
ar
X

iv
:1

70
1.

02
52

6v
2

 [
cs

.L
O

]
 1

6
Ju

n
20

17

Modeling and Reasoning About Wireless Networks:

A Graph-based Calculus Approach

Shichao Liu

State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences,

Beijing, China

University of Chinese Academy of Sciences, Beijing, China

Email: liusc@ios.ac.cn

Ying Jiang

State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences,

Beijing, China

Email: jy@ios.ac.cn

Abstract—We propose a graph-based process calculus for
modeling and reasoning about wireless networks with local
broadcasts. Graphs are used at syntactical level to describe the
topological structures of networks. This calculus is equipped with
a reduction semantics and a labelled transition semantics. The
former is used to define weak barbed congruence. The latter is
used to define a parameterized weak bisimulation emphasizing
locations and local broadcasts. We prove that weak bisimilarity
implies weak barbed congruence. The potential applications are
illustrated by some examples and two case studies.

I. INTRODUCTION

With the widespread use of wireless communication de-

vices, wireless networks are becoming more important in

various fields. In wireless networks, local broadcast is one of

the most important features. Messages, which are transmitted

in a limited area, can only be received by the devices linked

with the transmitter in wireless networks. How to ensure that

wireless networks can behave in a reasonable manner becomes

a critical issue. Assuring the correctness of behaviours of

wireless systems is also a difficult task. The goal of this paper

is to develop a graph-based calculus to model and reason about

wireless networks.

Formalization of wireless systems has attracted the at-

tentions of many researchers. Process calculi, e.g. Milner’s

CCS [1] and Hoare’s CSP [2], provide a good framework to

study concurrent systems in a point-to-point approach. Process

calculi for broadcast systems were first studied by Prasad in the

work of a calculus for broadcast systems (CBS) [3]. However,

the broadcast is global in CBS, i.e. messages can be received

by all devices in the systems.

Indeed, local broadcast is a challenge for researchers. Re-

cently, several process calculi have been proposed to study

wireless systems, e.g. [4]–[9]. These process calculi deal with

local broadcasts typically by carrying separate topological

structures, e.g. using locations and transmission radii for nodes

at the syntactic level [6], [7], or indexing labelled transitions by

graphs at the semantic level [8]. Behavioural equivalences, e.g.

bisimulation, are important tools in [5], [7], [8] to reason about

wireless systems. However, these behavioural equivalences do

not take location information and links into account, and,

indeed, they straightly use the identity relation of locations

to relate actions (i.e. the challenger and the responser must

play the same actions at the same locations). Therefore, these

behavioural equivalences cannot relate implementations and

specifications with different number of nodes (see Example

4). As pointed out by Lanese and Sangiorgi [6], “in wireless

systems, each device – and therefore presumably also the

observer – has a location and a transmission cell, and it is

not clear how to take them into account”. In fact, providing

a process calculus with behavioural equivalences by taking

locations and links (i.e. transmission cells [6]) into account is

non-trivial. This paper makes an effort for this by using graphs,

which can concisely specify locations and links of networks.

In this paper, we propose a Graph-based Calculus for

Wireless Networks (called GCWN) and the semantics of

GCWN are suitable for wireless links and local broadcasts.

Behavioural equivalences of GCWN are also well studied

by taking locations and links into account. Graphs play an

important role in GCWN, and make it easy to specify and

reason about local broadcasts in wireless networks. We hope

that the method in this paper can be applied to other process

calculi for wireless systems. This paper makes the following

contributions.

Firstly, a graph-based calculus for wireless networks is pro-

posed, where the topology of a wireless network is specified

by a graph at the syntactic level. In a network, vertices of the

associated graph are locations for processes (i.e. nodes) and

edges of the graph represent the connections between nodes.

Secondly, in order to capture evolutions of wireless net-

works, we define both a reduction semantics of the form

M −→ M ′, and a labelled transition semantics of the form

M
p:α
−−→ M ′ (observable transition performing action α at

location p) or M
τ
−→ M ′ (unobservable transition). As the first

theoretical result, we prove that the two semantics describe

the same behaviours.

Thirdly, two kinds of behavioural equivalences for GCWN

are developed. We first adopt the concept of barb [10] to

define a weak barbed congruence without location information.

Barbed congruence is natural to describe that two networks are

identical if they exhibit the same barbs during their reductions

in any context. However, barbed congruence is hard to handle

directly, because one has to consider all possible contexts

http://arxiv.org/abs/1701.02526v2

by the definition. Instead, labelled transition systems (LTSs)

are widely adopted to study behavioural equivalences. LTSs

derive the concept of bisimulation, which is more tractable

and equipped with powerful proof techniques. We define a

weak bisimulation for GCWN by taking locations and links

into account. As another theoretical result, we prove that weak

bisimilarity implies weak barbed congruence, i.e. soundness.

Last, the potential applications of GCWN are illustrate by

examples and case studies. Specially, we use GCWN to model

and reason about scenarios in protocol ARAN [11] and the

Alternating Bit Protocol.

The rest of this paper is organized as follows. Section II

provides the syntax of GCWN. Section III presents the opera-

tional semantics and two kinds of behavioural equivalences for

GCWN. Section IV proves that the two semantics coincide and

weak bisimilarity implies weak barbed congruence. Section V

provides two case studies. We discuss related work in Section

VI, and make a conclusion in Section VII.

For lack of space, most of the proofs are omitted, but can

be found in the Appendix.

II. THE CALCULUS

In this section, we define the syntax of GCWN.

Graphs. Let Loc be a countable set of locations ranged over by

p, q, etc. A finite (undirected) graph G = (|G|,⌢G) consists

of a finite set of locations |G| and a set of edges ⌢G which

is a binary relation on |G| such that p ⌢G q implies q ⌢G p
(symmetric) and p 6= q (no self-loops). Graphs are used to

describe locations and links of networks.

Given disjoint sets E and F with p ∈ E, let E[F/p] =
(E−{p})∪F , by substituting p with F . Let G and H be graphs

with |G| ∩ |H | = ∅ and p ∈ |G|. We define a graph G[H/p]
by substituting location p with H , and G[H/p] consists of

locations |G[H/p]| = |G|[|H |/p] and edges q ⌢G[H/p] r with

q ⌢G r, or q ⌢H r, or q ⌢G p and r ∈ |H |, or r ⌢G p and

q ∈ |H |. It will be used when we consider network contexts.

Given two graphs G and H with disjoint locations and D ⊆
|G| × |H |, we define a new graph K = G ⊕D H such that

|K| = |G| ∪ |H | and for any p, q ∈ |K| if p ⌢G q or p ⌢H q
or (p, q) ∈ D then p ⌢K q. The composition of graphs is

useful when we define parallel composition of networks.

Expressions. We use x, y, etc. for variables, and v, v1, etc.

for values that can be transmitted via channels (defined later).

Moreover, values do not include channels. We use e, e1, etc.

for arithmetic expressions, which at least include variables and

values. Specially, we use b, b1, etc. for boolean expressions,

which at least include {false, true}. We do not provide a

grammar for values and expressions, because they can be

constructed with respect to the networks we consider. The

substitutions for expressions are defined as usual denoted by

e{v/x} and b{v/x}. We say that e is data-closed if e does

not contain any variable, and similarly for b. We use ~x and ~v
for the vectors of variables and values, respectively.

We also assume the existence of an evaluation eval for

data-closed arithmetic expressions and boolean expressions,

returning values and boolean values, respectively.

Processes and Networks. We define the syntax of GCWN

with two levels: a lower one for processes and an upper one

for networks. A network consists of a set of processes, and its

topology is specified by a graph.

We use letters c, d, etc. for channel names, and c, d, etc.

for co-names. Let K be a set of process constants, ranged over

by A, B, etc. For each A ∈ K, we assume that there is an

assigned arity, a non-negative integer, representing the number

of parameters that A takes. The set of all processes, denoted

by Pr, is defined as follows:

P,Q ::= 0 | c(x).P | c(e).P | P+Q | if b then P elseQ | A(~v)

Processes are sequential and represent single devices. 0 is

the empty process, meaning a termination. In an input process

c(x).P , variable x is bound; variables in e are free in an output

process c(e).P . A sum process P +Q represents a nondeter-

ministic choice. A conditional process if b then P else Q
acts as P if b is true, and as Q otherwise, and variables

appearing in b are free in the conditional process. A(~v) denotes

a process defined by a (possibly recursive) definition of the

form A(~x)
def
= P . The length of ~v and the length of ~x are

consistent with the assigned arity of A. A process is data-

closed if all the variables occurring in the process are bound.

The substitution of a value for a variable in processes is

denoted by P{v/x}, which means substituting v for every

free occurrence of x in process P , and similarly for P{~v/~x}.

The set of all networks, denoted by Net, is defined as

follows:

M,N ::= G〈Φ〉 | M\c | M ⊕D N

where, G is a graph and Φ is a function from |G| to Pr.

In general, a network is defined by using a graph and a

function from locations to processes. The graph specifies the

topology of the network and its edges represent the possible

communicating capacities between processes. The network

G〈Φ〉 is the parallel composition of processes Φ(p) ∈ Pr

for each p ∈ |G| with communication capabilities specified

by ⌢G. Process Φ(p) is called a node of the network G〈Φ〉.
In G〈Φ〉, Φ(p) and Φ(q) cannot communicate unless there

is an edge between p and q. M\c is a channel restriction

(c is bound in M), and c is private to M . We write M\I
as an abbreviation for M\c1 . . . \ck, with I = {c1, . . . , ck}.

Moreover, α-conversion on channels is defined as usual.

M ⊕D N represents that two networks can be composed

as a new network. Given M = G〈Φ〉\I (I can be ∅) and

N = H〈Ψ〉\J (J can be ∅) with |G|∩|H | = ∅, D ⊆ |G|×|H |
and I ∩J = ∅ (always possible by α-conversion on channels),

we define the network M⊕DN as (G⊕DH)〈Φ′〉\(I∪J) such

that Φ′(p) = Φ(p) if p ∈ |G| and Φ′(p) = Ψ(p) if p ∈ |H |.
When D is empty, we write it as M ⊕N for simplicity. The

network M⊕DN can be written as M | N , if D = |G|×|H |.
If M = G〈Φ〉\c (or M = G〈Φ〉), we denote |M | = |G|.

Meanwhile, for p ∈ |G|, let M(p) represent Φ(p) and ⌢M

represent ⌢G. In this paper, when we talk about several

networks together, we implicitly assume that their locations

are pairwise disjoint. A network M is data-closed if all the

Processes:

P + 0 ≡ P
P +Q ≡ Q+ P
P + (Q+R) ≡ (P +Q) +R
if b then P else Q ≡ P , if eval(b) = true
if b then P else Q ≡ Q, if eval(b) = false

A(~v) ≡ P{~v/~x}, if A(~x)
def
= P

Networks:

α-conversion on channels
M\c\d ≡ M\d\c
M ⊕D N ≡ N ⊕D M
(M ⊕D N)\c ≡ M ⊕D (N\c), if c and c not in M
G〈Φ〉 ≡ G〈Ψ〉, if for all p ∈ |G|, Φ(p) ≡ Ψ(p)

TABLE I: Structural Congruence

M(p) = c(e).P +R eval(e) = v
L = {qi | p ⌢M qi,M(qi) = c(xi).Qi +Ri}

M −→ M [p 7→ P][qi 7→ Qi{v/xi}]qi∈L

(R-Bcast)

M −→ M ′ free(M,D,N)

M ⊕D N −→ M ′ ⊕D N
(R-Par)

M −→ M ′

M\c −→ M ′\c
(R-Res)

M ≡ N N −→ N ′ N ′ ≡ M ′

M −→ M ′
(R-Struct)

Fig. 1: Reduction Semantics

variables occurring in M are bound, i.e. every process in M
is data-closed.

In the rest of the paper, we focus on data-closed networks.

III. OPERATIONAL SEMANTICS

We first define a structural congruence, ≡, as an auxiliary

relation to state reduction semantics. Structural congruence is

defined as the congruence satisfying the rules in Table I.

A. Reduction Semantics

Given a network M , a location p ∈ |M | and a process Q,

let M [p 7→ Q] represent a new network obtained from M by

replacing the process at location p by Q. We write M [p1 7→
Q1][p2 7→ Q2] for updating M by replacing processes at p1
and p2 by Q1 and Q2, respectively. Given a set of locations

L ⊆ |M |, we write M [pi 7→ Qi]pi∈L for updating M by

changing the process at location pi into Qi for each pi ∈ L.

The reduction semantics for networks is defined in Fig. 1

and of the form M −→ M ′. In rule (R-Bcast), the process at

location p in the network M broadcasts the value of e via the

channel c to its adjacent nodes (i.e. all the nodes at qi with

p ⌢M qi). All the adjacent nodes can receive the message

via channel c. While all the other nodes (not in L), which

are not connected with location p, or in which channel c is

not available, cannot receive the message. After the broadcast,

the sending node is changed into P , the receiving nodes are

changed into Qi{v/x}, and other nodes are unchanged. More-

over, when L is empty, the broadcast is lost. The broadcast

does not change the topology of the network. Rule (R-Par)

focuses on the parallel composition of two networks, and it

describes the situation that no nodes in one network (i.e. N)

can receive a broadcast in the other network (i.e. M). And

the condition free(M,D,N) denotes that if nodes in M and

N are linked by D then every node in N cannot receive the

broadcast messages from M . Rules (R-Res) and (R-Struct) are

the standard rules in process calculi, representing restriction

reduction and structure reduction, respectively. Let −→∗ denote

the reflexive and transitive closure of −→.

Example 1: Network N = ({1, 2, 3}, {(1, 2), (1, 3)})〈Φ〉,
with Φ(1) = c(0).0, Φ(2) = c(x).0 + d(1).0 and Φ(3) =
c(y).0+d(x).0. Therefore, Φ(2) and Φ(3) can hear Φ(1), but

Φ(2) and Φ(3) cannot hear each other for lack of links. Using

rule (R-Bcast), we can get N −→ N [1 7→ 0][2 7→ 0][3 7→ 0]
by a broadcast from node Φ(1).

B. Weak Barbed Congruence

What is a proper observation, or barb, in GCWN? Here,

we choose to observe channel communications as in standard

process calculi. To accommodate the ordinary concept of barb

[10], we abandon location information in the following defini-

tion. Moreover, we only choose broadcasting communications

as the barb. Because, in fact, an observer cannot see whether

a node receives a broadcast message, but can detect whether

there is a node broadcasting a message by listening.

Definition 1 (Barb): Given a network M ≡ N\I , we say

that c is a barb of M , written M ↓c, if there is a location

p ∈ |M | such that M(p) ≡ c(e).P +R and c /∈ I .

Definition 2 (Weak Barbed Bisimulation): A binary rela-

tion B on Net is a weak barbed bisimulation if it is symmetric

and whenever (M,N) ∈ B the following conditions hold:

• M −→ M ′ implies N −→∗ N ′ and (M ′, N ′) ∈ B for some

N ′;

• M ↓c implies N −→∗ N ′ and N ′ ↓c for some N ′.

Weak barbed bisimilarity, denoted by
•
≈, is the union of all

weak barbed bisimulations.

Example 2: Recall the network N in Example 1. We have

N ↓c and N ↓d. If we build a network M = N\c, we only

have M ↓d. Because, the message from channel c has been

restricted and cannot be observed by environments.

Lemma 1:
•
≈ is an equivalence relation.

Definition 3: Network contexts are networks with one hole

[·] (i.e. a special node with a location p), defined by

C[·] ::= [·] | M ⊕D [·] | [·]⊕D M | [·]\c

where edges D ⊆ {(p, q) | q ∈ |M |, p is the location of [·]}.

C[N] means putting the network N into the hole at location

p. Every edge (p, q) ∈ D will be replaced by edges (p, r) with

r ∈ |N |. For instance, let C[·] = G〈Φ〉\I , N = H〈Ψ〉\J ,

I ∩ J = ∅ and assume that the hole’s location is p, then

C[N] represents the network G[H/p]〈Φ′〉\(I ∪ J) such that

Φ′(q) = Φ(q) if q /∈ |H | and Φ′(q) = Ψ(q) if q ∈ |H |. Here

I can be empty, and similarly for J .

Proposition 1: For any equivalence relation R ⊆ Net ×
Net, there exists a largest congruence R contained in R. This

relation is characterized by (M,N) ∈ R if and only if for any

context C[·] one has (C[M], C[N]) ∈ R.

eval(e) = v

c(e).P
cv
−→ P

(P-Output)
c(x).P

cv
−→ P{v/x}

(P-Input)

P
α
−→ P ′

P +Q
α
−→ P ′

(P-SumL)
eval(b) = true P

α
−→ P ′

if b then P else Q
α
−→ P ′

(P-IfT)

Q
α
−→ Q′

P +Q
α
−→ Q′

(P-SumR)
eval(b) = false Q

α
−→ Q′

if b then P else Q
α
−→ Q′

(P-IfF)

P{~v/~x}
α
−→ P ′ A(~x)

def
= P

A(~v)
α
−→ P ′

(P-Rec)

Fig. 2: Labelled Transition Semantics for Processes

Definition 4: Networks M and N are weakly barbed

congruent, denoted by M ∼= N , if C[M]
•
≈ C[N] for any

context C[·].
∼= is the largest congruence in

•
≈ by Proposition 1.

C. Labelled Transition Semantics

In this paper, the labelled transition systems of GCWN are

divided into two parts: one part for processes and the other

part for networks.

Fig. 2 describes the labelled transition semantics for pro-

cesses. The transitions are of the form P
α
−→ P ′, and the

syntax of action α is defined as

α ::= cv | cv

where action cv stands for receiving a broadcast message v
via channel c and action cv stands for broadcasting message

v via channel c. The rules in Fig. 2 are self-explanatory.

Fig. 3 describes the labelled transition semantics for net-

works. The transitions for networks are of the form M
δ
−→ M ′.

The grammar for δ is

δ ::= p : α | τ

where p ∈ Loc and α is an action.
p:α
−−→ represents that the

node at location p performs an action α. And
τ
−→ represents

the unobservable transition.

Rule (N-Send) models the broadcast at location p of value

v via channel c. Rule (N-Recv) shows that a value can be

received at location p via channel c. Rule (N-Bcast) describes

the propagation of a broadcast, and the premise (p, q) ∈ D
makes sure that only the nodes connected with the transmitter

can receive the message. Rule (N-Res1) hides a broadcast in

restricted networks. Rule (N-Res2) is standard in process cal-

culi. Rules (N-ParL) and (N-ParR) model parallel composition

networks.

We write M
τ∗

−→ M ′ if there exists n ≥ 1 such that M =
M1, M ′ = Mn, M1

τ
−→ M2

τ
−→ · · ·

τ
−→ Mn. M

p:α
==⇒ M ′

denotes M
τ∗

−→ M1
p:α
−−→ M ′

1
τ∗

−→ M ′ for some M1 and M ′
1.

Example 3 (Broadcast): Let Ni = ({i}, ∅)〈Φi〉, i = 1, 2, 3,

be networks, i.e. each network only has one node. Let Φ1(1) =

p ∈ |M | M(p) = P P
cv
−→ P ′

M
p:cv
−−→ M [p 7→ P ′]

(N-Send)

p ∈ |M | M(p) = P P
cv
−→ P ′

M
p:cv
−−→ M [p 7→ P ′]

(N-Recv)

M
p:cv
−−→ M ′ N

q:cv
−−→ N ′ (p, q) ∈ D

M ⊕D N
p:cv
−−→ M ′ ⊕D N ′

N ⊕D M
p:cv
−−→ N ′ ⊕D M ′

(N-Bcast)

M
p:cv
−−→ M ′

M\c
τ
−→ M ′\c

(N-Res1)
M

δ
−→ M ′ c and c not in δ

M\c
δ
−→ M ′\c

(N-Res2)

M
δ
−→ M ′

M ⊕D N
δ
−→ M ′ ⊕D N

(N-ParL)
N

δ
−→ N ′

M ⊕D N
δ
−→ M ⊕D N ′

(N-ParR)

Fig. 3: Labelled Transition Semantics for Networks

c(0).0, Φ2(2) = c(x).0 and Φ3(3) = c(y).0. Using the rules

in Fig. 2 and Fig. 3, N1 | (N2 ⊕N3) can evolve as follows:

N3(3) = c(y).0 c(y).0
c0
−−→ 0

N3
3:c0
−−−→ N3[3 7→ 0]

N1(1) = c(0).0

c(0).0
c0
−−→ 0

N1
1:c0
−−−→ N1[1 7→ 0]

N2(2) = c(x).0

c(x).0
c0
−−→ 0

N2
2:c0
−−−→ N2[2 7→ 0]

N1 | N2
1:c0
−−−→ N1[1 7→ 0] | N2[2 7→ 0]

N1 | (N2 ⊕ N3)
1:c0
−−−→ N [1 7→ 0] | (N2[2 7→ 0] ⊕ N3[3 7→ 0])

D. Weak Bisimulation

As explained in the introduction, observers (or environ-

ments) should take the links and locations into account. We

define a weak bisimulation for GCWN to take them into

account, and it makes observers more context-sensitive when

the observers interact with networks.

For instance, when networks M = G〈Φ〉 and N = H〈Ψ〉
are bisimilar, the observer has to point out which node Φ(p)
of M and which node Ψ(q) of N should be related in the

bisimulation relation. Inspired by [12], [13], we define a

localized relation on Net through triples (M,E,N) by taking

locations into account, and E ⊆ |M | × |N | specifies the pairs

of locations of M and N . Let E−1 = {(q, p) | (p, q) ∈ E}.

Definition 5 (Localized Relation): A localized relation

on Net is a set R ⊆ Net × P(Loc2) × Net such that, if

(M,E,N) ∈ R then E ⊆ |M | × |N |. R is symmetric if

(P,E,Q) ∈ R implies (Q,E−1, P) ∈ R.

Definition 6 (Weak Bisimulation): A symmetric localized

relation R on Net is a weak bisimulation such that whenever

(M,E,N) ∈ R:

• if M
τ

−−→ M ′, then there is N ′ such that N
τ∗

−→ N ′ and

(M ′, E,N ′) ∈ R;

• if M
p:α
−−→ M ′, then there is N ′ such that N

q:α
==⇒ N ′

with (p, q) ∈ E, and (M ′, E,N ′) ∈ R.

Definition 7: M and N are weakly bisimilar, denoted by

M ≈ N , if there exist a weak bisimulation R and a relation

E ⊆ |M | × |N | such that (M,E,N) ∈ R.

In the definitions, E can be taken as a parameter and the

weak bisimulation can be called parameterized weak bisimula-

tion, similar to the parameterized location bisimulation in [14].

Moreover, if E = |M | × |N |, we obtain a weak bisimulation

ignoring the location information.

Example 4 (Comparisons on Bisimulations): In GCWN,

we define a network Sys for a simple protocol, transferring

data from one node to another. We provide a network Spec as

a specification for the protocol. We define the sender P and

the receiver Q in Sys, and the process R in Spec as follows

P
def
= c1(0).d1(1).d2(x).P

Q
def
= d1(x).c2(0).d2(1).Q

R
def
= c1(0).c2(0).R

Channels d1 and d2 are used to transfer data and acknowl-

edgements between P and Q. Let Sys = G1〈Φ〉\{d1, d2}
and Spec = G2〈Ψ〉, where G1 = ({1, 2}, {(1, 2)}), Φ(1) =
P , Φ(2) = Q, G2 = ({3}, ∅) and Ψ(3) = R. From

(Sys, {(1, 3), (2, 3)}, Spec), we can build a weak bisimulation

containing it in GCWN, i.e. Sys ≈ Spec. However, Sys
and Spec are not weakly bisimilar in the literature [5], [7],

[8], where weakly bisimilar networks must play the same

observable actions at the same locations.

IV. MAIN RESULT

In this section, we show that reduction semantics and

labelled transition semantics model the same behaviours, and

prove that weak bisimilarity implies weak barbed congruence.

A. Harmony Theorem

We have defined reduction semantics and labelled transition

semantics for networks in the previous section. There is a

close relation between them, i.e. the internal reduction and

the labelled transition describe the same behaviours. Before

proving this, we provide two lemmas.

Lemma 2:

1) If M
p:cv
−−→ M ′, then there are v, x, I with c /∈ I and

p ∈ |M | such that M ≡ N\I , N(p) = c(x).P +R and

M ′ ≡ N [p 7→ P{v/x}]\I .

2) If M
p:cv
−−→ M ′, then there are e with eval(e) = v, I

with c /∈ I , M(p) = c(e).P + R, L = {qi | p ⌢M

qi,M(qi) = c(xi).Qi + Ri}, |M1| = L ∪ {p}, |M2| =
|M | \ |M1| and D ⊆ |M1| × |M2| consistent with ⌢M

such that M ≡ (M1 ⊕D M2)\I , and M ′ ≡ (M1[p 7→
P][qi 7→ Qi{v/x}]qi∈L ⊕D M2)\I .

Proof: Induction on the transition rules for networks.

In the second part of Lemma 2, we can divide the network

M into two parts. One part M1 consists of the broadcasting

node at location p and all its adjacent nodes that can receive

the message via channel c. The other part M2 consists of the

nodes that are not connected with location p, and the nodes

that are connected with p but in which c is not available.

Lemma 3: If M
δ
−→ M ′ and M ≡ N , then there exists N ′

such that N
δ
−→ N ′ and M ′ ≡ N ′.

By Lemmas 2 and 3, we can prove the following theorem.

Theorem 1 (Harmony Theorem):

• If M −→ M ′, then

– either M
τ
−→ M ′′ and M ′′ ≡ M ′ for some M ′′;

– or there is p : cv such that M
p:cv
−−→ M ′′ and M ′′ ≡

M ′ for some M ′′.

• If M
p:cv
−−→ M ′ or M

τ
−→ M ′, then M −→ M ′.

B. Soundness

We first prove that weak bisimilarity is an equivalence

relation.

Lemma 4: ≈ is an equivalence relation.

Then we prove that ≈ is preserved by the operators in

networks. In CCS [1], if R is a weak bisimulation and

P R Q, then one can prove that, for any S, S | P and

S | Q are weak bisimilar, by showing that a new relation R′

extending R (i.e. (S | P) R′ (S | Q)) is a weak bisimulation.

However, we cannot simply do this in GCWN, because we

need to record locations of nodes and links between nodes. The

main challenge is to extend a localized relation R to another

localized relation R′ to accommodate the parallel composition

in GCWN. For instance, let O⊕CM be a parallel composition

of networks O and M with some C ⊆ |O|× |M |. We have to

build O⊕DN as a parallel composition of networks O and N
with some relation D ⊆ |O| × |N |. Meanwhile, the relations

C and D should satisfy some constraints.

Definition 8 (Adapted Triple of Relations): We say that a

triple of relations (D,D′, E) with D ⊆ A×B, D′ ⊆ A×B′

and E ⊆ B×B′ is adapted, if for any (a, b, b′) ∈ A×B×B′

with (b, b′) ∈ E, (a, b) ∈ D if and only if (a, b′) ∈ D′.

Definition 9 (Parallel Extension): Let R be a localized

relation. A localized relation R′ is a parallel extension of R, if

for any (U, F, V) ∈ R′ the following conditions are satisfied:

• there exist a network O, a triple (M,E,N) ∈ R, C ⊆
|O| × |M |, D ⊆ |O| × |N | such that U = O ⊕C M and

V = O ⊕D N ,

• (C,D,E) is adapted,

• F is the relation (Id|O| ∪ E) ⊆ |U | × |V |, and Id|O| =
{(p, p) | p ∈ |O|}.

Intuitively, the premise that (C,D,E) is adapted specifies

that network O as an observer should have the same connec-

tions with M and N up to E, i.e. taking links into account.

Proposition 2: If R is a weak bisimulation, then its parallel

extension R′ is also a weak bisimulation.

Now we can prove the following theorem.

Theorem 2: ≈ is a congruence.

Structurally congruent networks are weakly bisimilar.

Proposition 3: M ≡ N implies M ≈ N .

Proof: Induction on the rules of ≡.

Weak bisimulation is reduction closed and barb preserving.

Proposition 4: If M ≈ N then M
•
≈ N .

From Proposition 4 and Theorem 2, we can easily get the

following theorem.

Theorem 3 (Soundness): If M ≈ N , then M ∼= N .

Though the converse direction of Theorem 3 (i.e. complete-

ness) holds in CCS in a point-to-point approach, e.g. [10], [15],

it does not hold in this paper with local broadcast.

A(ipA, ipX)
def
= c(({RDP, ipX , NA}KA− , [certA])).A1(ipA)

A1(ipA)
def
= d(x).(if check2(x) = ok ∧ snd(x) = ipA

then s(0).0 else A1(ipA))

Q(ipQ)
def
= c(x).(if check1(x) = ok then

c(NewMsg1(x, ipQ)).Q1(ipQ, getIP(x))
else Q(ipQ))

Q1(ipQ, ip)
def
= d(y).(if check2(y) = ok ∧ snd(y) = ipQ then

d((NewMsg2(y, ipQ), ip)).0
else Q1(ipQ, ip))

X(ipX)
def
= c(x).(if check1(x) = ok then

d((NewMsg3(x, ipX), getIP(x))).0
else X(ipX))

I
def
= c(x).c(x).I + d(x).d((fst(x), ipA)).I

Fig. 4: Processes for ARAN

V. CASE STUDIES

In this section, we show that GCWN can be used to model

and reason about non-trivial networks.

A. ARAN

We use behavioural equivalences of GCWN to show an

attack scenario in ARAN [11]. ARAN is a secure on-demand

routing protocol for ad hoc networks. The goal of ARAN is

to ensure message integrity and non-repudiation in the route

process using public key cryptography. ARAN requires the

use of a trusted server T to send a certification to each

node. Each valid node A in the network has a pair of public

and private keys (KA+,KA−) and a certification (received

from T) to authenticate itself to other nodes. For a node

X , let X’s certification be certX = {ipX ,KX+, t, e}KT− ,

containing IP address of X , the public key of X , a timestamp

t when certX was created and a time e at which certX
expires. As usual, we use {d}KX− to encrypt data d with the

private key KX− of node X . To abstract some implementation

details, we introduce some auxiliary functions to manipulate

the messages. For instance, we use check1 and check2 to

check the signature using certifications in the messages at

the request and the reply steps, use getIP to extract the IP

address of the node that broadcasts the message, and use

functions NewMsg1, NewMsg2 and NewMsg3 to construct

new messages at different steps of the protocol. We use fst

(and snd) to return the first element (and the second element)

of a pair.

We assume that each node has received a certification from

T . The protocol proceeds as follows and we also describe the

procedure in GCWN in Fig. 4:

• The source node A begins the procedure of route to

destination X by broadcasting a route require pack-

age, ({RDP, ipX , NA}KA− , [certA]), to its neighbours,

where RDP is the package identifier, ipX is the IP address

of the destination X , NA is a nonce, and certA is the

certification of A. See process A in Fig. 4.

• When a node B receives the message, msg, it uses A’s

public key extracted from certA in msg to check the

message. If the check fails, the message is dropped;

otherwise B sets up a reverse path back to the source

by recording the neighbor from which it received the

RDP and B signs the received message and appends

its certification certB . We use check1(msg) to do this,

and use getIP(msg) to get the IP address from which

the message received. Then B rebroadcasts the message

({{RDP, ipX , NA}KA−}KB− , [certA, certB]), built by

NewMsg1(msg, ipB). See process Q in Fig. 4.

• When B’s neighbor C receives the message, it checks

the message using the certifications of both A and B.

If the check fails, the message is dropped; otherwise C
records B to unicast the reply, removes B’s signature

and certification, signs the message broadcasted by A
and appends its certification. Then C rebroadcasts the

message ({{RDP, ipX , NA}KA−}KC− , [certA, certC]),
constructed by NewMsg1(msg, ipC). Each intermediate

node along the path repeats the same actions as C. See

process Q in Fig. 4.

• When the destination X first receives the RDP, if all

the checks are valid then it sends a REP to the source

A along the reverse path to the source as a unicast

message. ({REP, ipA, NA}KX− , [certX]) is constructed

by NewMsg3(msg, ipX). See process X in Fig. 4.

• Let D be the first node that receives the REP, msg,

sent by X . After a valid check, node D signs the

REP, appends its certification and forwards the message,

({{REP, ipA, NA}KX−}KD− , [certX , certD]) built by

NewMsg2(msg, ipD), to the node from which it receives

the RDP. See process Q1 in Fig. 4.

• Let C be the next hop of D to A. C validates D’s signa-

ture on the received message, removes D’s signature and

certification, signs the message and appends its certifica-

tion, i.e. ({{REP, ipA, NA}KX−}KC− , [certX , certC])
constructed by NewMsg2(msg,C). Then C unicasts the

message to its next hop, i.e. B here. Each node along the

reverse path repeats the same actions as C. See process

Q1 in Fig. 4.

• When the source A receives the REP, it validates the

destination’s signature and the nonce, in a successful state

s(0).0. See process A1 in Fig. 4.

Here, we implement a unicast using a broadcast, where

nodes drop the message if they are not mentioned or addressed.

We have a source A(ipA, ipX), a destination X(ipX), two

nodes B and C in the routing path as Q(ipB) and Q(ipC), and

an intruder I (see Fig. 4) which only relays messages. Let the

IP address of a node be its location. Let N = H〈Ψ〉, where

H = ({1, 2, 3, 4}, {(1, 3)}), Ψ(1) = A(1, 4), Ψ(2) = Q(2),
Ψ(3) = Q(3) and Ψ(4) = X(4). Let M = G〈Φ〉, where G =
({1, 2, 3, 4, 5}, {(1, 5), (2, 5), (4, 5), (1, 3)}), Φ(1) = A(1, 4),
Φ(2) = Q(2), Φ(3) = Q(3), Φ(4) = X(4) and Φ(5) = I . M
is an attacked network as a composition of N and I .

Now we show that there is an attack from the intruder I in

M , by showing that M and N are not weakly barbed bisimilar.

In fact, M can evolve to an incorrect route state through: (1)

A broadcasting message m1 to start the routing procedure and

I and C receiving the message; (2) I replaying the message to

M −→ M [1 7→ A1(1)][3 7→ C′][5 7→ c(m1).I]
def
= M1, by steps in (1)

M1 −→−→ M1[2 7→ Q1(2, 1)][5 7→ c(m2).I]
def
= M2, by steps in (2)

M2 −→−→ M2[5 7→ d(fst(m3), 1).I][4 7→ 0]
def
= M3, by steps in (3)

M3 −→ M3[1 7→ s(0).0][5 7→ I]
def
= M4, by steps in (4)

Fig. 5: Reductions in ARAN

B, B rebroadcasting the message m2 signatured by B and only

I receiving the message; (3) I rebroadcasting the message m2

to X and X sending a reply m3 to I; (4) I sending the replay

to A and A reaching an incorrect route state. See Fig. 5 for de-

tails. In M1 from Fig. 5, C′ = c(NewMsg1(m1, 3)).Q1(3, 1).
In network N , node A cannot reach the state s(0).0. Thus

N cannot reach a network N ′ with N ′↓s. Since M4↓s, M and

N are not weakly barbed bisimilar by the definition.

B. The Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a simple data link

layer network protocol. ABP is used when a transmitter P1

wants to send messages to a receiver P2, with the assumptions

that the channel may corrupt a message and that P1 and P2

can decide whether they have received a correct message. Each

message from P1 to P2 contains a data part and a one-bit

sequence number, i.e. a value that is 0 or 1. P2 can send two

acknowledge messages, i.e. (Ack, 0) and (Ack, 1), to P1.

In [1], ABP was formalized in CCS with an interleaving

semantics. In [6], ABP was investigated in a broadcasting

semantics based on transmission radius. In GCWN, we intend

to show that graphs can be used to concisely characterize

communicating capacities.

In Fig. 6 we provide a specification of ABP in GCWN.

send and ack are channels. The transmitter P1 has a list lt1
containing the messages to be sent, and the receiver P2 also

has a list lt2 containing the received messages. The list is

equipped with operations head (returning the head of a list),

tail (returning a list with the first element removed), append

(inserting an element as the last element of the new list) and

null (testing whether a list is empty). We use fst (and snd)

to return the first element (and the second element) of a pair.

End is an entry to indicate that all the messages in lt1 have

been transformed. Succ(lt2) indicates that the receiver has

successfully received all the messages. We define a network

M consisting of two nodes linked by an edge, and P1(lt, b)
located at one location and P2([], b) located at the other.

Formally, M = ({p1, p2}, {(p1, p2)})〈Φ〉, Φ(p1) = P1(lt, b)
and Φ(p2) = P2([], b).

Proposition 5: For any network O, M ⊕ O −→∗ M [p1 7→
0][p2 7→ Succ(lt)]⊕O′ for some O′.

The proposition says that if the transmitter P1 and the

receiver P2 can communicate with each other but they cannot

communicate with the nodes in O (i.e. (M ⊕ O)), then the

whole network can reach a state where all the messages in P1

are correctly received by P2 no matter what happens in O.

VI. RELATED WORK

Inspired by [12], [13], which focus on tree structured

concurrent systems with point-to-point communications, we

propose a graph-based calculus to study wireless networks

with local broadcasts. Below we only discuss some closely

related work on wireless systems.

Calculi for Wireless Systems. Several process calculi for

wireless systems have been proposed. A brief survey of

broadcast calculi can be found in [16].

CBS♯ [8] was probably the first calculus for wireless sys-

tems, and it is an extension of CBS [3]. In CBS♯, every node is

specified by a location, and system transitions are indexed by

graphs which represent the connectivity of nodes. Thus, graphs

specify possible behaviors of a system at the semantic level.

Behavioural equivalences are defined to identify processes.

The final goal of CBS♯ is to give a framework to specify

and analyse communication protocols for wireless networks.

Different from CBS♯, in GCWN graphs are introduced at the

syntactic level and the weak bisimulation of GCWN takes

locations and links into account.

CWS (Calculus for Wireless Systems) [6], [17] was devel-

oped to model protocols at the data-link layer. In CWS, a node

n[P]cl,r stands for a node named n, located at l, executing

P , with channel c and transmission radius r. CWS deals

with static topologies, and the topology of a network can be

derived by a distance function to compute the nodes in the

transmission range of each node. CWS separates the begin

and the end of a transmission to handle interferences. The

main result of CWS is a correspondence between a reduction

semantics and a labelled transition semantics, called harmony

theorem. In GCWN, we use graphs to describe connections in

networks. Besides a similar harmony theorem, we also develop

behavioural equivalences for GCWN.

In CMN (Calculus of Mobile Ad Hoc Networks) [7], the

nodes are similar to the ones in CWS. Both a reduction

semantics and a labelled transition semantics are developed,

and a harmony theorem is proved for them. The main result is

that the labelled bisimilarity coincides with reduction barbed

congruence.

CMAN (Calculus for Mobile Ad Hoc Networks) [5] sup-

ports local broadcast and dynamic changes of the network

topology. CMAN is equipped with a reduction semantics and

a reduction congruence, and the weak bisimulation coincides

with the reduction congruence in CMAN. CMAN also pro-

vides a formalisation of an attack on the cryptographic routing

protocol ARAN. However, the bisimulations in [5], [7] do not

take locations and links into account. And it is unclear how

to define a parameterized weak bisimulation in [5], [7].

Cerone and Hennessy [18] proposed a calculus for dis-

tributed systems, using directed graphs and equipped with

testing preorders in the style of DeNicola and Hennessy [19].

Directed graphs are more refined than undirected graphs, but

P1(lt1, b)
def
= if null(lt1) then send((End, b)).ack(x).(

if x = (Ack, b) then 0 else P1(lt1, b))
else send((head(lt1), b)).ack(x).(

if x = (Ack, b) then P1(tail(lt1),¬b) else P1(lt1, b))

P2(lt2, b)
def
= send(x).(if snd(x) = b

then (if fst(x) = End then Succ(lt2)
else ack((Ack, b)).P2(append(lt2, fst(x)),¬b))

else ack(Ack,¬b).P2(lt2, b))

Fig. 6: The Alternating Bit Protocol in GCWN

in most situations undirected graphs are enough to specify the

connectivity of networks, e.g. [4]–[9]. The testing preorders

in [18] are similar to the barbed congruence in GCWN, but

they only consider actions with the same locations.

Calculi for IoT. Lanese et al. [20] proposed the first process

calculi for Internet of Things (IoT). Recently, a calculus for

IoT [21] was proposed with a fully abstract semantics in a

point-to-point approach.

Calculi for CPS. Vigo et al. [22] proposed a calculus for

wireless-based cyber-physical systems (CPSs) to model and

reason about cryptographical primitives. Inspired by [22], Wu

and Zhu [23] considered a static network topology and proved

a harmony theorem to link reduction semantics and labelled

transition semantics.

VII. CONCLUSIONS

We have proposed a graph-based calculus, called GCWN,

to model and reason about wireless networks. In GCWN,

we use graphs at syntactical level to specify local broadcast.

The calculus is equipped with a reduction semantics and a

labelled transition semantics. The former has been used to

define weak barbed congruence. The latter has been used

to define a parameterized weak bisimulation emphasizing

locations and local broadcast. We have proved that the two

semantics model the same behaviours and weak bisimilarity

implies weak barbed congruence. GCWN also has been used

to reason about scenarios in ARAN and ABP.

There are some further issues. Firstly, we are going to

extend GCWN to handle dynamic topologies of wireless

networks. Secondly, we plan to extend GCWN with directed

graphs. Thirdly, we would like to apply our calculus and

methods to other wireless-based scenarios, e.g. the ones in

IoT and CPSs. Finally, we plan to develop an implementation

of the calculus to assist in reasoning about systems.

REFERENCES

[1] R. Milner, Communication and Concurrency. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1989.

[2] C. Hoare, Communicating sequential processes. Prentice-hall, 1985.
[3] K. V. Prasad, “A calculus of broadcasting systems,” Science of Computer

Programming, vol. 25, no. 2, pp. 285–327, 1995.
[4] A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and

W. L. Tan, “A process algebra for wireless mesh networks,” in European

Symposium on Programming. Springer, 2012, pp. 295–315.
[5] J. C. Godskesen, “A calculus for mobile ad hoc networks,” in Interna-

tional Conference on Coordination Languages and Models. Springer,
2007, pp. 132–150.

[6] I. Lanese and D. Sangiorgi, “An operational semantics for a calculus for
wireless systems,” Theoretical Computer Science, vol. 411, no. 19, pp.
1928–1948, 2010.

[7] M. Merro, “An observational theory for mobile ad hoc networks (full
version),” Information and Computation, vol. 207, no. 2, pp. 194–208,
2009.

[8] S. Nanz and C. Hankin, “A framework for security analysis of mobile
wireless networks,” Theoretical Computer Science, vol. 367, no. 1, pp.
203–227, 2006.

[9] A. Singh, C. Ramakrishnan, and S. A. Smolka, “A process calculus for
mobile ad hoc networks,” Science of Computer Programming, vol. 75,
no. 6, pp. 440–469, 2010.

[10] R. Milner and D. Sangiorgi, “Barbed bisimulation,” in Automata, Lan-

guages and Programming. Springer, 1992, pp. 685–695.
[11] K. Sanzgiri, D. LaFlamme, B. Dahill, B. N. Levine, C. Shields, and

E. M. Belding-Royer, “Authenticated routing for ad hoc networks,” IEEE

Journal on selected areas in communications, vol. 23, no. 3, pp. 598–
610, 2005.

[12] T. Ehrhard and Y. Jiang, “CCS for trees,” 2013,
http://arxiv.org/abs/1306.1714.

[13] S. Liu and Y. Jiang, “Value-passing CCS for trees: a theory for
concurrent systems,” in International Symposium on Theoretical Aspects
of Software Engineering. IEEE Computer Society, 2016, pp. 101–108.

[14] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn, “A theory of
processes with localities,” Formal Aspects of Computing, vol. 6, no. 2,
pp. 165–200, 1994.

[15] D. Sangiorgi, Introduction to Bisimulation and Coinduction. New York,
NY, USA: Cambridge University Press, 2011.

[16] K. Prasad, “Themes in broadcast calculi,” in International Symposium
on Parallel and Distributed Computing. IEEE, 2014, pp. 16–22.

[17] N. Mezzetti and D. Sangiorgi, “Towards a calculus for wireless systems,”
Electronic Notes in Theoretical Computer Science, vol. 158, pp. 331–
353, 2006.

[18] A. Cerone and M. Hennessy, “Characterising testing preorders for broad-
casting distributed systems,” in International Symposium on Trustworthy

Global Computing. Springer, 2014, pp. 67–81.
[19] R. De Nicola and M. C. Hennessy, “Testing equivalences for processes,”

Theoretical computer science, vol. 34, no. 1-2, pp. 83–133, 1984.
[20] I. Lanese, L. Bedogni, and M. Di Felice, “Internet of things: a process

calculus approach,” in Proceedings of the 28th Annual ACM Symposium

on Applied Computing. ACM, 2013, pp. 1339–1346.
[21] R. Lanotte and M. Merro, “A semantic theory of the internet of things,”

in International Conference on Coordination Languages and Models.
Springer, 2016, pp. 157–174.

[22] R. Vigo, F. Nielson, and H. R. Nielson, “Broadcast, denial-of-service,
and secure communication,” in International Conference on Integrated

Formal Methods. Springer, 2013, pp. 412–427.
[23] X. Wu and H. Zhu, “A calculus for wireless sensor networks from quality

perspective,” in International Symposium on High Assurance Systems

Engineering. IEEE, 2015, pp. 223–231.

http://arxiv.org/abs/1306.1714

APPENDIX

A. Proofs in Section III

Lemma 5: Let B a weak barbed bisimulation. If (M,N) ∈
B and M −→∗ M ′, then there exists N ′ such that N −→∗ N ′

and (M ′, N ′) ∈ B.

Proof: Induction on the length of the derivation M −→∗

M ′.

Lemma 6: A symmetric binary relation B on Net is a weak

barbed bisimulation if and only if the following conditions

hold:

• if (M,N) ∈ B and M −→∗ M ′, then N −→∗ N ′ and

(M ′, N ′) ∈ B for some N ′;

• if (M,N) ∈ B and M ↓c, then N −→∗ N ′ and N ′ ↓c for

some N ′.

Proof: (⇐) Because −→ is a special case of −→∗, this

direction is obvious.

(⇒) For the first statement, it is straightforward by Lemma

5.

For the second statement, it is obvious by the definition of

weak barbed bisimulation.

Let B1 and B2 are binary relations on Net. Let B2 ◦B1 be

the composition of B1 and B2 such that if (M,N) ∈ B1 and

(N,O) ∈ B2, then (M,O) ∈ B2 ◦ B1.

The proof for Lemma 1.

Proof: We need to prove that
•
≈ is reflexive, symmetric

and transitive. It is straightforward from the definition and

Lemma 6.

The proof for Proposition 1.

Proof: For the first statement, from the definition of

congruence, it is obvious that the identity relation contained in

R is a congruence. And congruences are closed under arbitrary

unions and contexts.

For the second statement, let E be a congruence defined

as: (M,N) ∈ E if and only if for any context C[·] one has

(C[M], C[N]) ∈ R. Therefore, E is a congruence contained

in R (because we can take C[·] = [·]) and hence E ⊆ R.

Conversely, let (M,N) ∈ R and C[·] be a context. Because

R is a congruence, we have (C[M], C[N]) ∈ R. We have

(C[M], C[N]) ∈ R from R ⊆ R by definition of R and hence

(M,N) ∈ E .

B. Proofs in Section IV

The proof for Lemma 3.

Proof: We prove it by induction on the depth of the

inference of M
δ
−→ M ′.

First, it is enough to prove the result in the special case that

the congruence M ≡ N is due to a single application of a

structural congruence rule. And the general case follows just

by iterating the special case.

The full proof must treat all possible cases for the final step

of the inference of M
δ
−→ M ′. Here we only consider one case,

and suppose it uses rule (N-ParL), where M is M1 ⊕C M2,

with M1
δ
−→ M ′

1 inferred by a shorter inference. Now there

are many ways in which M1 ⊕C M2 ≡ N may be due to a

single use of a structural congruence rule, and here we only

consider two cases to confirm ourselves.

(1) Suppose that the commutativity rule (i.e. M ⊕D N ≡
N ⊕D M) is used, so we have N is M2 ⊕C M1. In this case,

we use the rule (N-ParR) to deduce N
δ
−→ M2 ⊕C M ′

1. Take

N ′ to be M2 ⊕C M ′
1, and we have M ′ ≡ N ′ as required.

(2) Suppose that a single rule of structural congruence is

used in M1, so that M1 ≡ N1 and N is N1 ⊕C M2. Since

M1
δ
−→ M ′

1 is inferred by a shorter inference, by applying

the induction we have N1
δ
−→ N ′

1 and M ′
1 ≡ N ′

1. Take N ′

to be N ′
1 ⊕C M2, and by using (N-ParL) we can deduce that

N
δ
−→ N ′ and M ′ ≡ N ′ as required.

So the result follows by a fairly lengthy case analysis, both

for the structural congruence rule used and for the last step of

the transition inference.

The proof for Theorem 1.

Proof: We first prove that if M −→ M ′ then either M
τ
−→

M ′′ and M ′′ ≡ M ′ for some M ′′, or there is p : cv such that

M
p:cv
−−→ M ′′ and M ′′ ≡ M ′ for some M ′′. We prove it by

rule induction on the inference of M −→ M ′.

Supposed that the transition M −→ M ′ is inferred by an

application of rule (R-Bcast), that is

M(p) = c(e).P + R eval(e) = v L = {qi | p ⌢M qi,M(qi) = c(xi).Qi + Ri}

M −→ M[p 7→ P][qi 7→ Qi{v/x}]qi∈L

Then we use the following broadcast transition in Fig. 3.

Mi
p:cv
−−→ M ′

i Ni
q:cv
−−→ N ′

i (p, q) ∈ Di

Mi ⊕Di Ni
p:cv
−−→ M ′

i ⊕Di N
′
i

Here, we take Ni as a network that only has one node with

location qi ∈ L, the process on the node is c(xi).Qi + Ri,

and Di is consistent with the graph of the whole network

M , i.e. we add |L| networks Ni to the network M1 to obtain

the network M . And at the beginning, M1 only contains the

nodes in M on locations in set |M | \L. We can rewrite M as

(· · · ((M1 ⊕D1 N1)⊕D2 N2) · · ·)⊕Dk
Nk with k = |L|.

And we apply this rule |L| times, such that all the po-

tential receivers receive the broadcasting message. We get

M
p:cv
−−→ (· · · ((M ′

1⊕D1 N
′
1)⊕D2 N

′
2) · · ·)⊕Dk

N ′
k, and M ′ is

(· · · ((M ′
1 ⊕D1 N

′
1)⊕D2 N

′
2) · · ·)⊕Dk

N ′
k. Therefore we have

M
p:cv
−−→ M ′ as required.

Suppose that the transition of M −→ M ′ is inferred by an

application of rule (R-Res), it is similar to the rule (R-Bcast).

Moreover, at the last step we use the transition rule (N-Res1),

we get M
τ
−→ M ′ as required.

Suppose that the transition of M −→ M ′ is inferred by an

application of rule (R-Par), it is similar to the rule (R-Bcast).

Suppose that the transition of M −→ M ′ is inferred by an

application of rule (N-Struct), that is

M ≡ N N −→ N ′ N ′ ≡ M ′

M −→ M ′

We have that N −→ N ′ is a shorter inference. The induction

hypothesis tells us that there is N ′′ such that N
τ
−→ N ′′ ≡ N ′.

Therefore we have M
τ
−→ M ′′ ≡ M ′ by Lemma 3 and the

transitivity of ≡. The case for N
p:cv
−−→ N ′′ ≡ N ′ is similar.

Now we prove the converse direction. We consider all the

possible cases for the last step of the inference M
τ
−→ M ′ and

M
p:cv
−−→ M ′.

For M
p:cv
−−→ M ′, we have M

p:cv
−−→ M ′ for some p, c and

v. By an application of Lemma 2, we have

M ≡ (M1 ⊕D M2)\I

and

M ′ ≡ (M1[p 7→ P][qi 7→ Qi{v/xi}]qi∈L ⊕D M2)\I

where eval(e) = v, I with c /∈ I , M(p) = c(e).P + R, L =
{qi | p ⌢M qi,M(qi) = c(xi).Qi + Ri}, |M1| = L ∪ {p},

|M2| = |M | \ |M1| and D ⊆ |M1| × |M2| is consistent with

⌢M .

We apply rule (R-Bcast) to M1, then apply rule (R-Par) to

M1[p 7→ P][qi 7→ Qi{v/x}]qi∈L ⊕D M2 and apply rule (R-

Res) to (M1[p 7→ P][qi 7→ Qi{v/x}]qi∈L ⊕D M2)\I . Finally,

apply rule (R-Struct), we get M −→ M ′.

For M
τ
−→ M ′, suppose the τ -transition is generated by an

application of (N-Res1). So we have N
p:cv
−−→ N ′ for some p,

c, v, M ≡ N\c and M ′ ≡ N ′\c. N
p:cv
−−→ N ′ can be proved

following the previous case. Then apply rule (R-Struct), we

get M −→ M ′ as require.

The other cases follow from the congruence rules of the

reduction semantics.

Next we prove the Soundness Theorem

Lemma 7: Let R be a weak bisimulation. If (M,E,N) ∈

R and M
τ∗

−→ M ′, then N
τ∗

−→ N ′ and (M ′, E,N ′) ∈ R for

some N ′.

Proof: Induction on the length of the derivation of M
τ∗

−→
M ′.

Lemma 8: If M
τ∗

−→ M1, M1
p:α
==⇒ M ′

1 and M ′
1

τ∗

−→ M ′,

then M
p:α
==⇒ M ′.

Proof: Straightforward.

Lemma 9: A symmetric localized relation R ⊆ Net ×
P(Loc2) × Net is a weak bisimulation if and only if the

following properties hold:

• if (M,E,N) ∈ R and M
p:α
==⇒ M ′, then there exists N ′

such that N
q:α
==⇒ N ′, (p, q) ∈ E and (M ′, E,N ′) ∈ R;

• if (M,E,N) ∈ R and M
τ∗

−→ M ′, then there exists N ′

such that N
τ∗

−→ N ′ and (M ′, E,N ′) ∈ R.

Proof: (⇐) Because
τ
−→ and

δ
−→ with δ 6= τ are special

cases of
τ∗

−→ and
δ

==⇒ respectively, this direction is obvious.

(⇒) For the first statement, assume that (M,E,N) ∈ R

and M
p:α
==⇒ M ′ which is M

τ∗

−→ M1
p:α
−−→ M ′

1
τ∗

−→ M ′, by

Lemma 7 we can get N
τ∗

−→ N1 with (M1, E,N1) ∈ R.

From M1
p:α
−−→ M ′

1 and (M1, E,N1) ∈ R, we can get

N1
q:α
==⇒ N ′

1 with the conditions that (p, q) ∈ E and

(M ′
1, E,N ′

1) ∈ R.

Since M ′
1

τ∗

−→ M ′ and (M ′
1, E,N ′

1) ∈ R, by Lemma 7, we

can have N ′
1

τ∗

−→ N ′ with (N ′, E,N ′) ∈ R.

With N
τ∗

−→ N1, N1
q:α
==⇒ N ′

1 and N ′
1

τ∗

−→ N ′, by Lemma

8 we can get N
q:α
==⇒ N ′.

For the second statement, it is straightforward from Lemma

7.

Lemma 10 (Reflexivity): Let I be the localized relation

defined by (M,E,N) ∈ I if M = N and E = Id|M|. Then

I is a weak bisimulation.

Proof: Straightforward.

Let R and S be localized relations. We define a localized

relation S ◦R for the composition of R and S. (M,H,O) ∈
S ◦ R if H ⊆ |M | × |O| and there exist N , E and F such

that (M,E,N) ∈ R, (N,F,O) ∈ S and F ◦ E ⊆ H . Let

F ◦ E = {(p, r) | (p, q) ∈ E, (q, r) ∈ F}.

Lemma 11 (Transitivity): If R and S are weak bisimula-

tions, then S ◦ R is a weak bisimulation.

Proof: Obviously, S ◦ R is symmetric. Then the proof

just follows the definition of the weak bisimulation using the

Lemma 9.

From the hypothesis, let (M,E,N) ∈ R, (N,F,O) ∈ S
and (M,H,O) ∈ S ◦ R with F ◦ E ⊆ H .

(1) If M
p:α
==⇒ M ′, then N

q:α
==⇒ N ′, (p, q) ∈ E and

(M ′, E,N ′) ∈ R. From (N,F,O) ∈ S and N
q:α
==⇒ N ′, we

have O
r:α
==⇒ O′, (q, r) ∈ F and (N ′, F,O′) ∈ S. Therefore,

for any pair of labels p : α and q : α and pair of labels

q : α and r : α, we have (p, r) ∈ F ◦ E ⊆ H . So we have

(M ′, F ◦ E,O′) ∈ S ◦ R.

(2) From (M,E,N) ∈ R, if M
τ∗

−→ M ′, then we have

N
τ∗

−→ N ′ and (M ′, E,N ′) ∈ R. Since (N,F,O) ∈ S and

N
τ∗

−→ N ′, we have O
τ∗

−→ O′ and (N ′, F,O′) ∈ S. We just

get (M ′, F ◦ E,O′) ∈ S ◦ R as required.

Proof for Lemma 4.

Proof: Because ≈ is reflexive by Lemma 10 , symmetric

from the definition and transitive by Lemma 11.

The proof for Proposition 2.

Proof: From the definitions of adapted relations and

parallel extension, it is straightforward to show that R′ is

symmetric.

Let (U, F, V) ∈ R′ with (M,E,N) ∈ R, U = O ⊕C M ,

V = O ⊕D N , (C,D,E) is adapted and F = Id|O| ∪ E.

Case of a sending transition. Given U
p:cv
−−→ U ′ with p ∈

|U |, we have to show V
q:cv
===⇒ V ′ with q ∈ |V |, (p, q) ∈ F

and (U ′, F, V ′) ∈ R′. There are two cases for the sending

transition from U = O ⊕C M .

(1) The sending transition occurs in O, and O⊕C M
p:cv
−−→

O′ ⊕C M . So, we have p ∈ |O| and O
p:cv
−−→ O′. Then we

have U ′ = O′ ⊕C M .

Similarly, for V = O⊕DN we have V
p:cv
−−→ V ′ = O′⊕DN .

By the definition of F , we have (p, p) ∈ Id|O|, i.e. (p, p) ∈
F . Then it is obvious that the triple (C,D,E) is adapted.

Therefore, we have (U ′, F, V ′) ∈ R′ and F = Id|O| ∪ E, as

required.

(2) The sending transition occurs in M and O⊕C M
p:cv
−−→

O ⊕C M ′. So we have p ∈ |M | and M
p:cv
−−→ M ′, i.e. U ′ =

O ⊕C M ′.

Since (M,E,N) ∈ R, from M
p:cv
−−→ M ′, we have N

q:cv
===⇒

N ′, (p, q) ∈ E and (M ′, E,N ′) ∈ R. We can decompose

N
q:cv
===⇒ N ′ as

N
τ∗

−→ N1
q:cv
−−→ N ′

1
τ∗

−→ N ′

We have V
τ∗

−→ V1 with V1 = O ⊕D N1.

Similarly, V
q:cv
===⇒ V ′ can be decomposed as

O ⊕D N
τ∗

−→ O ⊕D N1
q:cv
−−→ O ⊕D N ′

1
τ∗

−→ O ⊕D N ′

We have V ′ = O ⊕D N ′. Since F ⊆ |U | × |V | and F =
Id|O| ∪E, we have (p, q) ∈ F . Moreover, the triple (C,D,E)
is adapted. Therefore, we have (U ′, F, V ′) ∈ R′ and F =
Id|O| ∪E, as required.

Case of a receiving transition. Given U
p:cv
−−→ U ′ with

p ∈ |U |, we have to show V
q:cv
===⇒ V ′ with q ∈ |V |, (p, q) ∈ F

and (U ′, F, V ′) ∈ R′. There are two cases for the receiving

transition from U = O ⊕C M . The analysis is similar to the

case of a sending transition.

Case of a τ -transition. Given U
τ
−→ U ′, we have to show

V
τ∗

−→ V ′ and (U ′, F, V ′) ∈ R′. There are two cases for a

τ -transition from U = O ⊕C M . Because τ -transitions are

obtained by restriction rules from outputs, i.e. there exist U ≡

U1\I and U1
p:cv
−−→ U ′

1 with p ∈ |U | = |U1|. Then with an

application of rule (N-Res1), we get U
τ
−→ U ′ and U ′ ≡ U ′

1\I .

Then we have to analysis the cases for U1
p:cv
−−→ U ′

1 with

p ∈ |U | = |U1|, and this is similar to the case of a sending

transition.

The proof for Theorem 2.

Proof: ≈ is an equivalence by Lemma 4. Here, we just

need to prove that if M and N are two networks, and M ≈ N ,

(i.e. (M,E,N) ∈ R for some weak bisimulation R), then

(1) R’s parallel extension is a weak bisimulation,

(2) (M\c, E,N\c) is contained in some weak bisimulation

for any channel c.

For the proof of (1), we directly apply the Proposition 2.

For the proof of (2), it is sufficient to show that the localized

relation

S
def
= {((M\c, E,N\c)) | (M,E,N) ∈ R for any channel c}

is a weak bisimulation. It is obvious that S is symmetric. Then

we do a case analysis on the possible transition from M\c.
The proof is straightforward.

Proof for Proposition 4.

Proof: Let B be a binary relation on networks defined by:

(M,N) ∈ B if M ≈ N . Then we have to prove that B is a

weak bared bisimulation. First, we know that B is symmetric,

because ≈ is symmetric. Then we need to prove B is reduction

closed and barb preserving.

(1) Let (M,N) ∈ B. If M −→ M ′ which is M
p:cv
−−→ M ′′ ≡

M ′ by Theorem 1. Because M ≈ N , we have N
q:cv
===⇒ N ′

(i.e. N −→∗ N ′ by by Theorem 1) and M ′′ ≈ N ′. We also

have M ′′ ≈ M ′ by Proposition 3. Since ≈ is an equivalence,

we have M ′ ≈ N ′. Thus, we have (M ′, N ′) ∈ B.

(2) Let (M,N) ∈ B. If M ↓c, then there exists a transition

M
p:cv
−−→ M ′. Since M ≈ N , we have N

q:cv
===⇒ N ′ and M ′ ≈

N ′. N
q:cv
===⇒ N ′ means N

τ∗

−→ N1 (i.e. N −→∗ N1 by Theorem

1) with N1 ↓c for some N1. From M ↓c, we get that N →∗ N1

with N1 ↓c as required.

C. Proofs in Section V

The proof for Proposition 5.

Proof: Since O does not affect the reductions of M , we

only consider the reductions of M , i.e. interactions between

P1 and P2. There are two cases for the reduction

• either M −→∗ M [p1 7→ P1(lt1, b)][p2 7→ P2(lt2, b)] with

the concatenation of lt1 and lt2 equals to lt, and this is

a some stage of the reduction,

• or M −→∗ M [p1 7→ 0][p2 7→ Succ(lt)], and this is the

final successful stage of the reduction.

Induction on the length of lt1, we only show some cases

and other cases are similar:

• If null(lt1) is satisfied, then a possible reduction sequence

is: sending the End message, receiving acknowledge

from P2, passing the conditional evaluation in the sender

and in the receiver respectively, then reducing to the final

successful stage.

• If null(lt1) is not satisfied, then a possible reduction

sequence is: sending the head of lt1, passing the condi-

tional evaluation of the receiver, receiving acknowledge

from the receiver, then reducing to the next stage of the

reduction.

	I Introduction
	II The Calculus
	III Operational Semantics
	III-A Reduction Semantics
	III-B Weak Barbed Congruence
	III-C Labelled Transition Semantics
	III-D Weak Bisimulation

	IV Main Result
	IV-A Harmony Theorem
	IV-B Soundness

	V Case Studies
	V-A ARAN
	V-B The Alternating Bit Protocol

	VI Related Work
	VII Conclusions
	References
	Appendix
	A Proofs in Section ??
	B Proofs in Section ??
	C Proofs in Section ??

