = 0.9 and c = 0.7

Fig. 1: The solid blue lines show τ vs a Hopf bifurcation curves for the center-of-mass heterogeneous swarm dynamics, for
different values of the parameters c and κ. The location of the pitchfork bifurcation where the translating state disappears is
shown by the dashed red curve. The point where the Hopf curve intersects the pitchfork bifurcation curve is the Bogdanov-
Takens point. The “∆” and “+” in (b) show the points in parameter space corresponding to the simulations in Fig. 2 and
Fig. 4, respectively.

populations rotate about a common stationary point. Higher-
order Hopf bifurcations lead to formation of rotating states
with higher angular frequency, but these states appear to
be unstable, based on our simulations with homogeneous
swarms. The introduction of heterogeneity leads to a sepa-
ration between the agents in the two populations in both of
these steady state motions.

B. Ring State

The ring state in the heterogeneous swarm is similar to
that described in [1] for homogeneous agent swarms; that
is, agents move in either direction about a stationary center
of mass, with constant speed and radius. The heterogeneity
introduces a split in the rings formed by the agents of the
two populations, however, so that they become separated (see
Fig. 2).

It can be shown that the angular frequency ωi and radius

ρi of the particles in population i = 1, 2 satisfy

ρ1 = 1/
√
a ω1 =

√
a (14)

ρ2 = 1/
√
aκ ω2 =

√
aκ (15)

(see Appendix for details). Note that the radius for each
population depends only on the strength of the coupling
constant and the acceleration factor; that is, the radii of the
two populations are not coupled and are independent of the
time delay τ .

The above calculations were verified using a full-swarm
simulation with 300 agents, and different values of the
parameters a, κ, c, and τ . The results of comparing the ring
radii and angular velocities obtained from simulation and
theory are shown in Fig. 3.

C. Rotating State

The rotating state, like the ring state, is also present in
the case of a homogeneous swarm [1]. In the rotating state,
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Fig. 2: Simulated swarm of N = 300 agents, with 60
agents in Population 1 (blue) and 240 in Population 2 (red),
converging to the ring state. In this simulation, κ = 0.6,
c = 0.2, a = 1.0, and τ = 2.1. This point in parameter
space is marked by a “∆” in Fig. 1b.

the swarm populations collapse to their respective centers of
mass and rotate about a common center point with constant
phase offset (see Fig. 4).

Our numerical simulations of the full swarm dynamics
suggest that the radii of the rotating populations are equal.
Let ρ denote the radius of the rotating state, ω the angular
frequency, and let ∆θ = θ2 − θ1 denote the phase offset. It
can be shown (see Appendix for details) that these quantities
must satisfy the following relations:

sin ∆θ = (2c− 1)P (c, κ, ω) sinωτ (16)

ω2 = aκ
[
1− cosωτ (17)

+ c((2c− 1) sin2 ωτ + cos2 ωτ)P (c, κ, ω)
]
(18)

ρ =

√
1− a (1− 2c(1− c)P (c, κ, ω) cosωτ) sinωτ

ω

|ω|
.

(19)
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Fig. 3: Comparison of theoretical and simulated radius
and angular velocity in the ring state. Theoretical values
are shown by the solid lines, while values obtained from
simulations are shown by the red crosses. The simulations
were run for a swarm of N = 300 agents, with fraction in
Population 1 c = 0.2 and time delay τ = 1.0.
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Fig. 4: Swarm in the rotating state at t = 323.8. Agents in
Population 1 are shown in blue, while those in Population 2
are in red. The dotted circle shows the trajectory of the two
swarm populations about a common stationary point. The
simulation was run with N = 300 agents, with N1 = 60
and N2 = 240. The parameter values are: κ = 0.6, c = 0.2,
a = 1.0, and τ = 5.0. This point in parameter space is
marked by a “+” in Fig. 1b.

where

P (c, κ) =
(1− κ)(1− cosωτ)

(1 + k)c− 1 + 2(1− κ)c(1− c) sin2 ωτ
. (20)

The above relations may be used to derive theoretical values
for the radius, angular velocity, and phase offset between
Populations 1 and 2. A comparison of the theoretical values
and those observed in full-swarm simulations is shown in
Fig. 5, for different values of the parameters κ, c, a, and
τ . Note that the above relations, derived from the mean-field
approximation, give a good approximation to values obtained
from the full swarm simulation; however, in some cases, the
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use of the mean-field approximation leads to significant error
in computed values.
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Fig. 5: Comparison of theoretical and simulated phase
difference, angular velocity, and radius in the rotating state.
Theoretical values are along the x-axis, while values obtained
from simulations are along the y-axis. The simulations were
run for a swarm of 300 agents, for κ = 0.3, 0.6, 0.9, c = 0.2,
a = 0.5, 1.0, 2.0, 4.0, and τ = 4.0, 5.0.

D. Translating state
The system in (10) has a steady-state translating solution,

where U̇1 = U̇2 = V̇1 = V̇2 = 0, U1 = U2 = U0, V1 = V2 =
V0, and

X1(t) = X2(t) = X0 + U0t (21a)
Y1(t) = Y2(t) = Y0 + V0t. (21b)

U0 and V0 must satisfy:

U2
0 + V 2

0 = 1− aτ, (22)

which is possible only if aτ ≤ 1. In fact, the system (10)
has a pitchfork bifurcation along the parameter-space curve

c

κ
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Different values of aBT are shown by the colors (see colorbar
on the right).

τ = 1/a (see Fig. 1), where the stationary solution gives
rise to the translating state (the other branch of the pitchfork
corresponds to an unphysical solution with imaginary speed).
The same bifurcation curve exists in the homogeneous sys-
tem (κ = 1) [1].

The point where the pitchfork bifurcation coincides with
the first Hopf curve is a Bogdanov-Takens (BT) point (see
Fig. 1). In the homogeneous swarm case, this point is located
at a = 1/2, τ = 2; for the heterogeneous swarm the location
of the point depends on the acceleration factor κ and on the
fraction c of agents in Population 1. The BT point is at

aBT =
κ

2(1− c(1− κ))
(23)

τBT =
1

aBT
. (24)

The value of coupling coefficient at the Bogdanov-Takens
point aBT as a function of κ and c is shown in Fig. 6.

IV. CONCLUSION

In this paper we have analyzed the collective motions of
a swarm of delay-coupled heterogeneous agents. The swarm
motions are characterized by the emergence of large-scale
patterns (translation, ring formation, and rotation), and the
automatic segregation of populations of agents with different
dynamical properties. Separation of the swarm into distinct
populations is a direct consequence of swarm heterogeneity,
and is not observed under homogeneous swarm dynamics.

The patterns observed in simulation were shown to arise
in the motions of the swarm center of mass, in the limit
as the number of agents in each population goes to infinity.
We derive expressions for the speed of the swarm in the
translating state as a function of time delay and coupling
coefficient; for the radii and angular velocities of both agent
populations in the ring and rotating states; and for the fixed
phase offset between populations in the rotating state. We
have verified these calculations with simulations of the full-
swarm dynamics. In spite of discrepancies, it is remarkable
that our model reduction, which starts with N second-order
delay-differential equations and yields one equation of the
same type, is able to quantitatively capture so many aspects
of the full swarm dynamics.
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A real-world model of swarming physical agents must
incorporate a collision-avoidance strategy. This could be
implemented, for example, by adding a short-range repulsion
to the agent dynamics. Such interactions may affect the
collective motion of the swarm to some degree, but our
preliminary simulations of homogeneous swarms indicates
that the qualitative behavior of the swarm is not affected by
short-range repulsion forces. This will be addressed more
carefully in a future paper.

In our model, we have assumed that the motion of each
agent in the swarm depends on the positions of all other
agents. In future work, we will relax this assumption to
model the effects of non-global coupling on the collective
swarm motion; we will also add noise to the swarm dynam-
ics. We know that adding noise causes switching between co-
existing stable states (ring and rotating state) in homogeneous
swarms [1]. We will investigate how switching behavior
changes when the swarm is made up of heterogeneous
agents.

Our work presents new insights into the collective motions
of aggregates of heterogenous, self-propelled agents, whether
biological or artificial. Our results are important from a
practical design standpoint for artificial systems, as when
a swarm of robots is used to survey/monitor a given area
of interest. In addition to their relevance in the study of
swarming and herding motions in biological systems, our
results on heterogeneity play a predictive role where the
dynamics of individual agents are to large degree beyond
our control.
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APPENDIX
RING STATE

In the ring state, the agents in either population rotate
about a common stationary center of mass. To study the
dynamics of the ring state, we must therefore re-introduce
the full swarm dynamics. For convenience, we express these
in polar coordinates, with the origin located at the position
of the stationary center of mass, so that R1(t) = R2(t) ≡ 0.
Then let

ρ1
i k =

∥∥ δrki ∥∥ , θki = ∠δrki (25)

for k = 1, 2. Setting Rk = Ṙk = R̈k = 0 in (6) gives:

δr̈ki =
κk
Nk

Nk∑
j=1

∥∥ δṙkj ∥∥2
δṙkj + κk

(
1−

∥∥ δṙki ∥∥2
)
δṙki

−aκk
N

(
(N − 1)δrki + δrk,τi

)
.

(26)

In the ring state, Rk = Ṙk = R̈k = 0 requires that∑Nk

j=1

∥∥ δṙkj ∥∥2
δṙkj = 0 for k = 1, 2 [1]; so that, in the

limit as N →∞,

δr̈ki = κk

(
1−

∥∥ δṙki ∥∥2
)
δṙki − aκkδrki . (27)

Converting to polar coordinates leads to the following set of
equations:

ρ̈ki = κkρ̇
k
i

(
1− (ρki θ̇

k
i )2 − (ρ̇ki )2

)
+
(

(θ̇ki )2 − a
)
ρki (28a)

ρki θ̈
k
i = κkρ

k
i θ
k
i

(
1− (ρki θ̇

k
i )2 − (ρ̇ki )2

)
− 2ρ̇ki θ̇

k
i . (28b)

Note that the equations governing the two populations are
entirely uncoupled. In the ring state, ρ̇ki = ρ̈ki = 0 and the
agents move with constant angular velocity so that θ̈ki = 0
for k = 1, 2. Let ωki denote the constant angular velocity θ̇ki
of agent i in population k. Then (28) can be written as:

0 =
(
(ωki )2 − aκk

)
ρki (29a)

0 = ρki ω
k
i

(
1− (ρki ω

k
i )2
)
, (29b)

and it follows that

ρki = 1/|ωki |, ωki = ±
√
aκk (30)

for all agents in the swarm.

APPENDIX
ROTATING STATE

To find the parameters describing the rotating state of the
swarm, we convert the equations for the swarm dynamics to
polar coordinates. Suppose that the ring state is formed about
the stationary point (Xs, Ys)

T ∈ R2, and choose the origin
of the polar coordinates to lie on (Xs, Ys)

T . Let (ρk, θk)
denote the position, in polar coordinates, of the center of
mass of Population k, that is

ρk =
√

(Xk −Xs)2 + (Yk − Ys)2 (31a)

θk = tan−1 Yk − Ys
Xk −Xs

. (31b)

The equations of motions for the motion of the centers of
mass of the two swarm populations in polar coordinates, are

ρ̈k = κk

(
1− ρ2

kθ̇
2
k − ρ̇2

k

)
ρ̇k + ρkθ̇

2
k

− aκk
(
ρk − cρτ1 cos(θk − θτ1 )

− (1− c)ρτ2 cos(θk − θτ2 )
) (32a)

ρkθ̈k = κk

(
1− ρ2

kθ̇
2
k − ρ̇2

k

)
ρkθ̇k − 2ρ̇kθ̇k

− aκk
(
cρτ1 sin(θk − θτ1 )

+ (1− c)ρτ2 sin(θk − θτ2 )
)
.

(32b)

In the rotating state, the radii of the populations and the
angular frequencies are constant. Let ωk = θ̇k. Then

ρk(t) = ρ0
k (33a)

θk(t) = θ0
k + ωkt, (33b)

and ρ̈k = ρ̇k = θ̈k = 0. Furthermore, simulations of the full
swarm dynamics suggest that the radii of the two populations
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in the rotating state are equal; we therefore set ρ0
1 = ρ0

2 = ρ.
Let ∆θ = θ1 − θ2 denote the phase difference between the
two populations. Substituting these equations into (32) and
simplifying the resulting expressions gives:

ω2
k = aκk

(
1− c cos(ω1τ + (ωk − ω1)t+ θ0

k − θ0
1)

− (1− c) cos(ω2τ + (ωk − ω2)t+ θ0
k − θ0

2)
)
(34a)

(1− ρ2ω2
k)ωk = aκk

(
c sin(ω1τ + (ωk − ω1)t+ θ0

k − θ0
1)

+ (1− c) sin(ω2τ + (ωk − ω2)t+ θ0
k − θ0

2)
)
.

(34b)

Note that the time dependence on the right hand sides of all
equations in (34) can be eliminated if and only if ω1 = ω2.
Let ω denote the common frequency of both populations
about the center. Thus, we finally have the four equations
describing the behavior of the swarm in the ring state:

ω2 = aκk
(
1− c cos(ωτ + θ0

k − θ0
1)

− (1− c) cos(ωτ + θ0
k − θ0

2)
) (35a)

(1− ρ2ω2)ω = aκk
(
c sin(ωτ + θ0

k − θ0
1)

+ (1− c) sin(ωτ + θ0
k − θ0

2)
)
.

(35b)

Relations (16)-(19) can be derived from (35) through some
rather involved algebraic manipulations.
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