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Delta DLP 3-D Printing of Large Models
Ran Yi, Chenming Wu, Yong-Jin Liu, Senior Member, IEEE, Ying He,

and Charlie C. L. Wang, Senior Member, IEEE

Abstract— This paper presents a 3-D printing system that uses
a low-cost off-the-shelf consumer projector to fabricate large
models. Compared with traditional digital light processing (DLP)
3-D printers using a single vertical carriage, the platform of
our DLP 3-D printer using delta mechanism can also move
horizontally in the plane. We show that this system can print
3-D models much larger than traditional DLP 3-D printers. The
major challenge to realize 3-D printing of large models in our
system comes from how to cover a planar polygonal domain
by a minimum number of rectangles with fixed size, which is
NP-hard. We propose a simple yet efficient approximation
algorithm to solve this problem. The key idea is to segment a
polygonal domain using its medial axis and afterward merge
small parts in the segmentation. Given an arbitrary polygon �
with n generators (i.e., line segments and reflex vertices in �), we
show that the time complexity of our algorithm is O(n2 log2 n)
and the number of output rectangles covering � is O(Kn),
where K is an input-polygon-dependent constant. A physical
prototype system is built and several large 3-D models with
complex geometric structures have been printed as examples to
demonstrate the effectiveness of our approach.

Note to Practitioners—Low-cost 3-D printers and 3-D printing
of large models are two important but often conflicting goals in
manufacturing industry. Usually low-cost devices such as DLP
3-D printer using an off-the-shelf consumer projector cannot
print large models, due to the small projection area of the
projector. In this paper, we propose to horizontally move the
platform such that a large area can be printed by the composition
of multiple small projection areas. Based on this new mechanism,
we propose a simple yet efficient algorithm to cover an arbitrary
polygonal shape (possibly with holes or multiple disjoint poly-
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gons) by a small set of rectangles with fixed size. Our algorithm
is theoretically sound and can be easily implemented. We built
a physical prototype system of the proposed low-cost Delta DLP
3-D printer, which successfully prints several large models with
satisfied mechanical properties.

Index Terms— Manufacturing, mechanisms, primary topics,
secondary topics.

I. INTRODUCTION

D IGITAL light processing (DLP) is a 3-D printing tech-
nology that use ultraviolet (UV)-light to solidify liquid

photopolymer [8]. The technique of DLP is widely employed
in 3-D printing because of its fast printing speed and its simple
mechanism in hardware. When preparing the information for
fabrication, a 3-D CAD model is first sliced by a set of parallel
planes and each slice is later converted into a 2-D mask image.
By projecting the mask image onto a photocurable liquid
surface, a layer of solid in the same shape can be formed.
A 3-D object can be fabricated in this way layer by layer.
Different from some other stereolithography (SLA) techniques
which use point or line light sources, DLP uses an areal light
source such that the whole mask image can be projected at
the same time (e.g., the commonly used low-cost off-the-shelf
consumer projector). As a result, the fabrication process of
DLP 3-D printer is much faster than other point (or line)-based
3-D printing techniques.

Most photopolymers react to radiation in the UV wavelength
ranges. To successfully solidify fluid photopolymers, sufficient
light intensity must be projected onto the surface of liquid tank
in DLP-based 3-D printing. Off-the-shelf projectors are good
enough to take this job (e.g., a consumer-level 1080P Projector
is used in the Phoenix Touch 1080P DLP 3-D Printer [2]).
To ensure the light intensity and reduce the size of a
machine, optimal lenses are placed between the projector and
the working surface to shorten the distance of projection.
An illustration of DLP-based 3-D printing can be found
in Fig. 1. However, this setup results in a very small working
area (e.g., only 34 mm ×34 mm) in our hardware setup when
using a SONY VPL-EW246 projector), which prevents the
fabrication of large models. Enlarging the distance between a
projector and the working surface will need a more powerful
light source to ensure the light intensity of projection for
consolidation. More seriously, the resolution of projected
masks is limited by the resolution of a projector, which is
a technical barrier hard to overcome now. A project mask
with lower resolution will lead to a fabrication result with
less geometric details (see [27] and [28]).

To overcome aforementioned difficulty, our basic idea is to
make multiple projections for each layer of the 3-D model to
fabricate large models. Our method can work with different
projectors or other light sources, and then makes a good

1545-5955 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Working principle of a conventional DLP 3-D printer, in which the
platform can only move vertically.

tradeoff between the powerfulness of a light source and the
hardware cost. We develop a working system to realize this
function of DLP-based 3-D printing with a large size. In addi-
tion to moving vertically (along z-axis), the working platform
holding cured models can move and rotate horizontally (i.e.,
in the x-y plane). This is realized by a delta mechanism—a
parallel robot (details can be found in Section III). A practical
challenge is how to decompose a large planar shape into an
optimal set of smaller pieces, where each piece fits within
the projected area of light source. The smaller number of
pieces, the faster a planar polygonal region with large area
can be fabricated. As discussed in Section II, this problem
is generally NP-hard. In this paper, we improve upon our
previous work [26] in three aspects and make the following
new contributions.

1) We propose a simple yet effective algorithm based on
a medial-axis-driven segmentation. The time complexity
of our algorithm is O(n2 log2 n), where n is the number
of generators (i.e., line segments and reflex vertices)
in the input polygon. As a comparison, the bounding-
box-driven algorithm in [26] has O(n3 log n) time
complexity.

2) Our proposed algorithm covers an arbitrary multiple-
connected polygon (i.e., a polygon having multiple
holes) using a small number of rectangles with fixed
sizes (i.e., the maximal area of projection), and in par-
ticular, the number of rectangles is bounded by O(K n),
where K is an input-polygon-dependent constant. This
bound does not exist for the algorithm in [26].

3) A tension test has been taken on an INSTRON 5943 uni-
versal testing system, showing that a model printed
by our proposed multiple projections for each layer
has the same tension strength as the model printed by
traditionally single projections.

II. RELATED WORK

Nowadays, 3-D printing techniques are widely used in
manufacturing automation (see [17], [24], and [25]). In our
work, we pay attention to a DLP-based 3-D printing called
MIP-based stereolithograhy (MIP-SLA) [20], [21], which

follows the SLA technique but replace the point or line light
sources with an areal light source. As illustrated in Fig. 1,
liquid photopolymer resin to be cured is contained in a
transparent tank. In a bottom-up projection system, UV lights
controlled by mask images are projected onto the bottom sur-
face of resin and quickly cure it through the transparent tank.
After a layer is cured, the platform is moved up (vertically
in z-axis) and form a small gap between the built model and
bottom of the tank. To prevent sticking the cured layer onto
the tank, a coating material polydimethylsiloxane (PDMS) is
used. This mask image projection (MIP) and resin curing
process is iteratively applied to print the model layer by layer.
A major drawback of this conventional DLP framework is that
the platform can only move vertically and then the maximal
cross sections of printed models are restricted by the area of
projection.

In this paper, we present a new DLP system that allows
the platform to move not only vertically (in z-axis) but also
horizontally (in x-y plane). Then, larger layers of 3-D models
can be printed by multiple projections of a consumer projector.
To decompose a planar shape into an optimal set of rectangles,
two types of decompositions have been considered [10]:
partitions and coverings. It is called a partition if a shape
is decomposed into nonoverlapped subregions, the union of
which is exactly equal to the target polygon. If the subregions
are allowed to overlap, as long as their union is equal to the
target polygon, they are called a covering. Both partition and
covering problems have been well studied in computational
geometry.

The problem of covering a polygon with a minimum number
of convex components is NP-hard (see [6] and [19]). Even
for the special problem of covering a rectilinear polygon with
squares, finding a minimum of such covering is also NP-
hard [3]. Many practical approximation algorithms have been
proposed in the field of VLSI chip design (see [9] and [22]).
These algorithms mainly focused on the study of a collection
of rectangles with sides parallel to two orthogonal directions.
However, the rectangles are allowed to be in any orientation
in our application. A constant-factor approximation algorithm
was proposed in [11]. But this method can only cover a poly-
gon without any acute interior angles. In contrast, the planar
shape of a layer in our system can have arbitrary polygons
with holes.

The problem of partitioning a polygon with holes into a
minimum number of convex subpolygons is NP-hard [12].
The special problem of partitioning a rectilinear polygon to
a minimum number of squares is also NP-hard [1]. Most
existing practical approximation algorithms to solve parti-
tion problems only deal with rectilinear/orthogonal polygons
(see [10]). In our system, we are facing a more general and
difficult problem to partition an arbitrary polygonal shape
possibly with holes or multiple disconnected regions.

III. HARDWARE

We implement a delta structure such that the platform can
be moved both vertically and horizontally. A delta 3-D printer
is in fact a parallel robot [4] and has been used in 3-D printing
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Fig. 2. Mechanical structure, control module, and our prototype of a delta DLP 3-D printer. Vector graphics in (a), (b), and (c) are provided for zoomed-in
view examination. (a) Mechanical structure. (b) Zoomed-in view of the tilting device in the box of (a). (c) Control module. (d) Our system. See accompanying
video for more details.

by fused deposition modeling. To the best of our knowledge,
the delta structure has not been used in DLP 3-D printing yet.

Refer to Fig. 2(a), a delta structure has three vertical axes
labeled z1, z2, and z3. Each axis has a carriage that can
slide along the vertical sliding guide. A carriage and the
platform are connected using a pair of parallel arms. The
platform can be moved to any position in a cylindrical working
envelope by positioning the three carriages along the vertical
axes simultaneously using geometric algorithms. Details about
these geometric algorithms can be found in [4].

The control module of a delta structure consists of an
Arduino chip, an liquid-crystal display (LCD) display, and
four stepping motors as illustrated in Fig. 2(c). Three step-
ping motors (42BYGH60) work cooperatively for driving
the carriages to position the platform. Different from con-
ventional delta structure, a lighter and smaller stepping
motor (42BYGH33) is installed for rotating the platform
around the z-axis. All these motors are driven by an
A4988 DMOS Microstepping driver from Allegro Microsys-
tem. The whole system is controlled and communicated by
an Arduino chip. In addition, a common 1602 LCD display
is connected with the Arduino board to show parameters
including positions and angles of the platform for an easier
debugging.

To use a delta structure in DLP 3-D printing, a device that
can safely separate each solidified layer and the PDMS film
is required. Accordingly, we design and install an adaptive
tilting mechanical device with electrical control to manipulate
the resin tank [Figs. 2(b) and 3]. In this device, one side
of the resin tank is fixed by a detachable fixture with the
aluminum hinge. The opposite side of the resin tank is fixed
by another well-designed detachable fixture with a stepping
motor (42BYGH60). We use a height-adjustable limit switch
to form a closed loop control. Using this device, after solidi-
fication of each layer, the tank is gradually tilted to separate
the layer and the PDMS film. We name the above hardware
system with the tilting device as delta DLP 3-D printer.

IV. SOFTWARE

In DLP-based 3-D printing, the 3-D digital model of an
object is usually sliced by a set of parallel planes and each

Fig. 3. Tilting mechanical device that can safely separate each solidified
layer and the PDMS film. One side of the resin tank is fixed by a detach-
able fixture with the aluminum hinge, and the opposite side is fixed by
another well-designed detachable fixture with a stepping motor (42BYGH60).
(a) Front view. (b) Side view.

thin slice is fabricated by projecting a 2-D mask image onto
the surface of photocurable liquid. As illustrated in Fig. 4(a),
the white region in each mask image means a full light
intensity of projection and no light is projected into the black
area. Each of the white regions can be modeled by a polygon
and a slice could contain several disconnected polygons.

To precisely define the problem (covering a polygon with
rectangles) and describe our proposed solution (medial-axis-
driven segmentation and covering), some preliminaries are first
introduced below.

A. Preliminaries

Denote the cardinality, closure, interior, and boundary of a

set X as |X |, X ,
◦
X and ∂X , respectively. Given two distinct

points p1 and p2 in R
2, a closed line segment p1 p2 connecting

p1 and p2 is the union of two endpoints and the open line
segment p1 p2.

Definition 1: A polygonal domain � is a bounded, con-
nected open set in R

2 and its boundary ∂� = � \� consists
of a finite number of mutually disjoint simple closed curves.
Each closed curve consists of a finite number of closed line
segments.
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Fig. 4. To prepare mask images for DLP-based 3-D printing, 3-D models
are sliced by a set of parallel planes (perpendicular to z-axis) and each slice
is represented by a 2-D binary image for projection. The blue rectangles
specify the maximal region can be projected (right): (a) Slices contain disjoint
polygons and polygons can have holes. (b) Polygon in each slice can be
covered one projection area only if the projected area can be translated and
rotated.

In ∂�, the simple closed curve that bounds the unbounded,
connected component in R

2 \� is called the outer boundary
of �, and each of the remaining simple closed curves is
called an inner boundary. The genus of � is the number m of
inner boundaries (we also say � has m holes). A polygonal
domain � is simple if it has no holes; otherwise, it is multiply
connected.

The minimal Euclidean distance between a point x and ∂�
is denoted by dist (x, ∂�). Let �(x) = {p ∈ ∂� : ‖x − p‖2 =
dist (x, ∂�)} be the set of closest boundary points of x in ∂�.

Definition 2: The medial axis M(�) of � is the set of
points in � that has at least two closest boundary points

M(�) = {x ∈ � : |�(x)| ≥ 2}.
Elements in M(�) are called medial points. If |�(x)| ≥ 3, x
is called a branch point of degree |�(x)| [see Fig. 5(b) (red
points)].

A vertex in ∂� is called reflex if its interior angle is larger
than π ; otherwise, the vertex is called convex.

Definition 3: Generators in ∂� consists of open line seg-
ments and reflex vertices.

If there are finitely many generators in ∂�, the closure
of the medial axis M(�) is a connected planar graph with
finitely many nodes and edges [5], in which each node is a

branch point and each edge is a single trimmed bisector of
two generators [18].

1) If both generators are points, their bisector is a straight
line.

2) If both generators are open line segments, their bisector
is a straight line segment.

3) If the two generators are a point and an open line
segment, their bisector is an open parabolic arc.

We call the edges in M(�) the medial edges and denote the
two generators devoted to a medial edge e as g1(e) and g2(e).

B. Problem Identification

Let ψ be the maximal area that can be projected by a
light source, which is a rectangular region in our delta DLP
3-D printer. Each slice can be represented by a 2-tuple (�, z),
where z is the height of slice and � = (�1 ∪�2 ∪ · · · ∪�n)
is a set of n disconnected polygonal domains to be solidified.
Note that any �i can be multiply connected. In traditional
DLP 3-D printers, the platform can only move vertically.
In such case, even if a polygonal domain �i in a slice can be
covered by ψ , it is also possible that the whole model cannot
be fabricated when ψ ⊆ ∪ j� j for all layers [see Fig. 4(b)].
Our system overcomes this problem by allowing the platform
to move and rotate in the x-y plane, where the horizontal
motion of platform is supervised by a geometric algorithm
solving the following problem.

Problem 1: Given a set of disconnected polygonal domains
� in a plane, � = (�1 ∪�2 ∪· · ·∪�n), �i ∩� j = ∅, ∀i �= j ,
find a minimum set of rectangles � = {ψk, k = 1, 2, · · · }, all
with a fixed size w × h, such that � ⊆ ∪kψk , ∀ψk ∈ � .
Here, each rectangle ψk is called an elementary rectangle in
the rest of this paper.

V. COVERING ALGORITHM

As aforementioned in Section II, Problem 1 is NP-hard. In
this section, we propose a simple yet effective approximation
algorithm to tackle this problem with a greedy heuristic: for
each polygon �i in �, we find a minimal set of elementary
rectangles to cover it.

The overall framework is illustrated in Fig. 5. First, we pro-
pose a polygon segmentation method based on the medial axis
representation (see Section V-A). For each segmented part,
we cover it using a minimal set of elementary rectangles with
an optimal orientation (see Section V-C). The complexity of
the proposed medial-axis-driven segmentation and covering
algorithm (Algorithm 1) is analyzed in Section V-B. We further
improve Algorithm 1 by introducing an efficient operation to
merge small segmented parts (see Section V-E). The final
algorithm (Algorithm 2) has O(n2 log2 n) time complexity
and output O(K n) elementary rectangles, where K is an input-
polygon-dependent constant.

A. Medial-Axis-Driven Segmentation and Covering

Consider a polygonal domain � (multiply connected in
general) and its medial axis M(�). Each medial edge e in
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Fig. 5. Framework of our proposed covering method. (a) Input multiply connected polygon � with a hole. (b) Medial axis M(�) of �. (c) Segmentation
{	(ei ) : ei ∈ M(�)} of � induced by M(�). (see Section V-A). (d) Merging operation is further applied to merge small segmented parts in {	(ei )}. (see
Section V-E). (e) For each merged part, a minimal set of elementary rectangles with optimal orientation is computed. (see Sections V-C and V-E).

Fig. 6. Enclosed region associated with a medial edge e. Each medial edge e in M(�) is delimited by two branch points b1 and b2. Each branch point
bi (green dots) has |bi | closest boundary points in ∂� in which pe,i (g1) is in g1(e) and pe,i (g2) is in g2(e). Four line segments b1 pe,1(g1), b1 pe,1(g2),
b2 pe,2(g1), and b2 pe,2(g2) (green lines), together with g1 and g2, enclose a region (shown as the gray shaded area) in �. (a) If the generators are two line
segments, the enclosed region is a hexagon. (b) If the generators are one line segment and one reflex vertex, the enclosed region is a pentagon. (c) If the
generators are two reflex vertices, the enclosed region is a quadrangle.

M(�) is delimited by two branch points1 b1 and b2. Each
branch point bi has |�(bi )| closest boundary points in ∂� in
which one is in g1(e) (denoted as pe,i (g1)) and another is
in g2(e) (denoted as pe,i (g2)). We connect these points into
four line segments b1 pe,1(g1), b1 pe,1(g2), b2 pe,2(g1), and
b2 pe,2(g2), which enclose a region in � together with
g1 and g2. There are three types of enclosed
regions.

1) Type 1 (Hexagon): If the generators are two open
line segments, the enclosed region is a hexagon [see
Fig. 6(a)].

2) Type 2 (Pentagon): If the generators are one open line
segment and one reflex vertex, the enclosed region is a
pentagon [see Fig. 6(b)].

1Here, in addition to the branch points defined in Definition 2, degenerate
branch points whose locations are at convex vertices in ∂� are also included.
We omit the discussion of degenerate cases here (see [13]–[16]) for some
details.

3) Type 3 (Quadrangle): If the generators are two
reflex vertices, the enclosed region is a quadrangle
[see Fig. 6(c)].

Denote by 	(e) the enclosed region associated with a medial
edge e. The set of enclosed regions {	(ei ) : ei ∈ M(�)} form
a segmentation of �.

Our basic idea is to cover each enclosed region 	(ei )
by a minimal set of elementary rectangles. The cov-
ering methods for three types of enclosed regions are
detailed below. In Section V-C, these covering methods
are shown to be optimal. The pseudocode of the proposed
medial-axis-driven segmentation and covering is presented in
Algorithm 1.

1) Type-1 Region Covering: Refer to Fig. 7. The enclosed
region of Type 1 is a hexagon, in which we consider to cover
the trapezoid �(pe,2(g2), pe,1(g2), b1, b2) with four corner
points pe,2(g2), pe,1(g2), b1, and b2 [gray shaded area in
Fig. 7 (left)], using rectangles of fixed size w × h. Due to
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Algorithm 1 M(�)-Driven Polygon Segmentation and
Covering
Input: A multiply connected polygonal domain � (with m ≥

0 holes) and a projection area of fixed size w × h.
Output: A set of rectangles � = {ψk, k = 1, 2, · · · }, all with

a fixed size w × h, such that � ⊆ ∪kψk , ∀ψk ∈ � .
1: Compute the medial axis M(�) of � using the robust

algorithm [16].
2: Segment � by computing the set of enclosed regions

{	(ei ) : ei ∈ M(�)} (Section V-A).
3: � = ∅
4: for each enclosed region 	(ei ) do
5: if both g1(ei ) and g2(ei ) are line segments then
6: Cover 	(ei ) with a set of rectangles �(ei ) using the

method of Type-1 Region Covering.
7: � = � ∪�(ei ).
8: else if g1(ei ) and g2(ei ) are one open line segment and

one reflex vertex then
9: Cover 	(ei ) with a set of rectangles �(ei ) using the

method of Type-2 Region Covering.
10: � = � ∪�(ei).
11: else
12: Cover 	(ei ) with a set of rectangles �(ei ) using the

method of Type-3 Region Covering.
13: � = � ∪�(ei).
14: end if
15: end for
16: Output � .

Fig. 7. Cover the enclosed region of Type 1. Both generators g1(e) and
g2(e) of e are open line segments. b1 and b2 are two branch points of
the medial edge e. pe,i (g j ) is the closest boundary points of bi on g j (e),
i, j = 1, 2. w × h is the fixed size of an elementary rectangle. To cover
the trapezoid �(pe,2(g2), pe,1(g2), b1, b2) (gray shaded area in the left),
started at the point pe,2(g2), along the directions of pe,2(g2) → b2 and
pe,2(g2) → pe,1(g2), elementary rectangles are tiled side by side without
overlap, and with two orientations (middle and right). The tiling with a smaller
number of rectangles is chosen to use.

axis symmetry, the trapezoid �(pe,2(g1), b2, b1, pe,1(g1)) can
be covered in a similar way.

Let l(ab) be the length of line segment ab. Without
loss of generality, assume l(b2 pe,2(g2)) ≥ l(b1 pe,1(g2)).
Denote by a → b be the direction from point a to point
b. Starting at the point pe,2(g2), along the directions of
pe,2(g2) → b2 and pe,2(g2) → pe,1(g2), elementary rectan-
gles are tiled side by side without overlap, until the trapezoid
�(pe,2(g1), b2, b1, pe,1(g1)) is fully covered. The tiling of
elementary rectangles can have two orientations [see Fig. 7
(middle) and (right)] and we choose the one with a smaller
number of elementary rectangles.

Fig. 8. Cover the enclosed region of Type 2. The generator g1(e) is a reflex
vertex and the generator g2(e) is an open line segment. b1 and b2 are two
branch points of the medial edge e. pe,i (g2) is the closest boundary points of
bi on g2(e), i = 1, 2. w× h is the fixed size of an elementary rectangle. The
trapezoid �(pe,2(g2), pe,1(g2), b1, b2) (gray shaded area in the leftmost) is
covered in the same way as in Fig. 7. x is a point in the enclosed region
such that the direction b1 → x is perpendicular to the direction b1 → g1(e).
To cover the triangle 
(b1, b2, g1(e)) (gray shaded area in the middle left),
started at the point b1, along the directions of b1 → g1(e) and b1 → x ,
elementary rectangles are tiled side by side without overlap, and with two
orientations (middle right and rightmost). Again, the tiling with a smaller
number of rectangles is used.

Fig. 9. Cover the enclosed region of Type 3. Both generators g1(e) and
g2(e) of the medial edge e are reflex vertices. b1 and b2 are two branch
points of e. The enclosed region of Type-3 is a quadrangle and the medial
edge e separates it into two triangles 
 (b1, b2, g1(e)) and 
 (b2, b1, g2(e)).
Each of the triangle area can be covered by the same way as in Fig. 8.

2) Type-2 Region Covering: Refer to Fig. 8. The enclosed
region of Type 2 is a pentagon, in which the trapezoid
�(pe,2(g2), pe,1(g2), b1, b2) [gray shaded area in Fig. 8
(leftmost)] can be covered in the same way as what is
taken for Type-1 region. Now consider to cover the tri-
angle 
(b1, b2, g1(e)) with three vertices b1, b2, and g1(e)
[gray shaded area in Fig. 8 (middle left)] using elementary
rectangles.

Without loss of generality, assume l(b1g1(e)) ≥ l(b2g1(e)).
Let x be a point in the enclosed region such that the direction
b1 → x is perpendicular to the direction b1 → g1(e). To cover
the triangle 
(b1, b2, g1(e)) (gray shaded area in the middle
left), started at the point b1, along the directions of b1 → g1(e)
and b1 → x , elementary rectangles are tiled side by side
without overlap, until the triangle 
(b1, b2, g1(e)) is fully
covered. The tiling of elementary rectangles can have two
orientations [see Fig. 8 (middle right) and (rightmost)] and
akin to the case of Type-1 region covering, we choose the one
with a smaller number of elementary rectangles.

3) Type-3 Region Covering: Refer to Fig. 9. The enclosed
region of Type-3 is a quadrangle and the medial edge e
separates it into two triangles 
 (b1, b2, g1(e)) and

 (b2, b1, g2(e)). Each of the triangle area can be covered
in the same way as what is taken above for Type-2 region.

B. Complexity of Algorithm 1

Property 1: Given a multiply connected polygonal
domain � with n generators and m holes, Algorithm 1 has
O(n(log n + m)) time complexity, and it outputs O(K n)
elementary rectangles, where K is an input-polygon-dependent
constant.
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Proof: Computing the medial axis of a multiply connected
domain � with m holes takes O(n(log n + m)) time [23].
Segmentation by computing enclosed regions associated with
medial edges takes O(n) time. For each enclosed region,
computing the covering of elementary rectangles takes O(1)
time. Putting it all together, Algorithm 1 has O(n(log n + m))
time complexity.

Denote by L the largest edge length in all generators of ∂�,
and by R the radius of the largest inscribed circle in �. Below
we show that Algorithm 1 outputs O((R(L + R)/w × h)n)
elementary rectangles.

First, consider covering the enclosed region of Type 1.
Refer to Fig. 7. We have l(b2 pe,2(g2)) ≤ R and
l(pe,1(g2)pe,2(g2)) ≤ L. Then, to cover the trapezoid
�(pe,2(g2), pe,1(g2), b1, b2), the number of elementary rec-
tangles, in two different orientations of tiling, is less than
�(L/w)� × �(R/h)� and �(R/w)� × �(L/h)�, respectively. In
both orientations, the number is bounded by O(RL/wh).

Second, consider covering the enclosed region of Type 2.
Refer to Fig. 8. Let l1 be the line passing through two points b1
and g1(e) and d1 be the perpendicular distance from b2 to l1.
Since l(b2g1(e)) ≤ R, we have d1 ≤ R. Similarly, let l2
be the line passing through two points b1 and x and d2 be
the perpendicular distance from b2 to l2. We have d2 ≤ 2R.
Then, to cover the triangle 
(b1, b2, g1(e)), the number of
elementary rectangles, in two different orientations of tiling,
is less than 2�(R/w)� × �(R/h)� = O(R2/wh).

Third, the case of covering the enclosed region of Type 3
can be analyzed in the same way as in the case of Type 2.
Therefore, the same bound O(R2/wh) is held for the case of
Type 3. �

C. Optimal Orientations of Elementary Rectangles

In this section, we show that the orientation of elementary
rectangles is optimal for covering enclosed regions of three
types in Algorithm 1.

Property 2: If all elementary rectangles in covering the
enclosed region 	(e) associated with a medial edge e have
the same orientation, the orientation computed in Algorithm 1
is optimal.

D. Sketch of Proof

We only prove the case that the enclosed region is of Type 1.
The case with regions of Type 2 and Type 3 can be proved sim-
ilarly. We redraw the configuration shown in Fig. 7 as Fig. 10,
in which we define a planar coordinate system {o, x, y} with o
being located at the branch point b1 and x being along with
the direction b1 → b2. We define the orientation of an
elementary rectangle by a tilting angle θ0 with respect to the
x-axis. Denote by θ the angle between the medial edge e
and one generator pe,1(g2)pe,2(g2). Here, we only prove the
orientation angle θ0 in the range [−θ, θ ] [yellow shaded area
in Fig. 10 (left)]. The case θ0 ∈ [−(π/2),−θ ]∪[θ, (π/2)] can
be proved in a similar way.

Using the orientation angle θ0, we can determine a bounding
rectangle passing through the points pe,2(g2), pe,1(g2), b1,
and b2 [gray shaded area in Fig. 10 (right)]. One side of the

Fig. 10. Geometry configuration of the enclosed region of Type 1
(see Fig. 7). Planar coordinate system {o, x, y} is setup (left). θ is the angle
between the medial edge e and one generator pe,1(g2)pe,2(g2). The length
l(pe,1(g2)pe,2(g2)) is l0, and l(b2 pe,2(g2)) = r1 and l(b1 pe,1(g2)) = r2.
The orientation of an elementary rectangle is defined by a tilting angle θ0
with respect to the x-axis. Yellow shaded area shows the region in which the
orientation angle θ0 is in the range [−θ, θ ]. Given an arbitrary orientation
angle θ0 ∈ [−θ, θ ] (the blue line), a bounding rectangle passing through the
points pe,2(g2), pe,1(g2), b1, and b2 can be determined (gray shaded area)
(right). This bounding rectangle has two orthogonal sides, in which one side
has the same orientation angle θ0; θ1 is the angle between this side and the
line segment pe,1(g2)pe,2(g2).

bounding rectangle has the same orientation angle θ0 and we
denote by θ1 the angle between this side and the line segment
pe,1(g2)pe,2(g2). Since 0 ≤ θ < (π/2) and θ1 ∈ [0, 2θ ],
we have 0 ≤ θ1 < π . Let l0 = l(pe,1(g2)pe,2(g2)). Then,
the lengths of two sides of the bounding rectangle are l1 =
r2 cos θ1 + l0 sin θ1 and l2 = r1 sin θ1 + l0 cos θ1, respectively.
In the worst case, �(l1/w)��(l2/h)� or �(l2/w)��(l1/w)�
elementary rectangles are required to cover the trapezoid
�(pe,2(g2), pe,1(g2), b1, b2). The optimal orientation angle is
then to minimize the function

f (θ1) = (r2 cos θ1 + l0 sin θ1)(r1 sin θ1 + l0 cos θ1).

We have

f (θ1) = l0r2 + l0(r1 − r2) sin2 θ1.

Since r1 ≥ r2 and 0 ≤ θ1 < π , f (θ1) reaches the minimum
when θ1 = 0, which is the orientation angle specified in
Algorithm 1.

E. Covering Algorithm with Merging

In practice, some enclosed regions in our medial-axis-driven
segmentation {	(ei ) : ei ∈ M(�)} can be very small [see
Fig. 5(c)]. In this section, we propose an enhanced algorithm
that recursively merges two adjacent enclosed regions until the
number of elementary rectangles does not decreased anymore.
Its pseudocode is presented in Algorithm 2.

Note that the medial axis M(�) is a connected planar graph
with O(n) branch points and O(n) medial edges [5], where n
is the number of generators in ∂�. For each medial edge ei in
M(�), we try to merge it with one of its adjacent medial
edges e j using the method presented below. The merging
operation is iteratively performed until none of edges can
be merged any more. Since the merging process frequently
inquires adjacent edges information, M(�) is represented by
a variant2 of doubly connected edge list [7] in Algorithm 2.

2The original doubly connected edge list is used to represent a planar
subdivision. In our application, we only maintain records for medial edges
and branch points, without the face information.
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Algorithm 2 M(�)-Driven Polygon Covering With Merging
Operation
Input: A multiply connected polygonal domain � (with m ≥

0 holes) and a projection area of fixed size w × h.
Output: A minimal set of rectangles � = {ψk, k = 1, 2, · · · },

all with a fixed size w×h, such that � ⊆ ∪kψk , ∀ψk ∈ � .
1: Compute the medial axis M(�) and store it in a doubly-

connected edge list E .
2: Assign a number n(e) = 0 to each medial edge e in M(�).
3: Segment � by computing the set of enclosed regions

{	(ei ) : ei ∈ M(�)} (Section V-A).
4: � = ∅
5: for each enclosed region 	(ei ) do
6: Cover 	(ei ) with a set of rectangles �(ei ) using the

code in lines 5-14 in Algorithm 1.
7: � = � ∪�(ei).
8: n(ei ) = |�(ei)|.
9: end for

10: Set a Boolean variable f lag = T RU E .
11: while f lag == T RU E do
12: f lag = F ALSE .
13: for each edge ei in E do
14: for each adjacent edge e j of ei do
15: Compute the bounding box Box(ei, e j ) of 	(ei ) ∪

	(e j ) with minimal area.
16: Apply the covering method in Section V-E to the

region 	(ei )∪	(e j ) with Box(ei , e j ), for comput-
ing the set of elementary rectangles �temp that covers
	(ei ) ∪	(e j ).

17: n′ = |�temp|.
18: if n′ ≤ n(ei )+ n(e j ) then
19: Generate an artificial edge e′.
20: 	(e′) = 	(ei ) ∪	(e j ) and n(e′) = n′.
21: � = (� ∪�temp) \ (�(ei) ∪�(e j ))
22: Update E by replacing ei and e j with e′.
23: f lag = T RU E .
24: end if
25: end for
26: end for
27: end while
28: Output � .

1) Merging Operation: Let n(ek) be the number of
elementary rectangles that cover 	(ek) by the methods in
Section V-A.

The merging operation has three steps.

• Step 1: The bounding box Box(ei , e j ) of 	(ei )∪	(e j )
with minimal area is computed by the rotating calipers
algorithm [22].

• Step 2: The covering method for the region 	(ei ) ∪
	(e j ) in Box(ei, e j ) is applied – details can be found
below.

• Step 3: If the number n′ of elementary rectangles out-
put from the covering method in Step 2 is not larger
than n(ei ) + n(e j ), this merging is performed and the
adjacency-list representation is updated by replacing

both ei and e j with an abstract edge e′, with 	(e′) =
	(ei ) ∪	(e j ) and n(e′) = n′.

Since the rotating calipers algorithm takes O(n log n) time and
the covering in bounding-box method below takes O(n log n)
time, The time complexity of the merging operation is
O(n log n).

2) Cover a Region in Bounding Box: At Step 2 in the
merging operation, an arbitrary region P = 	(ei ) ∪ 	(e j )
with a bounding box of minimal area is needed to be covered
by a minimal set of elementary rectangles. This task is fulfilled
by the following method.

Denote by oi , i = 1, 2, 3, 4, the four corner points of the
bounding box, and denote by e1 and e4 the two adjacent sides
of o1 [see Fig. 11(a)]. For each side of the bounding box,
we use line segments with length w (or h) to cover it as
illustrated in Fig. 11(b). In our implementation, both w and h
are tried, and the one results in a smaller number of elementary
rectangles is selected to use.

Without loss of generality, when e4 is selected to be
covered by line segments with length h [see Fig. 11(b)],
slabs are formed by adding lines perpendicular to the line
segments (denoted by ll and lu for lower and upper ones). The
line segment and the slab are denoted by s and S, respectively
[see Fig. 11(c)]. The following steps are then used to cover
S ∩ P by a minimum number of rectangles {ψi }.

• Step 1: Denote the set of all polygonal vertices falling
into S as V(S).

• Step 2: Compute the intersection points between ll , lu

and P and denote them as Il and Iu .
• Step 3: Sort all points in I = Il ∪ Iu ∪ V(S) in the

ascending order of coordinate values along the direction
of line ll .

• Step 4: If I is empty, stop the algorithm; otherwise, pop
up a point pt from I (with the minimum coordinate) and
remove it from I = I \ pt .

• Step 5: Place a rectangle ψ in S by aligning its lower-
left corner as o = pt and its edges as e1 ⊂ ll , e3 ⊂ lu ,
where o = e1 ∩ e4 and ei (i = 1, 2, 3, 4) are four edges
of ψ .

– Step 5.1: If e2 intersects P , locate a rectangle ψ
at the point e1 ∩ e2 by the same alignment method
in Step 5.

– Step 5.2: Remove all the points in I falling into
this ψ .

– Step 5.3: Repeat the above steps until e2 does not
intersect P anymore.

• Step 6: Go back to Step 4.

An example is shown in Fig. 11(d) and (e) to illustrate the
covering results in slabs S and S′.

The intersection points between every boundary line of slabs
and the polygon can be efficiently computed in O(n) time
by finding the intersection of a set of parallel line segments
and the polygon. Therefore, the set of elementary rectangles
covering P can be determined in O(n log n) time.

3) Complexity of Algorithm 2: There are at most
O(n log n) merging operations and each merging opera-
tion takes O(n log n) time. Then, all merging operations in
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Fig. 11. Steps for covering an arbitrary region P (gray shaded area) in a bounding box. (a) Geometry configuration of the bounding box. (b) Cover the
box edge e4 by two line segments s and s′ in an end-to-end manner. (c) Each line segment s (or s′) defines a slab S (or S′). (d) Cover the slab S ∩ P by a
minimum set of rectangles {ψi }. (f) Cover the S′ ∩ P .

Fig. 12. Photographs to illustrate different stages of fabrication using our delta DLP 3-D printer with the tilting device. More details can be found in
accompanying demo video.

TABLE I

STATISTIC OF FABRICATION

Algorithm 2 take O(n2 log2 n). Meanwhile, each updating
of E by replacing two edges ei and e j with a new edge
e′ takes O(n) time. There are at most O(n log n) updating
that take O(n2 log n) time. On the other hand, since the
merging operation is performed only if the new number
n′ of elementary rectangles is not larger than the current
number n(ei )+ n(e j ) (line 18 in Algorithm 2), the number of
elementary rectangles output from Algorithm 2 is still bounded
by O(K n). Therefore, we have the following result.

Property 3: Given a multiply connected polygonal
domain � with n generators and m holes, Algorithm 2
has O(n2 log2 n) time complexity, and it outputs O(K n)
elementary rectangles, where K is an input-polygon-dependent
constant.

VI. EXPERIMENTS AND DISCUSSION

We built a physical prototype system as proposed in
Section III (see Fig. 12) and implement the algorithm proposed
in Section V on this hardware system. In our practice, a printed
3-D model usually has hundreds to thousands of layers and
the polygon soup in each layer has a few disconnected

polygons with tens to hundreds of vertices. The running time
of our algorithm is from tens of seconds to a few minutes
for generating motion paths of the printer’s platform on a
PC with an Intel I7-860 CPU (2.80 GHz) and 8-GB RAM.
Furthermore, models in different sizes are fabricated to verify
the performance of our delta DLP 3-D printer (see Fig. 13).
When the models are small, each of their slices can be
completed covered by the region of a single projection ψ .
There is no need to apply the segmentation and covering
algorithm. Such models are fabricated by our system without
applying horizontal movement. We then scale these models by
2.0 in all axes. As a result, the models become larger and can
only be fabricated by applying decomposition and horizontal
movement.

Statistic of fabrication is listed in Table I. Note that the
thickness of each layer in fabrication is 0.1 mm, and the
solidification time of each projection is 10 s. The speed of
rotation by 42BYGH33 motor is 0.3 rad/s, and the maximal
speed for translation is 80 mm/s. It is easy to find that our
method has a very good scalability—when increasing the
volume of solid to be fabricated by 8×, the total fabrication
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Fig. 13. Results of fabrication—all are fabricated by our system, where the
smaller ones are fabricated by single projection for each layer as their cross
sections can be fully covered by the region of one projection ψ . The bigger
models are made by multiprojections for each layer. (a) 3-D digital models.
(b) Kitten. (c) Bunny. (d) Crocodile. (e) Cup. (f) Stairway. (g) Boat.

Fig. 14. Two methods for fabricating samples to verify the mechanical
strength of models. a) one layer one projection and b) one layer by two
projections—half for each. These two different samples are undergoing the
same tensile stretch test with the load force up to 220 N (see Fig. 15).

time only increases 4.99×, 3.72×, 5.19×, 7.95×, 1.98× and
3.30×, respectively. Fig. 12 shows the photographs of our
system taken during the process of fabrication.

A. Mechanical Strength by Multiple Projections

To verify the mechanical strength of a model fabricated by
decomposing a large layer into smaller pieces in our delta DLP
3-D printing, we fabricate models with the same area of cross
sections (i.e., 32 mm × 10 mm) whose thickness is 0.5 mm.
The models are made by two different methods: 1) each layer
by one complete projection [see Fig. 14 (left)] and 2) each
layer is decomposed into two projections—half for each [see
Fig. 14 (right)].

The fabricated specimens have their tensile stiffness tested
on an INSTRON 5943 universal testing system (see Fig. 15).
To overcome the sliding friction, two small folded pieces
of 240 grit sandpaper are placed near the short sides of
samples. The testing results show that the samples made by
two different methods (i.e., by multi and single projections)
are intact when the load force exceeds 220 N (the range
of force sensor is 0-250 N). These samples had almost the
same yield strength and offset yield strength (see Fig. 16).
In these tests, similar mechanical stiffness is observed on the
models fabricated by the above mentioned methods. In other

Fig. 15. INSTRON 5943 universal testing system used in our tests for tensile
stiffness. (a) INSTRON 5943 system. (b) Platform with tested sample.

Fig. 16. Tensile stretch testing results using INSTRON 5943 universal testing
system. The results show that the specimen made by two different meth-
ods (i.e., by multi and single projections) have almost the same yield strength
and offset yield strength. Yield strength is strength at which metal or alloy
show significant amount of plastic deformation. Offset yield strength is that
strength at which 0.2% plastic deformation takes place for those materials
that do not exhibit a yield point, such as plastic material.

Fig. 17. 48 elementary rectangles (right) are found by the method [26]
to cover the multiply connected polygon � (left). As a comparison, only
42 elementary rectangles are used by our proposed method [see Fig. 5(e)].

words, no significant weakness is found on the models made
by decomposing a large cross section into smaller ones to be
solidified.

The models fabricated by our delta DLP printer can satisfy
the requirement of general usage. We further note that when
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Fig. 18. One example region to be covered using our method and the previous method [26] . (a) Input polygon �. (b) Medial axis M(�). (c) Medial-
axis-driven segmentation of �. (d) Segmentation after applying the merging operation. (e) Covering result of our method with 20 elementary rectangles.
(f) Covering result of the previous method [26] needs 31 elementary rectangles in total.

being applied to a practical model (see Fig. 13), the boundaries
in different slabs (in x-y planes) and in different slices (along
the z-axis) are stagger from each other. This can further
enhance the mechanical stiffness of fabricated models.

B. Comparison with Previous Work

A bounding-box-based covering method was proposed in a
previous work [26]. This method covers a multiply connected
polygon � using a set of nonoverlapped elementary rectangles
with the same orientation. To find an optimal orientation, this
method computes the numbers of elementary rectangles at
some discrete orientations and build an interpolating function
f (θ) using radial basis functions. Then, the optimal orientation
is set to be angle ̂θ that minimizes the function f (θ). This
optimization strategy is only heuristic and does not have a
theoretic foundation.

In this paper, we propose a medial-axis-driven segmentation
and covering method. For each segmented part, the orien-
tation of covering elementary rectangles is optimized using
a local geometric analysis (see Section V-C). Furthermore,
our method has a smaller time complexity (i.e., O(n2 log2 n))
and guarantees to output O(K n) the number of elementary
rectangles, where K is an input-polygon-dependent constant.
Differently, the previous method has O(n3 log n) time com-
plexity and does not have any control on the output number
of elementary rectangles.

In addition to better complexity, our method can find a
smaller number of covering elementary rectangles than [26]
also in practice. For the multiply connected polygon shown
in Fig. 5(a), our method finds 42 covering elementary rectan-
gles [see Fig. 5(e)]. As a comparison, the previous method [26]
needs 48 rectangles to cover the same region (see Fig. 17).
One more example is shown in Fig. 18. In this example,
the previous method [26] uses 31 elementary rectangles to
cover an input region while our new method needs only
20 rectangles.

VII. CONCLUSION

In this paper, we present a system for DLP-based 3-D
printing of large models. The hardware of our system is based
on an extension of parallel delta robot and a conventional
DLP printer together with a tilting device. The major technical
contribution of our work is an approach to move working
platform horizontally when the area of a layer to be solidified

is larger than the maximal region that can be produced
by a single projection. A simple yet effective medial-axis-
driven segmentation and covering algorithm is developed to
decompose the large area of a layer into the small number
of projected regions. The mechanical strength of models
fabricated by decomposition has been studied and compared
with models resulted from conventional DLP process, where
similar stiffness can be found. The functionality of our system
has been verified by fabricating freeform models in different
sizes and a good scalability of our approach is observed.
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