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multicomponent predictive systems
with an extended Auto-WEKA

Manuel Martin Salvador, Marcin Budka, and Bogdan Gabrys

Abstract—Composition and parametrisation of
multicomponent predictive systems (MCPSs) consisting of
chains of data transformation steps is a challenging task. Auto-
WEKA is a tool to automate the Combined Algorithm Selection
and Hyperparameter (CASH) optimisation problem. In this
paper we extend the CASH problem and Auto-WEKA to support
MCPS including preprocessing steps for both classification and
regression tasks. We define the optimisation problem in which
the search space consists of suitably parametrised Petri nets
forming the sought MCPS solutions. In the experimental
analysis we focus on examining the impact of considerably
extending the search space (from approximately 22,000 to
812 billion possible combinations of methods and categorical
hyperparameters). In a range of extensive experiments three
different optimisation strategies are used to automatically
compose MCPSs for 21 publicly available datasets. The diversity
of the composed MCPSs found is an indication that fully
and automatically exploiting different combinations of data
cleaning and preprocessing techniques is possible and highly
beneficial for different predictive models. We also present the
results on 7 datasets from real chemical production processes.
Our findings can have a major impact on development of
high quality predictive models as well as their maintenance
and scalability aspects needed in modern applications and
deployment scenarios.

Note to Practitioners—The extension of Auto-WEKA to com-
pose and optimise MCPSs developed as part of this paper is
freely available on GitHub under GPL licence and we encourage
practitioners to use it on a broad variety of classification and
regression problems. The software can either be used as a
blackbox — where search space is made of all possible WEKA
filters, predictors and meta-predictors (e.g. ensembles) — or as
an optimisation tool on a subset of pre-selected machine learning
methods. The application has a graphical user interface, but also
can run from command line and can be embedded in any project
as a Java library. There are three main outputs once an Auto-
WEKA run has finished: a) the trained MCPS ready to make
predictions on unseen data; b) the WEKA configuration (i.e.
parametrised components); c¢) the Petri net in a PNML (Petri
Net Markup Language) format which can be analysed using any
tool supporting this standard language. There are however some
practical considerations affecting the quality of the results that
must be taken into consideration such as the CPU time budget
or the search starting point. These are extensively discussed in
the paper.

Index Terms—Automatic predictive model building and
parametrisation; Multicomponent predictive systems; KDD pro-
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I. INTRODUCTION

ERFORMANCE of data-driven predictive models heavily
relies on the quality and quantity of data used to build
them. In real applications, even if data is abundant, it is also
often imperfect and considerable effort needs to be invested
into a labour-intensive task of cleaning and preprocessing such
data in preparation for subsequent modelling. A survey' of
data mining practitioners carried out in 2003 indicates that
preprocessing tasks can account for as much as 60-80% of the
total time spent on developing a predictive model. More recent
surveys from 2012 [1] and 2016% confirm these numbers.
The practitioners also note that preprocessing is the least
enjoyable part of data science. The reason for this being such
a lengthy process is all the manual work necessary to identify
the defects in the raw data and look for the best solutions
to approach them. Despite 13 years that passed between the
surveys, no significant advances have been made to address
this issue. Therefore, it is desirable to automate as many of
the tasks of data preprocessing as possible in order to reduce
the human involvement and the level of necessary interactions.
The consequence of this would be speeding up of the data
mining process and making the procedures more robust.
After the data has been preprocessed in an appropriate
way, the next step in a data mining process is modelling
(i.e. finding an appropriate classifier or regressor). Similarly
to preprocessing, this step can also be very labour-intensive,
requiring evaluation of multiple alternative models. Hence
automatic model selection has been attempted in different
ways, for example using active testing [2], meta-learning [3],
information theory [4] or following a multi-criteria decision
making process [5]. More recently, Google has launched a
new service called Cloud AutoML for automatically building
deep neural networks for image classification problems, using
transfer learning [6]. There is then an increasing attention from
academy and industry in this topic. We have observed that
a common theme in the literature is comparison of different
models using data always preprocessed in the same way.
However, some models may perform better if they are built

Thttp://www.kdnuggets.com/polls/2003/data_preparation.htm

2‘Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data
Science Task, Survey Says’ by Gil Press. Forbes 2016. http://bit.ly/
forbes-data-preparation
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using data specifically preprocessed with a particular model
type in mind. In addition, hyperparameters play an important
role in most of the models, and setting them manually is
time-consuming mainly for two reasons: (1) there are typically
multiple hyperparameters which can take many values (with an
extreme case being continuous hyperparameters), and (2) they
are validated using cross-validation (CV).

In many scenarios one needs to sequentially apply multiple
preprocessing methods to the data (e.g. outlier detection —
missing value imputation — dimensionality reduction), effec-
tively forming a preprocessing chain. Data-driven workflows
have been used to guide data processing in a variety of
fields. Some examples are astronomy [7], biology [8], clinical
research [9], archive scanning [10], telecommunications [11],
banking [12] and process industry [13], to name a few. The
common methodology in all these fields consists of following
a number of steps to prepare a dataset for data mining. In
the field of predictive modelling, the workflow resulting from
connecting different methods is known as a Multi-Component
Predictive System (MCPS) [14], [15]. At the moment, tools
like WEKA?3, RapidMiner4 or Knime® allow to create and run
MCPSs including a large variety of operators.

The motivation for automating composition of MCPS is
twofold. In the first instance, it will help to reduce the
amount of time spent on the most labour-intensive activities
related to predictive modelling, and therefore allow to dedicate
human expertise to other tasks. The second motivation is to
achieve better results than a human expert could, given a
limited amount of time. The number of possible methods and
hyperparameter combinations increases exponentially with the
number of components in an MCPS and in majority of cases
it is not computationally feasible to evaluate all of them.
Therefore it makes sense to approach preprocessing, model
selection and hyperparameter optimisation problems jointly.

The Combined Algorithm Selection and Hyperparameter
optimisation (CASH) problem presented in [16] consists of
finding the best combination of learning algorithm A* and
hyperparameters A* that optimise an objective function (e.g.
Eq. 1 minimises the k-fold cross-validation error) for a given
dataset D. Formally, CASH problem is given by

k
argmin = — g
A e AN NeNE) i—1

P

A:* = E(Agj)’ train’Df)Z)lid) (])
where A = {AW ... AW} is a set of algorithms with
associated hyperparameter spaces A, ... A®*) The loss
function L takes as arguments an algorithm configuration Ay
(i.e. an instance of a learning algorithm and hyperparameters),
a training set Dy,.q;, and a validation set Dyqi4-

In this paper we extend the CASH problem to support
MCPSs, i.e. joint optimisation of predictive models (classifiers
and regressors) and preprocessing chains. We embrace the
representation of MCPS as Petri nets which we proposed in
[15] and thus

9:(P7T)\7F) (2)

3http://weka.sourceforge.net
“https://rapidminer.com
Shttps://www.knime.org
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Fig. 1. Multicomponent predictive system with a single transition

In our previous work [17] we presented the first approach
for hyperparameter optimisation of WEKA classifiers that
modify their inner data preprocessing behaviour by recursively
expanding the search space constructed by Auto-WEKA (a
tool for solving the CASH problem defined by WEKA algo-
rithms and hyperparameters). In this paper we present a further
development of Auto-WEKA to support any combination of
preprocessing methods (known as WEKA filters). This leads to
significantly enlarging the search space of the CASH problem
and automating the composition and optimisation of such
complex MCPSs.

The paper is organised as follows. The next section re-
views previous work in automating the CASH problem and
highlights the available software. Section III extends CASH
problem to MCPSs and describes the challenges related to
automation of their composition. In Section III-A, our con-
tributions to Auto-WEKA software, now allowing to create
and optimise arbitrary chains of preprocessing steps followed
by a predictive model, are presented. The methodology used
to automate MCPS composition is discussed in Section IV
followed by the results of extensive experimental analysis in
Section V. In Section VI, we present the results of applying
this approach to real datasets from the process industry.
Finally, the paper concludes in Section VII.

II. BAYESIAN OPTIMISATION STRATEGIES

The CASH problem as shown in Eq. 1 can be approached
in different ways. One example is a grid search, i.e. an exhaus-
tive search over all the possible combinations of discretized
parameters. Such technique can however be computationally
prohibitive in large search spaces or with big datasets. A
simpler mechanism like random search, where the search space
is randomly explored in a limited amount of time, has been
shown to be more effective in high-dimensional spaces [18].

A promising approach gaining popularity in the recent years
is based on a Bayesian optimization framework [19], [20]. This
approach — outlined in Algorithm 1 — aims to find

9* = argmin £(97 Dtrain7 Dtest) (3)
0€co
that globally minimises the loss function L. It assumes that
the posterior distribution p(L | Ry.,) can be estimated by the
likelihood function p(Rj.,, | £) and the prior distribution p(L)
using Bayes’ theorem

P(L [ Ri:pn) o< p(Rin | L)p(L) )
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where Ry., = {(01,co,)s .-, (On,co,)} is the set of run
configurations and its associated costs. Since evaluating the
loss function is costly, an acquisition function a ) : © — R
quantifying the utility of an evaluation is used instead as
a cheaper alternative. This function has an inherent trade-
off between exploration (where there is more uncertainty)
and exploitation (where the cost is expected to be low).
There are different types of acquisition functions based on the
likelihood of improvement [21], the upper confidence bound
criterion [22], or information gain [23].

Algorithm 1 Bayesian optimisation
1: forn=1,2,... do

2: 01 = argmax () > select most promising
6cO
configuration
3: 9,1 = L(Ont1, Dirain, Drest) > compute cost
4: Ryi1 ={Rn,(Ont1,c0,,.,)} > update list of run
configurations
5: update p(‘c | Rl:n+1)
6: end for

In particular, Sequential Model-Based Optimization
(SMBO) [24] is a Bayesian optimisation framework that
incrementally builds a regression model @ — known as
surrogate model — using instances from R. Then, such model
is used to predict the performance of promising candidate
configurations. The selection of promising configurations is
guided by an acquisition function oy, : © — R. A function
that has been shown to work well in SMBO framework [25]
is the expected improvement (EI) [26] given by

ay(0 | Bn) = Ey[1(0)] = Ey[max{0, cmin — co}]  (5)

where ¢, 1s the cost of the best configuration found so
far. The advantage of this function is that it can be evaluated
without computing the loss function for each 6 (i.e. running the
configuration) since cg can be estimated using ¥. A common
technique to select the next promising configuration consists
of evaluating EI for thousands of random samples and then
returning the best one [24]. Algorithm 2 shows the SMBO
procedure that returns the best configuration found 6,,,;,, (also
known as ‘incumbent’).

Algorithm 2 Sequential Model-Based Optimisation
1: 6,in = initial configuration (usually random sample from
0)

20 R = {[0min, L(Omin, D)|}
configurations and associated costs
repeat

1 = FitModel(R)

0 = FindNextCon figuration(a, ¥, Opmin, ©)

co = L(0,D) > compute cost
R.add([0, co]) > update list of run configurations
Omin = argmincy | [0,co] € R > update best

> initialise set of run

o S A

0
configuration found
9: until budget exhausted
10: return 6,,,;,,

Some hyperparameters influence the optimisation problem
conditionally, i.e. only when some other hyperparameters take
certain values. For example Gaussian kernel width in Support
Vector Machine (SVM) is only relevant if SVM is using Gaus-
sian kernels in the first place. Search spaces containing this
type of hyperparameters are known as conditional spaces [20].

The ability of SMBO methods to work in conditional spaces
is given by the surrogate model they use: models like Random
Forests or the Tree Parzen Estimator (TPE) support conditional
attributes. A successful SMBO approach using random forests
is SMAC (Sequential Model-based Algorithm Configuration
by [24]) where an ensemble of decision trees makes it
possible to model conditional variables. Another state-of-
the-art approach uses TPE [27], where a graph-structured
model matches the conditional structure of the search space.
Other SMBO approaches use Gaussian processes as surrogate
models (e.g. [28]). However, they cannot work in conditional
spaces because standard kernels are not defined over variable-
length spaces [20] and therefore are not used in this paper.

Currently available software tools supporting SMBO meth-
ods are listed in Table 1. It should be noted however, that to the
best of our knowledge, there are no comprehensive studies or
tools® which would tackle the problem of flexible composition
of many data preprocessing steps (e.g. data cleaning, feature
selection, data transformation) and their simultaneous para-
metric optimisation, which is one of the key issues addressed
in this paper.

III. AUTOMATING MCPS COMPOSITION

Building an MCPS is typically an iterative, labour and
knowledge intensive process. Despite a substantial body of
research in the area of automated and assisted MCPS creation
and optimisation (see e.g. [30] for a survey), a reliable fully
automated approach still does not exist.

To accommodate the definition of MCPS into a CASH
problem we generalise A from Eq. 1 to be a set of MCPSs
© = {01, 9@ ..} rather than individual algorithms. Hence
each MCPS 0U) = (P, T, F)\Y) has now a hyperparameter
space AU), which is a concatenation of the hyperparameter
spaces of all its transitions 7". The CASH problem is now
concerned with finding (P, T, F')* such as:

k
‘C((Pv T)n F)(])vp(l)

train’

Dyatia)
(6)
The main reason for MCPS composition being a challenging
problem is the computational power and time needed to
explore high dimensional search spaces. To begin with, an
undetermined number of components can make the workflow
very simple (see Figure 2) or very complex (see Figure 3).
Secondly, the order in which the nodes should be connected
is unknown a priori. Also, even transitions belonging to
the same category (e.g. missing value imputation) can vary
widely in terms of the number and type of hyperparameters

arg min —
(P,T,F)(J')e@,)\EA(J') i—1

6At the moment of writing this paper there were none, but some new
tools have appeared in the meantime (see e.g. TPOT [29] https://github.com/
EpistasisLab/tpot and DataRobot https://www.datarobot.com).
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TABLE I

POPULAR OPEN-SOURCE TOOLS SUPPORTING SMBO METHODS
Name Surrogate model Language URL
SMAC Random forest Java http://www.cs.ubc.ca/labs/beta/Projects/SMAC
Hyperopt Tree Parzen estimator  Python https://github.com/hyperopt/hyperopt
Spearmint Gaussian process Python https://github.com/HIPS/Spearmint
Bayesopt Gaussian process C++ https://bitbucket.org/rmcantin/bayesopt
PyBO Gaussian process Python https://github.com/mwhoffman/pybo
MOE Gaussian process Python / C++  https://github.com/Yelp/MOE
Scikit-Optimize ~ Various Python https://scikit-optimize.github.io
Auto-WEKA* SMAC,TPE Java https://github.com/automl/autoweka
Auto-Sklearn* SMAC Python https://github.com/automl/auto-sklearn

* Toolkits for automating algorithm selection in WEKA and Scikit-learn, respectively.
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Fig. 2. Example of a simple MCPS
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Fig. 3. Example of a complex MCPS

(e.g. continuous, categorical or conditional), with defining
of a viable range for each of the hyperparameters being an
additional problem in itself. This complexity makes techniques
like grid search not feasible. Even ‘intelligent’ strategies can
struggle with exploration because the high dimensional search
space is likely to be plagued with a multitude of bad local
minima.

The size of the search space (i.e. |©|) can be reduced
by applying a range of constraints like limiting the number
of components, restricting the list of methods using meta-
learning [31], prior knowledge [32] or surrogates (i.e. cheap-

Q)test

Q)tra in

Search strategy

test test

(P.TynF)"

[ 10-fold CV] [ Training ]
!

‘ MCPS

~b

test

Fig. 4. MCPS training and testing process

to-evaluate models [33]). However, this study investigates the
impact of extending the search space, not by including more
predictive models, but considering preprocessing methods in-
stead. Nonetheless, some constrains are applied like limiting
the number and order of components which will be explained
in Section IV.

We use the predictive performance as a sole optimisation
objective as shown in Eq. 6, noting however, that some
problems may require to optimise several objectives at the
same time (e.g. error rate, model complexity and runtime [34]).
In this paper we use our extended Auto-WEKA version —
described in the next section — which supports automatic
composition and optimisation of MCPSs with WEKA filters
and predictive models as components.

Once the MCPS is composed and its hyperparameters
optimised, it is trained with a set of labelled instances. Then
the MCPS is ready to make predictions as shown in Figure 4.
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A. Extension and generalisation of Auto-WEKA

Auto-WEKA is a software developed by Thornton et al. [16]
which allows algorithm selection and hyperparameter optimi-
sation both in regression and classification problems.

In this work we have extended Auto-WEKA to support
MCPSs. This leads to an increasing of the search space
from 21,560 up to 812 billion possible solutions as seen
in Table II and further discussed in Section IV. This work
has been developed taking as base Auto-WEKA version 0.5.
Independently and in parallel to our work, there was further
development of Auto-WEKA which current version is now
2.6 [35]. Nonetheless, this new version does not affect the
work carried out in this paper as its main novelty is the
integration with WEKA user interface.

Both versions provide a one-click solution for automating
algorithm selection and hyperparameter optimisation. How-
ever, version 0.5 is much more flexible, offering as well mul-
tiple customisations possibilities like preselection of WEKA
predictors, choosing the optimisation strategy or setting the
optimisation criteria. Auto-WEKA 0.5 also supports various
usage scenarios depending on user knowledge, needs and
available computational budget. One can for example, run
several optimisations in parallel, ending up with multiple
solutions that can then be analysed individually or used to
build an ensemble [36].

Our new extensions now allow any WEKA filter to be
included as part of the composition process. In addition, we
have developed a new WEKA filter that creates a flexible
chain of common preprocessing steps including missing values
handling, outlier detection and removal, data transformation,
dimensionality reduction and sampling.

The following external WEKA packages’ have been in-
cluded as part of the developed Auto-WEKA extensions to
increase the number of preprocessing methods: EMImputa-
tion, RBFNetwork, StudentFilters, baggedLocalOutlierFactor,
localOutlierFactor, partialLeastSquares and wavelet. Further-
more, we have developed two new WEKA filters: (i) an outlier
detection and removal filter in a single step; and (ii) a sampling
filter in which instances are periodically selected given a fixed
interval of time. These new filters are common operations in
the preprocessing of datasets from the process industry.

Moreover, our extension generates an MCPS in a PNML
(Petri Net Markup Language) format which can be anal-
ysed using any tool supporting this standard language (e.g.
WoPeD?).

Therefore, there are three main outputs once a new, extended
Auto-WEKA run has finished: a) the trained MCPS ready to
make predictions on unseen data; b) WEKA configuration (i.e.
parametrised components); c) the Petri net in a PNML format.

While the space restriction does not allow us to include
more implementation details, the source code and all the
scripts for the analysis of the extended Auto-WEKA results
such as the creation of plots and tables have been released in
our repository®.

Thttp://weka.sourceforge.net/packageMetaData/
8http://woped.dhbw-karlsruhe.de/woped/
9https://github.com/dsibournemouth/autoweka

IV. METHODOLOGY

The purpose of this experimental study is to analyse the
feasibility of SMBO strategies for solving the MCPS related
CASH problem as defined in Eq. 6 and the quality of the
solutions found using the proposed extended Auto-WEKA
with all its features supporting the MCPSs composition and
parametric/hyperparametric optimisation of the workflows.

The three main characteristics which define a CASH prob-
lem are: a) the search space, b) the objective function and
¢) the optimisation algorithm. In this study we have considered
three search spaces of very different sizes (see Table II):

o« PREV: This is the search space used in [16] where
predictors and meta-predictors (which take outputs from
one or more base predictive models as their input) were
considered (756 hyperparameters). It can also include
the best feature selection method found after running
‘AttributeSelection” WEKA filter (30 hyperparameters) for
15 minutes before the optimisation process begins. We use
it as a baseline.

« NEW: This search space only includes predictors and
meta-predictors. In contrast with PREV space, no previous
feature selection stage is performed. We would like to
note however that some WEKA classifiers perform in-
ternal preprocessing steps as we showed in our previous
work [17] ((e.g. MultiLayerPerceptron (MLP) removes
instances with missing values and scales the attributes to
a range [-1,1])). We take into account that a categorical
hyperparameter can be either simple or complex (i.e. when
it contains WEKA classes). In the latter case, we increase
the search space by adding recursively the hyperparame-
ters of each method belonging to such complex parameter
(e.g. the ‘DecisionTable’ predictor contains a complex
hyperparameter whose values are three different types
of search methods with further hyperparameters — see
Table IV for details). That extension increases the search
space to 1186 hyperparameters.

o FULL: This search space has been defined to support
a flow with up to five preprocessing steps, a predictive
model and a meta-predictor (1564 hyperparameters). The
nodes are connected in the following order: missing value
handling — outlier detection and handling!® — data
transformation — dimensionality reduction — sampling
— predictor — meta-predictor. This flow is based on
our experience with process industry [13], but these pre-
processing steps are also common in other fields. If the
meta-predictor is either ‘Stacking’ or ‘Vote’, its number
of inputs can vary from 1 to 5.

The methods that can be included in each component are
listed in Tables IIT and IV. Note that the FULL search space
is more than twice as large as the one presented in [16] in
terms of the raw number of hyperparameters.

As the datasets we use in our experiments are intended for
classification, we have chosen to minimise the classification
error averaged over 10 CV folds within the optimisation
process (i.e. £ = 10 in Eq. 6).

100utliers are handled in a different way than missing values
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TABLE II
SUMMARY OF SEARCH SPACES. MV = MISSING VALUE REPLACEMENT,
OU = OUTLIER DETECTION AND REMOVAL, TR = TRANSFORMATION,
DR = DIMENSIONALITY REDUCTION, SA = SAMPLING, P = PREDICTOR,
MP = META-PREDICTOR, CH = EXPANDING COMPLEX
HYPERPARAMETERS. * SIZE CONSIDERING ONLY METHODS,
CATEGORICAL AND COMPLEX HYPERPARAMETERS.

MV OU TR DR SA P MP CH Size*
PREV v v v 21,560
NEW v v v 2,369,598
FULL v v v v v v v v 812 billion

TABLE III
NUMBER OF PARAMETERS OF THE AVAILABLE PREPROCESSING METHODS.

Num. Categorical
Method Simple  Complex
Missing values (MV)
No handling 0 0 0
ReplaceMissing Values 0 0 0
CustomReplaceMissing Values 0 M 0
— (M) Zero 0 0 0
<— (M) Mean 0 0 0
< (M) Median 0 0 0
— (M) Min 0 0 0
— (M) Max 0 0 0
< (M) LastKnown 0 0 0
EMImputation 3 1 0
Outliers (OU)
No handling 0 0 0
RemoveOutliers 0 0 o
< (O) InterquartileRange (IQR) 2 0 0
— (O) BaggedLOF 1 1 0
Transformation (TR)
No transformation 0 0 0
Center 0 0 0
Standardize 0 0 0
Normalize 2 0 0
Wavelet 0 0 0
IndependentComponents 3 1 0
Dimensionality reduction (DR)
No reduction 0 0 0
PrincipalComponents (PCA) 3 1 0
RandomSubset 2 0 0
AttributeSelection 0 0 S.E
< (S) BestFirst 1 1 0
— (S) GreedyStepwise 2 3 0
< (S) Ranker 1 0 0
< (E) CfsSubsetEval 0 2 0
— (E) CorrelationAttributeEval 0 0 0
<— (E) GainRatioAttributeEval 0 0 0
< (E) InfoGainAttributeEval 0 2 0
< (E) OneRAttributeEval 2 1 0
< (E) PrincipalComponents 2 3 0
— (E) ReliefFAttributeEval 2 1 0
— (E) Sym.UncertAttributeEval 0 1 0
— (E) WrapperSubsetEval 0 0 0
PLSFilter 1 4 0
Sampling (SA)
No sampling 0 0 0
Resample 2 0 0
ReservoirSample 2 0 0
Periodic sampling 1 0 0

TABLE IV
NUMBER OF PARAMETERS OF THE AVAILABLE PREDICTORS.
Num. Categorical
Method Simple  Complex
Predictors (P)
BayesNet
— (Q) local. K2

< (Q) local . HillClimber
< (Q) local. LAGDHillClimber
— (Q) local.SimulatedAnnealing
< (Q) local. TabuSearch
< (Q) local. TAN
NaiveBayes
NaiveBayesMultinomial
Logistic

MLP

SMO

— (K) NormalizedPolyKernel
— (K) PolyKernel

— (K) Puk

— (K) RBFKernel
SimpleLogistic

1Bk

— (A) BallTree

<— (A) CoverTree

<— (A) KDTree

< (A) LinearNNSearch
KStar

DecisionTable

<— (S) BestFirst

— (S) GreedyStepwise
— (S) Ranker

JRip

OneR

PART

ZeroR

DecisionStump

J438

LMT

REPTree

RandomForest
RandomTree

APLWNLNOONNF NN, ORONRORORNNRRFRFOAR,OOOWWWE—=O

AN NAOAUNOONONOWNWNN=HMHEF)RLOO==NWUVOONNDRERNDERR—

Meta-predictors (MP)
LWL

<— (A) BallTree

< (A) CoverTree

— (A) KDTree

< (A) LinearNNSearch
AdaBoostM 1
AttributeSelectedClassifier
<— (S) BestFirst

— (S) GreedyStepwise

< (S) Ranker

< (E) CfsSubsetEval

— (E) GainRatioAttributeEval
< (E) InfoGainAttributeEval
< (E) OneRAttributeEval
— (E) WrapperSubsetEval
Bagging
ClassificationViaRegression
FilteredClassifier
LogitBoost
MultiClassClassifier
RandomCommittee
RandomSubSpace

Stacking

Vote
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Two SMBO strategies (SMAC and TPE) have been com-
pared against two baselines (WEKA-Def and random search).
The following experimental scenarios were devised:

o« WEKA-Def: All the predictors and meta-predictors listed
in Table IV are run using WEKA’s default hyperparameter
values. Filters are not included in this strategy, although
some predictors may perform specific preprocessing steps
as part of their default behaviour.

o Random search: The whole search space is randomly
explored allowing 30 CPU core-hours for the process.

e SMAC and TPE: An initial configuration is randomly
selected and then the optimiser is run for 30 CPU core-
hours to explore the search space in an intelligent way,
allowing for comparison with the random search.

In order to compare our results with the ones presented
in [16] we have replicated the experimental settings as closely
as possible. We have evaluated different optimisation strategies
over 21 well-known datasets representing classification tasks
(see Table V). Each dataset D = {Dirqin, Diest} has been
split into 70% training and 30% testing sets, unless partition
was already provided. Please note that D;,.4;,, is then split into
10-folds for Eq. 6 and therefore D, is not used during the
optimisation or training process at all (see Figure 4).

For each strategy we performed 25 runs with different
random seeds within a 30 CPU core-hours optimisation time
limit on Intel Xeon E5-2620 six-core 2.00GHz CPU. In the
case a configuration step exceeds 30 minutes or 3GB of RAM
to evaluate, its evaluation is aborted and not considered further.
Once the optimisation process has finished, the returned MCPS
is trained using the whole training set Dy, and produce
predictions for the testing set Di.s:. Please note that this
budget limit may imply not finding the optimal solution in
the optimisation problem.

Holdout error over D, is denoted as & = L(Yiest, f’test).
Random search, SMAC and TPE results have been calculated
using the mean of 100,000 bootstrap samples (randomly
selecting 4 of the 25 runs and keeping the one with lowest
CV error as in original Auto-WEKA paper [16]), while only
the lowest errors are reported for WEKA-Def.

V. RESULTS

We organised our analysis around the following aspects:
a) usefulness of automatic composition and parametrisation of
MCPS; b) how efficient are Bayesian optimisation approaches
(SMAC and TPE) in comparison to random search; c) impact
of significantly extending the search space in the optimisation
process; and d) identification of promising methods for each
dataset.

A. Usefulness of automatic composition and parametrisation

An interesting aspect to analyse is if 30 CPU-core hours of
automatic optimisation can beat a quick running of all WEKA
classifiers with default hyperparameters. Table VI shows the
results of Auto-WEKA experiments in the NEW search space
using RANDOM, SMAC and TPE strategies compared to the
WEKA-Def strategy. Not surprisingly, Auto-WEKA has been
able to find better results for all datasets (6 > 0). In fact,

TABLE V
DATASETS, CONTINUOUS AND CATEGORICAL ATTRIBUTE COUNT,
NUMBER OF CLASSES, AND NUMBER OF INSTANCES.

Dataset Cont Disc Class Train Test
abalone 7 1 28 2924 1253
amazon 10000 0 50 1050 450
car 0 6 4 1210 518
cifar10 3072 0 10 50000 10000
cifar10small 3072 0 10 10000 10000
convex 784 0 2 8000 50000
dexter 20000 0 2 420 180
dorothea 100000 0 2 805 345
germancredit 7 13 2 700 300
gisette 5000 0 2 4900 2100
kddcup09app 192 38 2 35000 15000
krvskp 0 36 2 2238 958
madelon 500 0 2 1820 780
mnist 784 0 10 12000 50000
mnistrot 784 0 10 12000 50000
secom 590 0 2 1097 470
semeion 256 0 10 1116 477
shuttle 9 0 7 43500 14500
waveform 40 0 3 3500 1500
wineqw 11 0 11 3429 1469
yeast 8 0 10 1039 445

Auto-WEKA presents a significant improvement in 19 out of
21 datasets.

B. Effectiveness of Bayesian optimisation over random search

Another interesting aspect is to analyse how Bayesian
optimisation approaches perform in comparison with just a
random search. Table VII presents the results of Auto-WEKA
runs for RANDOM, SMAC and TPE strategies in the NEW
search space. SMAC has been able to find significantly better
results in all datasets but one. Similarly, TPE outperforms
random search in 18 out of 21 datasets.

C. Impact of extending the search space

As shown in Table II, the size between search spaces vary a
lot: PREV with over 21 thousands; NEW with over 2 million;
and FULL with over 812 billion possible solutions. We are
interested on analysing the impact of extending the search
space in the classification performance for each strategy.

Table VIII presents the results of RANDOM, SMAC and
TPE over the three different search spaces. In the majority
of cases (52 of 63), the MCPSs found in the NEW search
space achieve significantly better results than in the smaller
search space PREV. In 32 out of 63 cases, the FULL search
space also gets significantly better performance than in PREV.
However, finding good MCPS within the same time budget (30
CPU-core hours) is more challenging due to a large increase in
the search space size [37]. As an example, consider Figure 5
where the evolution of the best solution for ‘madelon’ dataset
and SMAC strategy is represented over time for each of the 25
runs. Comparing Figures 5-a) and b) we can see that the rate
of convergence is much higher in the smaller space (denoted
as NEW). Nevertheless, the overall best-performing model for
‘madelon’ was found in the FULL space as seen in Table IX.

The way in which the search space is extended can have
a considerable impact on the accuracy of the MCPS found.
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TABLE VI
HOLDOUT ERROR & (% MISSCLASSIFICATION). LOWEST ERRORS
REPORTED FOR WEKA-DEF AND AUTO-WEKA, BEING § THE

DIFFERENCE BETWEEN THE TWO. AGGREGATED MEAN HOLDOUT ERROR
AND STANDARD DEVIATION (o) FOR ALL AUTO-WEKA STRATEGIES AND
SEARCH SPACES IS REPORTED. EACH AUTO-WEKA RUN HAD A 30 CPU
CORE-HOURS BUDGET. AN UPWARD ARROW INDICATES A STATISTICALLY

SIGNIFICANT IMPROVEMENT (p < 0.05) WITH RESPECT TO BEST

TABLE VII
MEAN HOLDOUT ERROR & (% MISSCLASSIFICATION) AND STANDARD
DEVIATION (0) FOR RANDOM, SMAC AND TPE STRATEGIES IN THE
NEW SEARCH SPACE. EACH AUTO-WEKA RUN HAD A 30 CPU
CORE-HOURS BUDGET. AN UPWARD ARROW INDICATES A STATISTICALLY
SIGNIFICANT IMPROVEMENT (p < 0.05) WITH RESPECT TO RANDOM
USING WILCOXON SIGNED-RANK TEST.

WEKA-DEF USING ONE-SAMPLE WILCOXON SIGNED-RANK TEST. Dataset RANDOM SMAC TPE
w o w o uw o

Best Best Mean abalone 72.52 72.21 T 72.01 T
Dataset WEKA-Def Auto-WEKA 6§ [Auto-WEKA o amazon 45.75 39.54 T 40.24 T
abalone 73.18 7143 1.5 73.12 T car 0.47 0.38 T 0.21 T
amazon 28.44 26.67 1.77 37.07 cifar10 58.91 56.44 1| 55.60 1T
car 0.77 0.00 0.77 0.06 T cifarlOsmall | 60.44 57.91 T 56.57 0
cifarl0 64.27 5228 11.99 56.21 T convex 25.03 21.88 T~ 23.19 T
cifar]10small 65.91 5448 1143 58.04 T dexter 7.54 6.42 T 6.19 1T
convex 25.96 1847 749 22.89 1T dorothea 6.25 5.95 0 5.92 1T
dexter 8.89 5.00 3.89 7.50 1 germancredit | 21.31 19.66 T 19.89 1T
dorothea 6.96 4.64 232 5.22 T gisette 2.30 2.21 T 2.35
germancredit 27.33 23.33  4.00 25.44 T kddcup09app | 1.8000 1.7985 1| 1.8000
gisette 2.81 1.95 0.86 2.33 0 krvskp 0.42 0.28 T 031 0
kddcup09app 1.7405 1.6700 0.0705 1.7339 T madelon 19.20 15.61 T 16.03 T
krvskp 0.31 0.10 021 0.31 mnist 3.78 349 T 3.60 T
madelon 21.38 15.64 574 17.61 1 mnistr 58.09 55.75 ™ 57.17 1T
mnist 5.19 2.66 253 4.01 T secom 5.85 6.00 5.85
mnistr 63.14 5220 10.94 56.10 T semeion 4.82 4.48 T~ 4.28 T
secom 8.09 7.66 043 7.86 0 shuttle 0.0109 0.0103 110.0107 0
semion 8.18 398 4.20 493 1 waveform 12.50 12.33 T 12.43 1T
shuttle 0.0138 0.0100 0.0038 0.0100 T wineqw 33.08 32.64 T 32.67 T
waveform 14.40 14.00 0.40 14.26 1T yeast 37.16 36.50 T 36.17 1T
wineqw 37.51 3233  5.18 32.94 T
yeast 40.45 36.40 4.05 37.73 T

Additional hyperparameters allowing for extra tuning flexibil-
ity (PREV to NEW) improved the performance in most of the
cases. However, adding more transitions to the MCPS (NEW
to FULL) does not seem to help on average, given the same
CPU time limit. Nevertheless, the best MCPSs found in the
FULL search space for 13 out of 28 datasets have better or
comparable performance to the best solutions found in the
NEW space as shown in Table IX.

D. Identifying promising configurations

The best MCPSs found for each dataset are reported in
Table IX, where each row represents a sequence of data trans-
formations and predictive models as explained in Section IV.
The solutions found for different datasets are quite diverse, and
they often also vary a lot across the 25 random runs performed
for each dataset. In order to better understand the observed
differences in the MCPSs found we have also measured the
average pairwise similarity of the 25 MCPSs found for each
dataset and the variance of their performances (see Figure 6).
To calculate the similarity between configurations a weighted
sum of Hamming distances given by

0(0,.0) = 1 — 2=t Wi %)

(N
is used, where 6, and 0, are MCPSs with N transitions,
w; € Q is the weight for the ith transition and §; is the
Hamming distance (a standard measure of string dissimilarity)
of components at position .

Weights have been fixed manually to = {2,1.5} in the
NEW search space and Q = {1,1,1,1,1,2,1.5} in the FULL
search space. One could however set the weights in a different

way depending on what components are believed to be more
relevant. In this case, preprocessing transitions have the same
weight while both predictors and meta-predictors have higher
weights because of their importance [37].

It is worth mentioning that most of the MCPSs found for
the ‘waveform’ dataset include a missing value replacement
method even though there are no missing values in this dataset
and therefore it doesn’t have any effect on the data or the clas-
sification performance. The presence of such an unnecessary
component likely stems from the fact that selecting a method
for replacing missing values at random has a prior probability
of 0.75 (i.e. 3 out of 4 possible actions as seen in Table IV)
which means that it can be selected when randomly initialising
the configurations of MCPSs to start from and using the search
method which does not penalise unnecessary elements in the
data processing chains. However, it is not the case with other
components like ‘“Transformation’ in which although the prior
probability of selecting one of the available transformation
methods is 5/6, selecting an appropriate method has a potential
impact on the performance and therefore better transformation
methods tend to be retained in the found solutions.

For illustrative purposes we have selected three interesting
cases from Figure 6 for a more detailed analysis:

o Low error variance and high MCPS similarity. Most of
the best solutions found follow a very similar sequence of
methods. Therefore similar classification performance is
to be expected. For example, a repeated sequence in ‘car’
dataset with TPE optimisation is MultiLayerPerceptron
(13/25) — AdaBoostM1 (22/25).

o Low error variance and low MCPS similarity. Despite
having different solutions, classification performance in a
group of analysed datasets does not vary much. This can
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MEAN HOLDOUT ERROR & (% MISSCLASSIFICATION) AND STANDARD DEVIATION (o) FOR RANDOM, SMAC AND TPE WITH A 30 CPU CORE-HOURS

TABLE VIII

BUDGET PER RUN. PREV COLUMNS CONTAIN THE VALUES REPORTED IN [16], WHILE NEW AND FULL COLUMNS CONTAIN THE RESULTS FOR THE
SEARCH SPACES DESCRIBED IN SECTION IV. BOLDFACED VALUES INDICATE THE LOWEST MEAN CLASSIFICATION ERROR FOR EACH DATASET. AN

UPWARD ARROW INDICATES A STATISTICALLY SIGNIFICANT IMPROVEMENT (p < 0.05) WITH RESPECT TO PREV SEARCH SPACE USING ONE-SAMPLE

WILCOXON SIGNED-RANK TEST.

dataset RANDOM SMAC TPE
PREV NEW FULL PREV NEW FULL PREV NEW FULL
@ @ o @ o @ @ o @ o @ @ o @ o
abalone 74.88 72.92 1T 73.76 T 73.51 73.40 T 73.16 T 7294 73.03 73.26
amazon 41.11 39.18 T 56.65 33.99 36.28 49.11 36.59 35.71 1 54.06
car 0.01 0.13 1.84 0.40 0.05 T 0.20 T 0.18  0.01 T 0.05 1T
cifar10 69.72 58.21 T 66.59 T 61.15 55.52 T 68.55 66.01 54.88 T 65.30 1T
cifarl0small | 66.12 59.85 1T 71.61 56.84 57.85 71.82 57.01 56.43 1 68.40
convex 31.20 24.76 T 33.02 23.17 21.31 1 24.52 25.59 22.62 1T 30.57
dexter 9.18 8.27 T 11.27 749  7.31 T 8.13 8.89  6.90 T 8.00 1T
dorothea 522 527 5.37 621 5.12 1+ 549 1| 615 525 1+ 512 1
germancredit | 29.03  25.40 1T 26.87 1| 28.24 2543 1 26.67 T 27.54 25.49 1 26.63 1T
gisette 4.62 228 1T 3.36 T 224 235 2.74 3.94 237 T 2.86 1T
kddcup09app | 1.7400 1.7214 1T 1.7403 1.7358 1.7400 1.7400 1.7381 1.7400 1.7400
krvskp 0.58 0.34 T 0.39 T 031 0.23 T 0.39 0.54 0.36 T 033 1T
madelon 2429 19.11 1 23.80 +| 21.56 16.80 1 17.16 1] 2112 1691 1+ 1759 t
mnist 5.05 4.00 1T 10.93 3.64 4.08 10.57 12.28  3.96 T 12.32
mnistr 66.40 57.15 1 65.89 T 57.04 54.84 T 65.48 70.20 56.30 T 63.90 1T
secom 803 7.88 1+ 787 +1 801 787 1+ 787 1| 810 7.84 1+ 787 1
semeion 6.10 4.78 T 8.20 5.08 5.09 5.46 8.26 491 T 631 1T
shuttle 0.0157 0.0100 1 0.0217 0.0130 0.0100 1 0.0075 110.0145 0.0100 1 0.0077 1+
waveform 1427 1426 11428 1442 14.17 1 13.99 1| 1423 1434 14.05 1+
wineqw 34.41 32.99 1 36.64 33.95 32.89 1 34.14 33.56 32.93 1 34.09
yeast 43.15 37.68 1 40.86 1] 40.67 37.60 1 39.01 1| 40.10 37.89 1 3891 1
100 a) Error convergence of 'madelon' in NEW - b) Error convergence of 'madelon’ in FULL
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Fig. 5. 10-fold CV error of best solutions found over time for ‘madelon’ dataset and SMAC strategy in a) NEW and b) FULL search spaces.

mean that the classification problem is not difficult and a
range of different MCPSs can perform quite well on it.
This is for instance the case of the solutions found for the
‘secom’ and ‘kddcup09app’ datasets.

High error variance and low MCPS similarity. In such
cases, there are many differences between both the best
MCPSs found and their classification performances. For
instance, it is the case of ‘amazon’ dataset for which a
high error variance was observed in all of the optimisation
strategies (see Figure 6). We believe such difference likely
results from a combination of difficulty of the classifica-
tion task (i.e. high input dimensionality, large number of
classes and a relatively small number of training samples)

and/or insufficient exploration from the random starting
configuration in a very large space.

VI. APPLICATION TO PROCESS INDUSTRY

One motivation for automating the composition and opti-
misation of MCPSs was the need for speeding up the process
of developing soft-sensors [38], which are predictive mod-
els based on easy-to-measure quantities used in the process
industry. Main applications of soft-sensors are online predic-
tion [39], process monitoring [40] and fault detection [41]. The
most popular methods for process monitoring include Principal
Component Analysis (PCA [42]) in a combination with a
predictor, Multi-Layer Perceptron (MLP [43]), Radial Basis
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TABLE IX

BEST MCPS FOR EACH DATASET IN NEW AND FULL SPACES AND ITS HOLDOUT ERROR. MV = MISSING VALUE REPLACEMENT, OU = OUTLIER
DETECTION AND REMOVAL, TR = TRANSFORMATION, DR = DIMENSIONALITY REDUCTION, SA = SAMPLING.

dataset space MV OU TR DR SA predictor meta-predictor &
abalone NEW - ‘ - - - - MLP _ Randmeommittee 71.43
FULL Median - Center RandomSubset  Resample  Logistic Bagging 72.39
amazon NEW - - - - - SimpleLogistic RandomSubSpace 26.67
FULL Min - Normalize RandomSubset - NaiveBayesMult.  RandomSubSpace 20.89
car NEW - - - ] - - SMO MultiClassClassifier 0.00
FULL - - Standardize - Resample  SMO AdaBoostM1 0.00
cifar10 NEW - - - - - RandomForest MultiClassClassiﬁer 52.28
FULL - - - - Resample  RandomTree Bagging 59.63
cifar] Osmall NEW - - - - - RandomTree MultiClassClassifier 54.48
FULL - - - RandomSubset - RandomTree AdaBoostM 1 59.97
convex NEW - - - - - RandomForest AdaBoostM1 18.47
FULL - - Center - Resample  RandomTree AdaBoostM1 22.97
dexter NEW - - - - - DecisionStump AdaBoostM1 5.00
FULL - - - - Resample  VotedPerceptron AdaBoostM1 5.00
dorothea NEW - - - ] - - OneR RanfiomSubSpace 4.64
FULL - - Standardize - - REPTree LogitBoost 4.64
. NEW - - - - - LMT Bagging 23.33
germancredit FULL  Zero - Standardize =~ RandomSubset - LMT Bagging 24.33
. NEW - - - - - NaiveBayes LWL 1.95
gisette FULL - - - - - VotedPerceptron RandomSubSpace 1.52
kddcup09app NEW - - - ) - . - . ZeroR LWL ) 1.67
FULL - IQR  Standardize  Attr. Selection = Reservoir ~ BayesNet MultiClassClassifier 1.74
Krvskp NEW - - - ' - - JRip AdaBoostM1 0.10
FULL - - Normalize - - JRip AdaBoostM1 0.21
madelon NEW - - - - - REPTree RanfiomSubSpace 15.64
FULL - - - PCA - IBk LogitBoost 12.82
mnist NEW - - - - - SMO MultiClassClassifier 2.66
FULL  Zero - Center - - J48 AdaBoostM 1 5.15
mnistr NEW - - - ' - - RandomForest RandomCommittee 52.20
FULL  Zero - Normalize - - BayesNet RandomSubSpace 56.33
secom NEW - - - ) - - . J48 A.daBoostMl. 7.66
FULL - - Standardize - Reservoir ~ ZeroR FilteredClassifier 7.87
semeion NEW - - - - - NaiveBayes LWL _ 3.98
FULL EM - - PCA - SMO FilteredClassifier 4.61
shuttle NEW - - - - - RandomForest AdaBoostM 1 0.01
FULL - - Center - Resample ~ REPTree AdaBoostM1 0.01
waveform NEW - - - _ - - SMO RandomSubSpace_ 14.00
FULL - IQR  Normalize - - SMO Attr.SelectedClassifier  13.40
wineqw NEW - - - - ' - RandomForest AdaBoostM 1 32.33
FULL Mean - Wavelet Attr.Selection - 1Bk RandomSubSpace 33.42
NEW - - - - - RandomForest Bagging 36.40
yeast FULL - - Normalize - - RandomTree Bagging 38.20
Function (RBF [44]) and Self Organizing Map (SOM [45]).
2B : : : : : : [38] show that there are indeed dozens of methods to build
0 SMAC . soft sensors and each of them with various hyperparameters.
TR amazon Our experience in this field comes from past involvement in
201 1 multiple projects with chemical engineering companies [46]—
o >« [48].
g 8 Raw data from chemical plants usually requires a consider-
% 5t * 1 able preprocessing and modelling effort [13], [49]. Although
g 7 some WEKA predictors include inner preprocessing such as
§ o _ removal of missing values or normalisation, as shown pre-
s . o Oq o o viously in [17], many datasets need additional preprocessing
L. to build effective predictive models. The fixed order of pre-
5 T, a # processing nodes in the FULL search space has not been
secom &, car set arbitrarily — it follows the preprocessing guidelines that
/\ o .- 4-117\ are common in process industry when developing predictive
0 NN % ey 2T et e models (see e.g. [13], [38]).
0.40 045 050 055 060 065 070 075  0.80

MCPS similarity

Fig. 6. Error variance vs. MCPS similarity in FULL search space

We have carried out an experimental analysis on 7 datasets
representing process monitoring tasks of real chemical pro-
cesses (i.e. classification of 3 process states — low, normal
and high). Four of these datasets have been made available
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TABLE X
BEST MCPS FOR PROCESS INDUSTRY DATASETS IN NEW AND FULL SPACES, HOLDOUT ERROR £ AND DIFFERENCE WITH BASELINE § (1 INDICATES AN
IMPROVEMENT). MV = MISSING VALUE REPLACEMENT, OU = OUTLIER REMOVAL, TR = TRANSFORMATION, DR = DIM. REDUCTION, SA = SAMPLING.

dataset space MV OU TR DR SA  predictor meta-predictor & )
absorber NEW - - - - - REPTree AdaBoostM1 51.04 -14.79
) FULL - - Wavelet RandomSubset - KStar Bagging 45.63 -9.38
catalyst NEW - - - - - LMT AdaBoostM1 55.34 -22.90
y FULL - - Wavelet RandomSubset - JRip FilteredClassifier 48.64 -16.20
debutanizer NEW - - - - - LMT AdaBoostM1 49.03 1 3.20
FULL Median - Wavelet - - REPTree FilteredClassifier 50.14 1 2.09
drier NEW - - - - - JRip Bagging 43.72 1T 7.37
FULL - IQR  Normalize - - Logistic Bagging 4098 1 10.11
oxeno NEW - - - - - JRip AdaBoostM1 35.74 -2.22
FULL - - Standardize - - JRip RandomSubSpace 38.24 -4.74
sulfur NEW - - - - - PART Bagging 7791 T 1.75
) FULL - - Wavelet RandomSubset - JRip FilteredClassifier 70.96 1 8.70
thermalox NEW - - - - - Logistic MultiClassClassifier ~ 28.01 1 19.51
FULL - - Wavelet - - MLP FilteredClassifier 26.71 1 20.81
2) 10-fold CV error (% missclassification) be published. Howev'er, 3 additional pubhcly available Qatasets
100 from the same domain have also been used in the experiments:
ERAND-NEW HBSMAC-NEW © RAND-FULL HBSMAC-FULL . ., . . . .
ig o ‘catalyst’ with 14 attributes, where the task is to predict
20 R L the activity of a catalyst in a multi-tube reactor [46];
20 = T . I . I - « ‘debutanizer’ which has 7 attributes (temperature, pres-
0 B _._ mn — ma sure and flow measurements of a debutanizer column)
absorber  catalyst debutanizer drier 0xeno sulfur  thermalox and where the target value is the concentration of butane
b) Holdout error (% missclassification) at the output of the column [53]; and
100 . , . . .
%0 o the ‘sulfur’ recovery unit, which is a system for removing
60 I I t environmental pollutants from acid gas streams before
40 & 1 - I they are released into the atmosphere [54]. The washed
20 out gases are transformed into sulfur. The dataset has five
0

absorber  catalyst debutanizer drier oxeno sulfur  thermalox

s ¢) # Evaluations x 10000

10
i
0 IL- || .-_--L-

absorber  catalyst debutanizer  drier oxeno sulfur  thermalox

Fig. 7. a) Mean 10-fold CV error € and b) holdout error £ with 95%
bootstrap confidence intervals for process industry datasets. ¢) Total number
of evaluations per dataset and strategy.

by Evonik Industries as part of the collaboration within
the INFER project [50], and have been extensively used in
previous studies [13], [51], [52]:

o ‘absorber’ which contains 38 continuous attributes from
an absorption process. No additional information has been
provided apart from this being a regression task;

o ‘drier’ with 19 continuous features from physical sensors
(i.e. temperature, pressure and humidity) and the target
value is the residual humidity of the product [51];

« ‘oxeno’ which contains 71 continuous attributes also from
physical sensors and a target variable which is the product
concentration measured in the laboratory [13]; and

o ‘thermalox’ which has 38 attributes from physical sensors
and the two target values are concentrations of NO, and
SO, in the exhaust gases [51].

Due to confidentiality reasons the datasets listed above cannot

input features (flow measurements) and two target values:
concentration of HsS and SO,.

The results presented in Figure 7 show that including such
preprocessing steps has allowed, on average, to find better
MCPSs than in the NEW search space for selected datasets.
Although the difference is small, that implies that considerably
extending the search space does not only have major negative
effects but also can be positive for the predictive performance
on these datasets. It is interesting to highlight that random
search was able to find the MCPSs with lowest holdout error
in half of the cases, but on the other hand also presents a
higher error variance. We believe that the reason behind this
is that random search has evaluated more models than SMAC
for almost all the runs (see Figure 7-c)). This suggests that
random search — which evaluates more potential solutions and
explores more regions of the search space — can, and in these
few cases has found better solutions than SMAC.

The best MCPSs found for the chemical datasets are shown
at the end of Table X. These solutions outperform the four
most popular methods for building soft sensors for process
monitoring (PCA, MLP, RBF and SOM) in 4 out of 7 datasets
(see 9 in Table X). Also, MCPSs including an attribute se-
lection step have a considerable improvement of performance
with respect to NEW (e.g. ‘absorber’, ‘catalyst’ and ‘sulfur’).

We also can see in Figure 7 that there is a large difference
between the CV error and the holdout test error in some
of these datasets (e.g. ¢ = 2.60% to £ = 61.27% in
‘catalyst’). This is due to the evolving nature of some chemical
processes over time. The test set (last 30% of samples) can
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be significantly different from the initial 70% of data used
for training the MCPS. We have shown in [48] how it is
possible to adapt these MCPSs, using the proposed automatic
composition and optimisation approach repeatedly, without
any human intervention, when there are changes in data.

VII. CONCLUSIONS AND FUTURE WORK

In this work automatic composition and optimisation of
MCPSs has been addressed as a search problem. In partic-
ular, we proposed extending the CASH problem to MCPS
represented as Petri nets, where transitions are data processing
methods with hyperparameters. To apply this approach to
real problems, we have extended Auto-WEKA to support
any type of preprocessing methods available in WEKA and
thus form MCPSs. In an extensive experimental analysis
using 21 publicly available datasets and 7 challenging datasets
from the process industry, we have demonstrated that it is
indeed possible to find feasible MCPSs to solve predictive
problems. Results have indicated that Sequential Model-Based
Optimisation (SMBO) strategies perform better than random
search given the same time for optimisation in the majority of
the analysed datasets. As a consequence, we can considerably
reduce the human effort and speed up the data mining process.

Based on the error variance among different runs of the
extended Auto-WEKA on the same dataset and the similarity
of the MCPSs found, we have identified three interesting
cases which may happen when finding the best solution using
multiple starting points in the search space: (1) convergence to-
wards very similar solutions; (2) small error variation between
different solutions; and (3) very different solutions. From the
practical point of view, a single composition and optimisation
run should be sufficient when dealing with datasets falling into
the first two categories. On the other hand, it is clear that mul-
tiple composition and optimisation runs with different starting
points are needed for datasets in case (3). The challenge is
to identify a priori to which category any of the considered
datasets belong. This is a promising future work direction, with
a potential of further time and computational cost savings. A
similar challenge is to define a priori or in a flexible, dynamic
manner a time budget for any particular dataset.

In contrast to the collection of datasets presented in [16]
(and also evaluated in this paper), data distribution of the
evaluated process industry datasets is changing over time. In
these cases there is a need to adapt the optimised MCPSs
following the changing environment. The first approach to deal
with concept drift while optimising MCPSs in such datasets
has been presented in [48], though the adaptation mechanisms
for SMBO methods require further systematic research and
form one of our future work directions.

In addition, it would also be valuable to investigate if using
different data partitioning like Density-Preserving Sampling
(DPS [55]) would make any difference in the optimisation
process. We believe that DPS could have a considerable impact
when using certain datasets in SMAC strategy since SMAC
discards potential poor solutions early in the optimisation
process based on performance on only a few CV folds. In
case the folds used are not representative of the overall data

distribution, which as shown in [56] can happen quite often
with CV, the effect on the solutions found can be detrimental.
Finally, at the moment, available SMBO methods only
support single objective optimisation. However, it would be
useful to find solutions that optimise more than one objective,
including for instance a combination of prediction error, model
complexity and running time as discussed in [34].
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