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Model-Based Location Tracking of an a priori
Unknown Number of Inhabitants in Smart Homes

Mickael Danancher, Jean-Jacques Lesage, Member, IEEE, and Lothar Litz,

Abstract—In this paper we propose an approach for online
model-based location tracking of inhabitants in Smart Homes.
Based on our previous solution for a fixed and predefined
number of inhabitants using finite automata we generalize the
approach to handle an a priori unknown number of inhabitants.
The online-algorithms to detect the number of inhabitants
and to track their location are given and a comprehensive
evaluation method is defined. It consists of an analytical and a
simulation-based procedure as well and is able to predict the
tracking performance for real Smart Homes by a normalized
measure. Throughout the paper, previous and new results are
illustrated by a realistic case study and illustrative scenarios are
given.

Note to Practitioners—Tracking the location of several in-
habitants in a Smart Home using only ambient, non-invasive,
low-cost sensors is a challenge. In this paper, we propose
specific evaluation approaches as well as an expert-in-the-loop
improvement procedure to help the expert setting up a satisfying
instrumentation using only such sensors. We also detail the
algorithm for online Location Tracking of any inhabitants in
a Smart Home and explain this algorithm with an illustrative
scenario.

Index Terms—Discrete Event Systems, Finite Automata, Smart
Home, Location Tracking.

I. INTRODUCTION

SMART Home technologies are aiming to help people to
live in a comfortable and safe environment. A Smart Home

can be defined as a home equipped with sensors, actuators
and communication devices; based on the information given
by the sensors, the actuators can be controlled in order to
improve comfort (heating or air conditioning for instance) or
to guarantee the safety of the inhabitants (automatic shutdown
of dangerous devices or health problem detection for instance)
[1].

Indoor Location Tracking (LT) of the inhabitants is often
required for these approaches (comfort, safety and health). For
instance, it has been proved that some approaches aiming at the
recognition of Activities of Daily Living (ADL) show better
performances when exploiting the result of a LT algorithm
[2]–[6]. Health problem detection by monitoring the inactivity
of the inhabitants also performs better when tracking online
the location of the inhabitants and monitoring their inactivity
level in each zone of the house [7], [8].
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LT consists in finding in real time the location of one or
several inhabitants, based on the observation of the signals
generated by different sensors of the house [9]. In most
approaches, LT is performed by using data mining techniques
[9]–[11]. Consequently, a more or less long learning phase is
required before the LT becomes operational. Furthermore, this
phase has to be performed again as soon as the instrumentation
is modified (i.e. if new sensors are added or if existing sensors
are removed or if their placement is modified). Last but not
least, such learning techniques lead to the lack of a formal and
explicit model of the location, what does not facilitate the use
of this information.

For these reasons, we proposed in previous work [12] an
approach aiming at the systematic construction of a Finite Au-
tomaton describing the detectable motion of a single inhabitant
[13] or of a fixed and predefined number N of inhabitants
[14]. Based on these models, we also defined algorithms
for LT [13], [14] and we developed two procedures (one
analytical approach [13] and one simulation-based method
[15]) to evaluate the relevance of an instrumentation and of
the designed model for the LT purpose.

Based on these previous results, we propose in this paper a
new algorithm for online LT of an a priori unknown number
of inhabitants based on the online estimation of the number
of inhabitants. New criteria for the performance evaluation
are also defined and a procedure to simultaneously build and
evaluate the Finite Automata required for a priori unknown
number of inhabitants’ LT is given. Moreover, a global ap-
proach for evaluation-aided improvement of an instrumenta-
tion is proposed. This improvement loop relies on the expert
knowledge and therefore is not an automatic optimization
approach. Moreover, the inhabitant is deliberately put outside
the improvement loop, in order for our approach to be more
general. These new results are applied and illustrated using an
example of Smart Home. The complexity of the models and
of the LT algorithm is also discussed. The whole procedure
we are proposing in this paper is summarized in Fig. 1. In
a first step, the expert splits the considered home into zones
and defines the sensors he wants to install in this home. Then,
he automatically get a model of the detectable motion of 1
or N inhabitants. Those model are then used to evaluate the
ability of the smart home to perform LT. Finally, if the result
is satisfying, it is possible to setup the LT in the smart home.
On the contrary, if the results are unsatisfying, the expert gets
a feedback on the issues to solve and can define a new zone
partition or instrumentation.

It as to be noted that in this work we are interested in
applications that only require the knowledge of the location
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of the inhabitants in the dwelling but not their identity. For
example, for reducing energy consumption by optimizing the
temperature regulation and the lighting management, it is only
necessary to know if somebody is present (and eventually the
number of inhabitants which are present) in the different zones
of a smart home but not who they are. For applications which
require to know the identity of the inhabitants additionally
to their location, it would be necessary to use additional
sensors like wearable sensors that directly give the identity of
inhabitants, or to couple our approach with data association
techniques [16], [17].
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Fig. 1. General overview of the proposed approach

The paper is organized as follow. In the next section,
some assumptions on instrumentation of Smart Homes and
inhabitants’ behavior as well as the problem statement are
detailed. The case study is also described and the previously
published results are briefly recalled by being applied to
this case study. In the third section, the new algorithm for
LT of an a priori unknown number of inhabitants and an
illustrative scenario are presented. In the fourth section, two
procedures (analytical and simulation-based) for performance
evaluation are presented and an improvement loop involving
the expert is proposed. The evaluation and improvement results
are illustrated on the case study.

II. PROBLEM STATEMENT, CASE STUDY AND PREVIOUS
RESULTS

A. Problem statement

Reviewing the existing smart home approaches reveals the
very different specifications underlying these approaches. In
our context the following assumptions concerning the inhab-
itants expectations and behavior as well as the kind and the
behavior of the sensors are made.

To reach a high degree of inhabitants’ acceptance only non-
intrusive ambient sensors are considered, i.e. motion detectors,
but no wearable sensors nor cameras. This also meets a
financial constraint because these sensors are mostly low-cost
sensors. These three considerations (non-intrusive, ambient

and low cost) advise to consider only binary sensors or sensors
delivering a signal that can be interpreted as being binary with
slight preprocessing, e.g. using thresholds. It is also supposed
that all the sensors function in a fault-free manner.

Furthermore, it is also considered that information given by
the sensors does not depend on the ability or the willingness
of the inhabitant to provide this information. For instance, if a
door is equipped with a door barrier sensor and a door contact
sensor, the inhabitant crossing the door will systematically
be detected by the barrier sensor but will be detected by the
contact sensor only if the inhabitant opens or closes the door
in addition to crossing it. Consequently, in our approach, door
contact sensors will not be used. For similar reasons, switch
sensors are also not considered because while entering a room
the inhabitant may or not switch the light on, depending on
the sun light or his life habits.

On the other hand, there can be a lack of instrumentation
(too small number of sensors or misplaced sensors). This leads
to the assumption of a partial observation of the inhabitants’
behavior.

It is also assumed that each inhabitant has a totally free be-
havior which is arbitrary and potentially irrational. Moreover,
each inhabitant is assumed to behave independently from the
others. Consequently, the inhabitants in an instrumented Smart
Home are considered as being spontaneous event generators.
The observed events are the rising edges and falling edges
of the sensors. The rising edge of a sensor s is denoted s 1,
its falling edge is denoted s 0. Moreover, the inhabitants are
assumed to be non-distinguishable by the sensors i.e. whatever
the inhabitant or the inhabitants being observed by a sensor,
the sensor event will be the same.

In addition, it is considered that no model of this free be-
havior of the inhabitants is available. The aim of this approach
is not to propose a model of the human behavior because it
is assumed to be overly depending on particular inhabitants.
The aim is thus to propose an approach being usable whoever
the inhabitants are and whatever their behavior.

It is assumed that the number of inhabitants inside the house
can vary at each time (inhabitants or visitors coming in or
going out). Furthermore, it is assumed that a maximal number
of inhabitants in the Smart Home cannot be given a priori.

Finally, since the aim of LT is to provide the location of
the inhabitants, zones of interest have to be defined. More
precisely, the environment (the Smart Home and its outside)
should be covered by non-overlapping zones. It is believed that
this zone partition should be done by an expert familiar with
the final application like location-based inactivity monitoring,
ADL recognition, automatic shutdown of dangerous devices
and so on. More important, the zone partition is not depending
on the instrumentation, it should be done without considering
the instrumentation or the different rooms but only the needs
of the expected application. For instance, for health problem
detection, we may consider that the bathroom is divided in
two zones, the shower and the rest of the bathroom, the
shower being a critical zone for potential falls of the inhabitant.
Note that in a general case, one room in not equal to one
zone. Moreover, one zone is not equal to one sensor, there
may be more than one sensor in each zone and one sensor
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may observe several zones, since the zone partition is chosen
independently from the instrumentation but adequately for a
given application.

Based on these considerations, the problem of online model-
based LT can be reformulated in terms of a Discrete Event Sys-
tem (DES) problem: how to estimate in real time the current
location of an unknown number of inhabitants, considered as
spontaneous event generators, based on a sequence of partially
observed sensor events?

B. Case study

Throughout this paper, the proposed results will be applied
to a case study shown in Fig. 2. The considered house has two
bedrooms, a bathroom, toilets, a shower and an open-space
composed of the kitchen, living room and dining room.
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Fig. 2. Description of the case study

Considering this house, we suppose that an expert decided
to split the environment into 8 non-overlapping zones as shown
in Fig. 3 (a). Each bedroom (Z1 and Z3), the bathroom (Z4),
the shower (Z5), the toilets (Z6), the corridor (Z2) are each
represented by one zone. In addition, zone Z7 represents the
open-space and zone Z8 represents outside of the home. Such
a zone partition is well adapted for location-based inactivity
monitoring (as in [8] for health problem detection).

This home is instrumented with some sensors as shown
in Fig. 3 (b). There are 5 Motion Detectors (one in each
bedroom, one in the bathroom, one in the corridor and one
in the open-space) and 2 Door Barrier Sensors (one on the
door between the first bedroom and the corridor and one on
the door between the toilets and the corridor). Note that other
types of sensors can be integrated, for instance floor pressure
sensors, bed sensors, etc... even if we do not consider such
sensors for this case study.
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Fig. 3. Description of the zone partition (a) and of the instrumentation (b)

C. Brief recall of the previous results

In previous work [13], we proposed an approach to system-
atically build a model for LT of a single inhabitant in a Smart
Home. This approach is briefly recalled and illustrated on the
case study.

The home is divided into eight zones, the topology of
this zone partition (i.e. the direct paths between zones) and
the description of the zones observed by each sensor are
used to systematically generate a Finite Automaton model
representing the detectable motion of a single inhabitant. The
definition of this model is given below.

Definition 1 (Detectable Motion Automaton). A Detectable
Motion Automaton (DMA) is a Finite Automaton representing
the different possible locations of a single inhabitant and the
possible observation of his change of location.

This DMA is defined as DMA = (Q,Σ, δ, Q0) with:
• Q a set of states (one state for each zone of the house),
• Σ an alphabet of events (the rising and falling edges

generated by the sensors),
• δ : Q× Σ→ 2Q the transition function,
• Q0 ⊆ Q the set of initial states.
Such a DMA can be manually built by an expert or

systematically obtained using one of the algorithms proposed
in [12]. A possible DMA for the case study is represented in
Fig. 4.
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Fig. 4. Detectable Motion Automaton DMA

A strong semantics is associated to the states of this
automaton since each state represents the possible location
of the inhabitant in a zone of the house. Transitions and
associated events represent observable motion between two
zones or within a zone in case of a self-loop. For instance
on Fig. 4, there are three transitions from state Z2 to state
Z1, one labeled with the event DB2 0, one labeled with the
event DB2 1 and the last one labeled with the event MD1 1.
Each one of these transitions represents one way to observe
the change of location from zone Z2 to zone Z1.

Note that, as explained in [13], falling edges of motion
detectors are not representative of a change of location because
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it can just be symptomatic of someone staying motionless in
a zone. Consequently, only rising edges are considered in the
models we propose.

It is assumed that the initial location of the inhabitant is
unknown. This can be seen in the model where each state is
initial. Knowing accurately the initial location is not necessary
to perform online LT because the current estimation of the
location of the inhabitant does not strongly depends on his
initial location. If for some smart home applications it is
mandatory to know the initial location of the inhabitant, some
techniques (for instance in [18]) can be used to determine the
initial state of an automaton after observing a more or less
long sequence of observed events.

Some sensors are observing more than one zone. This can
be seen in the model: DMA is a non-deterministic Finite
Automaton (e.g. two transitions labeled with the same event
DB2 1, having Z1 as source state, one reaching state Z2 and
one reaching Z1).

Based on this DMA for a single inhabitant, we proposed in
[14] an approach to create a model of the detectable motion of
a given number N of inhabitants (N ∈ N∗). This model is a Fi-
nite Automaton called MIDMAred

N . For obtaining this model,
we perform first a synchronous composition of N DMA
and then a reduction of the result, based on the assumption
of non-distinguishable inhabitants. For instance, considering
the case study and 2 inhabitants, a partial representation of
MIDMAred

2 is given in Fig. 5. The whole Automaton has
36 states, each of them is representing the location of the 2
inhabitants in the home. For instance, the state Z2.Z1 means
that there is one inhabitant in Z2 and one in Z1. Since the
inhabitants are non-distinguishable by the sensors, it is not
possible to know which inhabitant is in Z2 and which one is
in Z1.

Fig. 5. Detectable Motion Automaton for 2 inhabitants MIDMAred
2

(partially represented)

Based on the proposed models MIDMAred
N (∀N ∈ N∗,

with MIDMAred
1 = DMA), the aim of LT of a fixed and

known number N of inhabitants is to estimate the reached state
from an observed sequence of events. Since MIDMAred

N is
not deterministic, there are two possible procedures to perform
online LT:
• The estimated current location (set of current states of
MIDMAred

N ) is directly computed online based on this
non-deterministic model [14].

• A state estimator is built offline in a first step and then
the LT is performed online using this state estimator [13].

Both of these approaches are giving exactly the same LT
result and any of them can be used as a basis for the LT of
an a priori unknown number of inhabitants as detailed later
in the paper (Fig. 6).

The complexities of modeling and tracking have been dis-
cussed in details in [12]. The number of states of MIDMAred

N

can be determined using the notion of multiset (see [19] for
more details about multisets and other enumerative problems).
MIDMAred

N has exactly
((

Z
N

))
states, where

((
Z
N

))
is the

number of multisets of cardinality N (the number of inhab-
itants), with elements taken from a finite set of cardinality
Z (the number of zones).

((
Z
N

))
is equal to the binomial

coefficient
(
Z+N−1

N

)
=

(Z +N − 1)!

N !(Z − 1)!
.

The complexity of online LT is either O(|QN |×2S) where
|QN | is the number of states of MIDMAred

N and S is the
number of sensors if the first approach (direct estimation) is
used or the complexity is linear in the number of sensors
O(2S) if the second approach (estimator-based) is used. Note
that in the second case, the estimator is computed offline and
the complexity is O(2|QN |).

Despite its apparent complexity, the proposed modeling
and LT approaches remain scalable since we consider only
instrumented apartments or houses and not a whole smart
building (like for instance in [20]). Consequently, the number
of zones Z, the number of sensors S and the number of
inhabitants N remain small, thus, in practice there is no
problem of state space explosion.

These previous results allowed us to deal with the case
of a constant and known number of inhabitants. However, in
real life, this number is neither constant nor known. Thus, we
propose in the next section an approach for LT of an a priori
unknown number of inhabitants.

III. LOCATION TRACKING OF AN A PRIORI UNKNOWN
NUMBER OF INHABITANTS

It has been recalled in the previous section that a model
of the detectable motion of N inhabitants (N ∈ N∗) can
be built. Assuming there is a maximal number of inhabitants
to be tracked in the Smart Home Nmax ∈ N∗, the models
MIDMAred

1 , MIDMAred
2 , ... MIDMAred

Nmax
can be built.

These models are the basis of the proposed algorithm for
the LT of an a priori unknown number of inhabitants. This
algorithm is given in Fig. 6) and explained in the following.

The maximal number of inhabitants Nmax is supposed to
be known and guaranteed in a first time. This parameter will
be discussed in details in the next section.
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Fig. 6. Algorithm to track the location of an a priori unknown number N
of inhabitants

The proposed algorithm performs in the following way. At
the beginning, the number of inhabitants N is assumed to be
equal to 1. It is a conservative assumption since the case of
an inhabitant being alone at home is considered as being the
most critical. Indeed, health problem detection and automatic
call to the emergency services are the most important when
an inhabitant is alone at home. Then, previously introduced
LT of a fixed number of inhabitants is performed using the
different models. LEst1 is the estimated location obtained
using Est(MIDMAred

1 ), LEst2 is the estimated location ob-
tained using Est(MIDMAred

2 ), ..., LEstNmax
is the estimated

location obtained using Est(MIDMAred
Nmax

).
When a new event e occurs, if the event is related to the

zones being outside of the house, then it is symptomatic of a
change of the current number of inhabitants in the house and
thus there are three possible cases:

• The event e is representative of an augmentation of n
of the number of inhabitants (for instance specific door
barrier sensors giving the information of the direction of
the inhabitant leading to n = 1 inhabitant entering the
house), thus N ′ = N + n.

• The event e is representative of a diminution of n of the
number of inhabitants, thus N ′ = N −n and the models

from N ′ to N should be initialized again,
• The event e gives no information about one or several

inhabitants entering or leaving the house, it is just symp-
tomatic of a change of the number of inhabitants, thus
N ′ = 1 in order to be back in the conservative case.

If the observed event is not related to the zones being outside
of the house, the new number of inhabitants N ′ is estimated
by trying to reproduce the event e with the different models
Est(MIDMAred

N ), ..., Est(MIDMAred
Nmax

) where N is the
previously determined number of inhabitants. It is assumed
that the sensors have a fault-free behavior and thus, an event
not being reproducible by a model Est(MIDMAred

i ) is
symptomatic of the presence of strictly more than i inhabitants.
Consequently, the first automaton among Est(MIDMAred

N ),
..., Est(MIDMAred

Nmax
) which is able to reproduce the event

is the one representing the current number of inhabitants.
Once the number N ′ is calculated (either when the event

is out-related or not), N is updated as being equal to N ′

and LEstN , ..., LEstNmax
are calculated using the previously

proposed LT algorithms. At this time, the current number
of inhabitants is estimated by N and the location of these
inhabitants is given by LEstN . Finally, the algorithm waits for
a new event e and starts again.

This algorithm is illustrated on the case study for the
following scenario (see Fig. 7). Two inhabitants are inside
the house and it is considered that a maximal number of 3
inhabitants is guaranteed.

Step 0. At the beginning of the scenario one inhabitant
is in the living room and one in the bathroom. The al-
gorithm is initialized, the estimated number of inhabitants
N is equal to 1 and the estimated location is LEst1 =
{Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8} (which is the initial state of
MIDMAred

1 ). This location is very ambiguous because the
inhabitant may be in any of the eight zones. Moreover, this
estimation is incorrect because the real number of inhabitants
is equal to 2 and the real location is LReal = (Z7.Z4).

Step 1. The first inhabitant is moving within the living room.
A rising edge of the sensor MD5 is observed and the estimated
number of inhabitants and the estimated location are updated:
N is still equal to 1 because the observed event is reproducible
by MIDMAred

1 and LEst1 = {Z7}. This estimation is
unique because there is only one zone in LEst1 , however, this
estimation is incorrect because the real number of inhabitants
is still 2 and the real location is LReal = (Z7.Z4).

Step 2. The first inhabitant continues to move and enters
the corridor. A rising edge of the sensor MD2 is observed, N
is still equal to 1 and LEst1 is now equal to {Z2}. Since the
real location is LReal = (Z4.Z2), the estimation is incorrect.

Step 3. Since there is no longer someone in the living
room, a falling edge of the sensor MD5 is observed. As
explained previously, falling edges of motion detectors are not
considered in any of the models, the estimated location is not
updated and is still incorrect.

Step 4. The first inhabitant enters the shower. Since there is
no sensor in this zone, no new sensor event is observed and
the estimated location remains the same. The real location is
now LReal = (Z5.Z4) but the estimated location (Z2) is still
incorrect.
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Fig. 7. Illustrative scenario of two inhabitants in the Smart Home

Step 5. Since there is no longer someone in the corridor, a
falling edge of the sensor MD2 is observed. As for step 3,
this event is not considered in any of the models and thus the
estimated location is not updated and is still incorrect.

Step 6. The first inhabitant enters in the corridor again. He
is detected through the rising edge of MD2. The estimated
location is updated but is still equal to {Z2}. LReal is equal
to (Z4.Z2) again and the estimation is incorrect.

Step 7. The second inhabitant starts moving in the bathroom.
A rising edge of the sensor MD4 is observed. Since this event
is not reproducible by MIDMAred

1 but by MIDMAred
2 ,

the estimated number of inhabitants is now N = 2 and
their estimated location is given by MIDMAred

2 , LEst2 =
{(Z4.Z2)} which is a unique estimation. The real location is
LReal = (Z4.Z2), consequently the estimation is correct.

Thanks to the results of this illustrative scenario, we can
highlight the two following points.

First, the estimated location is a set of combinations of N
zones (a set of zones if N = 1). Thus this estimation is either
unique if the cardinal |LEst| = 1 or ambiguous if |LEst| > 1.
Moreover, it is possible to define a Degree of Ambiguity DoA
with the following formula.

DoA =

 0 if |LEst| = 1
|LEst|
|QN |

if |LEst| > 1

where |LEst| is the cardinal of the estimated location and
|QN | the number of states of the model MIDMAred

N . Its
meaning is the following:
• DoA = 0 means full information (unique estimation).
• 0 < DoA < 1 means partial information.
• DoA = 1 means no information at all (totally ambiguous

estimation), this is the case for the initial estimation for
instance.

Second, when comparing the estimated and the real Loca-
tion, the estimated location can be either correct if LReal ∈
LEst or incorrect if LReal /∈ LEst. Of course, in the case
where the estimated number of inhabitants is not equal to the
real number, the estimated location is also incorrect even if
the location of some of the inhabitants is correctly estimated.

Based on these considerations on the LT result, the relevance
of a chosen zone partition and instrumentation for LT should
be evaluated. Moreover, in a general case, Nmax is unknown.
Therefore, a procedure is needed in order to determine the
intrinsic ability of a combination (Zone Partition - Instrumen-
tation) to track Nmax inhabitants. Such evaluation procedures
are proposed in the next section.

IV. PERFORMANCE EVALUATION

The evaluation is performed in two complementary steps:
first a static analytical evaluation based only on the models,
and second a dynamic evaluation based on the simulation of
particular or critical scenarios.

A. Analytical evaluation

Several analytical performance criteria are proposed in this
paper. They provide the designer with guarantees of location-
ability in the different zones and of the intrinsic maximal
number of trackable inhabitants. These criteria are defined
below and applied on the case study in a second time.

The first criterion is relative to the unlocationable zones as
proposed in the following definition [13].

Definition 2 (Unlocationable Zones). Unlocationable zones
are particular zones of the home (elements of Z) where
the inhabitants are never estimated to be in. Each time the
inhabitant is really in this zone, his estimated location is
incorrect.
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Based on this definition, a proposition to compute these
unlocationable zones is given and proved below.

Proposition 1. The number of unlocationable zones (if they
exist) can be quantified by the cardinal of QUZ with:
QUZ = {q′ ∈ Q | @(q, σ) ∈ Q × Σ, δ(q, σ) = q′} with Q

the states of the DMA.
Since QUZ ⊆ Q, each state q′ of QUZ is related to a

zone of Z according to Definition 1. Thus QUZ represents
the unlocationable zones.

Proof: According to the proposition, a state q′ of QUZ is
a state of the DMA being reachable only by the fact that
it is initial. Thus, its related zone is related to the initial
state of Est(DMA) but it is not related to any other state
of Est(DMA) because there is no transition leading to q′

in the DMA. Consequently, the estimated location will never
contain this zone and the inhabitants will never be estimated to
be in this zone (except during the initial location estimation).

Moreover, a zone being unlocationable for single inhabitant
is also unlocationable for multiple inhabitants. Consequently
the set QUZ is computed using only the DMA.

In addition to the unlocationable zones, two formulations
of the ability to provide an accurate estimation of the location
are given. They were first defined in [13] for the particular
case of a single inhabitant. The generalization of these criteria
for the case of N inhabitants (N ∈ N) is given below.

Definition 3 (Strong N -accurate-location-ability). Consider-
ing a zone partition P and an instrumentation I , a combination
(P, I) is strongly N -accurate-location-able if after a finite
sequence of sensor events the location of the N inhabitants
is accurate from now, whatever the inhabitants are doing.

Proposition 2. Considering that the set of states of
Est(MIDMAred

N ) - called QEstN - can be divided into
two subsets QaN

representing the set of accurate estimated
locations and QiN representing the set of inaccurate estimated
locations such that QEstN = QaN

⋃
QiN where:

• QaN
= {qEstN ∈ QEstN such that |qEstN | = 1}

• QiN = {qEstN ∈ QEstN such that |qEstN | > 1},
a combination (P, I) is strongly N -accurate-location-able if
QaN

is not empty and there is no loop between states of
QiN and no transition from a state of QaN

to a state of QiN .
Formally this property is written:

(P, I) is N -strongly accurate-location-able if:
• QaN

6= ∅
• ∀σ1σ2 · · ·σm ∈ Σ∗ | ∃(q1, q2, · · · , qm, qm+1) ∈ Qm+1

iN
;

δEstN (q1, σ1) = q2, · · · , δEstN (qm, σm) = qm+1;
∀(qi, qj) ∈ (q1, q2, ..., qm+1)2 qi 6= qj

• @(q, σ) ∈ QaN
× Σ | δEst(q, σ) ∈ QiN

Proof: The condition of non-emptiness of QaN
and the

condition of no transition from QaN
to QiN guarantee that

once a state of QaN
is reached, the subsequent states are also

in QaN
and thus the location will be accurate. Moreover, if

a state of QiN is reached, the condition of no loop in QiN

guarantees that, after a sequence of events of maximum length
|QiN |, a state belonging to QaN

will be reached.

Definition 4 (Weak N -accurate-location-ability). A combina-
tion (P, I) is weakly N -accurate-location-able if it is possible
that the location of the N inhabitants is accurate from now,
depending on what the inhabitants are doing.

Proposition 3. A combination (P, I) is weakly N -accurate-
location-able if QaN

is not empty and there are loops in QaN
.

Formally this property is written:
(P, I) is weakly N -accurate-location-able if:
• QaN

6= ∅
• ∃σ1σ2 · · ·σm ∈ Σ∗ | ∃(q1, q2, · · · , qm, qm+1) ∈ Qm+1

aN
;

δEstN (q1, σ1) = q2, · · · , δEstN (qm, σm) = qm+1;
∃(qi, qj) ∈ (q1, q2, ..., qm+1)2 qi = qj

Proof: The condition of non-emptiness of QaN
and the

fact that each state of QaN
is accessible (by construction of

the estimator) guarantees that it is possible to enter at least one
loop on QaN

. Thus, a sequence of events exists such that, after
a certain number of events, the current location and subsequent
locations become accurate.

Dealing with an a priori unknown number of inhabitants
leads to define a maximal number of inhabitants. In the
previous section, Nmax was assumed to be known. In fact
this criterion is strongly relying on the chosen zone partition
and instrumentation and thus can be determined a priori, only
based on the models. Therefore, we propose the following
definitions and proposition.

Definition 5 (Maximal number of trackable inhabitants
Nmax). The maximal number of trackable inhabitants is the
maximal estimated number of inhabitants that can be given
while performing LT of an a priori unknown number of
inhabitants.

Definition 6 (Complete Finite Automaton). A Finite Automa-
ton Aut = (Q,Σ, δ, Q0) is said to be complete if, from
each state, a transition labeled with each of the events exists.
Formally:
Aut is a complete Finite Automaton if ∀(q, σ) ∈ Q × Σ

δ(q, σ)! (with the notation δ(q, σ)! means that δ(q, σ) ⊆ Q
i.e. at least one transition from state q labeled with the event
σ is defined)

Proposition 4. The maximal number of trackable inhabitants
Nmax is defined by the first complete finite automaton repre-
senting the detectable motion of several inhabitants. Formally:

• if Est(DMA) is complete, Nmax = 1
• else Nmax = min

i>1
(i) such that Est(MIDMAred

i ) is

complete and Est(MIDMAred
i−1) is not complete, as-

suming ∃i such that Est(MIDMAred
i ) is complete.

Proof: Based on Definition 6, if i is such that
Est(MIDMAred

i ) is a complete finite automaton, it is im-
possible to observe a behavior not being reproducible by
Est(MIDMAred

i ). Consequently, based on the algorithm for
LT of an a priori unknown number of inhabitants (Fig. 6), it is
impossible to increase the number of inhabitants by observing
a non-reproducible behavior. Thus, Nmax is the minimal value
of i for which Est(MIDMAred

i ) is complete, if i exists.
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Let us illustrate these criteria by using the case study. There
are 2 unlocationable zones QUZ = {Z5,Z8}. Strong N -
accurate-location-ability cannot be guaranteed for any N ∈
{1, 2, 3, 4} but weak N -accurate-location-ability is guaranteed
∀N ∈ {1, 2, 3, 4}. Finally, the maximal number of trackable
inhabitants Nmax = 4. Note that the strong and weak N -
accurate-location-ability have been calculated only for N ∈
{1, 2, 3, 4} because Nmax = 4. It is not necessary to compute
them for N > Nmax

Based on this whole analytical approach, a procedure to
build and evaluate the models in parallel is proposed. Since
Nmax is not known a priori, the algorithm of Fig. 8 is
proposed. It is aimed to build all the models required for the
LT of multiple inhabitants without building useless models
(MIDMAred

N for N > Nmax).

Start 

Build 𝐷𝐷𝐷 

Evaluation 

𝑁𝑚𝑚𝑚  =  𝑖 ? 

End 

yes 

no 

𝑖 =  𝑖 + 1 

Build 𝑀𝑀𝑀𝑀𝐴𝑖𝑟𝑟𝑟  

Evaluation 

𝑖 =  1 

𝐷𝐷𝐷 

Unlocationable
Zones 

1-Accurate-
Location-Ability 

𝑖-Accurate-
Location-Ability 

𝑁𝑚𝑚𝑚 

𝑀𝑀𝑀𝑀𝐴𝑖𝑟𝑟𝑟 

Zone partition - instrumentation 

Fig. 8. Procedure for iterative model-building and evaluation

In a first step, the DMA is built and analytical evaluation
is performed for single inhabitant LT (i = 1). Moreover, based
on the potential completeness of the model, it is checked if
Nmax = 1 or not. If not, then i is increased, the model for
i inhabitants MIDMAred

i is built and the evaluation for i-
Inhabitants LT is performed. In addition, based on the potential
completeness of the model, it is checked if Nmax = i or not.
If not, then i is increased and model building and evaluation
continue. If Nmax = i, then Nmax is found and the algorithm
stops. At the end, all the required models (and no more)
are built and the results of the analytical evaluation (unlo-
cationable zones, Acurate-Location-Ability, maximal number
of trackable inhabitants) are already obtained.

Once the models have been built and used for analytical
evaluation of the performances, a second phase of evaluation
based on the simulation can be performed. This simulation-
based evaluation is presented in the next subsection.

B. Simulation-based evaluation

A simulation-based approach has been previously intro-
duced in [15] for the case of a fixed and known number of

inhabitants. In the following we propose the generalization of
the results for an a priori unknown number of inhabitants.

The simulation-based approach provides the designer with
complementary results compared to the analytical one. Thus,
two different instrumentations leading to the same analytical
results can be discriminated in order to choose the one that best
fits with the designer’s needs. An overview of our simulation-
based evaluation procedure is given in Fig. 9.

Simulator 
Player : LT Algorithm 
Model : 𝑀𝑀𝑀𝑀𝐴𝑁𝑟𝑟𝑟  

Event  
𝑒 

Performance 
Evaluator 

Performance 
indicators 

Estimated 
location 
𝐿𝐸𝐸𝐸(𝑡)  

+ - 

Performance 
Criteria 

 

Obstacles 
Sensors 

Emulator 
Event 

generator 

Real location 𝐿𝑅𝑅𝑅𝑅(𝑡) 

Smart home description 
(XML-File) 

User input 
(motion and action 
of each inhabitant) 

Fig. 9. Overview of the procedure for simulation-based performance
evaluation

The idea behind this evaluation is to emulate the Smart
Home (its topology and its sensors) and to allow one or
several user(s) to play the role of one or several inhabitant(s)
inside the home. Thus, the human behavior is neither modeled
nor simulated, it is a real human behavior immersed in the
emulated Smart Home through a joystick (as shown in Fig. 10
where a user is playing a human behavior via the joystick).
This approach is also useful for the designer to test critical
scenarios (e.g. an elderly alone in the house, a young child
alone in a dangerous zone, ...).

Fig. 10. Usage of the developed software

A confusion matrix called CMLT is defined in order to
evaluate the accuracy and correctness of the estimated location
of inhabitants compared to their real location. Classically,
a confusion matrix [21] represents the number of times a
prediction corresponds or not to a real situation. It is mainly
used to evaluate data-driven learning approaches e.g. Activities
of Daily Living recognition in Smart Homes [22].
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Since the proposed approach is based on the DES theory, we
propose a discrete formulation of the confusion matrix below.

CMLT(i,j)
(E) =

1

|E|

|E|∑
k=0

1{(Li=LReal(k)) ∧ (Lj∈LEst(k))}

|LEst(k)| dt

(1)
where:
- E is the sequence of changes of real or estimated location

during the simulation. Note that this sequence is not the
same as the sequence of sensor events,

- 1{predicate} = 1 if predicate is true and 0 otherwise,
- Li (resp. Lj) represents the ith (resp. the jth) possible

location of the inhabitants,
- LReal(k) is the real location (each in one zone) of the

inhabitants after the kth change of location,
- LEst(k) is the estimated location (in a set of zones,

possibly containing only one combination of zones) of
the inhabitants after the kth change of location,

- |LEst(k)| is the number of combination of zones compos-
ing the estimated location (for instance, if the estimated
location LEst(k1) = (Z1,Z2), then |LEst(k1)| = 2).

For an a priori unknown number of inhabitants between 1

and Nmax, there are |L| possible locations |L| =

Nmax∑
N=1

|QN |

considering every possible number of inhabitants being in the
house.

An example of this confusion matrix after an average
scenario is given below.

CMLT (E1) =

estimated location Lj

Z1 . . . Z8 Z1.Z1 . . . Z8.Z8 . . .
Z1 0.2 . . . 0.0 0.0 . . . 0.0 . . .
...

...
. . .

...
...

. . .
...

. . .
real Z8 0.0 . . . 0.1 0.0 . . . 0.0 . . .

location Z1.Z1 0.1 . . . 0.0 0.3 . . . 0.0 . . .

Li

...
...

. . .
...

...
. . .

...
. . .

Z8.Z8 0.0 . . . 0.1 0.0 . . . 0.1 . . .
...

...
. . .

...
...

. . .
...

. . .

Based on this matrix, several performance criteria can be
defined. The first one is named accuracy and gives the propor-
tion of events after which the estimated location was the real
one during the simulation (e.g. if the estimated location was
correct after 35 events among the 50 events generated during
a simulation, then the accuracy is equal to 70%). Formally it
is the sum of the diagonal elements of the confusion matrix:

accuracy(E) =
∑
i

CMLT(i,i)
(E) ∈ [0, 1] (2)

An example of the evolution of the accuracy for an average
scenario is given in Fig. 11. After a sequence of 50 events,
the accuracy reaches the value of 58%.

The accuracy gives a global measure of the LT performance.
Complementary to this indicator, two criteria concerning each
possible location are defined. The precision p is the proportion
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Fig. 11. Accuracy for an average scenario

of events after which the estimated location correctly repre-
sents the real location and the recall r is the proportion of time
for which a real location is correctly estimated. Formally, for
a given location i among the |L| possible locations:

p(i,E) =
CMLT(i,i)

(E)∑
j

CMLT(j,i)
(E)
∈ [0, 1] (3)

r(i,E) =
CMLT(i,i)

(E)∑
j

CMLT(i,j)
(E)
∈ [0, 1] (4)

The criteria precision and recall can be combined using a
geometric mean called gmean:

gmean(i, E) =
√
r(i, E) · p(i, E) ∈ [0, 1] (5)

An example of the evolution of this gmean for each zone
of the home for an average scenario is given in Fig. 12. After
a sequence of 50 events, gmean(Z5) and gmean(Z8) remain
equal to 0%, this confirms the fact that Z5 and Z8 are unlo-
cationable zones. This criteria also allows highlighting some
other weaknesses in the chosen instrumentation, particularly
in zones Z3 and Z6 where the gmean is quite low. On the
contrary, the result are good for Z1 where gmean is above
90%.

These results are interesting and complementary to the
analytical ones, however they are obviously strongly relying on
the simulated scenario. Moreover, note that alternative time-
based definitions of this confusion matrix and of the related
criteria have been given in [15].

C. Improvement loop

Based on the previously described evaluation procedures
(analytical and simulation-based), an approach for assisted
improvement of Smart Home instrumentation is proposed.
This approach is named evaluation-aided improvement of
Smart Home instrumentation and an overview is given in
Fig. 13.



10

OUTPUT: 
Estimated number 

of inhabitants 
 

Estimated location 
of the inhabitants 

Model-based  
Location Tracking 

Modification 
if necessary 

Analytical 
Evaluation 

Simulation-based 
Evaluation 

Modification 
if necessary 

Sensor events 

Sensors implementation 
if evaluation’s result is OK 

When the home 
is instrumented 
and inhabitants 
are living inside 

Evaluation criteria 

Evaluation criteria 

Zone Partition and 
Instrumentation 

Model for 1 Inhabitant (𝐷𝐷𝐷) 

Model for 2 Inhabitants 
(𝑀𝑀𝑀𝑀𝐴2𝑟𝑟𝑟) 

Model for 𝑁𝑚𝑚𝑚 Inhabitants 
(𝑀𝑀𝑀𝑀𝐴𝑁𝑚𝑚𝑚

𝑟𝑟𝑟 ) 

Modeling 

Formalization 

Detectable Motion Automaton (𝐷𝐷𝐷 
or 𝑀𝑀𝑀𝑀𝐴𝑖𝑟𝑟𝑟) is a Finite Automaton 

… 

- Estimation of the number of inhabitants based on non 
reproducible behavior or door-related sensor events 
- Estimated location given by the state of the model 

- Comparing the real and estimated location using a confusion matrix (CM) 
- Criteria 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑔𝑔𝑔𝑔𝑔 are computed on CM 

- Unlocationable zones 
- Accurate Location Ability (ALA) 
- Maximal number of trackable 
inhabitants (𝑁𝑚𝑚𝑚) 

1 

2 

8 

3 

4 

6 

5 

7 

Based on the 
indications given by 
the evaluation, the 
expert can change 
the instrumentation 

INPUT:  
Home to be 

instrumented 
with sensors  

or 
Home partially 
instrumented 
with sensors 
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Fig. 12. gmean for an average scenario

The idea behind is to provide the designer with indications
to improve his choice in terms of zone partition and instru-
mentation in order to finally get a Smart Home and models
compliant with his needs. A closed loop of improvement is
proposed. First, the designer describes an initial combination
zone partition - instrumentation (step 1 of Fig. 13), the models
are systematically generated and evaluated using the iterative
procedure of Fig. 8 (steps 2 and 3 of Fig. 13). Then, based
on these results, the designer can make any changes he wants
in the combination zone partition - instrumentation (step 4 of
Fig. 13) and compute again the model building and analytical
evaluation. Modeling, analytical evaluation and modification
constitute the first loop of improvement.

When the analytical results are satisfying or when sev-
eral possible combinations having the same analytical per-
formances are to be compared, the designer can perform
simulation-based evaluation and test some particular or critical
scenarios. This is the second loop of improvement, composed
of modeling (step 2), simulation-based evaluation (step 5) and
modification (step 6). Different combinations can be compared

on exactly the same scenario. Thus, either the designer is
satisfied with one of the tested combinations and choose this
one for real implementation (step 7), or he gets indications to
improve again the combination and the loop starts again.

Moreover, since the zone partition is strongly relying on the
application (health problem detection, safety ensuring), it is
assumed that the zone partition should not be a parameter that
can be modified. Consequently, the expert should only modify
the instrumentation by changing the number of sensors and/or
their position in the Smart Home.

Note that we do not propose an optimization procedure but
only two improvement loops relying on the competences of
the expert. Solving this problem with a classical optimization
approach would require having constant models which is not
the case here because these models are changing after each
modification of the parameters zone partition - instrumenta-
tion. Moreover, the expert is assumed to know the topology
of the Smart Home in detail and thus he would consider only
realistic instrumentation. This detailed description of the Smart
Home is hard to formalize but mandatory for the usage of an
optimization approach in order to avoid having non-installable
instrumentation as a result.

These improvement loops can be illustrated on the case
study. Let us recall the previously given results of the eval-
uation of the initial zone partition - instrumentation. There
was two Unlocationable Zones Z5 and Z8, Weak N -accurate-
location-ability ∀N ∈ {1, 2, 3, 4} and Nmax = 4.

Since there are two Unlocationable Zones, the expert de-
cided to solve this problem by adding a sensor for each
of them i.e. one motion detector was added in the shower
and one was added outside the house. By computing the
models and the analytical evaluation after this modification,
there are no more Unlocationable Zones and Nmax has been
increased to 5. There is still no Strong N -accurate-location-
ability ∀N ∈ {1, 2, 3, 4, 5} but Weak N -accurate-location-
ability ∀N ∈ {1, 2, 3, 4, 5}.
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To solve the problem of Weak accurate-location-ability, the
expert decided to replace the door barrier sensor DB1 by a
motion detector in the toilets and to remove the door barrier
sensor DB2 between the first bedroom and the corridor. By
computing the models and the analytical evaluation, there
are still no Unlocationable Zones, Strong 1-accurate-location-
ability, Weak N -accurate-location-ability ∀N ∈ {2, 3, 4, 5, 6}
and Nmax has increased to 6.

Moreover, the simulation-based results are confirming these
analytical results. Accuracy (as shown in Fig. 14), precision
and recall (not shown here) are better for the same scenario.
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Fig. 14. Comparison of the accuracy for the same average scenario for the
initial instrumentation (1st) and for the improved instrumentation (2nd)

Finally, the expert wanted to see the impact of adding floor
pressure sensors in this Smart Home, he added several of
them, mainly in the living room and in the second bedroom.
By computing the new models and the analytical evaluation,
the performances are exactly the same as with the previous
instrumentation (without floor pressure sensors). Thus, the
expert played several scenarios with the emulated Smart Home
and the results showed an improvement of the performances
by adding these new sensors. Simulation-based evaluation
allowed the expert to discriminate two analytically equivalent
instrumentations.

Note that the proposed improvement approach strongly
relies on the expert knowledge and it is not possible to
generalize the improvement scenario proposed for this case
study (first adding two motion detectors, then replacing and
removing sensors and finally adding new ones).

V. CONCLUSION

In this paper, we presented an extension of previous work
and proposed a complete approach for model-based LT of an a
priori unknown number of inhabitants. The LT algorithm has
been given and explained. Moreover, we proposed a whole
approach for evaluation-aided improvement of a Smart Home
instrumentation based on two different evaluation approaches,
one being analytical and the other based on the simulation.
This double loop of improvement is involving the expert to
define the instrumentation that best fits with his needs.

As written in the problem statement, it is assumed that each
sensor is behaving in a fault-free manner. Since it is obviously
not the case in a real Smart Home, an outlook for future work

is to consider sensor faults and to propose approaches for
Fault Detection and Isolation dedicated to Smart Homes and
for Fault Tolerant LT. Another outlook consists in putting the
patient into the development loop of the Smart Home. We are
currently working on a patient-centered approach for health at
home, based on the LT results and other information (wearable
medical sensors, doctor’s diagnosis)
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