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Fast Symbolic 3D Registration Solution
Jin Wu , Member, IEEE, Ming Liu , Senior Member, IEEE, Zebo Zhou and Rui Li, Member, IEEE

Abstract—3D registration has always been performed invoking
singular value decomposition (SVD) or eigenvalue decomposition
(EIG) in real engineering practices. However, these numerical
algorithms suffer from uncertainty of convergence in many cases.
A novel fast symbolic solution is proposed in this paper by
following our recent publication in this journal. The equivalence
analysis shows that our previous solver can be converted to
deal with the 3D registration problem. Rather, the computation
procedure is studied for further simplification of computing
without complex-number support. Experimental results show
that the proposed solver does not loose accuracy and robustness
but improves the execution speed to a large extent by almost %50
to %80, on both personal computer and embedded processor.

Note to Practitioners—3D registration usually has large com-
putational burden in engineering tasks. The proposed symbolic
solution can directly solve the eigenvalue and its associated
eigenvector. A lot of computation resources can then be saved for
better overall system performance. The deterministic behavior of
the proposed solver also ensures long-endurance stability and can
help engineer better design thread timing logic.

Index Terms—3D Registration, Symbolic Computation, Nu-
merical Algorithms, Fast Computation Speed, Robotics

I. INTRODUCTION

MOTION estimation from point correspondences is an
important technique in robotics [1], [2], [3]. The point

measurements can usually be acquired from laser scanner and
camera for accurate relative attitude/position determination [4],
[5]. The methodology behind is called the 3D registration
which figures out the rigid transformation consisting of ro-
tation and translation [6]. Yet, this technology is employed
for 3D reconstruction of objects by means of multi-directional
point-cloud snapshots, which extensively boosts the automa-
tion assembly [7], [8], [9]. Thanks to 3D registration, the im-
age stitching can be performed accurately for better sequence
processing [10]. And moreover, the navigation performance of
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intelligent vehicles can be improved by existing registration
techniques [11], [12].

The basic 3D registration problem can usually be expressed
as a least-square fitting one which takes the following form
[13]

argmin
C∈SO(3),T∈R3

L =

n∑
i=1

ai‖bi −Cri − T ‖2 (1)

where bi ∈ {B} and ri ∈ {R} are point measurement pair
in the body and reference frames; ai is the positive weight
associated with the i-th point pair. The target is to estimate
the direction cosine matrix C in the special orthogonal group
SO(3) such that CCT = I,det(C) = +1, with T in the real
3D vector space R3, to minimize the sum L. As there are both
noise items inside bi and ri, the problem is actually a total
least square (TLS) [14], [15]. In real engineering applications,
{B} and {R} do not always agree in the dimension. So the
problem (1) is usually dealt with using the iterative closest
points (ICP) for robust matching [16]. Apart from ICP i.e.
only find-based approach, the local geometric features inside
the point clouds and images can also help for more robust
matching [17]. Local geometric features are more advanced
understanding and aspects inside data sequences and can
reflect those regular and visualizable geometric characteristics
[18], [19], which intrinsically enhance the performance of
3D registration in urban areas e.g. in applications of the
lidar odometry and mapping in real-time (LOAM, [20], [21]).
When there are rare local geometric features in the data, ICP
is still generally feasible for processing global registration.
Some algorithms have been proposed in the last 30 years
to solve the C and T from (1) efficiently. The first famous
solver was proposed by K. S. Arun et al. who introduces
SVD for rotation estimation [22]. However, when the problem
contains large noise density, only SVD can not give robust
estimation. Umeyama improves Arun’s method by changing
the signs of the singular values [23]. In fact, the only difficulty
of the optimization (1) is that C is nonlinear. However,
after parameterizing C with dual quaternion, the problem
can also be solved [24]. A simpler approach is established
by unit quaternions which converts the problem (1) into an
EIG one [25]. In fair comparisons, the dual quaternion is the
slowest while EIG is slightly slower than SVD [26]. But for
both EIG and SVD, the numerical implementation requires
many computation loads and space consumption of required
libraries. This generates a difficulty for their usage on some
critical platforms e.g. field programmable gate arrays (FPGA)
and some low-configuration micro controller units (MCU)
[27]. The current situation also sets an obstacle for mass
production of specified low-power integrated circuit (IC).

Recently, we propose an algorithm for vector-observation
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attitude determination called the fast linear attitude estimator
(FLAE) [28]. FLAE owns the much superior computation
speed compared with previous representatives. Motivated by
SVD, EIG and FLAE, in this paper, a novel symbolic method
is proposed. Through tests, the algorithm is verified to have
only %50 to %80 execution time of recent fast SVD and EIG
by C++ implementation on both personal computer and the
MCU. In section II we present how to relate (1) with FLAE
together. A simplified algorithm of eigenvalue is derived as
well in this section. Experimental validations are presented in
section III while section IV consists of concluding remarks.

II. MAIN RESULTS

The FLAE actually solves a more specific variant of (1)
where T = 0 and ‖bi‖ = ‖ri‖ = 1 [28] which can be
further extended to some optimized results [29]. This is a
preliminary for attitude determination from normalized vector
observations in spacecraft motion measurement. In FLAE, the
DCM is parameterized by the unit quaternion. The optimal
quaternion is associated with eigenvalue of W that is closest
to 1 where W is given by

W1,1 = Hx1 +Hy2 +Hz3

W1,2 = −Hy3 +Hz2

W1,3 = −Hz1 +Hx3

W1,4 = −Hx2 +Hy1

W2,1 = −Hy3 +Hz2

W2,2 = Hx1 −Hy2 −Hz3

W2,3 = Hx2 +Hy1

W2,4 = Hx3 +Hz1

W3,1 = −Hz1 +Hx3

W3,2 = Hx2 +Hy1

W3,3 = Hy2 −Hx1 −Hz3

W3,4 = Hy3 +Hz2

W4,1 = −Hx2 +Hy1

W4,2 = Hx3 +Hz1

W4,3 = Hy3 +Hz2

W4,4 = Hz3 −Hy2 −Hx1

(2)

in which Wi,j denotes the matrix entry of W in the i-th
row and j-th column. The parameters inside are provided as
follows

H =

 Hx1 Hy1 Hz1

Hx2 Hy2 Hz2

Hx3 Hy3 Hz3

 =

n∑
i=1

aibir
T
i (3)

The characteristic polynomial of W takes the form of

λ4 + τ1λ
2 + τ2λ+ τ3 = 0 (4)

where

τ1 =−2
(
H2
x1 +H2

x2 +H2
x3 +H2

y1

+H2
y2 +H2

y3 +H2
z1 +H2

z2 +H2
z3

)
τ2 =8(Hx3Hy2Hz1 −Hx2Hy3Hz1 −Hx3Hy1Hz2

+Hx1Hy3Hz2 +Hx2Hy1Hz3 −Hx1Hy2Hz3)
τ3 = det(W )

(5)
For the problem (1), the quaternion solution is produced by
the optimal eigenvector of the following matrix [1], [16]

G =

[
tr(D) zT

z D +DT − tr(D)I

]
(6)

in which

D =

n∑
i=1

ai(bi − b̄)(ri − r̄)
T

z =

n∑
i=1

ai(bi − b̄)× (ri − r̄)

b̄ =

n∑
i=1

aibi, r̄ =

n∑
i=1

airi

(7)

It is obvious that D has the same structure with H . Then
if D = H , we would like to prove that G = W . It can be
directly obtained that

D +DT − tr(D)I =(
Hx1 −Hy2 −Hz3 Hx2 +Hy1 Hx3 +Hz1

Hx2 +Hy1 Hy2 −Hx1 −Hz3 Hy3 +Hz2
Hx3 +Hz1 Hy3 +Hz2 Hz3 −Hy2 −Hx1

)
tr(D) = Hx1 +Hy2 +Hz3

(8)
For z, it has another form according to the skew-symmetric
matrix of cross-product, such that

z = (D2,3 −D3,2,D3,1 −D1,3,D1,2 −D2,1)
T

= (−Hy3 +Hz2,−Hz1 +Hx3,−Hx2 +Hy1)
T

(9)

Inserting these results into (6), one can observe that W = G.
So the characteristic polynomial of W can also be used for
eigenvalue solving of G.

The FLAE gives the following symbolic roots of (4):

λ1 = 1
2
√
6

(
T2 −

√
−T 2

2 − 12τ1 − 12
√
6τ2

T2

)
λ2 = 1

2
√
6

(
T2 +

√
−T 2

2 − 12τ1 − 12
√
6τ2

T2

)
λ3 = − 1

2
√
6

(
T2 +

√
−T 2

2 − 12τ1 +
12

√
6τ2

T2

)
λ4 = − 1

2
√
6

(
T2 −

√
−T 2

2 − 12τ1 +
12

√
6τ2

T2

)
(10)

in which

T0 = 2τ31 + 27τ22 − 72τ1τ3

T1 =

(
T0 +

√
−4(τ21 + 12τ3)

3
+ T 2

0

) 1
3

T2 =

√
−4τ1 +

2
4
3 (τ2

1+12τ3)
T1

+ 2
2
3T1

(11)

Let us first determine the signs of τ1, τ2, τ3. W is real sym-
metric and the eigenvalues are two positive and two negative.
This gives τ3 = det(W ) = λ1λ2λ3λ4 > 0. τ1 is obvious
negative and τ2 is indefinite. In this way, T0 is definitely real
number. Let us write T1, T2 into

T1 = αT1
+ βT1

i

T2 = αT2
+ βT2

i
(12)

where i denotes the unit imaginary number while
αT1

, βT1
, αT2

, βT2
∈ R. Obviously, T1 meets

T 3
1 = α3

T1
− 3αT1β

2
T1

+
(
3α2

T1
βT1
− β3

T1

)
i

= T0 +

√
−4(τ21 + 12τ3)

3
+ T 2

0

(13)
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Likewise, we have

T 2
2 = α2

T2
− β2

T2
+ 2αT2

βT2
i

= −4τ1 +
2

4
3

(
τ21 + 12τ3

)
T1

+ 2
2
3T1

= −4τ1 +
2

4
3

(
τ21 + 12τ3

)
αT1

+ βT1
i

+ 2
2
3 (αT1

+ βT1
i)

= −4τ1 +

[
3
√
4 +

2 3
√
2
(
τ21 + 12τ3

)
α2
T1

+ β2
T1

]
αT1

+

[
3
√
4−

2 3
√
2
(
τ21 + 12τ3

)
α2
T1

+ β2
T1

]
βT1
i

(14)

These equations lead to the system of

α3
T1
− 3αT1

β2
T1

= T0(
3α2

T1
βT1
− β3

T1

)2
= 4
(
τ21 + 12τ3

)3 − T 2
0

α2
T2
− β2

T2
= −4τ1 +

[
3
√
4 +

2 3√2(τ2
1+12τ3)

α2
T1

+β2
T1

]
αT1

2αT2
βT2

=

[
3
√
4− 2 3√2(τ2

1+12τ3)
α2
T1

+β2
T1

]
βT1

(15)

From the first two sub-equations, one can easily arrive at(
α3
T1
− 3αT1

β2
T1

)2
+
(
3α2

T1
βT1
− β3

T1

)2
= 4
(
τ21 + 12τ3

)3
⇒ α6

T1
+ 3α4

T1
β2
T1

+ 3α2
T1
β4
T1

+ β6
T1

= 4
(
τ21 + 12τ3

)3
⇒ α2

T1
+ β2

T1
=

3
√
4
(
τ21 + 12τ3

)
(16)

Inserting (16) into (15) we have{
α2
T2
− β2

T2
= −4τ1 + 2 3

√
4αT1

2αT2
βT2

= 0
(17)

This indicates that αT2 = 0 or βT2 = 0. If αT2 = 0 then
T2 is a pure imaginary number leading to the eigenvalues
of complex numbers, which is not true for real symmetric
matrix. Therefore we have βT2

= 0 i.e. T2 is a pure positive
real number with no imaginary part. Using this finding, the
maximum eigenvalue is immediately λ2. The components of
T1 can be computed using

T 3
1 = T0 +

√
−4(τ21 + 12τ3)

3
+ T 2

0

= T0 +

√
4(τ21 + 12τ3)

3 − T 2
0 i

= 2
(
τ21 + 12τ3

) 3
2 ei arctan

√
4(τ21+12τ3)

3−T2
0

T0

(18)

After the maximum eigenvalue is computed, the elementary
row operations are needed to calculate the associated eigen-
vector from (G− λmaxI) q = 0. Given an arbitrary real
symmetric matrix below [28]

G− λmaxI =


G11 G12 G13 G14

G12 G22 G23 G24

G13 G23 G33 G34

G14 G24 G34 G44

 (19)

The optimal quaternion q from row operations can be catego-
rized as follows

q0 = G14G
2
23 −G13G24G23 −G12G34G23−

G14G22G33 +G12G24G33 +G13G22G34

q1 = G24G
2
13 −G12G34G13 −G13G14G23+

G12G14G33 −G11G24G33 +G11G23G34

q2 = G34G
2
12 −G14G23G12 −G13G24G12+

G13G14G22 +G11G23G24 −G11G22G34

q3 = −G33G
2
12 + 2G13G23G12 −G11G

2
23 −G2

13G22

+G11G22G33

(20)

where q = (q0, q1, q2, q3)
T . The estimated attitude quaternion

is then q̂ = q/ ‖q‖.

A. Numerical Robustness

Here the numerical robustness of the proposed method is
referred to the behavior when the two largest eigenvalues
almost coincide. In such extreme case, the measurements from
{B} and {R} are basically collinear [30]. This makes D
almost a rank-deficient matrix. Then, we immediately have

τ2 = −8 det (D) ≈ 0 (21)

and also {
τ21 − 4τ3 = 0

τ3 = det(W ) = λ1λ2λ3λ4 = λ4max
(22)

Inserting τ21 = 4τ3 into (18), it is quite straightforward for one
to obtain √

4(τ21 + 12τ3)
3 − T 2

0 ≈ 0

⇒
{

θ ≈ 0

αT1
≈ −2 3

√
2τ1

⇒ T2 ≈ 0
(23)

Note that here, T2 and τ2 both approach 0 and there is an
indefinite limit in the eigenvalue i.e. lim

τ2→0

τ2
T2

. Repeating the
L’Hospital rule, we can eventually arrive at

lim
τ2→0

τ2
T2

= lim
τ2→0

dτ2

d

√√√√√√√√√√√√√√√√√√

−4τ1+

2
4
3
(
τ21 + 12τ3

) 2τ31 + 27τ22 − 72τ1τ3+√
−4(τ21 + 12τ3)

3 + (2τ31 + 27τ22 − 72τ1τ3)
2

 1
3

+2
2
3

 2τ31 + 27τ22 − 72τ1τ3+√
−4(τ21 + 12τ3)

3 + (2τ31 + 27τ22 − 72τ1τ3)
2

 1
3

= 0
(24)

where d is the differentiation operator. Therefore, the limiting
maximum eigenvalue is

λmax ≈
√
−τ1

2
(25)

This indicates that in extreme cases, the eigenvalue is still
not singular which always leads to meaningful quaternion
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solutions. However, for iterative algorithms like Gauss-Newton
iteration, the solving process can hardly stop according to
word length of floating numbers [30]. This shows that the
proposed method may be more practical in real engineering
implementation. The final computation procedure is summa-
rized in Algorithm 1.

Algorithm 1 The Fast Symbolic 3D Registration (FS3R)
Algorithm
Require: Point correspondences {B} and {R} with same
dimension of n, provided that the weights {ai, i = 1, 2, 3, · · · }
exist. If no weights, each weight is equalized to 1

a . The
numerical tolerance threshold for detecting extreme case is
defined as ξ which is normally a very tiny positive number.

Step 1: Calculate mean points b̄ =
n∑
i=1

aibi, r̄ =
n∑
i=1

airi.

Step 2: Compute H matrix using simplified form

H =
n∑
i=1

ai(bir
T
i − b̄r̄T ) and then compute W using (2).

Step 3: Compute coefficients of characteristic polynomial
from (5).
Step 4: Compute T0 = 2τ31 +27τ22 −72τ1τ3 and then compute

T1 by

θ = arctan

√
4(τ21 + 12τ3)

3 − T 2
0

T0

αT1 =
3
√
2
√
τ21 + 12τ3 cos

θ

3

βT1 =
3
√
2
√
τ21 + 12τ3 sin

θ

3
Step 5: Compute

T2 = |αT2
| =

√
−4τ1 + 2 3

√
4αT1

. If |τ2| > ξ, |T2| >
ξ, then compute the maximum eigenvalue λmax =

1
2
√
6

(
T2 +

√
−T 2

2 − 12τ1 − 12
√
6τ2

T2

)
. Else, compute eigen-

value according to (25).
Step 6: Compute required elements in (19) and then calculate
the normalized unit quaternion according to (20).
Step 7: Reconstruct the rotation from quaternion as C. The
translation is computed by T = b̄−Cr̄.

III. EXPERIMENTS AND COMPARISONS

In this section, several experiments are conducted to present
comparisons of the proposed fast symbolic 3D registration
(FS3R) algorithm with representatives. Note that recently,

some similar analytical methods have been proposed. For
instance, Yang et al. developed an analytical method for root-
solving of quartic equation [31]. And a novel analytical SVD
method is proposed recently by us to conduct factorization of
3×3 matrix [32]. These methods are faster than representative
numerical ones. Therefore we mainly compare them with the
proposed FS3R on the accuracy, robustness and computation
speed. The algorithms are first implemented using MATLAB
for validation of accuracy and robustness. They are then trans-
lated into C++ programming language for rigorous execution
time performance test on both PC and ARM processors.

A. Accuracy and Robustness Performance

In this sub-section, the statistics are collected using the
MATLAB r2016a software on a MacBook Pro 2017 with CPU
clock speed of i7 4-core 3.5GHz. Here, simulated samples with
different dimensions and noise density are generated by means
of

bi = Cri + T + ηi, i = 1, 2, · · · , n (26)

where ηi denotes the noise item subject to normal distribution
with zero mean and covariance of Σηi . By designing the ex-
periments in Table I, we evaluate the accuracy and robustness
performance of various algorithms. The first cases employ
the same rotation and translation while they differ mainly in
rank(D) column. When rank(D) < 3, the case is defined
to be extreme and some methods will fail to converge. Cases
4 ∼ 6 consist of comparisons with different vector numbers.
In cases 7 ∼ 9, we mainly describe the effect of the noise
density. The evaluated results are shown in the Table II, III
and IV for rotation, translation and loss function value L in
(1), respectively. The rotation matrix is first estimated and
then converted to the Euler angles i.e. roll ϕ, pitch ϑ and
yaw ψ through ’X − Y − Z’ rotation sequence. The NaN
value stands for the ’Not a Number’ one which is usually
caused by indefinite devisions like 0

0 and ∞
∞ . Here, the ’SVD’

and ’EIG’ are implemented using MATLAB internal functions
while ’EIG Analytical’ is from [31] and ’SVD Analytical’
refers to [32].

From the computed results, one can immediately observe
from cases 1 to 3 that the robustness of the proposed FS3R
maintains the same level with ’SVD’, ’EIG’ and ’EIG An-
alytical’. While in all these statistics, ’SVD Analytical’ is

TABLE I
STUDIED CASES FOR COMPARISONS

Case Euler Angles ϕ, ϑ, ψ Translation T Noise Covariance Σηi Vector Number n rank(D)

1
(
−π

6
, 4π
11
,− 5π

7

)
= (−0.52359878, 1.1423973,−2.2439948) (100,−50, 80)T diag (0.0, 0.0, 0.0) 100 3

2
(
−π

6
, 4π
11
,− 5π

7

)
= (−0.52359878, 1.1423973,−2.2439948) (100,−50, 80)T diag (0.0, 0.0, 0.0) 100 2

3
(
−π

6
, 4π
11
,− 5π

7

)
= (−0.52359878, 1.1423973,−2.2439948) (100,−50, 80)T diag (0.0, 0.0, 0.0) 100 1

4
(
4π
7
, π
2
,− 9π

20

)
= (1.7951958, 1.5707963,−1.4137167) (−60, 70, 40)T diag (10, 10, 10) 100 3

5
(
4π
7
, π
2
,− 9π

20

)
= (1.7951958, 1.5707963,−1.4137167) (−60, 70, 40)T diag (10, 10, 10) 1000 3

6
(
4π
7
, π
2
,− 9π

20

)
= (1.7951958, 1.5707963,−1.4137167) (−60, 70, 40)T diag (10, 10, 10) 10000 3

7
(
5π
9
,− 7π

10
, 4π
13

)
= (−1.3962634,−0.9424778,−2.1749488) (80,−20,−160)T diag (0.1, 10, 1000) 1000 3

8
(
5π
9
,− 7π

10
, 4π
13

)
= (−1.3962634,−0.9424778,−2.1749488) (80,−20,−160)T diag (1000, 10, 0.1) 1000 3

9
(
5π
9
,− 7π

10
, 4π
13

)
= (−1.3962634,−0.9424778,−2.1749488) (80,−20,−160)T diag (0.1, 0, 1, 0.1) 1000 3
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TABLE II
ESTIMATED EULER ANGLES ϕ, ϑ, ψ

Case SVD EIG EIG Analytical SVD Analytical Proposed FS3R

1 (−0.5235, 1.1424,−2.2439) (−0.5235, 1.1424,−2.2439) (−0.5235, 1.1424,−2.2439) (−0.5235, 1.1424,−2.2439) (−0.5235,1.1424,−2.2439)
2 (−2.8874, 0.6156,−2.3558) (1.3088, 0.6156,−2.3558) (1.3088, 0.6156,−2.3558) (NaN,NaN,NaN) (1.3088,0.6156,−2.3558)
3 (−0.04696,−0.04481,−0.04696) (−2.0344, 0.7297,−2.0344) (−2.0344, 0.7297,−2.0344) (0.4621,−1.571 + 10.693i, 2.356) (−2.0344,0.7297,−2.0344)
4 (0.3614, 1.258,−0.5719) (0.3614, 1.258,−0.5719) (0.3614, 1.258,−0.5719) (0.3614, 1.258,−0.5719) (0.3614,1.258,−0.5719)
5 (0.6665, 1.4052,−0.4474) (0.6665, 1.4052,−0.4474) (0.6665, 1.4052,−0.4474) (0.6665, 1.4052,−0.4474) (0.6665,1.4052,−0.4474)
6 (−0.02599, 1.4942, 0.4477) (−0.02599, 1.4942, 0.4477) (−0.02599, 1.4942, 0.4477) (−0.02599, 1.4942, 0.4477) (−0.02599,1.4942,0.4477)
7 (2.7465, 0.5139, 2.7899) (2.7465, 0.5139, 2.7899) (2.7465, 0.5139, 2.7899) (2.7465, 0.5139, 2.7899) (2.7465,0.5139,2.7899)
8 (0.2577,−0.3486, 0.2181) (0.2577,−0.3486, 0.2181) (0.2577,−0.3486, 0.2181) (0.2577,−0.3486, 0.2181) (0.2577,−0.3486,0.2181)
9 (−1.4018,−0.9443,−2.1804) (−1.4018,−0.9443,−2.1804) (−1.4018,−0.9443,−2.1804) (−1.4018,−0.9443,−2.1804) (−1.4018,−0.9443,−2.1804)

TABLE III
ESTIMATED TRANSLATION T

Case SVD EIG EIG Analytical SVD Analytical Proposed FS3R

1 (100.015,−50.0834, 79.9858)T (100.015,−50.0834, 79.9858)T (100.015,−50.0834, 79.9858)T (100.015,−50.0834, 79.9858)T (100.015,−50.0834,79.9858)T

2 (99.8532,−49.9929,−49.9929)T (99.8532,−49.9929,−49.9929)T (99.8532,−49.9929,−49.9929)T (NaN,NaN,NaN)T (99.8532,−49.9929,−49.9929)T

3 (100.0, 100.0, 100.0)T (100.0, 100.0, 100.0)T (100.0, 100.0, 100.0)T (100.354, 100.354, 100.354)T (100.0,100.0,100.0)T

4 (−59.3406, 69.5444, 39.2757)T (−59.3406, 69.5444, 39.2757)T (−59.3406, 69.5444, 39.2757)T (−59.3406, 69.5444, 39.2757)T (−59.3406,69.5444,39.2757)T

5 (−59.8461, 69.6513, 40.1395)T (−59.8461, 69.6513, 40.1395)T (−59.8461, 69.6513, 40.1395)T (−59.8461, 69.6513, 40.1395)T (−59.8461,69.6513,40.1395)T

6 (−59.8461, 69.6513, 40.1395)T (−59.8461, 69.6513, 40.1395)T (−59.8461, 69.6513, 40.1395)T (−59.8461, 69.6513, 40.1395)T (−59.8461,69.6513,40.1395)T

7 (79.9458,−19.9293, 141.043)T (79.9458,−19.9293, 141.043)T (79.9458,−19.9293, 141.043)T (79.9458,−19.9293, 141.043)T (79.9458,−19.9293,141.043)T

8 (91.9475,−20.049, 160.038)T (91.9475,−20.049, 160.038)T (91.9475,−20.049, 160.038)T (91.9475,−20.049, 160.038)T (91.9475,−20.049,160.038)T

9 (79.9251,−20.0097, 159.997)T (79.9251,−20.0097, 159.997)T (79.9251,−20.0097, 159.997)T (79.9251,−20.0097, 159.997)T (79.9251,−20.0097,159.997)T

TABLE IV
LOSS FUNCTION VALUE L IN (1)

Case SVD EIG EIG Analytical SVD Analytical Proposed FS3R

1 0.01440 0.01440 0.01440 0.01440 0.01440
2 0.24102 0.24102 0.24102 NaN 0.24102
3 0.00222 0.00222 0.00222 0.00489 0.00222
4 284.54905 284.54905 284.54905 284.54905 284.54905
5 302.03084 302.03084 302.03084 302.03084 302.03084
6 298.76512 298.76512 298.76512 298.76512 298.76512
7 966940.84856 966940.84856 966940.84856 966940.84856 966940.84856
8 977583.31035 977583.31035 977583.31035 977583.31035 977583.31035
9 0.03313 0.03313 0.03313 0.03313 0.03313

the most weak one due to its low immunity to matrix rank
deficiency. In the computation procedure, some steps break
according to numerical problems and thus generate NaN
values. Such disadvantage is deadly because once this happens
in an embedded computation system, without proper detection,
the system is very likely to crash since these digits are
meaningless. The cases 4 ∼ 9 describes general accuracy of
various algorithms. From cases 4 to 6, the number of vectors
increases. Then from Table III, we can see that the estimated
result becomes more accurate as the vector number increases.
In cases 7 ∼ 9, it is noticed that, according to Cannikin Law,
the final estimation results are significantly influenced by the
worst measurement axis and all the algorithms produce the
same behaviors in such cases. Therefore, till now, we can draw
the conclusion that the proposed FS3R owns the same accuracy
and robustness with SVD and EIG.

B. Computation Time

The main superiority of the proposed FS3R is that it owns
very simple symbolic computation procedure. It is the main
reason that it execute very fast in engineering practice. In this
sub-section, we rewrite the algorithms ’SVD’, ’EIG’, ’EIG
Analytical’ and FS3R using the C++ programming language.
They are tested not only on the PC, but on the embedded ARM
processor as well. The Eigen matrix computation library is
used for matrix manipulations and factorizations. The C++11
programming standard is utilized here ensuring feasible Eigen

implementation.
For different engineering uses, the developer may choose

quite different optimization levels for code generation. Com-
monly, for high-security productions, the optimization level is
relatively low since many optimization options may result in
fatal problem in program execution. Hence, we especially eval-
uate all the algorithms under various optimization levels. The
PC is an x64 based laptop with 4-core i7 3.5GHz CPU and the
ARM processor is single-chip Cortex-M7 STM32H743VIT6
with clock speed of 400MHz and external FPU for fast dou-
ble/float number computation. For the PC test, each algorithm
is run for 10000 times for averaging execution time. On
the ARM processor, as we only have a small RAM area of
1MByte, each algorithm is averaged every 200 cycles. The
computation time performances are depicted in Fig. 1 and 2.

All these algorithms behave with linear time complexity
of O(n) but it is obvious that numerical algorithms using
Eigen have evident time variance. The main factor is that the
stop conditions of such algorithms are usually uncontrollable.
While for analytical or symbolic methods, the computation
time are quite deterministic. In all the tests, the proposed FS3R
shows definite superiority. The time consumption in general
takes from 54.43% to 87.12% of existing ones, which is a
very large advance that no previous algorithm has reached.
The simple procedure of the FS3R saves implementation
and compiling time and also decreases the program space.
The insurance of the FS3R’s accuracy, robustness plus its
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extremely low computation time makes it a booster in related
applications.

C. Evaluation with Open Datasets

In thi sub-section, the proposed FS3R is introduced for
open-dataset evaluation. We pick up two categories of datasets
i.e. the ’bunny’ dataset from Stanford University [33] and
the KITTI dataset from Karlsruhe Institute of Technology and
Toyota Technological Institute at Chicago [34]. Both datasets
are widely compared in existing literatures [35], [36]. The
’bunny’ dataset contains multiple-view point-cloud scans of a
decorated rabbit model. We use two pairs of correspondences
in the ’bunny’ dataset to conduct 3D reconstruction using ICP
algorithms comprising SVD and proposed FS3R respectively
(see Fig. 3). The matching part is implemented using the k-d
tree. After 30 iterations, SVD and FS3R converge to LSVD =
0.003092129178551 and LFS3R = 0.003092129178549 re-
spectively. The difference is so tiny that can be ignored in
reconstruction of the model. What needs to be point out here
is that FS3R only takes 0.56738 sec in computation, which is
much faster than that 1.13026 sec from SVD.

Fig. 5. Estimated angular rates from KITTI dataset.

For the KITTI dataset, the source data folder
2011_09_26_drive_0014_sync is selected. The
KITTI dataset has a high-precision ground truth system

Fig. 1. Computation time comparisons on the PC.

Fig. 2. Computation time comparisons on the ARM embedded processor.



7

supported by Velodyne 3D laser scanners, high-end inertial
measurement units (IMUs), global positioning system (GPS)
receivers and high-resolution color stereo image captures.
With point-cloud measurements from the Velodyne laser
scanners, the transformation sequence is restored using SVD
and proposed FS3R along with the ICP (see Fig. 4). The
Euler angles ϕ, ϑ, ψ are converted from rotation matrices
from the transformation sequence. With this Euler-angle
sequence, the angular rates in three directions roll, pitch
and yaw, i.e. ωRoll, ωPitch, ωYaw are reconstructed using the
tagged timestamps (see Fig. 5).

Fig. 6. Angular-rate error difference between SVD and the proposed FS3R.

The estimated angular rates from SVD and FS3R are
generally the same. Let us define the ’Axis’ difference by

εAxis = |ωAxis,SVD − ωAxis,True| − |ωAxis,FS3R − ωAxis,True|
(27)

where Axis ∈ {Roll,Pitch,Yaw} and ωAxis,True denotes the
true angular rate in the direction of Axis obtained from the
ground-truth data. We can observe from Fig. 6 that the differ-

ence between SVD and proposed FS3R has been enlarged.
Here εAxis > 0 reflects better performance of FS3R, vice
versa. In Fig. 6, there are more positive peaks than negative
ones, which indicates that here FS3R is slightly more accurate
than SVD. Note that the scale of such error is in fact enlarged
by mass matching process inside the ICP. Here the root mean-
squared (RMS) statistics are summarized in Table V.

TABLE V
RMS RESULTS FOR ANGULAR RATE ESTIMATION FROM KITTI DATASET.

SVD Proposed FS3R

εRoll 2.0979× 10−08 deg/s 1.9883× 10−08 deg/s
εPitch 1.9432× 10−08 deg/s 1.8075× 10−08 deg/s
εYaw 3.1302× 10−08 deg/s 2.9963× 10−08 deg/s

The shown errors from FS3R are slightly smaller than
that from SVD. FS3R can analytically compute the eigen-
value without iterations and thus will not be influenced by
numerical thresholds. Therefore the ICP from FS3R may be
more applicable on low-configuration platforms. However, we
need to point out that here the error scales in Table V can
almost be ignored as they have nearly reached the level of
nano deg/s, which is better than most of expensive fiber-
optic gyroscopes. Such requirements may seldom occur in real
engineering practices. Thus here the SVD and proposed FS3R
can be regarded to own identical accuracy and robustness.

D. Application Notes

The FS3R, since its invention, has been applied to some
time-consuming tasks e.g. point-cloud registration and video
stitching. In a recent test where a huge point cloud containing
7889456 points are captured using the Riegl VZ-2000 3D laser
scanner on a real-world helicopter (see Fig. 7) for power-line
inspection. The original registration method is motivated by
the libpointmatcher from ETHZ ASL Lab [26] in which
the ICP is completed using the SVD. By replacing SVD with
the proposed FS3R, the matching time has been decreased

Fig. 3. The registration results using the ’bunny’ dataset from Stanford University [33]. Left figure denotes the registration from bun270.ply to
bun315.ply; Right figure depicts the registration from bun000.ply to bun045.ply
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Fig. 4. The transformations using the KITTI dataset. Left figure: 3D results; Right figure: 2D evaluation performance.

Fig. 7. Point-cloud capture system on the helicopter (Left) and matching results for power-line inspection using the combination of proposed FS3R and
libpointmatcher from ETHZ ASL Lab (Right).

from 1 hour to 0.65 hour. The general results of the point
matching are also shown in Fig. 7. The SVD and FS3R in real
engineering use have been verified to own the same accuracy
and robustness. The huge amount of point correspondences
ensure precision estimates of rigid-body transformation. This
shows the potential applicability of FS3R in industrial process-
ing. We also have made all the codes in C++ and MATLAB
open-source and the audience can verify its effectiveness (see
the footnote of the first page).

IV. CONCLUSION

Our recent algorithm FLAE is revisited, which is later
related to the 3D registration problem. Some proofs are
presented to show the equivalence. The previous solution to
quartic equation is then simplified getting rid of complex
numbers for easier implementation. Numerical robustness of
the proposed method is also investigated showing its immunity
to degenerated matrices. The proposed algorithm is systemati-
cally evaluated with other representatives. The results indicate
that it maintains the accuracy and robustness but consumes
much less computation time. Real applications including large-
point-cloud registration have shown its superiority in engineer-
ing processing. However, it is still noticed that the current
method highly relies on the floating-point operations. Unless

we have reached the limit of EIG numerical algorithm, we still
have an expectation to develop the next-generation algorithm
in which the floating-number is no longer need, which, would
be of great benefit for parallel computing platforms like FPGA
and GPU for accelerated performance.
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