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Multiagent UAV Routing: A Game Theory Analysis
With Tight Price of Anarchy Bounds

Omkar Thakoor, Jugal Garg , and Rakesh Nagi

Abstract— We study the multiagent unmanned aerial vehi-
cle (UAV) routing problem where a set of UAVs needs to collect
information via surveillance of an area of operation. Each UAV
is autonomous and does not rely on a reliable communication
medium to coordinate with other UAVs. We formulate the prob-
lem as a game where UAVs are players and their strategies are
the different routes they can take. Our model also incorporates
the useful concept of information fusion. This results in a new
variant of weighted congestion-type games. We show that the
price of anarchy (PoA) of the game is at most 2, irrespective
of the number of UAVs and their sensor capabilities. This also
validates the empirical results of earlier works. Furthermore,
we identify classes of games for the existence of a pure Nash
equilibrium. To the best of our knowledge, these are the first such
theoretical results in the related literature. Finally, we conduct
experimental studies using randomly generated instances with
several multiagent UAV routing policies. Our insights are that
PoA increases with the congestion level when the same number
of UAVs search a smaller area or more UAVs search the same
area, and on an average, our proposed policies are less than 10%
worse than the centralized optimal for the problem scenarios
attempted.

Note to Practitioners—UAVs are becoming increasingly popular
for information collection tasks in defense and civilian applica-
tions alike. When the collection area is large, it is not unusual that
a fleet of UAVs is deployed. Routing of a fleet can be performed
in a centralized or decentralized manner. Decentralized routing
might be the only possibility when centralized situational aware-
ness is not possible due to bandwidth limitations and centralized
optimal routes for each UAV in the fleet are too complex to
compute. Autonomous solutions have several other advantages,
let alone simplicity. For managers of UAV systems, our work
provides the first theoretical characterization of how bad could
decentralized routing be. Under various scenarios of information
fusion, specifically weak and strong, and the attribution of
information collected to each UAV of a team, we prove that the
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fleet will collect at least 50% of the best-centralized solution.
Empirically, we show that, in fact, the performance of the
fleet is much better and generally not worse than 10% of
the best-centralized solution. Hopefully, our routing strategies
provide valuable guidance to the practicing engineer or manager
of a UAV fleet.

Index Terms— Game theory, multiagent systems, price of
anarchy (PoA), surveillance and reconnaissance, unmanned aerial
vehicles (UAVs).

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly being
used for intelligence, defense, and civilian information gather-
ing and monitoring. This is particularly due to their utility
in high endurance and perilous environments that are—as
characterized by [1]—dull, dirty, and dangerous. A popular
application of UAVs is information collection via surveillance
of an area of operations. Often, a fleet of UAVs is dispatched
for large geographical coverage and multiple intelligence,
surveillance, and reconnaissance (ISR) missions where the
goal is to maximize the amount of information collected, and
this results in the problem of routing and coordination.

This problem can be formulated into two different ways
depending on the application and environment. In one for-
mulation, all UAVs coordinate and cooperate either directly
or through an omniscient planner or both. It relies on the
existence of a reliable communication medium between all
agents [UAVs, planner (if present), etc.]. In this case, a central-
ized and cooperative solution is desired which maximizes the
system throughput, and it essentially becomes an optimization
problem which has been well studied but remains computa-
tionally challenging (see Section I-B).

In another formulation, agents are autonomous, i.e., they
need to decide their own route themselves. However, if multi-
ple agents obtain the same information then they need to share
the payoff received in an appropriate manner. Full autonomy
is the general trend in the UAV research due to its nondepen-
dence on a reliable communication medium, which often can
have several issues as discussed in [2], also for missions that
require radio silence, jamming, limited communication radius,
or due to different competitive units participating with different
subobjectives, or due to competitive self-interested agents
who want to maximize their own payoff (i.e., the amount of
information collected), among others.

While the former problem has the optimal outcome, it is
unclear as to how much efficiency is lost due to duplication
of effort in the latter. This paper provides an answer to this
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TABLE I

SUMMARY OF CONTRIBUTIONS

question. We formulate the problem by dividing the region of
surveillance into discrete cells each having an associated infor-
mation value, which we treat as an abstract entity allowing
flexibility for what it represents; possibly a prior probability
of a target being present, which could be obtained using a prior
surveillance activity (say using a satellite). Such discretization
is common in models for UAV path planning such as [3].
Our basic information model has some similarities with the
earlier studied models, e.g., [4], [5], with some interpreta-
tional differences with various parameters (see Section I-B
for details). In addition, our model incorporates a useful
concept of information fusion, which can be defined as “the
combination of multiple sources to obtain improved informa-
tion (cheaper, greater quality, or greater relevance)” [6] and
has been used in robotics and military applications [7]. This
makes the information collection problem versatile in terms
of applicability, especially when the fleet is heterogeneous in
sensing capabilities.

Despite the problem being a cooperative scenario on a
broad level, the autonomy of the agents and the lack of
communication with each other (due to various aforemen-
tioned reasons) make it plausible to assume that they can
obtain the information about the current positions of other
players but cannot coordinate with each other to come up
with a cooperative solution. Hence, our model studies what
happens if they simply follow a selfish behavior maximizing
their own payoffs. A natural framework to model such a
situation is a noncooperative game where UAVs are the players
and their strategies are the different routes that they can
take. The stable outcomes of such a game are given by the
Nash equilibria (NE), where no player gains by a unilateral
deviation. Furthermore, their inefficiency is measured by the
notions of price of anarchy (PoA) and price of stability (PoS),
where PoA (PoS) is defined as the ratio of the value of optimal
output to the value of the worst (best) NE outcome. We
provide results on the existence of NE and tight bounds on
the PoA and PoS, summarized in Table I. To the best of our
knowledge, these are the first such theoretical results in the
related literature. We note that all our results are applicable
to a general setting, where the search space is given by a
directed graph whose nodes represent the regions and the
edges represent the connectivity among regions.

A. Our Contributions
In the basic game, each UAV i has a sensor effectiveness

of ρi ∈ (0, 1]. If i visits a region, having information value v,

then it collects ρiv amount and the remaining (1 − ρi )v is
left at this region. If two UAVs, i and j , visit a region
together, then they collect a total of ρiv + ρ j (1 − ρi )v =
(1− (1−ρi)(1−ρ j ))v and split it according to their ρ values,
i.e., i ’s share is a ρi/(ρi + ρ j ) fraction of the total. In case
of more than two UAVs visiting a region together, the total
value function, which captures the total amount of information
collected, and the individual shares are defined similarly. Note
that it is independent of the order in which the UAVs are
considered.

The UAV game turns out to be a novel variant of the class of
well-known weighted congestion-type games, where ρi can be
treated as the weight of player i . The critical difference is that
the total value function is not a function of the total weight
of the players. To the best of our knowledge, no result is
known for the weighted congestion-type games with the total
value function we consider in this paper. Hence, in addition
to the UAV application, our results may be of independent
interest.

We show that a single-step p-player (p ≥ 2) game always
has a pure NE (PNE) by showing that it admits the finite
improvement property. The existence of a pure equilibrium
is particularly important for the UAV game, for its practical
use—Nash’s theorem [8] only implies the existence of a mixed
equilibrium where players randomize their pure strategies for
a stable outcome. We show that the PoA of the UAV game
is at most 2 using the framework of (λ, μ)-smoothness [9].
Furthermore, in case of a homogeneous fleet, i.e., when each
UAV has the same ρ, we show that PoA and PoS are at most
2 − 1/p and they are tight. These bounds validate previous
empirical results on the basic model, e.g., [4], in an even more
general setting.

We also study the role of information fusion in the UAV
game. In many situations, UAVs together can obtain a more
refined information of a region by visiting it simultaneously
(via fusion gain) than by visiting singly, in which case, they
are awarded a greater payoff for the improved quality. We
incorporate this using the fusion parameters γ j , 1 ≤ j ≤ p
as follows: when j UAVs visit a region simultaneously, then
their resulting payoffs are multiplied by γ j . By definition,
we have 1 = γ1 ≤ . . . ≤ γp. We consider two special
cases of mild and strong fusions where the value func-
tion is monotone nonincreasing and monotone nondecreasing,
respectively (observe that it is nonincreasing in case of no
fusion). For these special cases, we show that a PNE always
exists.

In a multiple-step multiplayer game, each UAV needs to
decide a walk to visit multiple regions, and its payoff is the
sum of partial payoffs it gets by visiting each cell on its walk.
We consider two different games, temporal and nontemporal,
which differ in the payoff formulations, each being useful in
different situations. In the former, the payoff of visiting a
region is immediately awarded, and in the latter, it is awarded
at the end with no regard to when the region was visited.
For both formulations, we show that PNE may not exist.
Furthermore, we show that PoA is at most 2, irrespective of
the number of UAVs, their sensor capabilities, and the length
of the walk. Furthermore, these are strong PoA bounds as
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they apply to a more general solution concept called (coarse)
correlated equilibrium of the game.

B. Related Work

The problem of information collection has been widely
studied in the search theory literature. A classical problem here
is to maximize the probability of detecting a hidden target,
e.g., as in [10]–[16]. On the other hand, Ortiz-Pena et al. [5]
associate a potential information gain with each subregion
based on an entropy-based function and aims to maximize
the total gain. Our basic game model is similar to this and
that of [4] in terms of discretization of the search space, time
steps, and payoff formulations. Also, our representation of the
surveillance region as a graph is similar to that of, say, [17]
and [18]; however, we use the reasonable simplification of
unweighted edges and the useful generalization of directed
edges.

A large body of the previous work on the routing prob-
lem, e.g., [19]–[21], assumes a centralized control and full
communication among the UAVs and the central controller.
In situations where communication is feasible, challenges arise
concerning key communication facets of energy consumption,
power transmission, and transmission data rate parameters.
Mozaffari et al. [22] investigate optimal UAV deployment with
respect to wireless coverage, whereas Sikeridis et al. [23]
present a holistic view of challenges in efficient resource
management and optimal communication establishment in
the deployment of UAVs. Several other works focusing on
these issues, those in the context of UAVs and others,
have also used game-theoretic models, for the correspond-
ing resource allocation problems in minimizing energy or
power consumption [24]–[27]. However, as mentioned earlier,
in many situations such as when conducting UAV surveillance
in sensitive regions, e.g., [28], the infeasibility of commu-
nication is a critical constraint, consequently, full autonomy
is desirable. The benefits of autonomous UAVs for various
domains have been highlighted, such as in [29] for persistent
ISR missions.

A game-theoretic analysis is a perfect fit to tackle this
problem under these circumstances. Game-theoretic models
have been deployed in numerous other routing problems in
transportation and networking applications such as [30]–[33].
The class of games, we formulate in this paper, is closely
related to the class of congestion games or resource-selection
games, and numerous other variants, defined, and studied
in—most notably [34]–[40]. Our class of games has some
critical differences with these well-studied classes of games,
in terms of cost-sharing protocols and player weights, and
hence, the results established for them do not directly apply
in our case, making our theoretical results on the existence of
pure equilibria and bounds on PoA and PoS, interesting and
nontrivial.

C. Organization of this Paper

In Section II, we present the UAV game model and establish
its relationship to congestion-type games. Section III contains
our results for the multiplayer single-step games. The existence

TABLE II

NOTATION

of a PNE is shown in Section III-A. Section III-C presents
the PoA and PoS results for the case of a homogeneous
fleet. Section IV presents our results for the multiplayer
multistep games. The results for multistep games with tem-
poral aspects and without temporal aspects are presented in
Sections IV-C and IV-D, respectively. In Section V, we per-
form numerical studies and compare the results for sev-
eral routing strategies by simulating plausible scenarios with
randomly generated game parameters.

II. UAV GAME MODEL

A. Preliminaries

Consider a game with n players. Let Si be the strategy set
for player i , and S = ×i Si be the set of joint strategy profiles.
It is known that the NE always exists [8], however, a PNE
may not exist, defined as follows.

Definition 1: A joint strategy profile s∗ ∈ S is a PNE if
no unilateral deviation in strategy by any single player is
profitable for that player, that is,

∀i, si ∈ Si : πi (s
∗
i , s∗−i ) ≥ πi (si , s∗−i )

where πi (s) is the payoff function of player i , and s−i denotes
the strategies of all players except i .

The social welfare of an outcome is defined as the sum
of the individual payoffs of the players. PoS and the PoA
are the two well-known metrics used in economics and game
theory, to quantify the inefficiency of the equilibria—that is,
how bad the social welfare at an equilibrium is as compared
to the optimum social welfare achievable. In the following
definitions, the best and the worst equilibria refer to those
which give the maximum and the minimum social welfare
among all equilibria.

Definition 2: The PoS is defined as the ratio of the optimal
social welfare to the welfare for the best NE. The PoA is
defined as the ratio of the optimal social welfare to the welfare
for the worst NE.

The smoothness of these games is defined as follows.
Definition 3 (λ, μ)-smoothness [41]: A payoff-

maximization game—one where each player strives to



THAKOOR et al.: MULTIAGENT UAV ROUTING 103

maximize his payoff π(s)—is called (λ, μ)-smooth if

∀s, s∗ ∈ S,
∑
i∈P

πi (s
∗
i , s−i )≥λ

∑
i∈P

πi (s
∗)−μ

∑
i∈P

πi (s). (1)

The UAV game we model is closely related to the
congestion-type games defined as follows.

Definition 4: An arbitrary congestion-type payoff-
maximization game consists of a resource set C and a
player set P = {1, . . . , p}, where each resource c ∈ C
has a joint value function Mc : 2P → R

+ defined on the
subsets of P , which describes the worth of the resource as
a function of the set of players sharing it. Each i ∈ P has
a strategy set Si ⊆ 2C and a per-resource payoff function
Ui : R+ → R

+—if Q ⊆ P is the set of players using c ∈ C
(where i ∈ Q), the value of c is Mc(Q) and consequently, i ’s
payoff for using c is Ui (Mc(Q)). The net payoff for i ∈ P
on playing strategy si ∈ Si is the sum of its payoffs for using
resources c ∈ si .

Thus, these games can be defined as a tuple
(P, C, (Si )i∈P , (Mc)c∈C, (Ui )i∈P ) with each entity as
defined earlier. Arbitrary congestion-type cost-minimization
games are similarly defined as well. However, this paper
only deals with the payoff-maximization games, and
for convenience, we simply call these as the arbitrary
congestion-type games. When each strategy has a single
resource, i.e., |si | = 1,∀si ∈ Si ,∀i ∈ P , then we call them
singleton congestion-type games.

Our game model extensively uses the multisets, a gener-
alization of the concept of sets, with the distinction that a
multiset can have multiple instances of any of its elements.

Definition 5: A multiset can be represented by a two-tuple
(X, m), where X is the set of distinct elements in the mul-
tiset, and m is the multiplicity function, such that, for each
x ∈ X, m(x) is the number of instances of x in the multiset.
By convention, we have x /∈ X ⇔ m(x) = 0.

Thus, X can be viewed as the support set of the function
m. Hence, we often do not explicitly give the ground set X ,
as just the m can be used to precisely capture the containment
of an element in the multiset. For a multiset A, we denote
its multiplicity function as m A. We say, “A is a multiset with
support in X ,” to mean that the support of m A, is a subset of X .
Finally, some standard operations on multisets are defined as
follows: containment as x ∈ A ⇔ m A(x) > 0, intersection
as m A∩B(x) = min(m A(x), m B(x)), union as m A∪B(x) =
max(m A(x), m B(x)), sum as m A�B(x) = m A(x) + m B(x),
and subtraction as m A\B(x) = max(m A(x)− m B(x), 0).

B. Model Description

We model the UAV routing problem as a game between
the UAVs. Let P = {1, . . . , p} denote a finite set of p
players, each corresponding to a UAV. The geographical region
of surveillance is discretized into a finite set C of smaller
subregions referred to as the cells. The information collection
environment is then represented as a directed graph, where
the cells are the vertices, and the directed edges of the graph
capture the connectivity between these cells. The time is also
assumed to be discretized into time steps. The division of cells

and their connectivity is assumed to be such that moving along
any edge and surveilling the subsequent cell, altogether takes
an equal time—of 1 time step. The number of time steps for
which the game lasts is denoted by l. Consequently, the goal
for each player is to move in this network for 1 time step,
while capturing the information from the cells visited along the
route, with the goal of maximizing this information captured.
Thus, the set of strategies for player i , denoted by Si is a set
of walks of length l starting from player i ’s initial cell. The set
of “joint strategy profiles,” or simply “outcomes,” is denoted
by S = ×i∈PSi . Each cell has an associated information value
denoted by a function v : C → R

+. Thus, v(c) denotes the
information initially available in cell c.

The UAVs have sensors through which they collect the
available information—better the quality of sensors, greater
is the fraction of information they can collect from what is
available. Consequently, each player i ∈ P is assigned a
sensor effectiveness parameter denoted by ρi ∈ (0, 1], which
determines how much information the player can collect from
what is available in the cell it visits. Finally, the payoff of
i , which is simply the collected information, depends on the
outcome, and is denoted by πi : S → R

+.

III. SINGLE-STEP GAMES

In this section, we study single-step games where the
number of time steps is l = 1. These games have some nice
properties that the general multistep games do not. They have a
simple structure which allows us to incorporate an important
facet—that of information fusion. The strategies of a player
are simply the cells adjacent to its initial position. We define
the payoffs as follows: as aforementioned, the parameter ρi

denotes the fraction of information a player can collect from
what is available. Hence, player i on visiting cell c alone,
gets ρiv(c), leaving (1−ρi )v(c) amount of information in the
cell. In other words, the information value of a cell depletes
by a factor of (1− ρi ) after i ’s visit. Consequently, if a set of
players Q ⊆ P simultaneously visits c ∈ C , the information
available depletes by a factor of

∏
i∈Q(1− ρi )—accordingly,

the total information collected from cell c by players in Q
is

(
1−∏

i∈Q(1− ρi )
)
v(c) which we define the aggregate

payoff of the players to be. Furthermore, each player i ∈ Q
is said to get as an individual payoff, a share of the aggregate
payoff that is proportional to its ρi . Thus, this equals

ρi∑
i∈Q ρi

⎛
⎝1−

∏
i∈Q

(1− ρi )

⎞
⎠ v(c). (2)

Next, we extend the model to incorporate information fusion.
Information Fusion: In case of fusion, a combination of

multiple sources of information can be utilized for a greater
quality of information. Consequently, UAVs can obtain a more
refined information from a cell by visiting it simultaneously
(via fusion gain) than by visiting singly, in which case, they
are awarded a greater payoff for the improved quality. We
model this by introducing fusion parameters γ1, . . . , γp , where
γ j captures the enhancement factor in the information quality
as well as in the resultant payoffs when any j players visit
a cell simultaneously. We assume that these parameters are



104 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 17, NO. 1, JANUARY 2020

specified a priori as input to the problem depending on the
complementarity and similarity of the UAVs functionalities.
By definition, we have γ1 = 1 since there is no information
fusion with just one UAV, and γ1 ≤ . . . ≤ γp , since
more UAVs participating in the information fusion should not
decrease the fusion gain factor. The case of no information
fusion is simply when γ1 = . . . = γp = 1, and the payoffs
are given by the expression obtained in (2). As the payoffs get
improved by the appropriate fusion gain factors, the payoff of
i ∈ P on visiting c ∈ C simultaneously with a set of players
Q ⊆ P , equals

γ|Q|
ρi∑

i∈Q ρi

⎛
⎝1−

∏
i∈Q

(1− ρi )

⎞
⎠ v(c). (3)

Note that the payoff function in (3) can be written in a general
form of Ui (Mc(Q)), where Mc : 2P → R

+ for each c ∈ C is
given by Mc(Q) = γ|Q|

(
1−∏

i∈Q(1− ρi )
)
/(

∑
i∈Q ρiv(c)),

and Ui : R
+ → R

+ by Ui (x) = ρi x . Consequently,
the single-step UAV game can be represented as a tuple
(P, C, (Si )i∈P , (Mc)c∈C, (Ui )i∈P ) with all the entities defined
as earlier and, thus, is a singleton congestion-type game.

We now characterize a class of singleton congestion-type
games which this game lies in and show an important result
regarding the existence of PNE for this class of games.

Definition 6: A singleton congestion-type game
(P, C, (Si )i∈P , (Mc)c∈C, (Ui )i∈P ) is called well-behaved if:

1) ∀i , Ui is monotonically nondecreasing;
2) (Mc)c∈C are either all monotonically nondecreasing,

or all monotonically nonincreasing.1

The first condition simply says that if the value of a resource
increases, a player’s utility for using it should not decrease.
The second condition says that the effect of congestion in
a resource on its value is always in the same direction, for
all the resources—either adding more players to any resource
never increases its value, or it never decreases. We need the
following lemma for the containment of single-step UAV game
in the class of well-behaved singleton congestion-type games.

Lemma 1: Let 0 < y ≤ 1, and let X be a set of n(≥ 0)
numbers such that ∀x ∈ X, 0 < x ≤ 1. Then
∏
x∈X

(1− x)≤ 1− (1− y)
∏

x∈X (1− x)

y +∑
x∈X x

≤ 1−∏
x∈X (1− x)∑
x∈X x

.

Proof: Let S =∑
x∈X x , and P =∏

x∈X (1−x). We want
to show P ≤ 1− (1− y)P/y + S ≤ 1− P/S. Consider the
first inequality

P≤ 1−(1− y)P

y + S
⇔ (y + S)P≤1− (1− y)P

⇔ (1+ S)P≤1.

Next, consider the second inequality

1− (1− y)P

y + S
≤ 1− P

S
⇔ (1− P + Py)S≤ y + S)(1− P)

⇔ y PS ≤ y(1− P)⇔ (1+ S)P ≤ 1. (4)

1 Mc is monotonically nondecreasing, if ∀Q,Q′ ⊆ P,Q ⊆ Q′ ⇒
Mc(Q) ≤ Mc(Q′). (Vice-versa for nonincreasing.)

Thus, proving (4) proves both the inequalities. Now, by the
inequality of arithmetic and geometric means, we have (n −
S)/n ≥ P1/n and hence

(1− S/n)n ≥ P. (5)

Also, using the binomial theorem

(1+ S/n)n =
n∑

i=0

((
n

i

)
(S/n)i

)
≥ 1+ S. (6)

Hence, combining (5) and (6), we get (1 + S)P ≤ (1 +
S/n)n(1 − S/n)n = (1 − S2/n2)n ≤ 1. Thus, this proves (4)
as required.

Lemma 2: Single-step games with no fusion are well
behaved.

Proof: Since Ui (x) = ρi x for each player i and, thus,
is monotonically increasing, it satisfies the first condition for
being well behaved. Now, when there is no fusion, Mc(Q) =
(1−∏

i∈Q(1− ρi ))/
∑

i∈Q ρiv(c) for each cell c. As v(c) is
a constant, next, we show that Mc(Q)/v(c) is monotonically
nonincreasing.

Let Q ⊂ Q′ ⊆ P . Suppose Q′ \ Q has k players,
without loss of generality, say players 1, . . . , k. Next, define
Q0,Q1, . . . ,Qk , with Q0 = Q, and Qi = Qi−1∪{i},∀i ∈ [k],
so that, Qk = Q′. Then, using the second inequality from
Lemma 1, we have

∀i ∈ [k],
1− ∏

j∈Qi

(1− ρi )

∑
j∈Qi

ρ j
=

1− (1− ρi )
∏

j∈Qi−1

(1− ρ j )

ρi + ∑
j∈Qi−1

ρ j

≤
1− ∏

j∈Qi−1

(1− ρi )

∑
j∈Qi−1

ρ j
.

Hence, M(Q0) ≥ . . . ≥ M(Qk). Thus, M(Q) ≥ M(Q′)
whenever Q ⊂ Q′, which proves the claim.

As shown in Lemma 2, when there is no fusion, the value
function for each cell is monotonically nonincreasing. The
fusion parameters γ1, γ2, . . . , γp are nondecreasing and, thus,
need not preserve the monotonicity of the value functions.
We next consider two interesting special cases.

Definition 7: Given the players and the sensor effectiveness
parameters, we say that information fusion is mild if the fusion
parameters are gradually increasing so that all the value
functions are monotonically nonincreasing. On the other hand,
we say that it is strong if the fusion parameters are so rapidly
increasing that all the value functions become monotonically
nondecreasing.

By definition, single-step UAV games in both the above-
mentioned cases are well-behaved singleton congestion-type
games.

A. Existence of a Pure Nash Equilibrium

We prove the existence of a PNE using the finite improve-
ment property [42] defined as follows.

Definition 8: Finite Improvement Property (FIP): A seq-
uence of strategy-tuples in which each tuple differs from the
preceding one in one coordinate (such a sequence is called a
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path), and the unique deviator in each step strictly increases its
payoff (an improvement path), is finite. Clearly, any maximal
improvement path is terminated by an equilibrium.

Theorem 1: Every well-behaved singleton congestion-type
game admits the FIP and, consequently, has a PNE.

Proof: We extend the argument of [35], which is used
there for proving the FIP for symmetric congestion games.
Suppose, for a contradiction, that there is an infinite improve-
ment path. Since there are only finitely many joint strategies,
there is an improvement cycle, say, of size k, given by
σ1, σ2, . . . , σk , σ1, where each σ j ∈ S is the outcome in the
j th step. Furthermore, let Q j (c) denote the set of players
going to cell c in the j th step of the improvement cycle. Let
C# ⊆ C denote the set {c | ∃i, j, Qi (c) �= Q j (c)}, i.e., those
cells which are not occupied by the same set of players
throughout the whole improvement cycle. For a well-behaved
game, we have that Ui is monotonically nonincreasing for each
i ∈ P , and, we have two possibilities for the value functions
(Mc)c∈C . First, we prove the result for the case where (Mc)c∈C
are all monotonically nonincreasing.

Without loss of generality, suppose the improvement
cycle and the cells are enumerated such that
min1≤ j≤k,c∈C# Mc(Q j (c)) = Mc1(Qk(c1)). Now, since
c1 ∈ C#, there exists j such that Q j (c1) �= Qk(c1). Consider
the largest such j , i.e., Q j+1(c1) = Qk(c1). Since each Mc is
monotonically nonincreasing, and since the minimum value
of Mc1(·) is attained for Qk(c1), thus, also for Q j+1(c1),
it follows that Q j (c1) ⊂ Q j+1(c1). Thus, the unique
deviator between σ j and σ j+1, without loss of generality,
say player 1, must be changing its strategy to c1 from
some other cell ci , say. Thus, ci ∈ C#, and further, for this
deviation to be an improvement for player 1, it must be
that U1(Mci (Q j (ci ))) < U1(Mc1(Q j+1(c1))). Since each
Ui is monotonically nondecreasing, hence, Mci (Q j (ci )) <
Mc1(Q j+1(c1)) = Mc1 (Qk(c1)). This contradicts the
assumption that min1≤ j≤k,c∈C# Mc(Q j (c)) = Mc1(Qk(c1)),
and hence, there cannot exist an improvement cycle.

The case where (Mc)c∈C are all monotonically nondecreas-
ing can be shown similarly.

Since the single-step game in the cases of mild or strong
fusion is well behaved, it follows the following corollary.

Corollary 1: The single-step game in the cases of mild or
strong information fusion has a PNE.
Next, we discuss the time complexity of NE computation.

B. Equilibrium Computational Complexity

Computing a NE in a two-player game is, in general,
polynomial parity arguments on directed graphs (PPAD)
complete [43]. For the single-step UAV game, however,
the existence of FIP trivially implies that the problem of
computing a PNE is in the class polynomial local search
(PLS) [44]—as the problem can be reduced to finding a
sink in a directed acyclic graph formed over the outcomes
(as vertices) with the directed edges capturing the unilateral
improvement deviations. This also gives a finite time algorithm
for computing a PNE in the single-step UAV game. However,
for the case of strong information fusion, we give an efficient
algorithm based on a greedy strategy, whereas it remains to

be seen whether the problem can be computed efficiently for
the mild information fusion case, or, is PLS-complete—like it
is for the closely related class of congestion games.

Efficient Algorithm for Strong Information Fusion: In this
case, the value function for each cell is monotonically nonde-
creasing, i.e., more the number of players in a cell, larger the
value of the cell and, in turn, the individual payoff for each
player there as well. Let Q(c) ⊆ P denote the set of players
which can visit a cell c in one step as a possible strategy,
i.e., Q(c) = {i ∈ P | c ∈ Si }.

The algorithm consists of a number of iterations. Starting
with the set of all players and the set of all cells, in each
iteration, some players are assigned a particular cell as their
strategy to play and the set of remaining players and remaining
cells are carried forward to the next iteration.

Algorithm 1 Algorithm to Compute a PNE

1: P1← P , C1← C, i ← 1
2: while P i �= φ do � Terminate if no players remaining
3: cmax

i ← Null, max Score← −∞
4: for c ∈ Ci do
5: Qi (c) = Q(c) ∩ P i , score← Mc(Qi (c))
6: if score > max Score then
7: max Score← score, cmax

i ← c
8: end if
9: end for � cmax

i is computed.
10: for p ∈ Qi (cmax

i ) do
11: Fix cell cmax

i as strategy for p
12: end for
13: P i+1 = P i\Qi (cmax

i ), Ci+1 = Ci\{cmax
i }, i ←

i + 1
14: end while

In each iteration i , for each cell c in Ci , we compute
Mc(Q(c) ∩ P i ), where P i is the set of remaining players
in that iteration, and Ci is the set of remaining cells. Then,
we choose the cell cmax

i for which the value thus computed is
maximum and assign this cell as the strategy for all the players
in Q(cmax

i )∩P i . Subsequently, we update the set of remaining
players P i+1 = P i\(Q(cmax

i )∩P i) and Ci+1 = Ci\{cmax
i } and

move on to the next iteration.
Theorem 2: Algorithm 1 computes a PNE of the single-step

game with strong information fusion in O(|C| · |P |) time.
Proof: Without loss of generality, let the cells be enu-

merated such that ∀i, cmax
i = ci . We first note that i <

j ⇔ P j ⊂ P i ⇒ Q j (c j ) ⊆ Qi (c j ). Suppose player 1 is
assigned the cell ci by the algorithm. Hence, 1 /∈ Q(c j ),
∀ j < i , since otherwise, it would have been assigned a
cell before the i th iteration. Thus, the only cells player 1
could possibly deviate to are {c j } j>i . The payoff of player 1
before deviation, by playing ci , is ρ1 Mci (Qi (ci )), which is at
least ρ1 Mc j (Qi (c j )) ∀ j > i , since cmax

i = ci . Furthermore,
∀ j > i, 1 ∈ Q(c j ) ⇒ 1 ∈ Qi (c j ). This further implies that
since Q j (c j ) ⊆ Qi (c j ), it must also be that, (Q j (c j )∪{1}) ⊆
Qi (c j ), whenever player 1 can access c j . Hence, by the
monotonically nondecreasing behavior of each Mc , player 1’s
payoff after deviation to c j , i.e., U1(Mc j (Q j (c j )∪ {1})), is at
most U1(Mc j (Qi (c j ))), which is at most its payoff before
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deviation. Hence, it has no incentive to switch, and the same
argument applies to each player. Hence, the algorithm does
produce a NE. It is easy to check that the algorithm takes
time O(|C| · |P |).

C. PoS and PoA Bounds

Since single-step games are special cases of multistep games
which we analyze in Section IV, the upper bound of 2 on the
PoA and PoS proved there applies here as well and can be
shown to be tight. In this section, we establish a stronger bound
for the special case of homogeneous fleet, i.e., all players are
identical, and there is either no fusion or mild fusion.

When all UAVs have same ρ, the payoff of a player
simply depends on the number of players it shares a cell
with and not the actual subset. This makes it an unweighted
singleton congestion game. While results on the PoA bound
for these games have been shown for various classes of payoff
(or cost) functions, such as affine, polynomial, etc., to the
best of our knowledge, the payoff function of the UAV game
herein does not fall in any of the previously studied classes.
Kleinberg and Oren [40] study a class of games called the
Project Game. The scenario therein with identical players
very closely resembles the setting studied here and for no
information fusion, the following result can be derived from
the corresponding results for the Project Game. However, our
tight bounds shown below are for the more general case of
mild information fusion which does not follow from [40]. The
main result is in the following.

Theorem 3: The PoS and PoA, in unweighted singleton
congestion games with either no fusion or mild fusion, are
at most 2− 1/p. Furthermore, these bounds are tight.

Proof: We denote the individual payoff of a player
when n players share a cell c, by vn(c), given by
γnv(c)1− (1− ρ)n/n. Let σ e be an equilibrium and let σm be
a joint strategy which provides the maximum social welfare.
Suppose, starting with σ e, σm is achieved by a series of
deviations, where each deviation refers to a player switching
from a cell ci to a cell c j . Since the players are identical,
only the cells involved in a deviation matter, and not the player
who deviates. We represent this as a deviation graph G, where
each cell is a vertex and a deviation from one cell to another
is represented as a directed edge. Note that since only the
number of players in a cell matters in computing any payoffs,
any path in the graph of length more than 1, say between nodes
u and v, can be replaced by a single edge (u, v), since both
equivalently result in the number of players at u decreasing
by 1, the number of players at v increasing by 1, and other
cells on the path being unaffected. Thus, G can be reduced to,
say G∗, that does not have a cycle, nor a path of length more
than 1. Thus, G∗ only has sources, sinks, and isolated vertices.
Fig. 1 illustrates this with an example. Vertices such as c3
with a larger in-degree than out-degree in G become sinks
in G∗. Similarly, vertices like c1 having a larger out-degree
in G become sources in G∗, and the remaining ones like c7
where the in- and out-degrees are equal in G, become isolated
in G∗.

Fig. 1. Reduction of a deviation graph.

Now, consider the group of players who are in a cell c at
equilibrium. We consider the following three cases.

1) c is an isolated vertex in G∗: The payoff of every
player here remains the same.
2) c is a sink in G∗: There are at least as many players
in c at σm , as there were at the equilibrium σ e. Hence,
the payoff of these players is bounded above by their
payoff at the equilibrium.
3) c is a source in G∗: Consider a player i who is in cell
c at σ e and is in c′ at σm . By the nature of G∗, c′ must
be a sink in G∗. Hence, there are strictly more players in
c′ at σm , than there were at σ e. Thus, since we have mild
fusion or no fusion, if i were to be the unique deviator
at equilibrium from c to c′, it would have obtained at
least as much a payoff as it would have by playing c′ at
σm . Furthermore, since σ e is an equilibrium, the payoff
of player i at σ e is at least as much as it would get
by deviating to any other cell, in particular, c′, and in
turn, greater than its payoff at σm . Now, suppose there
were x players in cell c at σ e, of which y are not in
c at σm , while x − y players continue to be in c at
σm . Then, as per the argument earlier, the payoff at
σm , of each of the y deviating players, is at most as
much as their payoff at σ e, i.e., vx (c). The payoff of
any of the remaining x− y players improves from vx(c)
to vx−y(c). Hence, if all the players deviate from c,
i.e., y = x , the total welfare of this group of x players
cannot increase. On the other hand, if y < x , the total
social welfare for this group of players can increase by
a factor of at most (x − y)vx−y(c)+ yvx(c)/xvx(c) =
γx−y(1− (1− ρ)x−y)/γx(1− (1− ρ)x )+y/x . It can be
shown that this expression is a monotonically increasing
function of ρ for ρ ∈ (0, 1] (by showing its derivative
with respect to ρ to be strictly positive for ρ ∈ (0, 1]
when y < x). Hence, its maximum value is when ρ = 1,
which comes out to γx−y/γx + y/x . Using y < x ≤ p,
we have γx−y/γx ≤ 1, and y/x ≤ p − 1/p, giving a
bound of 2− 1/p on the welfare gain ratio (which can
occur at y = p − 1, x = p, that is, when all players
visit the same cell at equilibrium, and only one of them
visits the cell to obtain the maximum social welfare).

Thus, for a group of players which are in a particular cell
at equilibrium, the sum of their payoffs either remains the
same, decreases, or increases by a factor of at most 2−1/p as
analyzed for the three cases mentioned above. Hence, the total
social welfare of all the players, which is the sum of welfare
of all such groups, can increase by a factor of at most as
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much as any of the individual groups, which is nothing but
2− 1/p, giving us the required bound. (Note that the analysis
mentioned above holds for any equilibrium, and thus, the worst
equilibrium, in particular, giving the bound on PoA.)

Furthermore, this bound can be shown to be tight not only
for PoA but also PoS, with the following example. Let there
be p players with ρ = 1 for each player, and no information
fusion. Let there be p cells with every cell being a valid
strategy for every player. Let the information available in
various cells be as follows: v(c1) = p, v(c) = 1 − ε ∀c �=
c1; ε > 0. Clearly, c1 is a dominant strategy for every player,
giving a unique equilibrium (c1, . . . , c1). The total welfare
here is p. However, it is maximum for the joint strategy
(c1, c2, . . . , cp) which equals p + (p − 1)(1 − ε). Hence,
the PoS is 1+ (1− 1/p)(1− ε) which approaches 2− 1/p as
ε → 0.

IV. MULTISTEP GAMES

In this section, we extend our analysis from single step to
multiple steps. Recall the notation from Table II. The payoff
of i depends on the outcome and is denoted by πi : S → R

+.
It is the sum of the partial payoffs i gets by visiting each cell
on its walk. With a slight abuse of notation, we let πi (s, c)
denote i ’s payoff for visiting c ∈ C , when the outcome is
s ∈ S, so that πi (s) = ∑

c∈C πi (s, c). Naturally, πi (s, c) is
zero if i does not visit c at all when playing si . However,
when it does visit the cell (possibly more than once), the value
πi (s, c) can be defined in two different ways depending on the
logistics of the real-world scenario, giving rise to two different
games—temporal and nontemporal.

A. With Temporal Aspect

In this case, a player gets an instant payoff after visiting
a cell (in a manner described below), and these payoffs
get accumulated constituting its net payoff. Any player i ,
on visiting a cell c, gets a payoff that is ρi fraction of the
value left in c at the time of its visit, leaving behind (1− ρi )
fraction of that value. Thus, if a sequence of k players say
(x1, x2, . . . , xk) visit c one after the other, then the i th visitor
xi gets a payoff of ρxi

(∏
j<i (1− ρx j )

)
v(c) corresponding to

that visit; if the same player is also the j th visitor for some
j �= i , it will get a payoff for each such visit defined similarly.
The combined payoff of all these players, from visiting c is⎛

⎝1−
∏
j≤k

(1− ρx j )

⎞
⎠ v(c). (7)

Note that this combined payoff is independent of the order
of the players. Thereby, if these players visit c, in the same
time step, then we define their aggregate payoff as above, and
further, the payoff of xi as the share of this combined payoff
is proportional to ρxi , that is,

ρxi∑
j≤k ρx j

⎛
⎝1−

∏
j≤k

(1− ρx j )

⎞
⎠ v(c). (8)

Thus, a player’s payoff from visiting a cell depends on which
players visit before it and which players visit simultaneously.

B. Without Temporal Aspect

In this case, the payoff from visiting a cell is determined
at the end of the game, regardless of the order in which the
players visi t the cell. Since the order is immaterial, we can
represent the visitors of a cell c as a multiset, say P ′, having
support in P and an associated multiplicity function denoted
by mP ′(·). In case of no ambiguity, we drop the subscript and
denote it as simply m(·). The payoff of a visitor from a single
visit is precisely as in (8), and thus, with possibly multiple
visits, the payoff of i ∈ P ′ is given by

ρi m(i)∑
j∈P ′ ρ j m( j)

⎛
⎝1−

∏
j∈P ′

(1− ρ j )
m( j )

⎞
⎠ v(c). (9)

Next, we establish results for both these games on existence
of pure equilibria, PoA bounds, etc.

C. Multistep Games With Temporal Aspect

In this section, we analyze the game with a temporal aspect.
As discussed earlier, the payoff of a player from visiting
a cell is not only merely dependent on which players visit
the cell but also on the order in which they visit the cell.
The combined payoff, however, when a sequence of players
visit a cell c (some of them possibly simultaneously), does
not depend on their order, and can be easily computed as
in (8). Let A, B be multisets with support in P . For a cell c,
let π A

B (c) denote the combined payoff which the visitors in
B would obtain by visiting cell c (as many times as the
respective multiplicities in B) when preceded by all (and
only) the visitors as represented by A. Note that the multiset
representation is sufficient for this to be well defined, since the
order of visitors in A among themselves, and similarly of those
in B among themselves, does not matter when computing the
said combined payoff. Indeed, the exact expression can be
easily obtained to be

π A
B (c) =

⎛
⎝1−

∏
j∈B

(1−ρ j )
m B ( j )

⎞
⎠ ∏

j∈A

(1−ρ j )
m A( j )v(c). (10)

Here, the entity
∏

j∈A(1− ρ j )
m A( j ) denotes the fraction of

v(c) left in c after visitors in A have visited, and the fraction
of it collected by B is computed similarly.

Lemma 3: Let A, A′, B, B ′, and D be multisets with sup-
port in P such that A′ ⊆ A and B ′ ⊆ B. Then, (1)
π A

B (c) + π A�B
D (c) = π A

B�D(c), (2) π A
B ′(c) ≤ π A

B (c), and (3)

π A
B (c) ≤ π A′

B (c).
Proof: For the first part, note that B � D is the multiset

sum of B and D and thus represents the combined visitors in
B as well as D. Thus, the result follows from the definition
of π A

B (c), as both sides equal the combined payoff of visitors
in B and D when they are preceded by visitors in A. For
the second part, we apply the first part on A, B ′, B \ B ′,
we get π A

B (c) − π A
B ′(c) = π A�B ′

B\B ′ (c) ≥ 0. Rearranging gives
the required result. For the third part, using (10), it is easy to
see that π A

B (c)/π A′
B (c) = ∏

j∈A\A′(1 − ρ j )
m A( j )−m A′ ( j ) ≤ 1.

Rearranging gives the required result.
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Next, suppose c is a cell, and A is a multiset with support
in P . For each player j , let S′j ⊆ Sj denote the subset of
strategies in which j visits c exactly m A( j) times. Then,
S′ = × j S′j is the set of outcomes for which the multiset A
precisely captures which players visit cell c and how often.
In case of such an outcome, we refer to A as the visitor set
for c. Also, for any multiset A and a player i ∈ A, let A|i
denote the multiset m A(i)⊗{i}, i.e., A|i only contains i—with
the same multiplicity as A—and let A|−i denote the multiset
A \ A|i . The following lemma shows an important result.

Lemma 4: Let A be any multiset with support in P , i ∈ A,
c be any cell, and S′ ⊆ S be the set of outcomes for which A
is the visitor set for c. Then, ∀s ∈ S′, πi (s, c) ≥ π

A|−i
A|i (c).

Proof: Let s be an outcome with the visitor set for c
being A. Suppose player i visits c m times when the visitor
set is A. The outcome s can be naturally associated with
two well-defined sequences X1, . . . , Xm and Y1, . . . , Ym as
follows. For each j , X j denotes the set of players visiting c
in the same time step as the j th visit of i , and Y j denotes the
multiset of all the visitors visiting strictly before. Naturally,
each X j must contain i , and each Y j must contain i with a
multiplicity of j − 1. Also, we have ∅ ⊆ Y1 ⊂ . . . ⊂ Ym ⊆
A\{i} by definition. Let v be the information initially available
in c. The combined payoff of the visitors in X j , as per our

notation, is π
Y j
X j

(c). Player i gets a share of it proportional to
ρi , which summed over all visits gives its total payoff from
visiting c

πi (s, c) =
m∑

j=1

ρi∑
k∈X j

ρk
π

Y j
X j

(c). (11)

For each j , let v j denote the information available in c just
before the visitors in X j visit, which evaluates to v j =
v

∏
k∈Y j

(1−ρk)
mY j (k). Then, in terms of v j , we get π

Y j
X j

(c) =
v j (1−∏

k∈X j
(1− ρk)). Hence, (11) can be written as

πi (s, c) =∑m
j=1 ρiv j

(
1−∏

k∈X j
(1−ρk)

)
∑

k∈X j
ρk

. (12)

Now, let s′ be another outcome with similarly defined
sequences X ′1, . . . , X ′m and Y ′1, . . . , Y ′m such that the only
difference from s is that for each j , the players visiting c in
the same time step as the j th visit of player i in the outcome s,
now visit strictly before it, in s′. Formally, for each j , we have
Y ′j = Y j � (X j \ {i}) and X ′j = {i}. Thus, the visitor set
remains A for s′. Now, by definition, v j is the information
available in c after the visitors in Y j have visited it. Hence,
the information left after players in X j \ {i}) subsequently
visit it is v j

∏
k∈X j\{i}(1− ρk). Hence, as player i ’s j th visit

to c follows, it gets a payoff that is ρi fraction of the value
available, and this summed over all the visits gives the total
payoff of player i from visiting c, for the outcome s′

πi (s
′, c) =

m∑
j=1

⎛
⎝ρiv j

∏
k∈X j \{i}

(1− ρk)

⎞
⎠ . (13)

Now, applying the first inequality from Lemma 1 on
y = ρi , X = {ρk|k ∈ X j \ {i}}, we get

πi (s
′, c)≤

m∑
j=1

ρiv j

(
1− (1− ρi )

∏
k∈X j\{i}(1− ρk)

)
ρi +∑

k∈X j \{i} ρk

=
m∑

j=1

ρiv j

(
1−∏

k∈X j
(1− ρk)

)
∑

k∈X j
ρk

=πi (s, c). (14)

Furthermore, let s′′ be another outcome with similarly defined
sequences X ′′1 , . . . , X ′′m and Y ′′1 , . . . , Y ′′m and the visitor set for
c being still A, such that all the visits of player i are strictly
after all the visits of all the players. Formally, for each j ,
we have Y ′′j = A|−i�(( j−1)⊗{i}) and X ′′j = {i}. Furthermore,

πi (s′′, c) = π
A|−i
A|i (c). Now, since s′ and s′′ are such that all the

visits of player i are unaccompanied, we can write its payoff

from the j th visit as simply π
Y ′j
{i} (c) and π

Y ′′j
{i} (c), respectively.

Now, the multiplicity of i is the same (= j − 1) in Y ′j and
Y ′′j , whereas all other players reside in Y ′′j with the maximum
multiplicity possible for the visitor set A. Thus, Y ′j ⊆ Y ′′j , and

using Lemma 3, we have π
Y ′j
{i} (c) ≥ π

Y ′′j
{i} (c),∀ j . Hence,

m∑
j=1

π
Y ′j
{i} (c) ≥

m∑
j=1

π
Y ′′j
{i} (c)

πi (s
′, c) ≥

m∑
j=1

π
A|−i�(( j−1)⊗{i})
{i} (c)

( By defn of Y ′′j )

≥
m∑

j=1

(π∅A|−i�( j⊗{i})(c)− π∅A|−i�(( j−1)⊗{i})(c))

( Using Lemma 3)

≥ π∅A|−i�(m⊗{i})(c)− π∅A|−i
(c)

≥ π
A|−i
(m⊗{i})(c) ( Using Lemma 3)

≥ π
A|−i
A|i (c). (15)

Thus, it follows from (14) and (15) that πi (s, c) ≥ π
A|−i
A|i (c).

Since this holds for any outcome s for which the visitor set
for cell c is A, the lemma is proven.

Using these, we now show that this game is (1,1)–smooth.
Let s and s∗ be any two outcomes. For every player i , let qi

denote the outcome (s∗i , s−i ). For any cell c, let multisets Ac

and A∗c denote the visitor sets for cell c when the outcomes
are s and s∗, respectively. Note that when the outcome is qi ,
the visitor set of cell c can be written as A∗c |i � Ac|−i . With
this notation, we can write∑

i∈P
πi (s) =

∑
i∈P

∑
c∈C

πi (s, c) =
∑
c∈C

∑
i∈P

πi (s, c) =
∑
c∈C

π∅Ac
(c).

(16)∑
i∈P

πi (s
∗) =

∑
c∈C

π∅A∗c (c). (17)

Finally, for the outcomes qi , we can write
∑

i∈P πi (qi ) =∑
i∈P

∑
c∈C πi (qi , c) =∑

c∈C
∑

i∈P πi (qi , c). Now, if player
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i does not visit cell c when playing strategy s∗i , equivalently,
if it is not contained in the visitor set A∗c , its payoff from
visiting c is simply zero. Hence, we get∑

i∈P
πi (q

i ) =
∑
c∈C

∑
i∈A∗c

πi (q
i , c) ≥

∑
c∈C

∑
i∈A∗c

π
Ac |−i
A∗c |i (c). (18)

Here, (18) follows from Lemma 4. Finally, adding (16) and
(18) and subtracting (17) gives

∑
i∈P

πi (q
i)+

∑
i∈P

πi (s)−
∑
i∈P

πi (s
∗)

≥
∑
c∈C

⎛
⎝π∅Ac

(c)+
∑
i∈A∗c

π
Ac |−i
A∗c |i (c)− π∅A∗c (c)

⎞
⎠ . (19)

Now, we show that each term of the summation on the
right-hand side of (19) is always nonnegative.

Lemma 5: Let A and A∗ be the visitor sets of a cell c ∈ C
for outcomes s, s∗ ∈ S, respectively. Then

π∅A(c)+
∑
i∈A∗

π
A|−i
A∗|i (c) ≥ π∅A∗(c). (20)

Proof: We will show that

π∅A(c)+
∑

i∈A∗\A
π

A|−i
A∗|i (c) ≥ π∅A∪A∗ (c). (21)

Recall the definitions related to multisets from Section IV.
It is easy to see that the left-hand side of (20) is not less than
that of (21) since the latter possibly excludes some terms in the
summation, and each term is nonnegative by definition. It is
also easy to see that the right-hand side of (20) is no greater
than that of (21) by Lemma 3. Thus, it suffices to prove (21)
to prove this lemma.

Now, we prove (21) by induction on the number of players
in A∗ \ A, denoted by, say, a. The base case a = 0 is when
A∗ ⊆ A, i.e., A∗ \ A = ∅. This holds trivially, as both the
sides of the inequality to be proven, become equal to π∅A(c).
Assume, as inductive hypothesis, that (21) holds whenever
a < a0, for some a0 ∈ Z

+. Now, consider the case when
a = a0. Arbitrarily fix some x ∈ A∗ \ A. Then, (A∗ \ A)|−x ,
or equivalently, A∗|−x \ A has a0−1 distinct elements. We get

π∅A(c)+
∑

i∈A∗\A
π

A|−i
A∗|i (c)

= π∅A(c)+
∑

i∈A∗\A
i �=x

π
A|−i
A∗|i (c)+ π

A|−x
A∗|x (c)

= (π∅A(c)+
∑

i∈A∗|−x\A
π

A|−i
(A∗|−x )|i (c)+ π

A|−x
A∗|x (c)

≥ π∅A∪(A∗|−x )(c)+ π
A|−x
A∗|x (c) (using the Ind. Hyp.)

≥ π∅(A∪A∗)|−x
(c)+ π

A|−x
A∗|x (c)

(since (A ∪ A∗)|−x ⊆ A ∪ (A∗|−x))

(and using Lemma 3)

≥ π∅(A∪A∗)|−x
(c)+ π

(A∪A∗)|−x
A∗|x (c)

(since (A ∪ A∗)|−x ⊇ A|−x )

(and using Lemma 3)

Fig. 2. Two-player game with temporal aspect. The only equilibrium has a
welfare of 1, the maximum possible being 2 − ε, showing that the PoA can
be arbitrarily close to 2.

= π∅(A∪A∗)|−x
(c)+ π

(A∪A∗)|−x
(A∪A∗)|x (c)

(since x ∈ A∗ \ A⇒ (A ∪ A∗)|x = A∗|x )

= π∅A∪A∗ (c).

Hence, this completes the inductive step and the proof by
induction for (21), as required.
Thus, it follows from (20) and (19) that

∑
i∈P πi (qi ) +∑

i∈P πi (s) ≥ ∑
i∈P πi (s∗). Hence, using Definition 3,

we have the desired result as follows.
Theorem 4: The multistep game with temporal aspect is

(1, 1)–smooth.
As shown in [41], a (λ, μ)–smooth payoff-maximization game
has a PoA at most 1+ μ/λ, and this bound applies to the PoA
with respect to all equilibrium concepts (mixed, correlated, and
not just pure).

Corollary 2: The multistep game with temporal aspect has
PoA of at most 2.
Thus, the game has a constant PoA bound independent of the
number of players, number of time steps. We now show with
an example, that this bound is tight.

1) Tight Example: Consider the game as shown in Fig. 2.
Let the number of time steps be l(≥ 2). The graph is a simple
path as shown with cells ci and ci+1 being neighbors of each
other for each i . Initially, the information in all the cells is 0,
except for cl and c2l—these two cells have an information
of 1 and 1 − ε respectively, where ε is a small positive
constant. There are two players with sensor effectiveness
ρ1 = ρ2 = 1, initially in cells c0 and c2l−1, respectively.
Observe that player 2 cannot grab information from both cl

and c2l within one time step. Furthermore, it follows that the
path c2l−1 → c2l−2 → . . . → cl → cl−1 is a dominant
strategy for player 2, in which case it gets a payoff of 1 and
in response, player 1 gets 0 from any strategy. Clearly, this is
a pure equilibrium, leading to a social welfare of 1. On the
other hand, if player 2 captures information from (only) c2l

allowing player 1 to capture from cl which it can reach in the
lth time step, then the social welfare can reach its maximum
value of 2 − ε. Since there is only one equilibrium, the PoS,
as well as the PoA for this game is 2− ε, i.e., it approaches 2
as ε approaches 0. Thus, we have the following theorem.

Theorem 5: The multistep game with temporal aspect has
a PoS and PoA of 2.

2) Existence of Pure Equilibria: Unlike the single-step
game, the general multistep game may not always have a PNE,
as demonstrated by the following example.
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Fig. 3. Counterexample where PNE does not exist. Players 1 and 2, with
ρ1 = ρ2 = 1, start in cells P and Q, respectively, and play the game (with
temporal aspect) for 4 time steps.

Consider the game as shown in Fig. 3. The connectivity
between cells is given by the directed edges and the infor-
mation initially available in each cell is shown. The number
of time steps is 4. Players 1 and 2, with sensor effectiveness
ρ1 = ρ2 = 1, are initially in cells P and Q, respectively. Thus,
player 1 has two strategies: paths P → A → C → E → D
and P → A→ B → D→ E . Let these be called “Left” and
“Right,” respectively. Player 2 similarly has two strategies, say
“Up” and “Down” corresponding to paths Q → U → V →
B → D and Q → K → L → M → N . Then, the payoff
matrix is given by

[ U p Down

Lef t (50, 25) (60, 8)
Right (55, 0) (55, 8)

]
.

It is easy to check that there is no PNE in this case.

D. Multistep Games Without Temporal Aspect

In this section, we analyze the game without temporal
aspect. Here, the payoff of a player from a visit to a cell
is merely dependent on which players visit the cell over the
complete course of the game and how many times, regardless
of the order in which they visit the cell. Thereby, the combined
payoff of players from their visits to a cell c (some of them
possibly simultaneously), also does not depend on the order
of visits, and can be easily computed using (9). Due to the
different settings in this game than the one with temporal
aspect, we opt for a slightly different notation. Let A, B
be multisets with support in P , with m A , m B the respective
multiplicity functions, such that B ⊆ A. Then, for a cell c,
let θ A

B (c) denote the combined payoff which the visitors in B
would obtain by visiting cell c (as many times as the respective
multiplicities in B), when the complete set of visitors for c is
given by A. Naturally, this is only meaningful when B ⊆ A.

Lemma 6: Let A, B, B ′, and D be multisets with support in
P subject to B ′ ⊆ B ⊆ A and B � D ⊆ A. Then, (1) θ A

B (c)+
θ A

D(c) = θ A
B�D(c), (2) θ A

B ′(c) ≤ θ A
B (c), and (3) θ A

A|i (c) ≥
π

A|−i
A|i (c).

Proof: The first part follows from definition, as both sides
equal the combined payoff of visitors in B and D when the
complete set of visitors is given by A. Next, applying the first
part on A, B ′, B \ B ′, respectively, we get θ A

B (c) − θ A
B ′(c) =

θ A
B\B ′(c) ≥ 0. Rearranging gives the result in the second part.

For the third part, note that in a game with temporal aspect,

in the case when the visitor set of a cell c is A, one possible
outcome s corresponds to all the visitors in A visiting in the
same time step, and thus, θ A

A|i (c) is a possible payoff of player
i from cell c when its visitor set is fixed to A. Consequently,
the result follows from Lemma 4.

To show smoothness for this game, we proceed similarly
as in the game with temporal aspect. Let s and s∗ be any
two outcomes. For every player i , let qi denote the outcome
(s∗i , s−i ). For any cell c, let multisets Ac and A∗c denote
the visitor sets for cell c when the outcomes are s and s∗
respectively. Analogous to (16), (17), and (18), we get∑

i∈P
πi (s) =

∑
c∈C

θ
Ac
Ac

(c)

∑
i∈P

πi (s
∗) =

∑
c∈C

θ
A∗c
A∗c (c)

∑
i∈P

πi (q
i ) =

∑
c∈C

∑
i∈A∗c

θ
Ac |−i�A∗c |i
A∗c |i (c).

Next, adding the first and third equations, and subtracting
the second gives∑
i∈P

πi (q
i )+

∑
i∈P

πi (s)−
∑
i∈P

πi (s
∗)

≥
∑
c∈C

⎛
⎝θ

Ac
Ac

(c)+
∑
i∈A∗c

θ
Ac |−i�A∗c |i
A∗c |i (c)− θ

A∗c
A∗c (c)

⎞
⎠ . (22)

Finally, note that θ
Ac
Ac

(c) = π∅Ac
(c) and θ

A∗c
A∗c (c) = π∅A∗c (c) by

definition. Furthermore, applying Lemma 6 on Ac|−i � A∗c |i ,
we get, θ

Ac |−i�A∗c |i
A∗c |i (c) ≥ π

Ac |−i
A∗c |i (c). With this, (22) becomes

∑
i∈P

πi (q
i )+

∑
i∈P

πi (s)−
∑
i∈P

πi (s
∗)

≥
∑
c∈C

⎛
⎝π∅Ac

(c)+
∑
i∈A∗c

π
Ac |−i
A∗c |i (c)− π∅A∗c (c)

⎞
⎠ . (23)

As seen in Section IV-C, the right-hand side of the above is
nonnegative by Lemma 5, and in turn, so is the left-hand side,
which provides the desired result and the corollary using [41].

Theorem 6: The multistep game without temporal aspect is
(1, 1)-smooth.

Corollary 3: The multistep game without temporal aspect
has a PoA at most 2.

Next, we demonstrate the tightness of this bound.

E. Tight Example

Consider the game as shown in Fig. 4. The set of players is
{1, . . . , p}, with ρ1 = ρ2 = . . . = ρp = 1. The number of time
steps is l. The cells in the network and the connectivity among
them are as shown. The information initially available in cell
c is 1, whereas in cells c2

l , . . . c p
l , it is v = l/(p − 1)l + 1−ε,

where ε is a small positive constant. The information available
is 0 in all other cells. Player 1 is initially in cell c1

l−1, whereas
every other player i > 1 is initially in cell ci

0. Now, the only
strategy for player 1 is the path c1

l−1→c1
l−2→ . . .→c1

0→c.
Now, the outcome where every other player i > 1 plays the
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Fig. 4. Game without temporal aspect where PoA can get arbitrarily close
to 2 with a high number of players and time steps. Player 1 is initially in
cell c1

l−1, whereas every other player i > 1 is initially in cell ci
0.

Fig. 6. Counterexample where PNE does not exist. Players 1 and 2, with
ρ1 = ρ2 = 0.8, start in cells P and Q, respectively, and play the game
(without temporal aspect) for 3 time steps.

strategy ci
0 → c → c → . . . → c → c gives every player

i > 1, a payoff which evaluates to l/(p − 1)l + 1. Thus,
no player i wants to deviate to the other possible strategy
ci

0 → ci
1 → . . . → ci

l as it gives a smaller payoff of
l/(p − 1)l + 1 − ε. Thus, the aforesaid outcome is a PNE,
which has a social welfare of 1. However, it can be seen that
the social welfare increases as more and more players switch
to the respective alternative strategy, and in the extreme case
of every player i > 1 switching to the respective strategy
ci

0 → ci
1 → . . .→ ci

l , the social welfare reaches the maximum
value of 2−1/(p − 1)l + 1−(p−1)ε, giving the same value of
PoA. Thus, as ε → 0, it approaches 2−1/(p− 1)l + 1, which,
in turn, can become arbitrarily close to 2 if the parameters p
or l become arbitrarily large, showing that the bound of 2 is
tight.

Existence of PNE: The following example shows that unlike
the single-step game the general multistep game without
temporal aspect may not always have a PNE.

Consider the game as shown in Fig. 6. The connectivity
between cells is given by the directed edges and the infor-
mation initially available in each cell is shown. The number
of time steps is 3. Players 1 and 2, with sensor effectiveness
ρ1 = ρ2 = 0.8, are initially in cells P and Q, respectively.
Thus, player 1 has two strategies: paths P → A1→ A2→ A
and P → B1 → B2 → B . Let these be called “sA” and
“sB ,” respectively. Player 2 has eight strategies, however, since
the sequence of the visits does not matter, there are four
distinct ones. Let these be called “A3 B0,”“A2 B1,” “A1 B2,”
and “A0 B3,” where “Ai B j ” denotes a strategy which visits A

i times and B j times. Then, the payoff matrix for this game
is given by

[ A3 B0 A2 B1 A1 B2 A0 B3

SA (0.24, 0.74) (0.33, 1.46) (0.48, 1.44) (0.80, 0.99)
SB (0.80, 0.99) (0.48, 1.44) (0.33, 1.46) (0.24, 0.74)

]
.

It follows that there is no pure equilibrium in this case.

F. Maximum Social Welfare Computational Complexity

In Section V, we propose routing policies which achieve
near-optimal social welfare and can be computed fast. The
need for such policies arises from the hardness of computing
the maximum social welfare (MSW) (and a strategy that
yields it) in the multistep UAV games. We call this problem
UAV-MSW in short. For our experiments, we consider a
surveillance environment in the form of a grid of cells—the
corresponding graph can be seen to be a more generalized
version of the rectangular subgrid graph (RSG) defined as
follows [45].

Definition 9: Let G∞ be the infinite (undirected) graph
whose vertex set consists of all points of the plane with integer
coordinates and in which two vertices are connected if and
only if the (Euclidean) distance between them is equal to 1.
An m × n RSG is a subgraph of G∞ with vertex set (without
loss of generality) {v | 1 ≤ vx ≤ m, 1 ≤ vy ≤ n}.
If the edges are directed, we call the graph directed RSG
(DRSG). We describe the experimental setup in Section V
which shows how DRSGs are a special case of the graphs we
consider. Hence, in the interest of showing the computational
difficulty, it suffices to show that the following theorem.

Theorem 7: UAV-MSW on DRSGs is NP-hard.
Proof: The hamiltonian path (HP) problem is the decision

problem to determine if there exists a path in a given graph
which visits all the vertices exactly once. Solving HP on RSGs
is shown to be NP-complete in [45]. This can be reduced to
UAV-MSW on RSGs as follows. Let G = (C, E) be an m×n
RSG given as input for the HP problem. The vertex set C
consists of all the cells in the grid. Consider a DRSG G′ =
(C, E ′), where for each edge (c, c′) in E , E ′ has directed
edges (c, c′), (c′, c). Then, we construct |C| (= mn) UAV
game instances, one corresponding to each c ∈ C . Let each
instance has G′ as the surveillance region, number of time
steps l = |C|− 1 and let P = {1}, i.e., only one player whose
sensor effectiveness be ρ = 1. For the instance corresponding
to c ∈ C , let the initial position of the player be cell c with
value v(c) = 0 and let all other cells have value 1. These
parameters completely define a multistep UAV game instance.
It is easy to see that player 1 can achieve the maximum payoff
of |C|−1 having started in c if and only if it can visit all other
|C| − 1 cells in as many steps (which is the maximum social
welfare since there is only one player). Thus, the maximum
social welfare is |C| − 1 for the instance corresponding to
cell c if and only if G′ has a directed HP starting from c,
or equivalently, if and only if G has an HP starting from c by
construction. Thus, HP outputs YES on input G, if and only
if G has an HP starting from some cell c, equivalently, if and
only one of the aforementioned UAV-MSW instances outputs
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Fig. 5. Randomly generated instances on 6 × 6 grids for the problem scenarios with 0, 1, and 2 peaks respectively. (a) No peaks. (b) One peak. (c) Two
peaks.

|C|−1. This reduction requires polynomially many calls to the
UAV-MSW oracle, and this shows that UAV-MSW is NP-hard.
(Note that the reduction works regardless of whether the game
is with or without the temporal aspect.)

V. EXPERIMENTATION

In a competitive game environment like in the UAV prob-
lem, a typical solution is a PNE. As seen from the previ-
ous sections, however, a PNE may not exist in the general
multistep game. In this section, we devise alternative easily
implementable routing policies with reasonable performance
guarantees. We propose such policies and simulate plausible
problem scenarios in the temporal setting with randomly
generated game parameters and evaluate these policies for
their performance and study the dependence on various game
parameters.

Previous work using similar models, in particular, [4], has
studied fundamentally similar policies, however, they do not
provide significant insights on the social welfare performance
which is the goal of our experimental evaluation. In addition,
we provide the analysis for much broader parameter settings
in terms of the number of players, time steps, the search
arena size and connectivity, and the information distributions.
We discuss this setup in detail as follows.

A. Setup

The randomly generated game instances are in the following
setting. The set of cells is in the form of a grid of fixed
dimensions (which can be varied across different scenarios
to study the dependence on the grid size), which is a common
representation, such as in [28]. To allow arbitrary connectivity
constraints, we have a cell connectivity parameter δ which
functions as follows. For each cell, each of the cells within a
Chebychev distance of 1 (i.e., rowwise, columnwise, or diag-
onalwise adjacent cells and the cell itself) is independently
chosen to be its out-neighbor with probability δ = 0.5.2

Since DRSGs can have edges only between cells that are
at Euclidean distance 1, it follows that the set of DRSGs is a
subset of the grid environments we consider, and consequently,
UAV-MSW is NP-hard due to Theorem 7. In every game
instance, the sensor effectiveness parameters of the UAVs are

2If no cells get chosen after having gone through all the adjacent cells,
we repeat the process, until there is at least one out-neighbor for the cell—so
that the graph does not have sinks where the UAVs can get stuck.

initialized to values chosen uniformly at random (u.a.r.) from
[0, 1]. The initial positions of the UAVs are chosen u.a.r. from
among all the grid cells.

In many real-world problems such as target detection, a few
independent cells are of high value, and the value decays as
one moves away from these cells. Such cells of the highest
value are referred to as the peaks. The cell information values
for these scenarios are set as follows.

k peaks (k > 0): We first fix k peaks p1, . . . , pk as points
from the grid chosen u.a.r. independently. Then, the infor-
mation value around a peak pi as a function of distance d
from it is given by a generalized normal distribution fi (d) =
αi 2−βi dγi , where the parameters αi , βi , and γi are chosen
u.a.r. from ranges [0.8, 1], [0.1, 0.15], and [1, 1.25] for each
peak pi , of which γi acts as the shape parameter of the
distribution. The aforesaid ranges for the parameters αi , βi ,
and γi are chosen so as to keep the information values in a
good range. Subsequently, each cell is assigned a value fi (d)
by determining the peak pi closest to the cell’s center and its
distance d from pi .

B. Zero Peaks

In this scenario, cell information values are simply chosen
u.a.r. from [0, 1].

Fig. 5 shows randomly generated instances on 6×6 grids for
these scenarios. To study any of the scenarios, we generate a
large number of instances n with all the parameters randomly
chosen as described earlier. We let the UAVs apply a routing
policy to move in the search space and collect information
accordingly. Our experiments evaluate the performance of
these policies and the dependence on various game parameters.

C. Routing Policies

We let the routing policies to be defined with a parameter τ
called as the horizon, which denotes the length of the walks
that the players consider as strategies. This is often a case in
the UAV routing domain, due to limitations on computational
power and/or the visual sensor span, etc. Thus, the total
number of time steps l could be much larger and the UAVs
route by successively committing to walks of length τ .3 We
first describe some rudimentary policies which are later used

3If the number of time steps l remaining is smaller than τ , then naturally,
τ is reduced and set to l.
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TABLE III

DEPENDENCE OF τ ′ , THE LONGEST HORIZON AT WHICH A PNE IS FOUND BY THE N E5 POLICY, ON THE NUMBER
OF PEAKS AND PLAYERS. THE OTHER PARAMETERS ARE SET TO n = 1000, l = 5, AND GRID SIZE 6× 6

TABLE IV

RUNTIME (IN SECONDS) COMPARISON AND DEPENDENCE ON GAME PARAMETERS (GRID: 6× 6)

TABLE V

EMPIRICAL PoA AND ITS DEPENDENCE ON GAME PARAMETERS

in describing our proposed policies and are also useful for
comparison as baselines.

1) Greedy Parameter τ : In this policy, the strategies con-
sidered at each step are walks of length τ . The strategy which
yields the highest payoff to the player disregarding other UAVs
in the environment is chosen under this policy.

2) Stepwise Social Welfare Maximizer parameter τ : This
policy also considers walks of length τ as strategies. Each
player computes the joint strategy which induces maximum
social welfare4 and plays the individual strategy corresponding
to this outcome.

Next, we propose routing policies which are based on a
pure-strategy NE.

3) Single-Step NE: In this policy, a UAV computes and
plays a PNE of the single-step game at every time step.
Such a PNE is guaranteed to exist in single-step games via
Theorem 1. To ensure that all the players compute the same
equilibrium, we require that the procedure of computing it is
mutually agreed upon before the game begins, as follows: the
equilibrium is obtained by applying the best-response (BR)

4Note that since the horizon τ can be a lot smaller than the total number of
time steps l, hence, greedily maximizing the social welfare in each step need
not lead to the true maximum social welfare of the game. (In fact, any policy
with a limited horizon can be made to yield arbitrarily bad social welfare,
on adversarially constructed game instances.)

TABLE VI

DEPENDENCE OF THE DEGREE OF OVERLAP ON THE GRID SIZE ( p = 2).

dynamics, the initial outcome for the BR dynamics is taken as
the one with every player playing as per the greedy myopic
policy, and the order of players for sequentially computing the
BRs is taken to be the descending order of ρi s.

4) Multistep NE Parameter τ : In this policy as well, a UAV
tries to compute a PNE via a mutually agreed BR dynamics
procedure as in the single-step NE case, except that the walk
is of length τ . Since such a PNE is not guaranteed to exist, if it
is not found within 2 pτ rounds5 of BR dynamics, the player
reduces the horizon to τ −1 and attempts to find a PNE. The
horizon is repeatedly lowered until a PNE is found, for horizon
(say) τ ′. Note that τ ′ ≥ 1 since a PNE always exists in the
single-step game. Having computed such a PNE, the players
choose the respective strategies which are walks of length τ ′.

52pτ is chosen as a conservative threshold—if the BR dynamics does not
converge in so many rounds, it is highly likely to never converge.
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TABLE VII

WELFARE QUOTIENT OF THE N Eτ POLICY, AND ITS DEPENDENCE ON THE HORIZON τ

Table III shows the multistep NE policy in operation for
various scenarios. When operated with τ = 5, a PNE was
found at the highest horizon in 894 out of 1000 times for
the two-player game with no peaks. However, this proportion
drops as the number of players increases (for the same number
of peaks). Also, it drops as the number of peaks increases (for
the same number of players). Indeed, for the game with two
peaks and five players, it is a modest 156 out of 1000 times.
These values and trends critically suggest limiting τ to as high
as 5 in our experiments.

For convenience, we denote the Greedy policy with horizon
τ by G Rτ , and the stepwise social welfare (SW) maximizer
policy with horizon τ as SWτ . Similarly, we denote the mul-
tistep NE policy with horizon τ by N Eτ , and thus, the single-
step NE policy in particular by N E1.

D. Evaluation and Results

In this section, we discuss how the policies are evalu-
ated. We compute the social welfare optimality of the N Eτ

policy by comparing it against SWτ . As explained before
using Table III, the marginal utility of having a high hori-
zon sharply decreases while the computation time naturally
increases rapidly with horizon as the strategy space for each
player increases exponentially with it. Similarly, computing
the maximum social welfare for a large horizon becomes
computationally intractable. Even for the scenarios studied
below with low horizon and number of players, the brute force
search takes time exponential in these parameters, and hence,
we compute it using an elaborate branch-and-bound technique.
We conduct experimental runtime analysis on a small grid size
6 × 6 yielding results as shown in Table IV. For l = 6 time
steps, comparing policies SW6, G R6, and N E6 shows that
the runtime (in seconds) increases with the number of players
much more rapidly for SW6 while it is relatively stable and
small for G R6 and N E6. Similarly, for a fixed number of
players p = 4, the runtime increases very rapidly with l for
the SW policy while it is relatively stable for the greedy and
the NE policies. Also, the runtimes are seen to be greater for
the scenario with one peak as compared to others.

1) Empirical PoA: We first note that SWτ is guaranteed
to achieve the maximum social welfare only when τ = l.
Hence, in our first experiment, we set l = τ = 5 and compare
N E5 against SW5. To evaluate the performance of N E5 on a
game instance, we compute the social welfare obtained when
all the UAVs employ N E5 and the one obtained when all
employ SW5, and then obtain their ratio (that of latter to
former). To obtain the empirical PoA, we average this ratio

over n = 1000 randomly generated game instances. In our
results below, we also include the minimum and the maximum
ratios obtained across the n instances, for more insight.

We analyze the dependence of the empirical PoA on the
number of players by varying p between 2 and 4, fixing the
grid size to 5 × 5. Similarly, we analyze the dependence on
grid size by varying it between 6× 6, 5× 5, and 4× 4, while
fixing p = 4. We consider scenarios with up to two peaks.
The results are shown in Table V.

Observe that, in each scenario, the empirical PoA increases
with the number of players and decreases with the grid size.
A plausible explanation for this is that, with only a few
players, or with a large grid, players are more likely to be
far from each other, thus with little overlap between their
strategies. As a result, their BRs to each other are more
likely to be dominant strategies which yield the individual
maximum payoffs possible when there are no other players.
Thus, the N E5 policy is more likely to get a social welfare
close to the maximum, resulting in a low PoA. To capture this
more closely, we define and analyze the degree of overlap as
follows.

We fix the number of players to 2 and for n = 1000
instances, we compute the average probability that two strate-
gies, one each drawn u.a.r. from the set of strategies of the
two players, respectively, overlap. Observe that when the two
players are in the same location or very close, this probability
is very high, whereas, when the players are far away, their
strategies are nonoverlapping walks, making this probability 0.
Table VI shows the dependence of this degree of overlap on
the grid size. As we intuitively expect, this dependence does
align with that of the empirical PoA in Table V, as both the
quantities are higher for the smaller grid size and for the
scenario with no peaks.

Overall, the results indicate that the N E5 policy does well
as compared to the optimal SW5 policy, with the empirical
PoA smaller than a meager 1.1 on average. Also, the worst
instances found in all the scenarios have a ratio well below the
theoretical bound of 2 while there are always instances where
the policy does achieve the maximum social welfare.

2) Experiments on Large Problem Instances: Here, we con-
sider larger game parameters by setting the grid size to
10 × 10, the number of time steps l = 25, and the number
of players p = 4. We compare N Eτ against SWτ , keeping
the horizon equal for the policies being compared. We vary
τ from 1 through 5, to study the dependence on the horizon.
The evaluation is done by obtaining the ratio of social welfare
averaged over n = 1000 randomly generated game instances,
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as described before. We call this the welfare quotient of N Eτ

(and not empirical PoA, since it is not compared against the
true maximum social welfare). Naturally, lower the quotient,
better is the performance. The results are shown in Table VII.

We observe that the average welfare quotient of N Eτ for all
horizons (up to 5) is very close to 1. As pointed out earlier,
SWτ does not yield the true maximum social welfare, and
hence, N Eτ could yield a higher welfare than SWτ at times
causing the quotient to be less than 1, which is prominently
reflected in many instances, such as one in the scenario with
no peaks where SW2 achieves only about 75% of the welfare
achieved by N E2. Thus, having a horizon much lower than
the number of time steps critically affects the performance of
SWτ , and as a result, N Eτ does almost as well in comparison,
with a mild rise in the welfare quotient as τ increases.

VI. CONCLUSION

UAVs are becoming increasingly popular in search and
reconnaissance missions due to their ability to conduct tedious
tasks, inexpensively and without risk to human life. When
the area of operations is large, a fleet of UAVs might be
deployed. This paper addressed the problem of autonomous
routing of a UAV fleet in a communication denied area where
the UAVs are not allowed to exchange information or negotiate
trajectories. The problem is modeled in a game theoretic
framework. More specifically, we formulated the multiagent
UAV routing problem as a game where UAVs are players and
their strategies are the different routes they can take. We have
considered many useful and interesting concepts including
temporal aspect and fusion.

This paper develops many research results on methodolog-
ical and practical sides. For the commander or manager of
the fleet, it is reassuring to know that the multiagent routing
policies developed in this paper can produce outcomes that are
theoretically bounded by one-half of the optimal centralized
policy if, in fact, one could come up with it. This bound is
independent of the length of the routes and independent of the
fleet size. Furthermore, we have categorized the single-step
game as a new variant of weighted congestion-type games.
For this class, and for the general formulations of the multistep
UAV game, we prove the existence or nonexistence of the pure
equilibrium. Along with this, tight bounds on PoA and PoS
for all the various formulations, constitute the majority of the
technical results of this paper.

To learn the actual PoA and PoS values in practice,
we juxtapose our theoretical results with empirical studies.
We propose a multiagent UAV routing policy, which, on the
average, produces total information gain much closer to the
centralized solution than to the theoretical bound. We also
find that PoA increases with the congestion level when the
UAVs compete for a smaller area or more UAVs are added to
the search area. We also highlight the limitations of having a
small horizon, as an upshot of which, our proposed routing
policy performs almost as well as the policy which greedily
maximizes the social welfare at each horizon.

The future effort could be directed at studying these policies
for longer rolling horizons and for persistent surveillance

scenarios. It is also natural to think about the obsolescence
of information where the collected value can decay due to
the passage of time, and a UAV has to be routed back to
collect the information being “built up.” When intermittent
communication is permitted, new cooperation strategies can
be conceived and reduction in PoA can be studied. Routing to
avoid an adversarial team is also an interesting area that can
benefit from the framework developed in this paper.
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