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Abstract—This paper proposes a condition-based maintenance
policy for a deteriorating system whose state is monitored by
a degraded sensor. In the literature of condition-based mainte-
nance, it is commonly assumed that inspection of system state
is perfect or subject to measurement error. The health condition
of the sensor, which is dedicated to inspect the system state,
is completely ignored during system operation. Yet due to the
varying operation environment and aging effect, the sensor itself
will suffer a degradation process and its performance deteriorates
with time. In presence of sensor degradation, Kalman filter is
employed in this paper to progressively estimate the system and
the sensor state. Since estimation of system state is subject to
uncertainty, maintenance solely based on the estimated state will
lead to a sub-optimal solution. Instead predictive reliability is
used as a criterion for maintenance decision-making, which is
able to incorporate the effect of estimation uncertainty. Preventive
replacement is implemented when the estimated system reliability
at inspection hits a specific threshold, which is obtained by
minimizing the long run maintenance cost rate. An example of
wastewater treatment plant is used to illustrate the effectiveness
of the proposed maintenance policy. It can be concluded through
our research that (i) disregarding the sensor degradation while
it exists will significantly increase the maintenance cost; (ii) the
negative impact of sensor degradation can be diminished via
proper inspection and filtering methods.

Note to Practitioners—This paper was motivated by the ob-
servation of sensor degradation in wastewater treatment plants
but the developed approach also applies to other systems such
as manufacturing systems, chemical plants, and pharmaceutical
factories, where sensors are dedicated to a long-time operation in
harsh environment. This paper investigates the impact of sensor
degradation on condition-based maintenance and suggests that
the effect of sensor degradation should be carefully addressed
while making maintenance decisions. Otherwise, it will lead to
a sub-optimal maintenance decision and increase the operating
cost. An optimal maintenance decision, which contains the opti-
mal inspection interval and reliability threshold, is achieved via
minimizing the long run cost rate. In presence of measurement
noise and intrinsic uncertainty from degradation, a stochastic
filtering approach is employed to estimate the system and sensor
state. Based on the estimated states and the calculated reliability,
a dynamic maintenance decision is obtained at each inspection.
This study can be further extended considering non-Gaussian
noise and alternative degradation processes.

Index Terms—Condition-based maintenance, imperfect inspec-
tion, sensor degradation, Wiener process, stochastic filter.
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I. INTRODUCTION

NOWADAYS, with the increasing requirement of high
reliability and safety for modern systems, advanced data-

collecting techniques are widely used to monitor system health
condition, either continuously or periodically. The ability to
gather system health information significantly prompts the
development of condition-based maintenance (CBM). In the
past few decades, CBM has received an increasing attention,
due to its capability to intervene system performance in time.
As opposite to traditional time-based maintenance policies,
CBM has shown its advances in preventing system failure and
reducing operating cost from both the academic and practical
point of view [1]–[3].

The effectiveness of CBM policy highly depends on the
appropriateness of system degradation modeling and the in-
spection/monitoring accuracy. In terms of the inspection ac-
curacy, CBM can be classified into two categories: CBM
with perfect inspection and with imperfect inspection [4]–[9].
The assumption of perfect information eliminates the effect
of measurement noise and allows the CBM more focused on
the development of optimal maintenance policy. In literature,
numerous CBM models have been proposed assuming perfect
inspection (e.g., [10]–[13]).

In practical applications, however, sensor is often subject
to noise and perfect inspection cannot be achieved [14],
[15]. For this reason, the assumption of perfect inspection is
relaxed to establish a more realistic model, which leads to
the development of CBM with imperfect inspection. Actually,
the existing CBM policies with imperfect inspection primarily
follow two streams. One stream formulates the maintenance
issue into the framework of partially observable Markov deci-
sion process (POMDP) or its variants [16]–[20]. For example,
[21] developed a CBM policy for a deteriorating system with
partially observable environment, where the degradation rate is
determined by the operating environment. POMDP model was
formulated to achieve the optimal maintenance decision. [22]
investigated the CBM issue for a machine subject to imperfect
continuous monitoring. A continuous-observation partially ob-
servable semi-Markov decision process was presented to select
various maintenance actions.

The other stream embeds a CBM policy with system state
estimation and degradation parameter updating [23]–[25]. [25]
developed a maintenance model with a sensor-based updating
scheme, where the optimal maintenance routine was scheduled
based on the updated degradation parameters and estimated re-
maining useful life distribution. [26] developed a maintenance
model under indirect condition monitoring, where the value
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of condition monitoring and impact of measurement error are
investigated in detail. [27] presented a risk sensitive particle
filter for prognostic, which was further applied in maintenance
scheduling. [28] proposed a CBM policy using real-time
remaining useful life prediction for a multi-component system
with stochastic dependence. Although imperfect monitoring
is considered, an implicit assumption of the previous studies
is that the sensor performance remains steady within its life
cycle, implying constant measurement noise or inspection
error.

However, due to the varying operating environment and cu-
mulative damage to the equipment and the dedicated sensors,
the assumption of constant inspection quality during the life
cycle is increasingly challenged. In real-life application, the
performance of sensor usually deteriorates over a long period
of operating time [29]–[31]. [32] investigated the impact of
sensor degradation on control system and developed an ap-
proach to optimally improve the system reliability. One of the
most serious impairment is sensor drift, which has plagued the
research community for decades. In general, sensor drift can
be attributed primarily to two sources [33], [34]. One is due to
the internal degradation as a result of chemical and physical
interaction during the operation period. The other derives from
external and uncontrollable operating environment, such as
variations of temperature and humidity. Existence of sensor
degradation will significantly influence the effectiveness of
system health prognostic and the associated CBM policies
[35], which will lead to increased maintenance and operating
cost if no counteracting measures are implemented to deal with
the sensor degradation.

The impact of sensor degradation lies in the distortion
of measurements, which makes the observations biased and
severely deviate from the true values [36]. Without proper
approaches or measures to diminish the negative effect of
sensor degradation, estimation of system state and the asso-
ciated maintenance policy will have to be conducted based
on the fraudulent information provided by the sensors. As a
result, the maintenance decisions will deviate from the optimal
one and maintenance actions will be ineffectively performed,
which endangers the operating system and causes huge e-
conomic losses. Our case study shows that the maintenance
cost without addressing the sensor degradation is much higher
than the maintenance cost that has properly handled the sensor
degradation, which indicates that the sensor degradation exerts
a significant impact on maintenance decision.

To the best of our knowledge, no previous studies have
covered the issue of CBM with sensor degradation, despite its
prevalence and criticality in industrial applications. Motivated
by the practical need of CBM models considering sensor
degradation, in this paper, we investigate the effect of sensor
degradation on CBM decision-making. A system is subject
to a continuous degradation, described by Wiener process,
along with a sensor to inspect the system state. However, the
inspection is imperfect in the sense of measurement noise and
time-varying drift as a result of sensor degradation. To face
with this issue, stochastic filtering is employed to estimate the
drift level and system state as a first step, followed by the
CBM model. The optimal maintenance policy is achieved by

minimizing the long run cost rate.
The remainder of this paper is organized as follows. Section

II describes the degradation process of the system and sensor,
and the measurement process. In Section III, the proposed
maintenance policy is firstly presented. Then, a maintenance
cost model is formulated based on the imperfect observation.
An initial guess based on perfect inspection is herein proposed
to serve for optimization algorithm. Section IV describes the
estimation process and impact of sensor failure on mainte-
nance action at inspection, where Kalman filter is employed
to estimate the system and sensor states. In Section V, an
example of wastewater treatment plant is used to illustrate
the effectiveness of the proposed maintenance policy. Finally,
conclusions and future research directions are provided in
Section VI.

II. SYSTEM & SENSOR DEGRADATION PROCESS

Consider a system subject to a continuous-time degradation
process. Wiener process is employed to describe the underly-
ing degradation progression. Wiener process exhibits a non-
monotone degradation path, which has successfully captured
the degradation characteristics of many real-life systems [37],
[38]. Let stochastic process X(t), t ≥ 0 denote the associated
degradation process over the operating time t, which is ex-
pressed as

X(t) = X (0)+λ t +σB(t) (1)

where λ is the drift coefficient, σ is the diffusion coefficient,
and B(t) is the standard Brownian motion. X(0) is the initial
degradation level, and σB(t) ∼ N(0,σ2t) stands for the ran-
domness of the degradation process. Without loss of generality,
it is assumed X(0) = 0.

Sensor is dedicated to inspecting the system state. However,
due to the varying environmental factor and cumulative dam-
age, the dedicated sensor is subject to a degradation process. It
is assumed that the degradation of sensor can be characterized
by increase of drift and measurement inaccuracy, which is
modeled as Wiener process, i.e.,

S(t) = S (0)+ηt +δB(t) (2)

where S(t) is the sensor degradation level at time t, η and δ

are the drift and diffusion coefficients respectively. Note that
η can be positive or negative, denoting the positive or negative
drift. It is also assumed that the system and sensor degrade
independently and the degradation parameters are known in
advance. Actually the parameters can be estimated with offline
historical failure/degradation data. Numerous existing methods
serve for the estimation purpose, e.g., maximum likelihood
estimation and moment estimation [39], [40]. We do not
present the parameter estimation procedure since is out of the
scope of this paper.

Let {Y (t), t ≥ 0} denote the measurement process, which
relates the uncertain observation with the underlying system
and sensor degradation state at time t. Combining the influence
of sensor and system degradation, the measurement at time t
is given as

Y (t) = X(t)+S(t)+ ε (3)
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Fig. 1: Sketch of observation, system & sensor degradation

where ε is the statistically independent and identically dis-
tributed measurement error, following normal distribution ε ∼
N(0,γ2) at any time point.

Fig. 1 depicts the system & sensor degradation and mea-
surements at inspection. If there exists sensor degradation, the
measurements at inspection deviate from the system degrada-
tion. If no sensor degradation is considered, the measurement
at time t is reduced to Y (t) = X(t)+ ε , which is identical as
the measurement process in traditional works.

Following the tradition of first-passage-time (FPT), system
failure time is defined as the epoch when the system degrada-
tion level hits the pre-specified threshold ζ for the first time.
System lifetime T is interpreted as the FPT to the pre-specified
failure threshold, i.e.,

T = inf{t : X(t)≥ ζ} (4)

The probability density function (pdf) and cumulative distri-
bution function (cdf) of system lifetime T are given as [38]

fT (t) =
ζ√

2πt3σ2
exp
(
−ζ −λ t

2σ2t

)
(5)

FT (t) = 1−Φ

(
ζ−λ t
σ
√

t

)
+exp

(
2λζ

σ2

)
Φ

(
−ζ−λ t

σ
√

t

) (6)

Remark 2.1: In this study we use Wiener process to illus-
trate our approach. Actually, sensors in different industries
will exhibit different degradation processes. The sensor can
be subject to various degradation processes, such as Gamma
process, inverse Gaussian process, etc., depending on the
application and the environmental influence. But our method
can be applied as well. In addition, the error could be a linear
or non-linear function with respect to the sensor degradation
level. In this study, a linear form is used. It should be noted
that if the system is subject to a non-linear degradation, we
may need to resort to other filtering approach such as extended
Kalman filter or particle filter.

III. FRAMEWORK OF CONDITION-BASED MAINTENANCE
MODEL

In this section, we will describe the maintenance policy and
formulate the associated maintenance cost model. Long-run
maintenance cost rate is employed as the criterion to evaluate
the proposed policy. The optimal maintenance decision is
achieved via an optimization procedure with a near-optimal
initial guess.

A. Description of the maintenance policy

The system under consideration is subject to discrete in-
spection. Let {tk,k = 0,1,2, ...} denote the inspection time,
0 = t0 < t1... < tk. Denote yk = Y (tk) as the observation at
time tk. The set of degradation measurements is denoted
Y1:k = {y1,y2, ...,yk}. Let xk = X(tk) represent the system
degradation state at time tk.

Based on the Kalman filter, the system state is updated when
new observation arrives, which leads to a nonstationary degra-
dation process. Therefore, we resort to a dynamic maintenance
policy to effectively prevent system failure, which determines
the optimal maintenance action at each inspection epoch, given
the inspection history Y1:k.

It is assumed that the system failure is not self-announcing,
i.e, system failure can only be detected at inspection, which is
referred to as soft failure [37], [41]. Note that soft failure may
not necessarily indicate physical failure (catastrophic failure),
but can be the performance of a system that fails to satisfy the
demands. Soft failure is commonly assumed in maintenance
literatures and industrial applications [38]. Particularly, for
safety-critical systems, a system is deemed failed when its
safety or reliability drops to a certain level. Following the
industrial practice, periodic inspection is used to monitor the
system state. Let ∆T be the inspection interval which is the
first decision variable in our model. In the remaining context,
we will use tk (tk = k∆T ) and k∆T interchangeably. Inspection
cost ci is incurred at each inspection epoch. Compared with
the operation horizon of the system, inspection is assumed to
be instantaneous and non-destructive.

Two maintenance actions are considered in this paper: cor-
rective replacement and preventive replacement. At inspection
epoch tk, if the system functions, the decision maker may
decide whether to replace the system preventively or wait
till the next inspection. Preventive replacement is carried out
when the system is anticipated to approach the failure state,
with preventive replacement cost cp. Otherwise, the system
is left as it be. If the system is found failed at inspection,
then it is correctively replaced, with corrective replacement
cost cr. A replacement can either be a physical replacement
or an overhaul that restores the system to the as-good-as-new
state. Although both corrective replacement and preventive
replacement bring the system to the as-good-as-new state, their
cost may differ because corrective replacement is unplanned,
which requires more logistic support and disturbs the operation
schedule. In addition, failure may incur additional costs such
as damage to the environment, which is included in the
corrective replacement cost. It is therefore anticipated cr > cp.
Since the system is operating with unsatisfied performance
during the interval from system failure to the next inspection,
a downtime cost is charged per unit time, denoted as cd . The
sensor is replaced along with system replacement.

If the inspection is perfect, then the optimal maintenance
policy turns out as a control limit policy, which states that
the system is preventively replaced when the observed system
state exceeds the optimal preventive replacement threshold.
However, the control limit policy based on perfect inspection
may not remain optimal in presence of measurement errors.
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This is due to the fact the true system state cannot be fully
captured at inspection, rather, what can be obtained is a nor-
mally distributed random estimate, whose behavior depends on
two parameters: mean and variance. A maintenance decision
solely based on the mean of system state may lead to a sub-
optimal solution. It is well noted that under perfect inspec-
tion, the optimal replacement policy is to replace the system
when its degradation level hits a constant threshold. However,
under imperfect inspection, as the underlying degradation is
estimated rather than directly observed, maintenance decision
has to take into account the effect of mean and variance of
the estimated system state. Fig. 2 describes the difference of
preventive replacement under perfect inspection and imperfect
inspection. Under imperfect inspection, a more conservative
maintenance policy is warranted to balance the influence of
estimation uncertainty.

Let Rtk (t|Y1:k) be the system reliability function given the
observation history Y1:k. In the case of perfect inspection, due
to the memoryless property of Wiener process, Rtk (t|Y1:k) is
identical to the reliability function given the current system
state, Rtk (t|Y1:k) = Rtk (t|xk). However, in the present case
where inspection contains noise and reliability estimation has
to rely on the whole observation history, the Markov property
no longer holds.

The maintenance policy works as follows: at the kth in-
spection, if the system has failed, corrective replacement is
implemented. If the system is still functioning, a preventive
replacement is carried out if the system reliability at the
next inspection epoch Rtk (tk +∆T |Y1:k) falls below a critical
threshold Rs (Rtk (tk +∆T |Y1:k) < Rs < 1). Otherwise, it is
left unattained. The reliability threshold Rs is the second
decision variable of maintenance optimization. For safety-
critical systems where a high reliability level is warranted, the
reliability threshold is given as a constraint in optimization.

B. Maintenance cost model

Following the tradition of existing maintenance policies, in
this paper long run cost rate is employed as the criterion to
evaluate the effectiveness of the proposed maintenance policy.
The long run cost rate is given as

C∞(∆T,Rs) = lim
t→∞

C(t)
t

(7)

Based on the proposed maintenance policy, it follows

C(t) = ciNI(t)+ cpNP(t)+ ccNC(t)+ cdW (t) (8)

where NI(t), NP(t), and NC(t) are respectively the number of
inspection, preventive replacement and corrective replacement
in the time interval [0, t], W (t) is the cumulative downtime. The
objective of the maintenance optimization is to minimize the
long run cost rate by searching the optimal inspection interval
∆T and reliability threshold Rs.

Since both preventive replacement and corrective replace-
ment restore the system to the as-good-as-new state, the
degradation process {X (t) ; t ≥ 0} is a regenerative process. A
renewal cycle occurs when the system is replaced. A renewal
cycle is defined as the time interval between two consecutive
replacements or the time period to the first replacement since

system installation. The classical renewal-reward theorem can
be applied to calculate the long run maintenance cost rate of
(7) [26], [42], which is given as

C∞(∆T,Rs) =
E [C(Z)]

E [Z]

=
ciE [NI(Z)]+ cpE [NP(Z)]+ ccE [NC(Z)]+ cdE [W (Z)]

E [Z]
(9)

where Z is the length of a renewal cycle, and C(Z) is the
total maintenance cost of a renewal cycle, NI(Z), NP(Z), and
NC(Z) are respectively the number of inspection, preventive
replacement and corrective replacement in a renewal cycle,
W (Z) is the cumulative downtime of a renewal cycle.

Let pc(k) be the probability that the renewal cycle ends
with corrective replacement at the kth inspection, and pp(k)
the probability that the renewal cycle ends with preventive
replacement at the kth inspection. By simple algebra, we can
rewrite the long run cost rate as

C∞ (∆T,Rs) =
ci

∆T
+ cd

∞

∑
k=1

pc (k)

+

cp
∞

∑
k=1

pp (k)+ cc
∞

∑
k=1

pc (k)− cd
∞

∑
k=1

pc (k)
∫ k∆T
(k−1)∆T tdFT (t)

∆T
∞

∑
k=1

k (pc (k)+ pp (k))

Denote Ak as the event that corrective replacement is carried
out at the kth inspection and Bk the event that preventive
replacement is performed at the kth inspection. pc(k) and
pp(k) can be expressed as

pc(k) = P(Ak

k−1⋂
i=1

ĀiB̄i)

and

pp(k) = P(Bk

k−1⋂
i=1

ĀiB̄i)

Since preventive replacement is performed when the one-
inspection-ahead reliability at inspection exceeds the threshold
Rs, one first has to calculate Rtk (tk +∆T ) at kth inspection
before reaching pc(k) and pp(k), which is denoted as

Rtk (tk +∆T ) = EY1:k

[
Rtk (tk +∆T |Y1:k)

]
=
∫

y1

∫
y2

...
∫

yk

Rtk(tk +∆T |y1,y2, ...yk)·

f (y1,y2, ...yk)dy1dy2...dyk

where f (y1,y2, ...yk) is the joint distribution of y1,y2, ...yk. For
the system subject to imperfect inspection, Kalman filter is
used to progressively estimate the system state and reliability.
In the following, we will present the procedure for state esti-
mation and reliability prediction given the observation history.
However, since state estimation via Kalman filter depends on
the measurement history, computation of the one-inspection-
ahead reliability has to integrate all possible measurements
Y1:k. It is extremely difficult to obtain the analytical expression
of Rtk (tk +∆T ), let alone the long run cost rate of (9).
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Fig. 2: Comparison of preventive replacement under perfect
and imperfect inspection

Therefore, we resort to Monte Carlo simulation to evaluate
the maintenance policy. An optimal policy is achieved by
minimizing the long run cost rate in (9), i.e.,

{∆T ∗,R∗s}= arg min
(∆T,Rs)

{C∞ (∆T,Rs) ;0 < Rs < 1} (10)

Note that for some systems the inspection interval is given
as a constraint due to industrial standards. With respect to
the case where the inspection interval is given in advance,
the decision variable is reduced to the reliability threshold.
The optimal maintenance decision {∆T ∗,R∗s} can be obtained
via two-directional search. A near-optimal initial guess of
{∆T ∗,R∗s} contributes to facilitating the search algorithm. The
near-optimal initial guess of the optimal maintenance decision
is presented in Appendix A.

Remark 3.1: In the current work, periodic inspection is
used to observe the system state. In some applications, the
system may be subject to continuous monitoring, where a
dedicated sensor is installed along with the system to monitor
its health condition [24], [25]. In this scenario, the observations
are presented at every basic time unit, which implies ∆T = ω

for a small value ω (e.g., ω = 0.01). In addition, the inspection
cost will be suppressed, ci = 0. But we need to incorporate
the one-time sensor installation cost during the formulation of
maintenance cost. It should be noticed that this is a special case
of our proposed maintenance policy which can be obtained by
setting the inspection cost ci = 0 and ∆T = ω . In the case of
continuous monitoring, the maintenance cost of (8) is reduced
to

C(t) = cpNP(t)+ ccNC(t)+ c0

where c0 is the one-time installation cost of the sensor. For
continuous monitoring, it should be noted that the one-step-
ahead reliability would approach to 1, Rs → 1, since the
inspection interval ∆T → 0. On the other hand, for continuous
monitoring, the maintenance lead time (i.e., the time inter-
val between the maintenance alarm triggered and the actual
maintenance time) should be taken into account. Therefore,
the reliability criterion is modified based on the lead time. Let
Rc be the system reliability evaluated ahead of the lead time
TL. The long run cost rate is then given as

C∞(Rc) =
cpE [NP(Z)]+ ccE [NC(Z)]+ c0

E [Z]

IV. ONLINE STATE ESTIMATION

Now that we have calculated the optimal maintenance
decision variables, we are now arriving at implementing the
maintenance actions based on the observation history. As a first
step we need to estimate the degradation state of the system
and sensor. Kalman filter serves for the estimation purpose.
Let sk = S(tk) represent the sensor state at time tk. The set
of system degradation and sensor degradation are expressed
as X1:k = {x1,x2, ...,xk} and S1:k = {s1,s2, ...,sk}. With the
aforementioned notations, we can have the state-space model
as  xk = xk−1 +λ (tk− tk−1)+uk

sk = sk−1 +η(tk− tk−1)+ vk
yk = xk + sk + εk

(11)

where uk = σ [B(k)−B(k−1)] and vk = δ [B(k)−B(k−1)].
{uk,k ≥ 0}, {vk,k ≥ 0} and {εk,k ≥ 0} follow statistical-
ly independent and identically normal distribution, i.e.,
uk ∼ N

(
0,σ2(tk− tk−1)

)
, vk ∼ N

(
0,δ 2(tk− tk−1)

)
and εk ∼

N(0,γ2).
The underlying system degradation state is casted by the

sensor degradation variability and measurement uncertainty
and can only be estimated based on the observations up to
time t, Y1:k. Since (4) exhibits dynamic linear property and the
degradation variability, uk and vk, and measurement noise εk,
follow Gaussian distribution, Kalman filter can be employed
to estimate the system and sensor degradation states. Kalman
filter is known as linear quadratic estimation and has shown
its effectiveness in various applications [12], [43]–[45]. Under
the framework of Kalman filter, we reorganize the state-space
model as {

zk = Azk−1 +Bk +wk
yk = Hzk + εk

(12)

where zk =

[
xk
sk

]
, A =

[
1 0
0 1

]
, Bk =

[
λ (tk− tk−1)
η(tk− tk−1)

]
,

H =
[

1 1
]
, wk ∈ R2×1, wk ∼ N(0,Qk), Qk =[

σ2(tk− tk−1) 0
0 δ 2(tk− tk−1)

]
.

As the first step, we define the expectation and variance of
the estimators zk conditional on the observation history Y1:k,
which is given as

ẑk|k =

[
x̂k|k
ŝk|k

]
= E(zk|Y1:k)

Pk|k =

[
χ2

x,k χ2
xs,k

χ2
xs,k χ2

s,k

]
= cov(zk|Y1:k)

where x̂k|k = E(xk|Y1:k), ŝk|k = E(sk|Y1:k), χ2
x,k = var(xk|Y1:k),

χ2
s,k = var(sk|Y1:k), and χ2

xs,k = cov(xksk|Y1:k). In addition, the
one-step-ahead predicted estimation and variance of zk are
denoted as

ẑk|k−1 =

[
x̂k|k−1
ŝk|k−1

]
= E(zk|Y1:k−1)
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Pk|k−1 =

[
χ2

x,k|k−1 χ2
xs,k|k−1

χ2
xs,k|k−1 χ2

s,k|k−1

]
At the kth inspection time tk, we can have the following
Kalman filter procedure:

1) State estimation
State prediction:

ẑk|k−1 = Aẑk−1|k−1 +Bk (13)

Updated state estimate:

ẑk|k = ẑk|k−1 +K(k)(yk−Hẑk|k−1) (14)

2) State covariance estimation
Covariance prediction:

Pk|k−1 = APk−1|k−1AT +Qk (15)

Filter gain:

K(k) = Pk|k−1HT [HPk|k−1HT + γ
2]−1 (16)

Updated state covariance:

Pk|k = Pk|k−1−K(k)HPk|k−1 (17)

The initial values of the degradation states are given as

ẑ0|0 =

[
0
0

]
,Pk|k =

[
0 0
0 0

]
Since the degradation variability and measurement noise are

normally distributed, it can be concluded the posterior estima-
tion of the system and sensor degradation state conditional
on measurement history Y1:k follows a bivariate Gaussian
distribution, zk|Y1:k ∼ N(ẑk|k,Pk|k). In particular, we have

xk|Y1:k ∼ N(x̂k|k,χ
2
x,k) (18)

sk|Y1:k ∼ N(ŝk|k,χ
2
s,k) (19)

Without assuming a deterministic sensor drift parameter η ,
in the case where η is random in nature, state estimation
procedure has to incorporate the random effect of η . If η

is normally distributed, η ∼ N(µη ,ση), Kalman filter can be
applied as well. The detailed Kalman filter procedure is shown
in Appendix B.

Remark 4.1: For some systems, the system degradation
may exert influence on the sensor degradation process due to
the specific inspection mechanism and environment. However,
the underlying physical mechanism may be very complicated
to prohibit an accurate modeling. For illustrative purpose,
we present the procedure of state estimation under the case
where the system degradation has an additive impact on sensor
degradation. Details are presented in Appendix C.

Following the concept of FPT, the remaining useful time
(RUL) of the system at the kth inspection time tk, Lk, is defined
as

Lk = inf{lk : X(lk + tk)≥ ζ} (20)

By use of Kalman filter, given the measurement history Y1:k,
the distribution of RUL can be obtained as

fLk|Y1:k
(t) = Exk

[
fLk(t|xk)

]
=

(ζ − x̂k|k)σ
2 +χ2

x,kλ√
2π(χ2

x,k +σ2t)3
exp

(
−
(ζ − x̂k|k−λ t)2

2(χ2
x,k +σ2t)

)
(21)

and

FLk|Y1:k
(t) =

∫
FLk(t|xk) fφ (xk)dxk

= 1−Φ

ζ − x̂k|k−λ t√
χ2

x,k +σ2t


+ exp

2λ (ζ − x̂k|k)

σ2 +

(√
2λ χx,k

σ2

)2
 ·

Φ

−ζ + x̂k|k−λ t−2λ
χ2

x,k
σ2√

χ2
x,k +σ2t



(22)

where fLk|Y1:k
(t) and FLk|Y1:k(t) are the conditional pdf and cdf

of the RUL of the system, fφ (xk) is the pdf of system state at
the kth inspection,

fφ (xk) =
1√

2πχ2
x,k

exp

((
x− x̂k|k

)2

2χ2
x,k

)
(23)

The dynamic maintenance is implemented by comparing the
estimated one-inspection-ahead system reliability with the cal-
culated threshold R∗s . However, if the sensor fails, the mainte-
nance decision has to be made based the previous observations.
Details of the impact of sensor failure on maintenance decision
making is provided in Appendix D.

In the previous discussion, we assume that the parameters of
both the system and sensor degradation processes are known
in advance. In practice, the degradation parameters can be esti-
mated from historical degradation data. To estimate the Wiener
process parameters based on real data, which has to include
both S(t) and X(t), we need to have two sensors, one with
degradation and the other without any degradation. The one
without degradation is used to estimate the parameters of the
sensor degradation. Based on the estimated sensor degradation
parameters, the signals from the degraded sensor are then used
to estimate the parameters of system degradation. One single
sensor fails to simultaneously estimate the system and sensor
degradation parameters, as the degradation information of the
system and sensor is mixed. With two sensors we can estimate
the parameters. In Appendix E, we present the procedure to
estimate the sensor degradation parameters in presence of a
new sensor (without any degradation).

V. APPLICATION IN WASTEWATER TREATMENT PLANTS

In this section, a wastewater treatment plant is used to
illustrate the proposed maintenance policy and parameter esti-
mation. Activated sludge process is a widely adopted to handle
pollutants in wastewater treatment plants. However, scheduled
operation of activated sludge process is often impeded in
presence of filamentous bulking. Sludge bulking occurs largely
due to the growth of filamentous bacteria, which can be
modeled as a degradation process [46], [47]. In practice,
an empirical measurement, Sludge Volume Index (SVI), is
commonly used to characterize the degradation of filamentous
sludge bulking. Unfortunately the real data is not available.
The example we use is a real problem that serves the purpose
of illustration.
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Fig. 3: Sketch of oxidation ditch process

A. Case study setting

It is assumed that the SVI follows a Wiener process with
linear drift, where λ = 1 and σ = 0.5. The active sludge
process is considered failed when the SVI exceeds a pre-
specified level. Note that determination of an accurate failure
threshold to indicate serious filamentous sludge bulking is still
an open issue. For illustrative purpose, an arbitrary value of
SVI is used as failure threshold in this paper, ζ = 15. Among
various active sludge processes, oxidation ditch process is a
biological treatment process that utilizes long solids retention
time to achieve satisfactory nitrogen removal performance.
Fig. 3 shows a schematic of the oxidation ditch process [47].
On the other hand, due to the existence of filamentous bacteria
and corrosive materials in the wastewater, the sensor dedicated
to inspecting the degradation level of sludge bulking is subject
to degradation. The sensor itself is assumed to suffer a Wiener
degradation process with η = 0.2 and δ = 0.1. Observation at
inspection is not only influenced by the system degradation
and sensor degradation, but also contaminated by noise with
γ = 0.5.

The wastewater is periodically inspected to determine the
degradation level (SVI), with inspection cost ci = 1. When the
SVI hits the preventive replacement threshold, the wastewater
is intervened preventively with cost cp = 20. If the SVI is
found to exceed the failure threshold, which implies a serious
filamentous sludge bulking, the wastewater is treated with
large effort, at the cost cr = 50. In addition, during the period
from system failure to the next inspection, the oxidation ditch
process is operating under serious sludge bulking, which incurs
cost cd = 200 per unit time.

B. Key results

1) Numerical results: In the presence of sensor degradation
and imperfect observation, the optimal reliability threshold
cannot be analytically calculated. Monte Carlo simulation is
therefore employed. The number of Monte Carlo simulation is
5000. The optimal maintenance policy is achieved at ∆T ∗ = 3
and R∗s = 0.999, with the long run cost rate C∞∗ = 2.72. Fig.
4 and Fig. 5 show how the one-inspection-ahead reliability
Rs varies with respect to the estimated system state x̂ and the
associated variance χ2. It is clearly observed that Rs shows a
decreasing trend with x̂ and χ2.
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Fig. 4: One-inspection-ahead system reliability
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Fig. 6: Maintenance action in terms of x̂ and χ2

As can be observed though the numerical example, the long
run cost rate under perfect inspection is 2.62 (C(0)∞ = 2.62),
which is close to the optimal maintenance cost under sen-
sor degradation (C∞∗ = 2.72). This indicates that with the
proposed state estimation method and the condition-based
maintenance, the negative impact of sensor degradation can
be effectively addressed.

Since preventive maintenance action depends on the pre-
dicted system reliability, which, however, is determined by
the mean and variance of the estimated system state. To
facilitate maintenance decisions at inspection, Fig. 6 depicts
the boundary for preventive replacement in terms of the mean
and variance of the estimated system state.

According to the reliability threshold for preventive re-
placement, the maintenance action at each inspection can be
obtained by comparing the estimated one-inspection-ahead
system reliability with the threshold. Table I presents the main-
tenance actions and associated quantities at each inspection,
where the inspection interval is ∆T = 3. Note that the measure-
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TABLE I: Illustration of maintenance decisions at inspection

k yk x̂k|k χ2
k|k Rtk Decision

1 4 3 0.2039 1 Do nothing
2 6 6 0.2414 1 Do nothing
3 13 9 0.2706 0.9981 Preventive replacement

ment history Yk is randomly generated for illustration purpose.
As can be observed, at the third inspection, the estimated
system reliability drops below the threshold R∗s = 0.999, and
preventive replacement is carried out to prevent the system
from failure.

2) Key findings: To illustrate the impact of sensor degra-
dation, we compare the proposed maintenance policy with
the one that disregards the sensor degradation in spite of
its existence. For the maintenance policy that simply com-
pares the measurement value with the preventive replacement
threshold under perfect inspection, the long run cost rate turns
out as C(1)∞ = 4.27. This is due to the fact that preventive
replacement solely based on the observation leads to a far more
conservative policy and unnecessary intervention increases the
maintenance cost. By comparison, the long run cost rate of
the maintenance policy considering the sensor degradation is
C∞ = 2.72, which indicates that the sensor degradation has
a significant impact on the optimal maintenance policy and
should be taken into account for maintenance decision-making.

Additionally, we plot in Fig. 7 the variation of maintenance
cost with respect to the sensor degradation rate η . It can
be found that our policy provides a stable maintenance cost
(around 2.7) in spite of the variation of sensor degradation rate,
while the maintenance cost under the policy (Policy I) that
disregards the sensor degradation exhibits an increasing trend
with η . Comparison from Fig. 7 implies that our approach
is more effective in cases where the sensor exhibits a serious
degradation process. Obviously if the sensor degradation is
negligible compared with the system degradation, then our
model will not be encouraged. We would suggest adopting
our model for maintenance decision-making if the systems and
the dedicated sensors are operating under extreme conditions
(e.g., high temperature, high humidity, corrosive surroundings,
etc.) where the sensor degradation exerts a significant impact.
However, it should be noted a system may fail due to various
mechanisms, which may not exhibit the degradation pattern.
For example, external shocks may lead to sudden failure of
an operating system. In this case, we have to resort to other
models, since our model is applicable to model the gradual
degradation process, while fails to capture the influence of
external shock.

In addition, we compare the proposed approach with the
existing methods to show the impact of sensor degradation on
maintenance cost. In particular, we compare with a filtering
approach which is adopted to address time-varying noise
variance [48]. The maintenance cost with the approach in
[48] is C(2)∞ = 4.35, which is close to the maintenance
policy that simply compares measurements with the thresh-
old under perfect inspection (C(1)∞ = 4.27). Admittedly, the
approach can effectively deal with the measurement noise,
which, however, fails to distinguish the sensor degradation and
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Fig. 7: Variation of C∞ on sensor degradation rate

TABLE II: Initial guess of optimal T (0) and M

T (0)

3.2 3.4 3.6 3.8 4 4.2

M

2.5 5.94 5.79 2.95 5.29 5.08 4.88
3 5.31 5.21 2.85 5.01 4.90 4.71

3.5 4.53 4.56 2.72 4.57 4.60 4.45
4 3.93 3.99 2.67 4.14 4.18 4.16

4.5 3.56 3.70 2.62* 3.91 4.08 4.14
5 3.62 3.59 3.08 3.90 4.24 4.25

5.5 3.72 3.71 3.48 4.46 4.44 4.97
6 3.89 3.98 3.97 5.12 5.57 5.74

6.5 4.57 4.56 5.34 6.16 6.87 7.13
7 5.53 5.52 6.03 7.05 8.36 9.23

system degradation in presence of sensor drift. The existing
filtering methods are applicable to 0-mean measurement noise.
However, in our case, the measurement is a mixture of system
degradation, sensor degradation, and the measurement noise.
Existing methods can handle the unbiased measurement noise.
However, in presence of the sensor drift, the measurement is
biased. Therefore, we have to estimate sensor drift as a first
step so as to provide an accurate estimation of the system sate.

C. Discussion

1) Initial guess of the inspection interval and preventive
replacement threshold: To achieve the optimal maintenance
decision under imperfect inspection, the initial guess of the
inspection interval and one-inspection-ahead reliability is ob-
tained as a first step. Table II presents how the long-run
cost rate under perfect inspection C(0)∞ varies with different
inspection interval T (0) and preventive replacement thresh-
old M. It can be observed that without sensor degradation
and measurement noise, the optimal maintenance policy is
achieved at ∆T (0) = 3.6 and M = 4.5, with the long run cost
rate C(0)∞ = 2.62. The one-inspection-ahead reliability under
this scenario R(0)

s is close to 1.
2) Sensitivity analyses: Compared with perfect inspection,

the influence of imperfect inspection lies in the uncertainty
of the degradation and measurement process. Therefore, it is
interesting to investigate how the optimal long run cost rate
varies with the variance parameters. Fig. 8 shows the variation
of C∞ with respect to the variance parameters: σ , δ and γ .
Since a larger σ leads to more uncertainty of the degradation
process, the long run cost rate C∞ increases with the diffusion
parameter σ . In addition, C∞ is largely affected by σ , while δ
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and γ have little impact on C∞. This is due to the fact that σ

determines the variation of the degradation process. A large σ

significantly increases the randomness of system failure time
and system state at inspection. On the other hand, the effect
of δ and γ is diminished by Kalman filter, which, to some
extent, indicates the effectiveness of Kalman filter.

In addition, we are interested to investigate the effect of
cost parameters on the long run cost rate C∞. Fig. 9 shows
how C∞ varies with the cost parameters: ci, cp, cr and cd .
Clearly C∞ increases with the cost parameters. In addition, ci
and cp exert more impact on the long run cost rate than cr
and cd . The underlying logic of the influence can be observed
from the reliability threshold for preventive replacement. The
system is preventively replaced at high reliability R∗s = 0.999,
which leads to a tiny probability of system failure. In other
words, under most circumstances, a renewal cycle ends with
preventive replacement rather than corrective replacement.

3) Extension to continuous monitoring: The proposed
approach can also be extended to continuous monitoring.
It should be noted that the one-inspection-head reliability
threshold is not applicable for continuous monitoring since
the inspection interval is close to 0. On the other hand,
the maintenance lead time will influence the maintenance
efficiency and should be taken into account in presence of
continuous monitoring. For illustration purpose, we let the
lead time TL = 2. In addition, the inspection cost is set as
ci = 0, and the inspection interval is given as ∆T = 0.1.
With our method, the minimal maintenance cost C∞ = 2.45

is achieved at the reliability threshold Rc = 0.9998, which is
evaluated ahead of the lead time TL. We also compare with
the maintenance policy that neglects the sensor degradation in
spite of its existence, where the associated maintenance cost
is 2.68. Comparison between our approach and the policy that
disregards the sensor degradation leads to the conclusion that
sensor degradation exerts an influential effect on maintenance
policy under continuous monitoring.

VI. CONCLUSION

This paper develops a condition-based maintenance policy
for systems with degraded sensors. Inspection of system state
is influenced not only by the system and sensor degradation
process, but also the measurement noise. Kalman filter is used
to deal with the degradation and measurement uncertainty.
Degradation level of the system and sensor is updated at the
arrival of a new measurement. A maintenance cost model
is constructed as a first step and the optimal maintenance
policy is achieved by minimizing the long run cost rate.
Under the proposed maintenance policy, optimal inspection
interval and reliability threshold are obtained to implement
maintenance actions. At each inspection, the maintenance
actions are carried out by comparing the estimated system
reliability with the corresponding threshold. Application in
wastewater treatment plants illustrates the effectiveness of the
proposed policy.

It is revealed through the numerical example that if we
ignore the sensor degradation while it exists, the maintenance
would severely deviate from the optimal one. On the other
hand, if we realize the existence of sensor degradation and use
appropriate methods to estimate the system state, its negative
impact can be effectively diminished.

There are several interesting issues embedded with the
maintenance policy subject to sensor degradation that warrant
future research. First, in this paper Wiener process is employed
to characterize the degradation process of the system and the
sensor. For systems that exhibit monotonic degradation pro-
cesses, alternative degradation models such as Gamma process
and inverse Gaussian process can be used instead. Second, the
measurement noise is assumed to follow Gaussian distribution
and Kalman filter is used thereafter. For the measurement noise
that is not normally distributed, we need to seek other filtering
approaches such as particle filtering to deal with the non-
Gaussian noise.

Another perspective should be the investigation on the appli-
cability of the proposed methodology for a real case study with
true data. In addition, sensor-related actions (e.g.,sensor repair)
can be incorporated into the maintenance policy if the system
state cannot be accurately estimated under sensor degradation
and the associated maintenance decisions severely deviate
from the optimal one. For safety-critical systems (e.g., nuclear
power plants), sensor-related actions are warranted since the
system reliability has to be estimated in high accuracy.
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APPENDIX

A. Initial guess of the optimal maintenance decision

A near-optimal initial guess is achieved by minimizing the
long run maintenance cost rate under the condition of perfect
inspection. Since a renewal cycle ends with either preventive
replacement or corrective replacement, optimization of the
long run cost rate can be expressed as

min C(0)∞
(

∆T (0),R(0)
s

)
=

ciE
[
N(0)

I (Z(0))
]
+ cpE

[
1{PR}

]
E
[
Z(0)

]
+

ccE
[
1{CR}

]
+ cdE

[
W (0)(Z(0))

]
E
[
Z(0)

]
subject to R(0)

s ∈ (0,1)

(A1)

where 1{CR} denotes the event that the renewal cycle ends with
corrective replacement, and 1{PR} stands for the event that
the renewal cycle ends with preventive replacement. Note that
we use the superscript (0) to distinguish from the imperfect
inspection case. In the case where inspection can accurately
observe the system state, due to the Markov property of Wiener
process, the one-inspection-ahead reliability conditioned on
the observation history Y(0)

1:k is identical as that conditioned
on the current system state xk,

R(0)(tk +∆T (0)|Y(0)
1:k) = R(0)(tk +∆T (0)|xk) (A2)

According to the independent increment property of Wiener
process, the one-inspection-ahead conditional reliability can
be obtained as

R(0)(tk +∆T (0)|xk) = Φ

(
ζ − xk−λ∆T (0)

σ

√
∆T (0)

)

−exp
(

2λ (ζ − xk)

σ2

)
Φ

(
−(ζ − xk)−λ∆T (0)

σ

√
∆T (0)

) (A3)

It is clearly shown that R(0)(tk +∆T |xk) is continuous and
shows a monotone decreasing trend with respect to the system

statexk. The problem of finding the reliability threshold R(0)
s

is identical to obtaining the state threshold M such that the
system is preventively replaced when its state exceeds M.
Optimization of (A1) equals to

min C(0)∞
(

∆T (0),M
)

subject to M ∈ (0,ζ )
(A4)

Let TM be the first passage time to the state threshold M, TM =
inf{t : X (t)≥M}. Based on how the regenerative process
{X (t) , t ≥ 0} ends in a renewal cycle, it can be classified into
two types: ending with corrective replacement or preventive
replacement.

At the kth inspection, corrective replacement is performed
if the system state exceeds the failure threshold ζ (Xk > ζ )
while it remains below the preventive replacement threshold
M at the previous inspection (Xk−1 < M). The probability for
such an event is given as

P(Xk > ζ ∩Xk−1 < M) =
(

1−FTM

(
(k−1)∆T (0)

))
·∫ M

0
Fζ−x

(
∆T (0);x

)
fX

(
x;(k−1)∆T (0)

)
dx

(A5)

where

fX (x; t) =
1√

2πσ2t
exp

(
(x−λ t)2

2σ2t

)

Fζ−x (t;x) = 1−Φ

(
ζ − x−λ t

σ
√

t

)
+ exp

(
2λ (ζ − x)

σ2

)
Φ

(
−(ζ − x)−λ t

σ
√

t

)

FTM (t) = P(TM < t) = 1−Φ

(
M−λ t

σ
√

t

)
+ exp

(
2λM
σ2

)
Φ

(
−M−λ t

σ
√

t

)
Preventive replacement is carried out when the system

state at inspection satisfies ζ > Xk > M and Xk−1 < M. The
associated probability is expressed as

P(ζ > Xk > M∩Xk−1 < M) =
(

1−FTM

(
(k−1)∆T (0)

))
·∫ M

0

(
FM−x

(
∆T (0);x

)
−Fζ−x

(
∆T (0);x

))
fX

(
x;(k−1)∆T (0)

)
dx

(A6)

where

FM−x (t;x) = 1−Φ

(
M− x−λ t

σ
√

t

)
+ exp

(
2λ (M− x)

σ2

)
Φ

(
−(M− x)−λ t

σ
√

t

)
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The long run cost rate can be obtained as

C(0)∞
(

∆T (0),M
)
=

ci

∆T (0) + cd

∞

∑
k=1

pc (k)

+

cp
∞

∑
k=1

pp (k)+ cc
∞

∑
k=1

pc (k)− cd
∞

∑
k=1

pc (k)
∫ k∆T (0)

(k−1)∆T (0) tdFT (t)

∆T (0)
∞

∑
k=1

k (pc (k)+ pp (k))

(A7)

where pc(k) = P(Xk > ζ ∩Xk−1 < M), and pp(k) =
P(ζ > Xk > M∩Xk−1 < M). By minimizing (A7), the
optimal maintenance decision is achieved as{

∆T (0)∗,M∗
}
= argminC(0)∞

(
∆T (0),M

)
The initial guess of the optimal decision is given as{

∆T (0)∗,R(0)
s
∗}

, where

R(0)∗
s = Φ

(
ζ −M∗−λ∆T

σ
√

∆T

)
− exp

(
2λ (ζ −M∗)

σ2

)
Φ

(
−(ζ −M∗)−λ∆T

σ
√

∆T

)

B. State estimation with unknown sensor degradation rate

For the case where the sensor degradation rate η is un-
known, but follows a Gaussian distribution, the state-space
equation can be obtained as

xk = xk−1 +λ (tk− tk−1)+uk
ηk = ηk−1
sk = sk−1 +ηk−1(tk− tk−1)+ vk
yk = xk + sk + εk

which can be rewritten as{
zk = Akzk−1 +Bk +wk
yk = Hzk + εk

where

Ak =

 1 0 0
0 1 0
0 tk− tk−1 1

 ,Bk =

 λ (tk− tk−1)
0
0

 ,
zk =

 xk
ηk
sk

 ,H =
[

1 0 1
]

wk ∈ R3×1 follows a 3-variante Gaussian distribution, wk ∼
N(0,Qk), where

Qk =

 σ2(tk− tk−1) 0 0
0 0 0
0 0 δ 2(tk− tk−1)


The expectation and variance of zk till the kth inspection is

given as

ẑk|k =

 x̂k|k
η̂k
ŝk|k

= E(zk|Y1:k),

Pk|k =

 χ2
x,k χ2

xη ,k χ2
xs,k

χ2
xη ,k χ2

η ,k χ2
ηs,k

χ2
xs,k χ2

ηs,k χ2
s,k

= cov(zk|Y1:k)

where χ2
x,k = var(xk|Y1:k), χ2

η ,k = var(ηk|Y1:k), χ2
s,k =

var(sk|Y1:k), χ2
xη ,k = cov(xkηk|Y1:k), χ2

xs,k = cov(xksk|Y1:k),
χ2

ηs,k = cov(ηksk|Y1:k). Similarly, the one-step-ahead predic-
tion is expressed as

ẑk|k−1 =

 x̂k|k−1
η̂k|k−1
ŝk|k−1

= E(zk|Y1:k−1),

Pk|k−1 =

 χ2
x,k|k−1 χ2

xη ,k|k−1 χ2
xs,k|k−1

χ2
xη ,k|k−1 χ2

η ,k|k−1 χ2
ηs,k|k−1

χ2
xs,k|k−1 χ2

ηs,k|k−1 χ2
s,k|k−1

= cov(zk|Y1:k−1)

Estimation and update of the state and variance can be im-
plemented as that in Section IV. The details are suppressed to
avoid repetition. The initial expectation and variance is given
as

ẑ0|0 =

 0
µη

0

 ,Pk|k =

 0 0 0
0 σ2

η 0
0 0 0



C. State estimation with dependent system and sensor degra-
dation

With the assumption that the system degradation has an
additive impact on the sensor degradation, the state-space
equation is given as xk = xk−1 +λ (tk− tk−1)+uk

sk = sk−1 +ηk−1(tk− tk−1)+αxk + vk
yk = xk + sk + εk

where α is the parameter scaling the influence of system
degradation on the sensor degradation. Similarly, the state-
space equation can be rewritten as{

zk = Akzk−1 +Bk +wk
yk = Hzk + εk

where

A =

[
1 0
α 1

]
,Bk =

[
λ (tk− tk−1)
η(tk− tk−1)+αλ (tk− tk−1)

]
H =

[
1 1

]
, wk ∈ R2×1, wk ∼ N(0,Qk),

Qk =

[
σ2(tk− tk−1) 0

0 δ 2(tk− tk−1)+α2σ2(tk− tk−1)

]
With the above expressions, Kalman filter can be employed to
estimate the system and sensor state. The details are similar
to those in Section IV.
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D. Impact of sensor failure

The previous analysis assumes that the dedicated sensor
is replaced together with the system and no sensor failure
is taken into account. In this section we will investigate the
impact of sensor failures on the maintenance actions. The
sensor is replaced when it is found failed or along with system
replacement. Note that since a sensor is usually far cheaper
than the system, we do not incorporate the cost of sensor
replacement in the evaluation of long run cost rate. When the
system state is estimated by Kalman filter, we can have the
conditional reliability at the next inspection as

R(tk +∆T ∗|Y1:k) =Φ

ζ − x̂k|k−λ∆T ∗√
χ2

x,k +σ2∆T ∗


− exp

2λ (ζ − x̂k|k)

σ2 +

(√
2λ χx,k

σ2

)2
 ·

Φ

−ζ + x̂k|k−λ∆T ∗−2λ
χ2

x,k
σ2√

χ2
x,k +σ2∆T ∗


Let πk ∈ {0,1,2} be the maintenance actions at the kth
inspection: πk = 2 stands for corrective replacement, πk = 1
indicates preventive replacement and πk = 0 represents do
nothing. If the sensor functions at the kth inspection, we have

πk =

 2, if system fails
1, if R(tk +∆T ∗|Y1:k)< R∗s
0, otherwise

However, if the sensor fails at inspection, the system state
cannot be detected and the maintenance decision has to be
made based on the previous inspection information. It follows

πk =

 2, if system fails & R(tk−1 +2∆T ∗|Y1:k−1)< R∗s
1, if system functions & R(tk−1 +2∆T ∗|Y1:k−1)< R∗s
0, otherwise

where R(tk−1 +2∆T ∗|Y1:k−1) is the two-inspections-ahead
conditional reliability at the (k−1)th inspection,

R(tk−1 +2∆T ∗|Y1:k−1) = Φ

ζ − x̂k−1|k−1−2λ∆T ∗√
χ2

x,k−1 +2σ2∆T ∗


− exp

2λ (ζ − x̂k−1|k−1)

σ2 +

(√
2λ χx,k−1

σ2

)2
 ·

Φ

−ζ + x̂k−1|k−1−λ2∆T ∗−2λ
χ2

x,k−1
σ2√

χ2
x,k−1 +σ2∆T ∗


E. Estimation of sensor degradation parameters

The degradation parameters of the sensor can be estimated
by maximum likelihood estimation (MLE). Let Q(t) denote the
measurements of the new sensor, Q(t) = S(t)+ϖ , where ϖ is
the measurement noise of the new sensor, following a Gaussian
distribution, ϖ ∼ N(0,ϑ 2). With the sensor degradation pro-
cess of (2), the parameters under estimation are (η ,δ ,ϑ). For

notational convenience, let θ be the collection of the parame-
ters under estimation, θ = (η ,δ ,ϑ). Since the sensor suffers a
Wiener degradation process, to take advantage of the identical
independent increment property of Wiener process, we will
use the degradation increments to estimate the parameters.
The sensor is inspected at time {t j, j = 1,2,3, ...,n} and the
associated measurements are denoted as {Q(t j), j = 1,2, ...,n}.
Denote ∆t j = t j − t j−1 as the inspection intervals and κ j as
the measurement increments, κ j = Q(t j)− Q(t j−1). It can
be obtained that the set of measurement increments, κ =
(κ1,κ2, . . . ,κn), follow a multivariate Gaussian distribution,

κ ∼ N (η∆t,Σ)

where ∆t = (∆t1,∆t2, . . . ,∆tn), and Σ is the variance-covariance
matrix, denoted as

Σ j,k = cov(κ j,κk|θ) =


δ 2∆t j +ϑ 2, j = k = 1
δ 2∆t j +2ϑ 2, j = k > 1
−ϑ 2, | j− k|= 1
0, otherwise

Suppose that the degradation data can be collected from N
items. Let i be the item index and j the index of inspection
epochs. For item i, the jth inspection interval is denoted
as ∆ti, j = ti, j − ti, j−1 and the jth measurement increment is
denoted as κi, j = Q(ti, j)−Q(ti, j−1). Similarly, we can have
κi = (κi,1,κi,2, . . . ,κi,n) and ∆ti = (∆ti,1,∆ti,2, , . . . ,∆ti,n). Since
the degradation observations of each item follow a multivariate
Gaussian distribution, given the sensor degradation data, we
can have the log-likelihood function (up to a constant) as
follows,

l(κ1,κ2, ...,κN) =
N

∑
i=1

(
ln |Σi|+(κi−η∆ti)′Σ−1

i (κi−η∆ti)
)

where Σi is similarly defined as previous discussion. Esti-
mates of θ can be obtained by maximizing the log-likelihood
function l (θ |κ1,κ2, ...,κN).
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