
HAL Id: hal-01526076
https://hal.science/hal-01526076

Submitted on 22 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering Petri Net Models of Discrete-Event
Processes by Computing T-Invariants

Tonatiuh Tapia-Flores, Ernesto López-Mellado, Ana Paula Estrada-Vargas,
Jean-Jacques Lesage

To cite this version:
Tonatiuh Tapia-Flores, Ernesto López-Mellado, Ana Paula Estrada-Vargas, Jean-Jacques Lesage. Dis-
covering Petri Net Models of Discrete-Event Processes by Computing T-Invariants. IEEE Transactions
on Automation Science and Engineering, 2018, 15 (3), pp. 992-1003. �10.1109/TASE.2017.2682060�.
�hal-01526076�

https://hal.science/hal-01526076
https://hal.archives-ouvertes.fr

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Discovering Petri Net Models of Discrete-Event
Processes by Computing T-Invariants

Tonatiuh Tapia-Flores, Ernesto López-Mellado, Ana Paula Estrada-Vargas, and Jean-Jacques Lesage

Abstract— This paper addresses the problem of discovering
a Petri Net (PN) from a long event sequence representing the
behavior of discrete-event processes. A method for building
a 1-bounded PN able to execute the events sequence S is
presented; it is based on determining causality and concurrence
relations between events and computing the t-invariants. This
novel method determines the structure and the initial marking
of an ordinary PN, which reproduces the behavior in S. The
algorithms derived from the method are efficient and have
been implemented and tested on numerous examples of diverse
complexity.

Note to Practitioners—Model discovery is useful to perform
reverse engineering of ill-known systems. The algorithms pro-
posed in this paper build 1-bounded PN models, which are
enough powerful to describe many discrete-event processes from
industry. The efficiency of the method allows processing very
large sequences. Thus, an automated modeling tool can be
developed for dealing with data issued from real systems.

Index Terms— Model discovery, Petri nets (PNs), t-invariants.

I. INTRODUCTION

D ISCOVERING formal models from external observation
of systems behavior is an interesting and challenging

approach for reverse engineering of discrete-event processes
which are unknown or ill known. Although the problem is
relatively recent, it deserves the attention of several research
groups in the fields of discrete-event systems (DESs) and
workflow management systems (WMSs).

A. Model Discovery

Pioneer works on the matter, named language learning tech-
niques, appeared in computer sciences in the late 60s. The aim
was to build fine representations (finite automata or grammars)
of languages from samples of accepted word [1], [2].

In the field of DES, where the problem is usually named
identification, several approaches have been proposed for

Manuscript received March 6, 2017; accepted March 8, 2017. This paper
was recommended for publication by Associate Editor C. F. Mahulea and
Editor S. Reveliotis upon evaluation of the reviewers’ comments. The work
of T. Tapia-Flores was supported by CONACYT, Mexico under Grant 263566.
(Corresponding author: Ernesto López-Mellado.)

T. Tapia-Flores and E. López-Mellado are with CINVESTAV Unidad
Guadalajara, 45019 Zapopan, Mexico (e-mail: ttapia@gdl.cinvestav.mx;
elopez@gdl.cinvestav.mx).

A. P. Estrada-Vargas is with Oracle de México S. A. de C. V., 45110
Zapopan, Mexico (e-mail: ana.estrada@oracle.com).

J.-J. Lesage is with LURPA, ENS Cachan, University of Paris-Sud,
Université Paris-Saclay, 94235 Cachan, France (e-mail: Jean-jacques.lesage@
ens-cachan.fr).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. The Supplementary
Material contains additional examples and comparative test of software
implementation of the discovery method. This material is 693 KB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2017.2682060

building models representing the observed behavior of auto-
mated processes. The incremental approach proposed in [3]
and [4] allows building safe interpreted Petri Net (IPN)
models from a continuous stream of system’s outputs. In [5],
a method based on the statement and solution of an integer
linear programming problem is proposed; it allows building
PN from a set of sequences of events. Extensions of this
method are proposed in [6] and [7]. In [8], a method for
deriving finite automata from sequences of inputs and outputs
is presented; it is applied to fault detection of manufacturing
processes. An extension to this method that allows obtaining
distributed system models is presented in [9]. In [10], input–
output identification of automated manufacturing process is
addressed; an IPN is obtained from a set of sequences of
input–output vectors collected from the controller during the
system cyclic operation. The method is extended for dealing
with a long single observation of input–output vectors [11].
Later a new two stages method for dealing with observable
and nonobservable parts of the PN has been proposed [12].
Other research groups have proposed methods for obtaining
timed models [13]–[15]. More complete reviews on DES
identification can be found in [16] and [17].

In WMS, the analogous problem is named process min-
ing: Discovery; the system observation is given as a set of
sequences from a finite alphabet of tasks, representing execu-
tion logs of business processes. A first proposal is reported
in [18], in which a finite automaton, called conformal graph
is obtained. In [19], it is proposed a probabilistic approach
to find the concurrent and direct relations between tasks. The
input of the method is a sequence of events that represent
the activities that occurred in a WMS; the obtained model
is graph similar to a PN. In [20], a mining method called
alpha algorithm is presented. In this method, a workflow tasks
log composed by several traces is recorded sequentially and
processed yielding a subclass of PN called workflow net.
Numerous publications present extensions of this algorithm,
namely, [21]–[24]. In particular, in this last work, a method
that computes WFN including nonfree choice constructs using
invisible tasks is addressed; it allows discovering more com-
plex models involving implicit dependencies. An alternative
approach to alpha algorithm variations is based on the theory
of regions [25]. In [26], a mining technique named inductive
miner which is able to return fitting models in a finite time
is presented. A wide literature review on process mining
discovery can be found in [27].

Although there are many process discovery techniques,
some of them cannot synthesize models able to replay the
whole log, or that may represent nonobserved behavior.
In process mining literature, a model is qualified (with respect

1545-5955 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

to a known reference model) with four metrics called dimen-
sions [28]: fitness: a model has perfect fitness if is able to
reproduce the entire log; precision: it measures the quantity
of exceeding behavior represented in the model; simplicity:
it evaluates how simple is the model, and generalization: it
determines what part of the nonobserved behavior actually
corresponds to the real process.

B. Approach

This paper follows the approach presented in [12] for deal-
ing with input–output identification. The method processes off-
line the I/O-sequence w captured during the process operation
and builds an IPN model that reproduces w.

Consider as an example a process handling three inputs
(s, x, y) and three outputs (A, B , C), from which the following
I/O sequence is captured:

The construction of an IPN model from w is performed in
two stages.

The first stage processes the sequence w and obtains the
observable part of the model consisting of components using
observable places and transitions labeled with output symbols
and expressions of input symbols, respectively (Fig. 1). This
determines the set of transitions T . A transition sequence S
that corresponds to the observed event sequence is also deliv-
ered. In the example, S1 = t1 t2 t3 t4 t1 t2 t5 t6 t1 t2 t3 t4 t1 t2 t5
is obtained.

The second stage builds a PN model that is able to repro-
duce S (perfect fitness) with a reduced excessive behavior
(high precision); furthermore, the number of nodes is small
(simplicity) since only the necessary places to represent the
discovered structural constrains are added. The resulting PN
corresponds to the process’ internal behavior represented by
nonobservable places. In the example, the obtained PN showed
in Fig. 2 reproduces S1 (thus w). Merging this model with the
observable model and eliminating implicit places (p11, p22,
p33) yields the final IPN model shown in Fig. 3.

C. Contribution

This paper focuses on the second stage. A new method
for building 1-bounded PNs from a set S of sequences Si of
transitions (tasks or events) is introduced. Supported by a novel
approach, new results allowing addressing more complex
behaviors such as implicit dependencies between tasks that
are not observed consecutively are presented. The method is
based on determining from S, causal and concurrence relations
between events and the t-invariants of the PN to discover. Then
obtained invariants allow, first, determining the initial structure
of a PN, and later, adjusting the model when the computed
t-invariants do not coincide with those of the initial model. The
main features of this proposal are: the technique for computing
the t-invariants from S, and the reduction of the exceeding
language in the model by determining implicit dependencies;

Fig. 1. First step of the identification method: IPN fragments.

Fig. 2. Nonobservable PN.

Fig. 3. IPN model integrating observable components.

furthermore, the efficiency of the algorithms allows dealing
with numerous long sequences in S. This paper extends the
results presented in [29]; the results and proofs have been
revised and more examples tested with the developed software
are also included.

In order to illustrate the aim and the features of our
discovery method, consider the following tiny example. Given
a single sequence S1 = t1t3t2t6t4t3t5t6t1t3t2t6t1t3t2t6t4t3t5t6
involving six events T = {t1, t2, t3, t4, t5, t6}, the obtained
model using the method presented in [12] is shown in Fig. 4(a).
It is easy to see that it can reproduce S; however, it can execute
also the subsequences t1t3t5 and t4t3t2 which are not in S.
Note that this PN has four t-invariants. In contrast, the new
method builds the PN model in Fig. 4(b), which reproduces
S and does not contain the exceeding behavior pointed above.
In this model, the transitions t1 and t2 are related by a place
in despite that they were never observed consecutively. The
identified PN has only two invariants: [1 1 1 0 0 1]T and
[0 0 1 1 1 1]T .

D. Outline

The paper is organized as follows. In Section II, the basic
notions on PN are recalled. Section III states the addressed
problem. In Section IV, basic relations computed from the
tasks sequence are introduced. Section V presents a technique
for determining the t-invariants. In Section VI, the PN synthe-
sis method is described. Section VII outlines implementation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPIA-FLORES et al.: DISCOVERING PN MODELS OF DISCRETE-EVENT PROCESSES BY COMPUTING T-INVARIANTS 3

Fig. 4. PN models built from the sequence S.

and tests. Finally, in Section VIII, a discussion regarding
advantages and limitations of the method with respect to
related works is presented.

II. ORDINARY PETRI NETS

This section presents the basic concepts and notations of
ordinary PN used in this paper.

Definition 1: An ordinary PN structure G is a bipartite
digraph represented by the four-tuple G = (P, T, I, O) where
P = {p1, p2, . . . , p|P|} and T = {t1, t2, . . . , t|T |} are finite
sets of vertices named places and transitions, respectively;
I (O) : P × T → {0, 1} is a function representing the arcs
going from places to transitions (from transitions to places).
For any node x ∈ P ∪ T , •x = {y|I ((y, x)) = 1}, and
x• = {y|O((x, y) = 1}.

The incidence matrix of G is C = C+ − C−, where
C− = [c−i j]; c−i j = I (pi , t j); and C+ = [c+i j]; c+i j = O(pi , t j)
are the preincidence and postincidence matrices, respectively.

A marking function M : P → Z+ represents the number
of tokens residing inside each place; it is usually expressed as
an |P|-entry vector. Z+ is the set of nonnegative integers.

Definition 2: A PN system or PN is the pair N = (G, M0),
where G is a PN structure and M0 is an initial marking.

In a PN system, a transition t j is enabled at marking Mk

if ∀pi ∈ P , Mk(pi) ≥ I (pi , t j); an enabled transition t j

can be fired reaching a new marking Mk+1, which can be
computed as Mk+1 = Mk + Cuk , where uk(i) = 0, i �= j ,
uk(j) = 1; this equation is called the PN state equation. The
reachability set of a PN is the set of all possible reachable
markings from M0 firing only enabled transitions; this set is
denoted by R(G, M0).

Definition 3: A PN system is 1-bounded or safe iff for any
Mi ∈ R(G, M0) and any p ∈ P, Mi (p) ≤ 1. A PN system
is live iff for every reachable marking Mi ∈ R(G, M0) and
∀t ∈ T there is a reachable marking Mk ∈ R(G, Mi) such
that t is enabled in Mk .

Definition 4: A t-invariant Yi of a PN is an integer solution
to the equation CYi = 0 such that Yi ≥ 0 and Yi �= 0. The
support of Yi denoted as 〈Yi 〉 is the set of transitions whose
corresponding entries in Yi are strictly positive. Y is minimal
if its support is not included in the support of other t-invariant.
A t-component G(Yi) is a subnet of PN induced by a 〈Yi 〉 :

G(Yi) = (Pi , Ti , Ii , Oi), where Pi =• 〈Yi 〉 ∪ 〈Yi 〉•, Ti = 〈Yi 〉,
Ii = Pi × Ti ∩ I , and Oi = Pi × Ti ∩ O.

In a t-invariant Yi , if we have initial marking (M0) that
enables a ti ∈ 〈Yi 〉, when ti is fired, then M0 can be reached
again by firing only transitions in 〈Yi 〉.

III. PROBLEM STATEMENT AND PROPOSED APPROACH

A. Petri Net Discovery

First, we formulate the problem of model discovering in
the context of automated manufacturing processes and then,
the assumptions made are stated.

The Problem:
Definition 5: Given a finite alphabet of events or tasks

T = {t1, t2, . . . , tn} and a set S of finite sequences Si =
t1t2 . . . t j ∈ T ∗, the PN discovery problem consists of building
a 1-bounded PN structure and determining an initial marking
M0, which allow execute all the Si from M0. The PN must
have a reduced number of nodes, and reproduces the least
possible exceeding behavior. Every t j ∈ T appears once in
the PN. The number of places is unknown.

In the context of automated manufacturing systems,
Si represents the observation of relevant input–output events
sampled from a closed-loop controller during a long execution
period of time, for example, a complete production process
performing diverse repetitive jobs [10]. Several observations
Si from the same process may be dealt.

Furthermore, Si cannot include consecutively two or more
times the same event, since events correspond to instantaneous
changes in input and/or outputs binary variables to/from the
controller; events delimit the duration of operations (tasks,
activities). For example, when an event is detected, let us say
the rising edge of the binary input variable a (e j); one must
observe a falling edge of a (ek) before to observe its rising
edge (e j) again. Thus, in contrast to the hypothesis made for
process mining, the same event cannot appear consecutively
in the sequences in S.

The delimitation of cyclic subsequences is not known
a priori. However, if the observed behavior is provided in
the form of cyclic subsequences (traces) σi ∈ T ∗, a single
sequence S1 can be formed by the concatenation of σi using
a transition t∗ between each trace: S1 = σ1t∗σ2t∗ . . . σn.t∗ to
process all the observations.

Assumptions: It is assumed that processes are well behaved,
i.e., there are no faults, deadlocks, or overflows during the
observation period. This is a realistic assumption since the
processes whose models have to be discovered are supposed to
be in operation, although the model is currently unknown or ill
known. Of course, if the sequences describe halting events
corresponding to the end of a production process or the
sampling of some sequences is interrupted before the end of
the process; this could be captured in the obtained PN as a
deadlock.

Thus, we can consider that the event streams Si ∈ T ∗ are
generated from the initial marking, by a 1-bounded ordinary
PN without self-loops, which is deadlock-free in the repetitive
component.

Given that process is unknown (black-box approach),
we cannot assume completeness of S. The only constraint is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

the absence of repeated events, signaled above. We expect
to deal with sequences representing most of the possible
behavior of the process. Longest are the sequences, better
is the model approximation to the actual process behavior.
However, the method leads to a PN model that reproduces the
observed sequences.

B. Overview of the Method

The proposed method synthesizes a PN and an initial mark-
ing from which the sequences in S can be executed. It focuses
on the computation of the causal and concurrent relations
between the tasks S. This is achieved by determining the
t-invariants (that are supposed to exist in systems that exhibit
repetitive behavior), which also are used to find causal implicit
relations between events that are not observed consecutively.

In a first stage, several binary relations between transitions
are determined from all Si ∈ S; based on these relations, the
t-invariants are computed. Afterward, causal and concurrent
relations are determined, and together with the discovered
t-invariants, the structure of a PN model is built. Finally,
the t-invariants are used again for reducing the possible
exceeding language by determining causality between events
not observed consecutively.

IV. BASIC CONCEPTS AND RELATIONS

We will describe the method, without loss of generality,
considering a single sequence S; dealing with several Si ,
which is trivially extended, is mentioned later in Section V-D.
First, we introduce several relations derived directly from S.
Some of the following definitions have been taken and adapted
from [12].

Definition 6: The relationship between transitions that are
observed consecutively in S is expressed in the relation Seq ⊆
T × T which is defined as Seq = {(t j , t j+1)|1 ≤ j < |S|−1};
ta Seq tb will be frequently denoted as ta < tb. The relation
between transitions that never occur consecutively in S is
T × T\Seq; pairs in this relation are denoted as ta >< tb.

This relation has been used in [18] and [20] as a representa-
tion of the precedence relationship in the events on a sequence:
a < b means that a has been observed immediately before b.

Definition 7: Every couple of consecutive transitions
(ta, tb) ∈ Seq can be classed into one of the following
situations.

i) Causal Relationship: the occurrence of ta enables tb,
denoted as [ta , tb]. In a PN structure, this implies that
there must be at least one place from ta to tb.

ii) Concurrent Relationship: if both ta and tb are simulta-
neously enabled, and ta occurs first, its firing does not
disable tb. In a 1-bounded PN structure, this implies that
it is impossible the existence of a place from ta to tb.
In this case, ta and tb are said to be concurrent, denoted
as ta ||tb.

The notion of concurrence has been taken from the process
algebra [30]; van der Aalst et al. [20], Wen et al. [21], and
Wang et al. [22] use this notion for defining the concurrence
between transitions.

Now a relation that establishes a key property named
repetitive dependence is recalled [12].

Definition 8: A transition t j is repetitively dependent of tk ,
denoted as t j ≺ tk iff tk is always observed between two
apparitions of t j in S. If t j has been observed at least twice
in S, then t j ≺ t j . The set of transitions from which t j is
repetitively dependent is given by the function Rd(t j) : T →
2T ; then Rd(t j) = {tk|t j ≺ tk}. If t j was observed only once
in S, then Rd(t j) = ∅.

Property 1: The transitions in a Rd(t j) are included in the
support of at least one t-invariant.

Proof: Rd(t j) is the set of transitions that must invariantly
occur to fire t j repeatedly. Thus, the proof follows directly
from Definition 8 and the concept of t-invariant. Any tk ∈
Rd(t j) may belong also to other t-components.

Example 1: Consider the set of tasks T = {t1, t2, t3, t4, t5,
t6, t7} and the sequence S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2
t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5
t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4
t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1. From S it is obtained Seq =
{(t1, t2), (t2, t3), (t3, t4), (t4, t1), (t4, t5), (t5, t6), (t6, t7), (t7, t4),
(t2, t4), (t4, t3), (t3, t1), (t3, t5)}. Furthermore, one may observe
that t1 ≺ t2, t1 ≺ t3, t1 ≺ t4, thus Rd(t1) = {t1, t2, t3, t4}.
The rest of the Rd sets are Rd(t2) = {t1, t2, t3, t4},
Rd(t3) = {t1, t2, t3}, Rd(t4) = {t4}, Rd(t5) = {t4, t5, t6, t7},
Rd(t6) = {t4, t5, t6, t7}, Rd(t7) = {t4, t5, t6, t7}.

A substructure that can be straightforward derived from the
sequence is the cycle involving only two transitions [31].

Definition 9: Two transitions ta and tb are called transitions
in a two-length cycle (Tc) relation if S contains the subse-
quences tatbta or tbtatb. Tc denotes the set of transition pairs
fulfilling this condition.

It is easy to see that simple substructures of PN can be
derived straightforward from Tc. From Example 1, T c = ∅.

Now, conditions for determining causal and concurrence
relationships are given.

Proposition 1: Let ta and tb be two transitions in T ; then
ta||tb if (ta , tb), (tb, ta) ∈ Seq, i.e., ta and tb have been observed
consecutively in S in both orders, and if ta , tb do not form
a Tc.

Proof: It follows from Definition 7(ii) and from the
condition that excludes the subsequence which characterizes
a Tc.

Thus, the set of concurrent transition pairs deduced from S
is ConcR = {(ta, tb)|ta < tb ∧ tb < ta ∧ (ta, tb /∈ T c)}. Notice
that this is a symmetric relation.

Proposition 2: Let ta , tb be two transitions in T such that
ta < tb; then [ta , tb] if ta ≺ tb or tb ≺ ta or (ta, tb) ∈ T c.

Proof: On the one hand, the fact that ta ≺ tb or tb ≺ ta
implies that there must be a cyclic subsequence including both
ta and tb, since they belong to a t-invariant (Property 1); thus
since they have been observed consecutively, there exists one
place between them for assuring the consecutive firing. On the
other hand, the Tc relation clearly states this dependence.

Then, the set of transitions pairs in a causal relation in S is
defined as: Causal R = {(ta, tb)|(ta < tb ∧ (ta ≺ tb ∨ tb ≺
ta)) ∨ (ta, tb) ∈ T c}.

From the sequence in Example 1, ConcR = {(t3, t4),
(t4, t3)} and Causal R = {(t1, t2), (t2, t3), (t4, t1), (t4, t5),
(t5, t6), (t6, t7), (t7, t4), (t2, t4), (t3, t1)}.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPIA-FLORES et al.: DISCOVERING PN MODELS OF DISCRETE-EVENT PROCESSES BY COMPUTING T-INVARIANTS 5

It is possible that several transition pairs in Seq cannot be
classed as causal or as concurrent, for example (t3, t5). Such
pairs, contained in Seq′ = ((Seq\Causal R)\ConcR, will be
treated later.

Remark 1: The computational complexity of finding the
previous relation is O(|S|) for the sequential and repetitive
dependence relations; the complexity for computing causal and
concurrent relations is O(|T |2).

V. COMPUTING THE T-INVARIANTS

Based on the previous definitions and properties, a technique
for determining the t-invariants is proposed. A first approxima-
tion to the supports of the t-invariants is Rd(t j) (Property 1).
The main challenge is to discover the t-invariants whose
transitions appear interleaved in S. In particular, complex
situations can appear in which a t-invariant needs for its
execution; the firing of other transitions not included in it when
two or more t-invariants share transitions.

The technique presented herein pursues to find out the
t-invariants of the net that reproduces the observed behavior
given by S.

A. Extending the Repetitive Dependencies

For this purpose, it is necessary to extend the Rd sets
to obtain the supports of the invariants, by using additional
notions introduced below.

Definition 10: A transition ta is indirect repetitive dependent
of tc denoted as ta ≺≺ tc iff there is a transition tb such
that (ta ≺ tb) and (tb ≺ tc). Therefore, the indirect-repetitive-
dependent set is IRd(ta) = {tc|ta ≺≺ tc}. The transitive
extension of a Rd(ta) is Rdex(ta) = Rd(ta) ∪ IRd(ta).

Notice that the IRd(ta) contains the transitions related
indirectly at one step.

Property 2: All the transitions in a Rdex(ta) belong to the
support of a t-invariant.

Proof: It follows from Property 1 and Definition 10; if
the firing of tb is conditioned to the firing of tc, and ta ≺ tb,
then the firing of ta is also conditioned to the firing of all the
tc ∈ Rd(tb), even if tc does not always appears between two
occurrences of ta (tc /∈ Rd(ta)).

Rdex sets approximate the supports of t-invariants; thus, it is
necessary to enlarge these sets. For this purpose, relevant Rdex
have to be handled.

Definition 11: A Rdex(t j) set is said to be maximal
iff there is no other Rdex(tk) that includes Rdex(t j).
RdM = {RdMi |RdMi is a maximal Rdex(t j)}.

Example 2: Consider the set of tasks T = {t0, t1, t2, t3, t4,
t5, t6, t7} and the sequence S1 = t6 t1 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6
t0 t7 t3 t6 t0 t2 t3 t6 t1 t7 t4 t6 t1 t7 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t0 t2 t3
t6 t1 t2 t4 t6 t1 t2 t4 t6 t0 t2 t3 t6 t0 t7 t3 t6 t0 t7 t5 t4 t6 t0 t7 t3 t6 t0
t5 t2 t4 t6 t0 t5 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t5 t2 t4 t6 t1 t7 t4 t6 t1
t2 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6 t0 t5 t7 t4
t6 t1 t2 t4 t6 t0 t7 t3 t6 t0 t5 t2 t4 t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t1 t7 t4 t6
t0 t7 t3 t6 t1 t7 t4 t6 t0 t7 t5 t4 t6 t1 t2 t4 t6 t0 t5 t7 t4 t6 t0 t7 t3 t6 t0
t2 t5 t4 t6 t0 t5 t7 t4 t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t0 t7 t3 t6 t0 t2 t5, . . .,
where |S| = 200.

The repetitive dependencies computed from S are:
Rd(t0) = {t0, t6}, Rd(t1) = {t1, t6, t4}, Rd(t2) = {t2, t6},

TABLE I

RELATIONS BETWEEN TASKS IN Example 2

Rd(t3) = {t3, t0, t6}, Rd(t4) = {t4, t6}, Rd(t5) = {t5, t6, t4, t0},
Rd(t6) = {t6}, Rd(t7) = {t7, t6}; the transitive extension does
not modify these sets, i.e., Ird(ti) = Rd(ti).

The computed RdMi are: RdM1 = {t5, t6, t4, t0}, RdM2 =
{t1, t6, t4}, RdM3 = {t3, t6, t0}, RdM4 = {t7, t6}, RdM5 =
{t2, t6}. Other relations deduced from S are summarized
in Table I.

The knowledge of transitions that belong only to one RdMi

will be useful for determining the invariants.
Definition 12: The set of transitions that belong to only

one RdMi is TRdMi = RdMi
⋃

j=1, j �= i r RdM j , where
r = |RdM|.

Now it is possible to enlarge these sets by merging RdMi

that share common transitions. This can be done when the
RdMi fulfill several conditions stated below.

Proposition 3: All the transitions in a RdMx,y = RdMx ∪
RdMy are included in the support of a t-invariant if there exist
ti ∈ RdMx and t j ∈ RdMy such that: 1) (ti , t j) ∈ ConcR and
2) Rd(ti) ∩ Rd(t j) �= ∅.

Proof: Let be tk ∈ Rd(ti)∩Rd(t j). Since (ti , t j) ∈ ConcR,
the subsequence ti t j . . . tk . . . t j ti . . . tk . . . ti t j . . . tk is found
in S; that is, both transitions ti and t j appear between the
occurrences of tk . Therefore, ti and t j belong to a largest
repetitive dependence RdMx,y = RdMx ∪ RdMy , which is
part of the support of a t-invariant.

The next procedure obtains RdM+, the set of extensions of
RdMi by performing the union operation between members
of RdM.

Algorithm 1 : Merging RdMs
Input: RdM = {RdM1, RdM2 . . . RdMr }
Output: RdM+
1. RdM+ ← RdM
2. ∀(ti , t j) ∈ ConcR

If Rd(ti) ∩ Rd(t j) �= ∅ then
RdMi, j ← RdMi ∪ RdMj

RdM+ ← RdM+ ∪ {RdMi, j }

After applying this procedure to RdM obtained in
Example 2, given that (t5||t7), (t2||t5), and Rd(t5)∩Rd(t7) �= ∅
and Rd(t5)∩Rd(t2) �= ∅, two new maximal sets are obtained:
RdM1,4 = RdM1 ∪ RdM4, RdM1,5 = RdM1 ∪ RdM5.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 5. CG corresponding to RDM+ of Example 2.

Then, RdM+ = {RdM1, RdM2, RdM3, RdM4, RdM5, RdM1,4,
RdM1,5}.

Remark 2: The computational complexity of obtaining
RdM+ by applying Algorithm 1 is O(|ConcR|).

B. Finding the Repetitive Behavior

A t-invariant induces a subgraph of the PN model, called
repetitive component or t-component. In the case of a
deadlock-free and 1-bounded PN, the t-component is strongly
connected (Sc). We will analyze each of the RdMi in RdM+
through a graph representation of CausalR and the transition
pairs in Seq′.

Definition 13: The Graph of causality relations between
tasks, named causality graph of a RdMi , is a digraph
denoted Gi , defined as follows:

Gi = (Vi , Ei); Vi = {tk |tk ∈ RdMi }
Ei = {(tk, tl) ∈ Vi × Vi |(tk, tl) ∈ Causal R ∪ Seq′}

The set of causality graphs corresponding to RdM+ is denoted
CG = {G1, G2 . . . Gq}, where Gi is the causality graph of a
RdMi . A Gi is maximal iff there is not a Gk,∈ CG such that
Gi ⊂ Gk .

The set CG corresponding to the RdM+ computed before
for Example 2 is shown in Fig. 5.

Theorem 1: Let Gi be a causality graph in CG. If a maximal
Gi is Sc, then the transitions represented by its vertices are
the support of some minimum t-invariant of the PN that
reproduces S.

Proof: The vertices of Gi correspond to a RdMi whose
transitions are included in the support of a t-invariant Yi

(Proposition 3). Suppose that the transitions in Vi are not the
support of a t-invariant; then, there exists at least a tk /∈ Vi

such that tk ∈ 〈Yi 〉 that must fire to allow the repetitive firing
of transitions in Vi together with tk ; thus, there are not cycles
containing tk in Gi ; consequently, it is not Sc or it is not
maximal.

If the connectivity test is applied to the graphs in CG, it may
occur that some Gi are not Sc. Then, it is possible to obtain
larger graphs by merging Gi with common vertices, through a
merging operation of graphs defined below. Notice that for the

Fig. 6. G2 ∪G G5, where (t1, t2), (t2, t4) ∈ CausalR ∪ Seq′.

RdMs involved in the merging (RdM1, RdM4, RdM5), RdM1
is Sc, as well as their unions (RdM1,4, RdM1,5); therefore,
we can discard RdM1 as a t-invariant since we are looking
for the maximal. On the other hand, RdM2, RdM3, RdM4,
and RdM5 are not Sc; these RdM need to be specially treated
with the procedure given below.

Definition 14: The merging operation (∪G) of two causality
graphs Gi ∪G G j produces a new graph Gi, j

Gi, j = (Vi, j , E); Vi, j = {tk|tk ∈ Vi ∪ Vj }
E = {(tk, tl) ∈ Vi, j × Vi, j |(tk, tl) ∈ Causal R ∪ Seq′}.

Fig. 6 shows the merging of the graphs G2 and G5. The
idea is to merge iteratively graphs Gi , G j ∈ GC such that
Vi ∩ Vj �= ∅. In each iteration, every Gi, j produced must not
include other Sc graphs. Based on this strategy, a procedure
for computing all the Sc graphs from CG is presented below.

Algorithm 2 : Getting the t-invariants from S
Input: CG = {G1, G2 . . . Gq}
Output: Y (S): Supports of t-invariants
1. GSc ← all maximal Sc Gi ∈ CG
2. GN Sc ← all non-Sc Gi ∈ CG
3. NewNSc← GNSc, TempNSc← ∅, Y(S)← ∅
4. While (NewNSc �= ∅)

4.1 ∀Gi ∈ GN Sc

4.1.1 ∀G j ∈ NewNSc|Gi �⊂ G j and Gi ∩ G j �= ∅
a) Gi, j ← Gi ∪G G j

b) If Gi, j is Sc
then GSc ← GSc ∪ Gi, j

else TempNSc← TempNSc ∪ {Gi, j }
4.2 NewNSc← TempNSc; TempNSc← ∅

5. ∀Gi ∈ GSc,

5.1 < Yi >← Vi , Y(S)← Y(S)∪ < Yi >

6. Return Y(S)

Remark 3: This algorithm terminates when no new graph
union operation can be applied (i.e., NewN Sc = ∅). The com-
putational complexity of finding the supports of t-invariants
when any union Gi, j is Sc at each iteration (worst case)
is O(2|GNsc|), where |GNSc| < |T | � |S|. However, the worst
case is unlikely since when Gi, j are built at the first iteration
(step 4.1.1 a); in practice, at least, one Gi, j is Sc, then the size
of NewNSc decrease; this causes that the algorithm terminates
fastly in the next iterations. Furthermore, the conditions in
step 4.1.1 reduce the number of graphs unions to be performed.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPIA-FLORES et al.: DISCOVERING PN MODELS OF DISCRETE-EVENT PROCESSES BY COMPUTING T-INVARIANTS 7

The worst-case scenario for the previous algorithm is the
case in which the process performs a lot of choices, resulting
in a large number of t-invariants in the discovered model. This
behavior in the log leads the procedure to generate several
single node graphs, which imply to perform a lot of unions of
graphs to obtain the final t-invariants. However, this particular
behavior occurs rarely in automated manufacturing systems.

Theorem 2: Algorithm 2 obtains all the supports of the
minimal t-invariants of a PN model that reproduces the task
sequence S.

Proof: This procedure performs exhaustively the union of
graphs which are not Sc and have common vertices. In each
iteration, the formed Sc graphs are no longer considered in
the union operations; this reduces progressively the number of
non-Sc graphs. Since it is avoided using the already obtained
Sc graphs; this guarantees finding minimal Sc graphs and then
the support of minimal invariants. When it is not possible to
generate new Sc graphs, the procedure stops. Every Vi of Gi

in Gsc is the support of a t-invariant.
The set of obtained t-invariants is Y (S) = {Yi |Yi is the

vector corresponding to Vi }.
When Algorithm 2 is applied to CG of Example 2,

the resulting supports of t-invariants are 〈Y1〉 = {t0, t4, t5,
t6, t7}, 〈Y2〉 = {t0, t4, t5, t6, t2}, 〈Y3〉 = {t1, t4, t6, t2}, 〈Y4〉 =
{t1, t4, t6, t7}, 〈Y5〉 = {t0, t3, t6, t2}, 〈Y6〉 = {t0, t3, t6, t7}.

VI. BUILDING THE PN MODEL

Causal relations [ti , t j] determine the existence of a place
between transitions. Using this basic structure, named depen-
dence, and the knowledge of t-invariants, a technique for
building a PN model is now presented.

A. Merging Transitions of Dependencies

All the transitions named ti within several dependencies
must be merged into a single one following the next merging
rules.

Rule 1: Two dependencies in the form [ti , t j] and [t j , tk]
produce, straightforward, a sequential substructure including
two places, which allows the firing of the sequence ti t j tk ,
as illustrated in Fig. 4(a).

Rule 2: When the first transitions in two dependencies are
the same ([ti , t j] and [ti , tk]), two possible substructures can
be created [Fig. 4(b)].

a) The places of the dependencies are merged into a single
one iff t j and tk belong to different t-invariants. This is
denoted as [ti , t j + tk]. This rule applies most of the time,
but a special situation could appear when t j ||tk ; in this
case, the dependence [ti , t j + tk] is not created.

b) The places of the dependencies are not merged iff t j

and tk belong to the same t-invariant. This is denoted
as [ti , t j ||tk].

Similarly, for dependencies having a common second tran-
sition ([ti , tk] and [t j , tk]), the substructure created will be
either [ti + t j , tk] or [ti ||t j , tk] [Fig. 4(b)]. In both cases,
the observations (ti , t j), (ti , tk), (ti , tk), (t j , tk) ∈ Seq, deriving
the dependencies, are preserved.

This merging rule is illustrated in Fig. 7. In general, a set
of dependencies in the form {[ti , t j], [ti , tk], . . . [ti , tr]} may

Fig. 7. Rules for merging dependencies. (a) Sequential merging. (b) OR/AND

split/join merging

Fig. 8. N1 built from S of Example 2.

produce either [ti , t j+tk+· · ·+tr] or [ti , t j ||tk || . . . ||tr] accord-
ing to the relations between transitions whether t j , tk, . . . , tr
belong to different t-invariants or t j , tk, . . . , tr belong to the
same t-invariant, respectively.

Consequently, the merging can be applied to composed
dependencies that coincide with one expression of transitions
of type ti + t j or ti ||t j ; for example, [ti+ t j , tk] and [ti + t j , tr]
leads to [ti + t j , tk + tr] if both tk and tr do not belong to the
same invariant.

The application of these merging rules to the dependencies
derived from the pairs in Causal R ∪ Seq′, leads to a PN
model N1 including all the transitions.

In Example 2, the application of rules 1 and 2 to the
obtained relations in Causal R ∪ Seq′ of Table I yields the
set of composed dependencies: [t5, t4], [t0, t2||t5], [t0, t5||t7],
[t0, t2 + t7], [t1, t2 + t7], [t2, t3 + t4], [t7, t3 + t4], [t4 + t3, t6],
[t6, t0+ t1], [t0+ t1, t2], [t0+ t1, t7], [t2||t5, t4], [t7||t5, t4], [t7+
t2, t3][t7 + t2, t4]. Afterward, the obtained dependencies are
p0 : [t6, t1 + t0], p1 : [t0 + t1, t2 + t7], p1–p2: [t0, (t2 + t7)||t5],
p3 : [t5, t4], p4 : [t2+t7, t4+t3], p5 : [t4+t3, t6]. The sequential
merging of substructures of the dependencies’ yields the PN
model N1 shown in Fig. 8.

B. Model Adjustment

Although S is executed in N1 most of the times, the obtained
model could not fire S, or could fire S but also exceed-
ing sequences. The PN in Fig. 8 does not reproduce S of
Example 2, in particular, the subsequences t1t2t4 and t1t7t4

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 9. Case of implicit dependencies.

cannot occur in N1. This is because the computed t-invariants
Y (S) differ from those of N1, named J (N1). If Y (S) coincide
with J (N1), then N1 is the correct model; otherwise, it must
be adjusted.

The mismatching between Y (S) and J (N1) is due to the
fact that the computed model does not include PN elements
(places and arcs) which assure implicit behaviors not exhibited
in S, named implicit dependencies.

Definition 15: In a 1-bounded PN, [ti , t j] is called an
implicit dependence, if although there is a place between the
transitions, the firing of ti does not produce a marking that
enables t j . It is necessary the firing of at least one transition
before t j .

In a PN model, implicit dependencies represent the record
of the occurrence of a ti , which is used as condition to enable a
future event t j . In general, an implicit dependence represents a
constraint in the flow of tokens in the net by assuring that t j is
fired only when ti is fired before; otherwise, the absence of
such a dependence will allow the firing of exceeding sequences
in the model.

After the building of N1, it is possible to characterize two
cases for which N1 may exhibit implicit dependencies: Case 1)
as a new place between two transitions Fig. 9(a), and Case 2)
through an already computed place Fig. 9(b) and (c).

When Y (S) �= J (N1), N1 must therefore be adjusted by
finding the pertinent implicit dependencies that extend N1 into
N2, whose t-invariants agree with Y (S). If Y (S) ⊂ J (N1) we
use the Case 1 as a strategy to solve the mismatch, in the other
hand if Y (S) �⊂ J (N1), i.e., ∃Yi ∈ Y (S) such that Yi /∈ J (N1)
we use Case 2. The handling of each case is described next.

Case 1: In this case, N1 has more invariants than those
computed from S; thus, it represents an exceeding behavior.
A new place between two transitions ti and t j has to be added
to N1 in order to constrain the differed firing of t j after the
firing of ti .

Proposition 4: A dependence [ti , t j] must be added to N1 if
the following condition holds: i) (ti >< t j); ii) (ti , t j ∈ 〈Yk〉);
and ∃TRdMx s.t. ti , t j ∈ TRdMx.

Proof: Suppose that the place pk in the dependence
[ti , t j] must not be added; this is because of the following.

i) The place pi [ti , t j] already exists as result of applying
Rule 1 or Rule 2, Therefore, such transitions are observed
consecutively in S, i.e., ¬ (ti >< t j).

ii) It is not necessary to force ti to appear always before
t j , then both transitions may fire independently because
they belong to different t-invariants, i.e., there is not a
support of t-invariant which contains both transitions,
i.e., ¬ (ti , t j ∈ 〈Yk〉) or ¬ (ti , t j ∈ TRdMx).

Case 2: Let J (N1) = {J1, J2, . . . , Jr } be the set of
t-invariants of N1, such that CJ j = 0, where C is the incidence
matrix of N1. Consider a Yr /∈ J (N1). Let pk be the place
corresponding to the row in which CYr �= 0 (i.e., C(pk)
Yr �= 0). In order to obtain the dependence [ti , t j], other
transition in N1 must be linked through pk to one of the
transitions in • pk or p•k according to the following rule.

Proposition 5: Let ti , t j ∈ 〈Yr 〉 be transitions such that at
least one belongs to some TRdMx, and they are not observed
consecutively (ti >< t j) such that CYr �= 0, where Yr ∈ Y (S).
Then, there exists an implicit dependence [ti , t j] that must be
added through a place pk of N1, such that C(pk)Yr �= 0,
in order to ensure C(pk)Yr = 0.

Proof: As stated in Proposition 4, [ti , t j] must be added;
however, there exist a place in N1 which must be used. Given
that the structure of N1 is an ordinary PN, only two cases can
occur.

i) C(pk)Yr = 1. This requires that C(pk,t j) = −1 to get
C(pk)Yr = 0; thus, ti ∈• pk . (The arc (pk, t j) must be
added to obtain [ti , t j].)

ii) C(pk)Yr = −1. This requires that C(ti , pk) = 1 to get
C(pk)Yr = 0; thus t j ∈ p•k (The arc (ti , pk) must be
added to obtain [ti , t j].)

Since ti ∈ TRdMx, the added arc (pk, ti) only affect Yr .
Similarly, since t j ∈ TRdMx, the new arc (t j , pk) does not
affect the other t-invariants.

Proposition 6: Let J (N1) and Y (S) be the t-invariants sets
of N1 and S, respectively, such that J (N1) �= Y (S). N1 can
be adjusted just by the addition of implicit dependencies in
Case 1 and Case 2, in order to fit N1 into the t-invariants of
Y (S) (J (N1) = Y (S)).

Proof: Let ni = N1(Yi) be the induced component
by 〈Yi 〉; then we need to ensure that ni is a t-component, i.e.,
∀s j ∈ ni , |s•j | = |•s j | = 1. If the condition is fulfilled, then
Yi is a valid t-invariant in N1. We could reduce the excessive
behavior by adding an implicit dependence Case 1 between
a couple of transitions in Yi according to Proposition 4.
If |s•j | �= |•s j |, it is because some either |s•j | = 0 or |•s j | = 0;
that is, there exist a place in ni without output or input
transition. To solve this, an implicit dependence of Case 2
i) or ii) must be added, respectively, to s j according to
Proposition 5.

Corollary 1: If all the implicit dependencies added ∀pk such
that C(pk)Yr �= 0, ∀Yr ∈ Y |CYr �= 0, then the resulting net
N2 fulfills CY = 0.

Proof: When all the corrections to N1 are done by
applying the corrections of Proposition 5, the resulting net
N2 fulfills CY(S) = 0 and then Y (S) = J (N2).

Remark 4: The complexity of computing the implicit depen-
dencies is O(|P|·|T |); it is related to the matrix-vector product
operation C(pk)Yi . Notice that the procedure does not need
to compute the t-invariants of N1. It only operates on the
computed invariants Y (S) that do not agree with the computed
net N2 (Yr ∈ Y (S) such that Yr C �= 0)

Let us analyze N1 in Fig. 8, obtained from S in Example 2.
First, it is computed J (N1) = {〈J1〉, 〈J2〉, 〈J3〉, 〈J4〉}; 〈J1〉 =
{t0, t4, t5, t6, t7}, 〈J2〉 = {t0, t4, t5, t6, t2}, 〈J3〉 = {t1, t2, t3, t6},

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPIA-FLORES et al.: DISCOVERING PN MODELS OF DISCRETE-EVENT PROCESSES BY COMPUTING T-INVARIANTS 9

Algorithm 3 : Finding Implicit Dependencies
Input: N1, Y(S)
Output: N2

1. ∀(ti , t j)|ti ,>< t j ∧∃TRd Mx s.t. ti , t j ∈ TRd Mx∧ ti , t j ∈<
Yi >

add a place between (ti , t j)
2. If ∃Yi ∈ Y(S)|CYr �= 0

a) Find a pk|C(pk)yi �= 0
b) Add [ti , t j] through pk relations that fulfil

ti ,>< t j ∧ ti , t j ∈ yi ∧ (ti ∈• pk, t j ∈ TRd Mx) or
ti ,>< t j ∧ ti , t j ∈ yi ∧ (t j ∈ p•k , ti ∈ TRd Mx)

Fig. 10. Resulting PN N2 after model adjustment.

〈J4〉 = {t1, t7, t3, t6}. There is a mismatch between both sets
and since Y (S) �⊂ J (N1), the problem is handled as in Case 2.
It can be noticed that Y3, Y4, Y5, Y6 /∈ J (N1). In the analysis of
Y3, pk = p3 because it fulfills the condition CN1(p3)Yi �= 0,
as shown in the next equation

⎡

⎢
⎢
⎢
⎢
⎣

−1 −1 0 0 0 0 1 0
1 1 −1 0 0 0 0 −1
1 0 0 0 0 −1 0 0
0 0 0 0 −1 1 0 0
0 0 1 −1 −1 0 0 1
0 0 0 1 1 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎦
•

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1
0
1
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
−1
0
0

⎤

⎥
⎥
⎥
⎥
⎦

CN1 Y3

The transition in t4 ∈ p•k is chosen to find the implicit
dependence [ti , t4]. The transition that fulfills the conditions
ti >< t4, ti , t4 ∈ 〈Y3〉, ti ∈ TRdMx, is t1; therefore, the
implicit dependence [t1, t4] is added to N1 by the corre-
sponding arc (t1, p3). Similarly, Y4, Y5, Y6 are treated and
the implicit dependence [t0, t3] in p2 is found. Finally, the
resulting PN model N2, which exactly reproduces S is shown
in Fig. 10.

Theorem 3: Given a sequence of transitions S ∈ T ∗
obtained from a process fulfilling the assumptions stated in
Section II-A, a 1-bounded PN model N2 that reproduces S can
be obtained by applying the rules 1 and 2, and performing the
adjustments of Algorithm 3.

Proof: Causality between transitions, established by the
pairs in Causal R∪Seq′, represents the precedence relationship
between consecutive transitions in S that are not in ConcR.

The substructure associated with a dependence [ti , t j] guaran-
tees the consecutive firing of these transitions; thus by applying
Rule 1, the flow expressed in Causal R ∪ Seq′ is fulfilled by
N1. Furthermore, Rule 2 determines, by the knowledge of the
t-invariants, whether the flow is split or joint in choice or par-
allel structures. Dependencies involving transitions included
in Sc causality graphs assure the construction of repetitive
components in N1. Furthermore, adjustments to N1 provided
by Propositions 4 and 5 allow fitting the invariants computed
form the observed behavior with those of the discovered
model.

C. Initial Marking

The initial marking must enable S; thus, the procedure for
determining M0 is simple; it suffices: 1) to place tokens in the
input places of the first transition in S and 2) executing the
remainder t j in S and eventually adding tokens in some places
of •t j when the reached marking is not enough for firing t j .
In the case of Example 2, the only place initially marked in
the PN (Fig. 5) is p5.

D. Processing Several Event Sequences

Although the presentation of the method only a single
sequence is used, this discovery technique may handle several
event sequences Si corresponding to the observed behavior of
the same discrete-event process. The only constraint is that
all the sequences must be sampled from the starting of the
process. All the observed precedence relationships in Seqi of
every Si are gathered into the Seq relation at the beginning
of the discovery procedure. The initial marking is determined
for enabling all the Si .

E. Performance of the Method

The method is divided into three main stages. First, the
information derived from S, namely, relations between activi-
ties are obtained; the computational complexity of this step is
O(|S|), as stated in Remark 1.

The second stage consists of inferring the supports of
the t-invariants from S; the most significant calculations
are here:

1) the formation of RdM+ by Algorithm 1, which is
O(|ConcR|) (Remark 2);

2) iterative unions of graphs by Algorithm 2, which is in the
worst-case exponential on |GNSc|, but actually faster as
stated in Remark 3.

It is worth to notice that |ConcR| and |GNSc| are very small
with respect to the length of the observation |S|.

Finally, in the stage that builds the PN, the step that
requires more calculations is the model adjustment, which is
related to the matrix product operation; thus, the complexity is
(O(|P| · |T |)), which is detailed in Remark 4. Nevertheless,
this step is not always needed.

It is important to notice that for the matching test of Y (S)
performed on the first approximated PN N1, it is not neces-
sary to obtain the invariants J (N1); only CN1Y (S) = 0 is
tested. Furthermore, the method discovers only the invariants
executed in the sequence S.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 11. Testing scheme.

Therefore, the procedure implementing the proposed
discovery method can be executed approximately in
polynomial time on the size of the log of sequences S,
as demonstrated by the test presented in the next section.

VII. IMPLEMENTATION AND TESTS

Algorithms derived from the proposed method have been
implemented as a software tool and tested on numerous
examples of diverse complexity. The tests were performed
using the following scheme, depicted in Fig. 11: first, a PN test
model is designed, and with the help of the PN editor/simulator
PIPE [32], a long sequence S is produced. Afterward, the tool
processes S and yields a PN coded in XML, which is displayed
using PIPE again. Using this scheme, the discovered PN can
be easily compared with the test PN.

Below, we present an example regarding a less simple PN
model that can be discovered using the proposed PN discovery
method. The model in Fig. 12 has been obtained by processing
the sequence
S3 = T 16 T 14 T 2 T 4 T 3 T 5 T 9 T 7 T 3 T 5 T 9 T 3 T 5 T 8 T 17
T 2 T 3 T 5 T 9 T 3 T 4 T 7 T 5 T 8 T 11 T 13 T 15 T 16 T 1 T 2 T 4
T 3 T 5 T 8 T 6 T 10 T 17 T 2 T 3 T 4 T 5 T 6 T 9 T 3 T 5 T 10 T 9
T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5
T 9 T 3 T 5 T 8 T 17 T 2 T 4 T 3 T 7 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 8
T 11 T 12 T 15 T 16 T 1 T 2 T 4 T 7 T 3 T 5 T 8 T 11 T 12 T 15
T 16 T 14 T 2 T 3 T 5 T 8 T 4 T 6 T 10 T 17 T 2 T 3 T 4 T 6 T 10
T 5 T 9 T 3 T 5 T 8 T 17 T 2 T 4 T 6 T 3 T 10 T 5 T 9 T 3 T 5 T 8
T 17 T 2 T 3 T 5 T 8 T 4 T 6 T 10 T 11 T 13 T 15 T 16 T 14 T 2 T 4
T 7 T 3 T 5 T 9 T 3 T 5 T 8 T 11 T 13 T 15 T 16 T 1 T 2 T 3 T 5 T 9
T 4 T 6 T 3 T 10 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 8 T 17 T 2
T 3 T 5 T 9 T 4 T 3 T 6 T 5 T 9 T 3 T 10 T 5 T 8 T 11 T 12 T 15 T 16
T 14 T 2 T 4 T 7 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3
T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 8 T 17 T 2 T 3 T 5 T 8 T 4
T 6 T 10 T 11 T 13 T 15 T 16 T 1 T 2 T 3 T 5 T 8 T 4 T 7 T 11 T 12
T 15 T 16 T 14 T 2 T 4 T 7 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 8 T 17
T 2 T 4 T 6 T 10 T 3 T 5 T 8 T 11 T 13 T 15 T 16 T 1 T 2 T 4 T 3 T 5
T 9 T 7 T 3 T 5 T 8 T 11 T 12 T 15 T 16 T 14 T 2 T 4 T 7 T 3T 5 T 9
T 3 T 5 T 8 T 17 T 2 T 3 T 4 T 7 T 5 T 9 T 3 T 5 T 8 T 11 T 13 T 15
T 16 T 14 T 2 T 4 T 7 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5 T 9 T 3 T 5
T 8 T 11 T 13 T 15 T 16 T 14 T 2 T 3 T 4 T 6 T 5 T 9 T 3 T 10 T 5
T 9 T 3 T 5 T 8 T 11 T 13 T 15 T 16 T 1 T 2 T 4 T 7 T 3 T 5 T 9 T 3
T 5 T 8 T 11 T 12 T 15 T 16 T 1 T 2 T 3 T 4 T 5 T 7 T 9 T 3 T 5 T 9
T 3 T 5 T 8 T 17 T 2 T 3 T 4 T 6 T 10 . . ., where |S| = 1500.

This model includes diverse structures (nested t-components
evolving concurrently) which are more complex than others

published in literature. As a sign of performance, the process-
ing time for S in a laptop computer (2.4-GHz dual-core, Intel
Core i5 processor, 4 GB of 1333-MHz DDR3 memory) was
3.6 s.

Thanks to software tool we developed, it has been possible
to test models of diverse structures, which include cycles
nested into t-components, concurrence, and implicit depen-
dencies. This reveals the capabilities of the method for dealing
with black-box model discovery.

Additional tested examples are presented in the Appen-
dix included as Additional material associated with this paper,
which can be also downloaded from [33]; they include part of
the sequence processed and the model obtained.

Besides this test scheme, the method has been implemented
in the ProM environment, hosted a public site located in
the Technical University of Eindhoven. It is an experimental
framework devoted to test process mining techniques. This
implementation handles the input event logs in both formats:
a single long sequence or a set of event traces. Several tests
are included in the Appendix [33]; the results are compared
with that of two standing process mining techniques applied
to sequences used in this paper.

VIII. CONCLUDING REMARKS

A. Main Features

The black-box method herein described for discovering
ordinary PN processes long sequences Si , which represent the
observed behavior of a discrete-event process during a normal
operation functioning. A single very long sequence can be
used for deriving the model by considering that all the possible
behavior has been observed.

The discovered model is a safe ordinary PN; this subclass
is well adapted to represent the behavior of a wide class
of discrete-event processes, namely manufacturing systems
controllers, where the tasks are represented by state variables
having two values: idle (OFF) and active (ON).

The algorithms derived from the steps of the method are
polynomial time on the size of S; efficient procedures have
been developed and tested on numerous examples including
diverse structures.

B. Related Works

This paper improves a previous technique [12], which
follows a two-stage approach regarding the reduction of
exceeding behavior representation of the nonobservable model.
Based on some basic notions, a novel method is proposed;
it is supported mainly on searching the t-invariants from the
observed sequences Si . The determined invariants are used first
to build an initial model, and later to adjust it, if necessary;
the final model includes implicit causal relationships between
transitions that have not been observed consecutively.

As pointed out in [12], the method overcomes several limi-
tations of the proposals in the identification problem statement
for PN.

The method in [3] and subsequent extensions proposed
efficient algorithms; the state equivalence is based on the
observation of the same observed outputs vector, which is not
very often the case for real systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPIA-FLORES et al.: DISCOVERING PN MODELS OF DISCRETE-EVENT PROCESSES BY COMPUTING T-INVARIANTS 11

Fig. 12. Nontrivial discovered PN model from S3.

TABLE II

SUMMARY OF MAIN FEATURES OF IDENTIFICATION AND PROCESS MINING METHODS

The techniques based on integer linear programming [5]
and their extensions yield accurate bounded PN; but, due to
the high computational complexity, they are limited to deal
with few short event sequences; also it is necessary to know
the number of places in the PN to build.

Previous proposals on identification [16] are constrained to
deal with sequences describing cyclic behavior, i.e., the initial
and the final states are the same.

As indicated in the introduction, interesting proposals on
process discovery are driven form the business process applica-
tions, namely the extensions of the alpha algorithm [21]–[23].
The aim of such techniques was similar but both the problem
statement and the class of synthesized PN are (currently)
different. Thus, comparison with our proposal is difficult; on
the one hand, in our approach, the input data do not require
the knowledge about the start and end of events in traces σ j

in every Si . However, we can handle the input data as traces;
a sequence S is formed by the concatenation of σi using a tran-
sition t∗ between each trace. On the other hand, the obtained
PN are not restricted to workflow nets. Although the examples
used in this paper have the form of extended workflow nets,
typical models include some transitions executed once after the
start and before the end of the observations and the repetitive
behavior issued from the middle of the sequence. A summary
of the main features of such techniques is provided in Table II.

C. Limitations and Perspectives
The discovered PN executes the sequences Si from M0 and

may eventually accept exceeding iterative subsequences. This
corresponds to the inherent behavior to PN with repetitive
components.

Although implementation and tests revealed accuracy and
efficiency of the method when complex PN structures were
addressed, a metrics for evaluating the exceeding behavior of
the discovered model with respect to observed Si is essential.

The method does not deal with sequences including repeated
transitions. Although this is not required for discovering
controlled industrial processes, it can be addressed in the near
future.

Current research addresses the problem of discovering
behaviors of process controllers that involve the use of coun-
ters and timers.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers for their
critical and constructive comments.

REFERENCES

[1] E. M. Gold, “Language identification in the limit,” Inf. Control, vol. 10,
no. 5, pp. 447–474, 1967.

[2] D. Angluin, “Queries and concept learning,” Mach. Learn., vol. 2, no. 4,
pp. 319–342, 1988.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[3] M. Meda-Campaña, A. Ramirez-Treviño, and E. López-Mellado,
“Asymptotic identification of discrete event systems,” in Proc. 39th
IEEE Conf. Decision Control, Sydney, NSW, Australia, Dec. 2000,
pp. 2266–2271.

[4] M. Meda-Campaña and E. López-Mellado, “Identification of concurrent
discrete event systems using petri nets,” in Proc. IMACS World Congr.
Comput. Appl. Math., Dec. 2005, pp. 2266–2271.

[5] M. P. Cabasino, A. Giua, and C. Seatzu, “Identification of Petri nets
from knowledge of their language,” Discrete Event Dyn. Syst., vol. 17,
no. 4, pp. 447–474, 2007.

[6] M. P. Cabasino, A. Giua, and C. Seatzu, “Linear programming tech-
niques for the identification of place/transition nets,” in Proc. 47th IEEE
Conf. Decision Control (CDC), Dec. 2008, pp. 514–520.

[7] M. Dotoli, M. P. Fanti, A. M. Mangini, and W. Ukovich, “Identification
of the unobservable behaviour of industrial automation systems by Petri
nets,” Control Eng. Pract., vol. 19, no. 9, pp. 958–966, 2011.

[8] S. Klein, L. Litz, and J.-J. Lesage, “Fault detection of discrete event
systems using an identification approach,” in Proc. 16th IFAC World
Congr., Praga, Czech Republic, 2005, pp. 92–97.

[9] M. Roth, S. Schneider, J.-J. Lesage, and L. Litza, “Fault detection and
isolation in manufacturing systems with an identified discrete event
model,” Int. J. Syst. Sci., vol. 43, no. 10, pp. 1826–1841, 2012.

[10] A. P. Estrada-Vargas, E. López-Mellado, and J.-J. Lesage, “Input-output
Identification of controlled discrete manufacturing systems,” Int. J. Syst.
Sci., vol. 45, no. 3, pp. 456–471, 2014.

[11] A. P. Estrada-Vargas, E. Lóez-Mellado, and J.-J. Lesage, “A stepwise
method for identification of controlled discrete manufacturing systems,”
Int. J. Comput. Integr. Manuf., vol. 28, no. 2, pp. 187–199, 2015.

[12] A. P. Estrada-Vargas, E. López-Mellado, and J.-J. Lesage, “A
Black-Box identification method for automated discrete-event sys-
tems,” IEEE Trans. Autom. Sci. Eng., to be pulished, doi:
10.1109/TASE.2015.2445332.

[13] S. O. E. Mehdi, R. Bekrar, N. Messai, E. Leclercq, D. Lefebvre, and
B. Riera, “Design and identification of stochastic and deterministic
stochastic Petri nets,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 42, no. 4, pp. 931–946, Jul. 2012.

[14] D. M. Muñoz, A. Correcher, E. García, and F. Morant, “Identification
of stochastic timed discrete event systems with ST-IPN,” Math. Prob-
lems Eng., vol. 2014, p. 21, Jul. 2014.

[15] F. Basile, P. Chiacchio, and J. Coppola, “Real time identification of
time Petri net faulty models,” in Proc. IEEE Int. Conf. Autom. Sci.
Eng. (CASE), Gothenburg, Sweden, Aug. 2015, pp. 280–285.

[16] A. P. Estrada-Vargas, E. López-Mellado, and J.-J. Lesage, “A com-
parative analysis of recent identification approaches for discrete-event
systems,” Math. Problems Eng., vol. 2010, p. 21, May 2010.

[17] M. P. Cabasino, P. Darondeau, M. P. Fanti, and C. Seatzu, “Model
identification and synthesis of discrete-event systems,” in Contemporary
Issues in Systems Science and Engineering. Hoboken, NJ, USA: Wiley,
2015.

[18] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process mod-
els from workflow logs,” Advances in Database Technology—EDBT
(Lecture Notes in Computer Science), vol. 1377. Berlin, Germany:
Springer, 1988, pp. 469–483.

[19] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf, “Discovering models
of behavior for concurrent workflows,” Comput. Ind., vol. 53, no. 3,
pp. 297–319, Apr. 2004.

[20] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[21] L. Wen, W. van der Aalst, J. Wang, and J. Sun, “Mining process mod-
els with non-free-choice constructs,” Data Mining Knowl. Discovery,
vol. 15, no. 2, pp. 1384–5810, Oct. 2007.

[22] D. Wang, G. Jidong, H. Hao, B. Luo, and L. Huang, “Discovering
process models from event multiset,” Expert Syst. Appl., vol. 39, no. 15,
pp. 1970–11978, 2012.

[23] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu, “Mining invisible
tasks in non-free-choice constructs,” Bus. Process Manage., vol. 9253,
pp. 109–125, Aug. 2015.

[24] M. Solé and C. Carmona, “Region-based foldings in process discovery,”
IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 192–205, Jan. 2013.

[25] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from event logs—A constructive approach,”
in Application and Theory of Petri Nets and Concurrency. Berlin,
Germany: Springer, 2013.

[26] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. New York, NY, USA: Springer,
2011.

[27] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst,
“On the role of fitness, precision, generalization and simplicity in process
discovery,” in On the Move to Meaningful Internet Systems: OTM,
vol. 7565. IEEE, 2012, pp. 305–322.

[28] T. Tapia-Flores, E. López-Mellado, A. P. Estrada-Vargas, and
J.-J. Lesage, “Petri net discovery of discrete event processes by comput-
ing t-invariants,” in Proc. 19th IEEE Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Barcelona, Spain, Sep. 2014, pp. 1–8.

[29] J. Baeten and W. Weijland, Process Algbra. Cambridge, U.K.:
Cambridge Univ. Press, 1990.

[30] A. D. Medeiros, B. V. Dongen, and W. V. D. Aalst, Process Mining:
Extending the Alpha-Algorithm to Mine Short Loops (Special Issue on
Tools for Computer Performance Modelling and Reliability Analysis).
Eindhoven, The Netherlands: Eindhoven Univ. Technology, 2004.

[31] N. J. Dingle, W. J. Knottenbelt and T. Suto, “PIPE2: A tool for
the performance evaluation of generalised stochastic petri nets,” ACM
SIGMETRICS Perform. Eval. Rev. (Special Issue on Tools for Com-
puter Performance Modelling and Reliability Analysis), vol. 36, no. 4,
pp. 34–39, Mar. 2009. [Online]. Available: http://pipe2.sourceforge.net/

[32] Accessed on Mar. 2017. [Online]. Available: http://www.gdl.cinvestav.
mx/elopez/Appendix-PN-discov-T-inv.pdf

Tonatiuh Tapia-Flores received the B.Sc. degree
in computational systems from the Instituto Tecno-
logico de Ocotlán, Ocotlán, Mexico, and the M.Sc.
degree in electrical engineering from CINVESTAV
Unidad Guadalajara, Zapopan, Mexico, where he
is currently pursuing the Ph.D. degree in computer
science.

His research interests include data mining, work-
flow automation, process discovery, identification of
discrete-event systems, and formal modeling and
analysis using Petri nets.

Ernesto López-Mellado received the B.Sc.
degree in electrical engineering from the Instituto
Tecnologico de Ciudad Madero, Ciudad Madero,
México, in 1977, the M.Sc. degree from
CINVESTAV, México City, México, in 1979, and
the Docteur-Ingénieur degree in automation from
the University of Toulouse, Toulouse, France,
in 1986.

He is currently a Professor of Computer Science
with CINVESTAV Unidad Guadalajara, Zapopan,
Mexico. His research interests include discrete-event

systems and distributed intelligent systems.

Ana Paula Estrada-Vargas received the
B.Sc. degree in computer engineering from the
Universidad de Guadalajara, Guadalajara, Mexico,
in 2007, the M.Sc. degree from CINVESTAV,
Zapopan, Mexico, in 2009, and the Ph.D. degree
from CINVESTAV, Guadalajara, and the ENS de
Cachan, Cachan, France, in 2013.

She is currently with the Oracle Semantic
Technologies Team, Mexico Development Center,
Guadalajara. Her research interests include the
identification of discrete-event systems, formal

modeling and analysis using Petri nets, and Semantic Web technologies.

Jean-Jacques Lesage received the Ph.D. degree
from the Ecole Centrale de Paris, Châtenay-
Malabry, France, and the “Habilitation à diriger des
recherches” from the University Nancy 1, Nancy,
France, in 1989 and 1994, respectively.

He was the Head of the Automated Production
Research Laboratory, Ecole Normale Supérieure de
Cachan, Cachan, France, for eight years. He is
currently a Professor of Automatic Control with the
Ecole Normale Supérieure de Cachan. His research
interests include formal methods and models for

synthesis, analysis and diagnosis of discrete event systems, and applications to
manufacturing systems, network automated systems, energy production, and
more recently, ambient-assisted living.

