
1

A Study on the Block Relocation Problem: Lower
Bound Derivations and Strong Formulations

Chao Lu, Bo Zeng, Member, IEEE, and Shixin Liu

Abstract—The block relocation problem (BRP) is a fundamental
operational issue in modern warehouse and yard management,
which, however, is very challenging to solve. In this paper, to
advance our understanding on this problem and to provide a
substantial assistance to practice, we (i) introduce a classification
scheme and present a rather comprehensive review on all 16
BRP variants; (ii) develop a general framework to derive lower
bounds on the number of necessary relocations and demonstrate
its connection to existing ones on the unrestricted BRP variants;
(iii) propose and employ a couple of new critical substructures
concepts to analyze the BRP and obtain a lower bound that
dominates all existing ones; (iv) build a new and strong mixed
integer programming (MIP) formulation that is adaptable to
compute 8 BRP variants, and design a novel MIP formulation
based iterative procedure to compute exact BRP solutions; (v)
extend the MIP formulation to address four typical industrial
considerations. Computational results on standard test instances
show that the new lower bound is significantly stronger, and our
new MIP computational methods have superior performances
over a state-of-the-art formulation.

I. INTRODUCTION

THE block relocation problem (BRP) is a fundamental
operational issue in modern warehouse and yard man-

agement, especially for material handling in a container yard
or a steel slab yard. For example, in a container yard, heavy
and large containers, i.e., blocks in this context, are stored
temporarily in stacks (i.e., columns) as in Figure 1. Before
those containers can be shipped to different destinations, they
will be retrieved according to the prioritized retrieval list.
One prioritized list is illustrated by the numbers on containers
in Figure 1, where the smaller number the higher priority.
Clearly, if a container of a lower priority is piled on top of
another one with a higher priority, e.g., container 13 is on
top of container 12, retrieving the latter one can only be done
after moving the former one to somewhere else (typically to
another stack). Moving a container (or block in generally) from
a stack to another one is often referred to as a relocation [1].

This work was supported by the China Scholarship Council scholarship,
supported in part by National Key R&D Program of China under Grant
No. 2017YFB0306400, National Natural Science Foundation of China under
Grant No. 61573089, 61703220, 71871105, Shandong Provincial Natural Sci-
ence Foundation, China under Grant No ZR2016FP02, Postdoctoral Science
Foundation Project of China under Grant No 2017M610407 and Qingdao
Postdoctoral Research Project under Grant No 2016027.

C. Lu and S. Liu are with the State Key Laboratory of Synthetical
Automation for Process Industries, as well as the College of Information
Science and Engineering, Northeastern University, Shenyang 110819, China
(e-mail: surpassu@live.com, sxliu@mail.neu.edu.cn).

B. Zeng is with the Department of Industrial Engineering and the
Department of Electrical and Computer Engineering, Swanson School of
Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA (email:
bzeng@pitt.edu).

In practice, as containers, steel slabs and other blocks are
large and heavy, moving them needs powerful and expensive
handling equipment, and the associated operations are time
and energy consuming. Hence, to retrieve blocks from the
yard following their retrieval priorities, an essential issue is
to determine a move sequence to complete the task with
the least number of relocations, which is referred to as the
aforementioned BRP [2] or container relocation problem [3]
if specified to containers.

With the rapid automation of warehouse and yard opera-
tions, the BRP and its different variants have received a lot
of attention from engineers and scholars, and many studies
have been published in the literature after its formal intro-
duction [1] in 2006. For example, many well-defined mixed
integer programming (MIP) formulations and sophisticated
exact or heuristic algorithms have been designed and analyzed
(e.g., [4], [5] and references therein). Nevertheless, the BRP
has been proven to be NP-hard and is computationally very
challenging for practical-scale instances [6]. According to our
numerical study, a state-of-the-art formulation may take hours
to derive a feasible relocation plan for a rather small-scale
instance. Certainly, such a computational performance does
not ensure its application in practice. With little quantitative
support, the current practice is often based on operators’
experience or following fixed relocation rules, leading to many
unnecessary relocations and a heavy operational burden.

To change such a situation, especially to provide a sub-
stantial assistance to practice, we address in this paper two
critical issues of the BRP, i.e., a stronger lower bound on
the number of necessary relocations, and a computationally
more effective mathematical formulation. Indeed, we develop
a general framework to understand the number of necessary
relocations, which interprets all known lower bounds on that
number and leads us to derive a much stronger lower bound.
Moreover, a deep insight from our new formulation inspires
us to develop a novel iterative computational procedure. Also,
its flexibility and strength are demonstrated by extending it
to address four additional industrial considerations. Overall,
we mention that our new results either theoretically dominate
the state-of-the-art in the literature or drastically outperform
existing formulations.

The remaining part of this paper is organized as follows.
In Section II, we classify variants of the BRP into a few
classifications and review existing literature. In Section III,
we present a general framework to derive lower bounds on the
number of necessary relocations, demonstrate its connection to
existing ones, and apply it to analyze critical structures and
obtain a stronger lower bound. In Section IV, we build an

ar
X

iv
:1

90
4.

03
34

7v
3

 [
m

at
h.

O
C

]
 3

1
D

ec
 2

01
9

2

1 2 3 4

1 16 10 5

11 15 9 4

13 6 7 2

12 14 8 3

stack no.

tier no.

1

2

3

4

5

6

Bay 2

Bay 1

Bay 3

Fig. 1. Containers piled in stacks with their retrieval priorities

MIP formulation for the BRP. Also, a novel MIP formulation
based iterative procedure is developed to compute exact BRP
solutions. We extend the MIP formulation to address additional
industrial considerations in Section V. Performances of our
lower bound and computational methods are reported in Sec-
tion VI. Section VII concludes this paper with a discussion on
future research.

II. LITERATURE REVIEW

Up to now, many solid studies have been published on
different variants of the BRP. In this section, we classify
existing publications according to their nature, review those
publications, and describe their significant contributions.

A. Problem Classification

According to physical restrictions, retrieval specifications,
and the capacity of handling equipment, there exist four major
features in defining and formulating a BRP model. They are (i)
what restrictions are imposed on moves, (ii) whether retrieval
priorities of blocks are distinct, (iii) whether all the blocks
are to be retrieved, and (iv) whether only one block can be
moved at a time. We explain them in the following.

(i) Restricted vs. Unrestricted: In practice, the first block in
the current prioritized retrieval list is often referred to as the
target block. As mentioned, the target block can only be re-
trieved after blocks piled above it are relocated to other stacks.
Those necessary relocations are called forced moves [5]. If
only forced moves are allowed to retrieve every block in the
list, the BRP is called the restricted one. Otherwise, it is called
the unrestricted one.

(ii) Distinct vs. Duplicate: If each block is of a distinct
priority, the BRP is called the BRP with distinct priorities.
Otherwise, it is called the BRP with duplicate priorities.

(iii) Complete vs. Incomplete: If all blocks in one row (i.e.,
one bay) are to be retrieved, the problem is called the BRP
with the complete retrieval. Otherwise, it is called the BRP
with the incomplete retrieval.

(iv) Individual vs. Batch: If the handling equipment (e.g., a
crane or straddle carrier) can move exactly one block at a time,
the BRP is called the BRP with individual moves. Otherwise,

TABLE I
CLASSIFICATION OF EXISTING LITERATURE ON THE BRP BY THE NEWLY

PROPOSED FOUR-CHARACTERISTIC SCHEME

var characteristics literature years (20yy)

1 res |dis |com|ind [1], [6], [8]–[24] 06, 09, 10, 12, 14, 15, 16, 18
2 dis |com|bat not found
3 dis |inc |ind [2], [25] 11, 14
4 dis |inc |bat not found
5 dup|com|ind [1], [10], [22] 06, 16, 18
6 dup|com|bat not found
7 dup|inc |ind not found
8 dup|inc |bat not found
9 unr|dis |com|ind [6], [9], [22], [26]–[31] 12, 13, 15, 18, 19
10 dis |com|bat [7] 16
11 dis |inc |ind [25] 14
12 dis |inc |bat not found
13 dup|com|ind [3], [22], [32], [33] 12, 13, 15, 18
14 dup|com|bat not found
15 dup|inc |ind not found
16 dup|inc |bat not found

var = variation; res = restricted, unr = unrestricted;
dis = distinct priorities, dup = duplicate priorities;
com = complete retrieval, inc = incomplete retrieval;
ind = individual moves, bat = batch moves.

it is called the BRP with batch moves [7]. The latter one is
often seen in steel industry.

Clearly, there are 24 = 16 different variants based on
particular specifications on those four features. Accordingly,
we group subjects of existing publications as in Table I
after performing a rather exhaustive review. We mention that
studies on the BRP problems with other extensions, e.g., those
with stochastic factors or vehicle routing decisions, are not
included. Among those in Table I, variants 1 and 9 are most
popular, i.e., the restricted BRP and the unrestricted BRP
with distinct priorities, the complete retrieval and individual
moves. The reason behind it is that they have the fundamental
structures that do not depend on particular working conditions
or facilities. Moreover, we can argue that other variants are
relaxations of them. For example, we can convert an instance
of variant 15, i.e., the unrestricted BRP with duplicate pri-
orities, the incomplete retrieval and individual moves, to an
instance of variant 9 by assigning distinct priorities to blocks
of the same priority and considering no-to-retrieve blocks with
the lowest priorities. Certainly, solving the latter instance does
not necessarily ensure an optimal solution of the former one.
However, any feasible solution to the latter instance is always
feasible to the former one, if retrieval moves of no-to-retrieve
blocks are ignored. Hence, computing variant 1 or 9 provides
a basic strategy to handle more involved variants.

Although many research efforts have been devoted to the
BRP variants, as noted in the following reviews, existing
results might not be able to efficiently deal with their practical
instances, which, therefore, inspires us to perform a study to
gain a deeper understanding and to develop efficient solution
methods.

B. Literature on Restricted BRP Variants

We first give a review on existing studies on variant 1,
which is the default BRP in this subsection, and then describe
relevant work on variants 3 and 5.

3

1) Theoretical analysis. To the best of our knowledge, the
study in [1] is the first analytical one in the literature. As the
number of relocations is the primary concern of the BRP, they
give a lower bound on this number. Since then, this lower
bound has been successively improved by different scholars
[8]–[11]. Although the lower bound of [1] is rather weak,
Galle et al. [12] show that the expected minimum number of
relocations approaches to it if the number of stacks grows to
infinite and the priorities of blocks are uniformly distributed.
Additionally, some upper bound estimations on that number
have also been developed [6], [13], [14].

2) Exact tree search algorithms. To directly solve the BRP
problems, we note that there are three main types of tree search
based exact algorithms, which are the fastest exact algorithms
up to now. They are branch-and-bound (B&B) algorithms, A*
based algorithms, and other tree search algorithms. Simple
B&B algorithms are developed by Kim and Hong [1] and
Wu and Ting [15]. More sophisticated B&B algorithms are
developed by Expósito-Izquierdo et al. [16] and Tanaka and
Takii [10]. Along with B&B algorithms, Zhang et al. [8]
propose iterative deepening A* algorithms (IDA) that take ad-
vantages of two new lower bounds and several probe heuristics
[9]. Since then, a couple of more A* algorithms have been
introduced, including [17] where an A* algorithm makes use
of existing lower bounds and an existing upper bound, and [11]
where new lower bounds and several existing lower bounds
are integrated for a better performance. Finally, we note that
Ku and Arthanari [18] design a bidirectional search algorithm,
which incorporates a search space reduction technique, called
the abstraction method, within a tree search algorithm.

3) Mathematical programming formulations. In the lit-
erature, the BRP is often formulated into MIPs that can
be computed by state-of-the-art solvers or packages. Note
that those solvers or packages, different from the aforemen-
tioned particular algorithms, compute general mathematical
programs, which allow users to flexibly augment basic MIP
models with additional considerations and concerns arising
from practice.To the best of our knowledge, Wan et al. [19]
develop the first binary formulation, which is then improved by
Tang et al. [20] with a significantly better computational per-
formance. Caserta et al. [6] present another binary formulation
called BRP-II. Later, it is improved in [16] by replacing some
constraints, and is enhanced in [14] by removing superfluous
variables, tightening some constraints, and applying a pre-
processing step to fix several variables. We mention that
a relocation sequence based reformulation is proposed in
Zehendner and Feillet [13] to support a column generation
algorithm for the BRP. Additionally, a couple of stronger
binary formulations are proposed very recently by Galle et
al. [21] and da Silva et al. [22].

4) Heuristic solution procedures. Because of the complexity
of the BRP, most of the existing heuristics are ruled-based
heuristics [1], [6], [20] and look ahead heuristics [15], [23].
There are also some MIP based heuristics [19], a beam search
heuristic [15] and a fast chain heuristic [24] .

5) Relevant research on variants 3 and 5. Research on
variants 3 and 5 is rather scarce. For variant 3, Caserta et al. [2]
develop a dynamic programming algorithm, and a heuristic

method, i.e., a customized corridor method, that adopts the
dynamic programming algorithm as a subroutine to achieve
a stronger solution capability. Also, Expósito-Izquierdo et
al. [25] design a fast knowledge-based heuristic algorithm and
two exact A* search algorithms for variant 3. In addition to
their focuses on variant 1, papers [1], [10], and [22] present
some analysis on variant 5.

C. Literature on Unrestricted BRP Variants

Similar to our review on the restricted BRP, we first focus
on existing studies on variant 9, which is the default BRP in
this subsection, and then describe relevant work on variants
10, 11 and 13.

1) Theoretical analysis. We mention that the lower bound
on the number of necessary relocations by Kim and Hong [1],
which is originally developed for variants 1 and 5, is also
applicable to variant 9, and has been considered as the basis
for further improvements. Forster and Bortfeldt [3] propose a
stronger lower bound for variant 13, which is also applicable
to variant 9. Recently, two new stronger lower bounds are
proposed by Tanaka and Mizuno [26] and Tricoire et al. [27].
Regarding the upper bound, Caserta et al. [6] propose a closed-
form upper bound. In addition to the lower bound, Tanaka
and Mizuno [28] propose two dominance properties associated
with optimal solutions to reduce solution space. Their result
is further complemented by two new dominance properties
presented in Tanaka [29].

2) Exact tree search algorithms. In addition to their focus on
the restricted BRP, Zhu et al. [9] also develop IDA algorithms
for the unrestricted BRP. By using their derived dominance
properties, Tanaka and Mizuno [28] and [29] develop some
strengthened B&B algorithms in the search tree. Together with
a new lower bound, the B&B algorithms are further improved
in Tanaka and Mizuno [26]. A recent B&B algorithm for the
BRP is developed by Tricoire et al. [27], which incorporates
fast heuristics and another new lower bound. Those algorithms
are again the fastest exact algorithms for this type of BRP.

3) Mathematical programming formulations. Caserta et al.
[6] develop the first binary integer program for the unrestricted
BRP, which is referred to as BRP-I. Note that, it could
not provide a satisfactory performance even on small scale
instances. Petering and Hussein [30] present a more compact
MIP formulation, which is called BRP-III. Compared to BRP-
I, BRP-III has much fewer integer decision variables, and
demonstrates a faster computational performance. However,
it can only solve 69 out of 520 benchmark instances as shown
in [22]. Recently, da Silva et al. [22] propose two new binary
formulations, referred to as BRP-m1 and BRP-m2 respectively,
both of which demonstrate significantly better computational
performances over BRP-III. Between them, BRP-m2 is a little
bit more efficient as it can solve 181 benchmark instances
while BRP-m1 can solve 154 instances.

4) Heuristic solution procedures. As for fast heuristics for
the unrestricted BRP, Caserta et al. [6] propose a simple rule-
based heuristic. Petering and Hussein [30] extend the heuristic
and develop a look-ahead heuristic. Tricoire et al. [27] develop
four fast heuristics and a pilot method which incorporates a

4

fast metaheuristic called rake search. Feillet et al. [31] develop
a local-search based heuristic, where the state space is explored
by a dynamic programming algorithm.

5) Relevant research on variants 10, 11 and 13. Regarding
other variants, Zhang et al. [7] propose a lower bound for
variant 10, and develop both inexact and exact tree search
algorithms. Expósito-Izquierdo et al. [25] develop a simple
domain-specific knowledge-based heuristic for variant 11,
which aims to minimize the probability that a relocated block
requires new relocations in the future. They also develop an
exact A*-based search algorithm which embeds that heuristic.
For variant 13, Forster and Bortfeldt [3] develop a heuristic
tree search algorithm that includes a suitable branching
procedure using move sequences of promising single moves.
Similarly, Jin et al. [32], [33] develop tree search based
look-ahead heuristics. da Silva et al. [22], in addition to their
focus on variant 9, also give formulations for variant 13.

Overall, we note in the literature that current studies on
the unrestricted BRP is insufficient, and it still remains as a
challenging problem. For example, existing research on ana-
lyzing lower bounds on the number of relocations is developed
rather from individual structures, with little insight to establish
a systematic strategy. Also, most benchmark instances in [22]
cannot be solved in a reasonable time using the state-of-the-
art formulation. To change such a situation of the unrestricted
BRP, in this paper, we perform a study on developing a
general framework to understand lower bound derivations,
demonstrating its application to obtain a stronger lower bound,
and constructing a computationally friendly MIP formulation,
as well as an MIP formulation based exact algorithm for a
faster computation.

Besides the four features defining BRP variants, a practical
system often has concerns or requirements due to its particular
situation and environment. For example, when containers have
a great variety in their weights, heavy containers should not be
piled on top of light containers [34]. Also, retrieval operations
of steel slabs should be well paced to ensure a smooth
production in the next stage [35]. To illustrate its advantages
in flexibility and general applicability in practice, our basic
MIP model is modified or augmented to accommodate several
practical considerations.

III. DERIVATIONS OF LOWER BOUNDS ON THE NUMBER
OF RELOCATIONS

Different from existing studies on deriving particular lower
bounds on the number of necessary relocations, we present a
completely new framework to estimate that number systemati-
cally. It reveals fundamental connections among existing lower
bounds. Then, we identify a few new results that strengthen
traditional understandings. Finally, under the proposed frame-
work, we obtain a new lower bound that dominates all existing
ones. We believe that the overall derivation is novel, and will
substantially advance our understanding on the BRP.

A. A General Framework for the Derivation of Lower Bounds
We first introduce several well-established concepts that are

critical to have a deep appreciation of the BRP.

Consider one bay with B blocks piled on S stacks. Let
B = {1, 2, ..., B} be the set of blocks, noting that a smaller ID
has a higher priority, and S = {1, 2, ..., S} be the set of stacks.
Also, we denote the overall organization of those blocks, i.e.,
their positions in stacks, by C. For a given C, block i is called
a badly placed (BP) block if it is piled above some block(s)
that should be retrieved before it, i.e., b’s priority is lower than
those of blocks below it. Otherwise, b is a well placed (WP)
block [3]. Clearly, BP blocks are the causes of relocations.
For the instances displayed in Figure 2 (a) and (b), the blocks
with priority numbers in bold and underlined are BP blocks,
and other blocks are WP blocks.

Next, we define types of block moves. Since block retrieval
moves, which are mixed with relocation moves in the move
sequence, are not our concern, we only define different relo-
cation moves. According to [3], there are four types of moves.
A BB (i.e., Bad-Bad) move is a move relocating a BP block
to a stack and after which the block is again a BP block. A
BG (i.e., Bad-Good) move is a move relocating a BP block
to a stack and after which the block becomes a WP block.
Two other moves, i.e., GB move and GG move, are defined
likewise. In Figure 2 (a), the move relocating block 5 to stack
1 is a BB move, the move relocating block 5 to stack 2 is a BG
move, the move relocating block 4 to stack 3 is a GB move,
and the move relocating block 4 to stack 2 is a GG move. It
is straightforward that a BP block cannot be retrieved if no
BG move is implemented on it.

Extending from individual blocks, we introduce the concept
of the priority of stack s, which is the highest priority of a
block piled in stack s if it is not empty, and +∞ (i.e., the
lowest priority) otherwise. For the instance displayed in Figure
2 (a), the priorities of the four stacks are respectively 4, 13,
2 and 1 from the left to the right. Obviously, the priority of
a stack will be lower or remain the same if some block(s)
is removed from it. Another important concept is the top kth

layer, which consists of the top kth block of each stack when
every stack has at least k blocks. For the instances displayed
in Figure 2 (a) and (b), the top 2nd layers consist of blocks
{11, 14, 7, 1} and blocks {6, 14, 5, 4} respectively. Similarly,
we define the top k layers that include all blocks from the
top 1st to the top kth layers. For the instances displayed
in Figure 2 (a) and (b), the top 2 layers include blocks
{4, 13, 6, 5; 11, 14, 7, 1} and blocks {16, 17, 18, 19; 6, 14, 5, 4}
respectively.

In the following, we present a few critical properties that
are actually behind all derivations of lower bounds on the
number of relocations in the BRP. Those properties render a
general framework for us to analyze lower bound derivations
in a systematical fashion. Specifically, let f(B) be the function
that returns the least number of relocations implemented on
block subset B ⊆ B across all feasible move sequences that
complete the retrieval task of the given initial configuration C.
Moreover, function fmt with mt ∈ {BB, BG, GB, GG} returns
the least number of relocations of each particular move type
across all feasible move sequences. Similarly, fBG returns that
least number of all non-BG moves.

5

Theorem 1. The following inequalities hold.

f(B) ≥fBG(B) + fBG(B)

≥fBG(B) + fBB(B) + fGB(B) + fGG(B)

Proof: Note that a relocation move must be either a BG
move or a non-BG move, i.e., a BB, GB, or GG move.
Nevertheless, a feasible move sequence with the least number
of total relocations might have more BG moves (non-BG
moves, respectively) than another feasible move sequence.
Hence, according to the definitions of f , fBG and fBG, the
first inequality follows. By applying the same argument, we
have the second inequality. �

Clearly, the inequalities in Theorem 1 provide a useful tool
in analyzing the number of relocations through considering
specific types of moves. Indeed, this idea can be further gener-
alized to consider subsets of blocks. Let {Bki : i = 1, . . . , nk}
be a partition of the complete block set B, for k = 1, 2. Then,
the next result can be proven easily using the same argument
presented in the proof of Theorem 1.

Theorem 2. The following inequalities hold.

fmt(B) ≥
n1∑
i=1

fmt(B1
i) ∀mt ∈ {BB, BG, GB, GG}

fBG(B) ≥
n1∑
i=1

fBG(B1
i)

≥
n1∑
i=1

(fBB(B1
i) + fGB(B1

i) + fGG(B1
i))

f(B) ≥fBG(B) + fBG(B) ≥
n1∑
i=1

fBG(B1
i) +

n2∑
i=1

fBG(B2
i)

Remarks:
(i) We highlight that Theorems 1 and 2 present fundamental
results. They enable us to derive strong lower bounds through
understanding and analyzing particular move types and/or sub-
sets that are more accessible than a complete move sequence
or the whole configuration. Indeed, basically all existing lower
bounds can be obtained and interpreted easily by inequalities
presented in those two theorems. Hence, they provide a general
and effective framework in performing a lower bound study.
(ii) It is worth pointing out that this framework is generally
applicable. Without any modifications, it can be directly uti-
lized to analyze the eight BRP variants with individual moves.
Note that for the four restricted BRP variants, fGB(B) and
fGG(B) are naturally set to 0, given that there is no GB or
GG move. As a matter of fact, research on the lower bound
derivation on variants with batch moves is scarce, except a
study on variant 10 presented in [7]. So, one future research
direction is to extend this framework with more move types
to systematically study BRP variants with batch moves.

In the following subsections, we discuss existing lower
bounds of the unrestricted BRP variants and their connections
to this framework, then apply the framework to develop a new
and stronger lower bound.

B. A Revisit of Existing Lower Bounds

In this subsection, we review important structural properties
of the BRP that have been used in the development of
four lower bounds of the unrestricted BRP variants in the
literature. We also discuss the computational complexities
and the applicability of those lower bounds among different
BRP variants, primarily among those with individual moves.
In particular, we demonstrate how those lower bounds can
be derived and interpreted using the general framework in
Theorems 1 and 2. Without loss of generality, we assume,
throughout this paper, that no directly retrievable block exists
in the initial configuration C.

1) LB1: The First Fundamental Result

Property 1. At least one BG move has to be implemented on
a BP block.

� Argument and Lower Bound Development:
From the definition, it is clear that a BP block cannot be
retrieved until it becomes a WP. So the property follows.

Kim and Hong [1] introduce and analyze this property, and
then propose a lower bound of the number of relocations.
Specifically, their lower bound is set to the number of BP
blocks in the initial configuration. The time complexity of an
algorithm to compute this lower bound can be O(B).

As the first lower bound appears in the literature, it is
referred to as LB1 by Tricoire et al. [27]. Although it is
originally proposed for restricted BRP variants 1 and 5, LB1 is
also widely recognized as a lower bound for unrestricted BRP
in the literature [3] [26] [27]. In fact, it can be directly applied
to the four variants with the complete retrieval and individual
moves. Moreover, by simply assigning no-to-retrieve blocks
with the same lowest priority, it will be able to handle the
other four variants with the incomplete retrieval and individual
moves. Hence, it is applicable to all the eight variants with
individual moves, including restricted and unrestricted ones.
It is actually also the basis of the lower bound study [7] on a
variant with batch moves.
� Revisit and Demonstration:
Let B1 be the collection of BP blocks in the initial configu-
ration. Property 1 can be expressed as fBG({b}) ≥ 1, for all
b ∈ B1. Given the facts that {{b} : b = 1, . . . , B} is a partition
of B and B1 ⊂ B, we have

f(B) ≥fBG(B) + fBG(B) ≥
∑
b∈B

fBG({b}) + fBG(B)

≥
∑
b∈B

fBG({b}) ≥
∑
b∈B1

fBG({b}) ≥ |B1|,

which exactly gives LB1 as a valid lower bound.
� Illustration:
For the instances displayed in Figure 2 (a) and (b), priority
numbers of BP blocks are in bold and underlined. So, B1 =
{5, 6, 7, 11, 12} and B1 = {6, 8, 10, 12, 14, 16, 17, 18, 19},
respectively, which set LB1 to 5 and 9, respectively.

2) LB2: A Generalization of LB1

6

(b)
1 2 3 4

13 1 11 15

3 10 9 7

16 17 19

tier no.

1

2

3

4

5

6

6 14 18 4

2 12 5 8

1 2 3 4

17 18 19 20

8 16 9 10

11 14 7 1

12 15 2 3

4 13 6 5

stack no.

1

2

3

4

5

6

(a)
stack no.

tier no.

Fig. 2. Two instances with 4 stacks and a stack height limit of 6

Property 2. At least one BB move has to be implemented on
one block of the top 1st layer, if the highest priority of blocks
in this layer is lower than the lowest priority of all stacks.

� Argument and Lower Bound Development:
If the condition of Property 2 is satisfied, the first block to be
moved is BP, and remains BP after the move, i.e., a BB move.

Forster and Bortfeldt [3] introduce and analyze this property,
and then propose a lower bound based on both Properties 1
and 2. Specifically, their lower bound is set to LB1+1 if the
condition of Property 2 is satisfied in the initial configuration
C and LB1 otherwise. The time complexity of an algorithm to
compute the lower bound can be O(B). As the second lower
bound appears in the literature, it is referred to as LB2 by
Tricoire et al. [27]. LB2 is initially proposed for unrestricted
variant 13. Similar to LB1, it in fact can be applied to all the
eight variants with individual moves, noting that any restricted
variant can be naturally relaxed to an unrestricted variant.
� Revisit and Demonstration:
Let B2 be the collection of blocks of the top 1st layer.
Property 2 can be expressed as: fBB(B2) ≥ 1 if B2 satisfies
the condition of Property 2 (B2 satisfies P2 for short). Given
the fact that B2 ⊆ B, we have

f(B) ≥fBG(B) + fBG(B) ≥
∑
b∈B

fBG({b}) + fBB(B)

≥|B1|+ fBB(B2) ≥

{
|B1|+ 1, if B2 satisfies P2
|B1|, otherwise

which exactly gives LB2 as a valid lower bound.
� Illustration:
For the instance displayed in Figure 2 (a), we have B2 =
{4, 13, 6, 5}. The priorities of all four stacks are respectively
4, 13, 2, 1 from the left to the right, and the lowest one is
13. As the highest priority of blocks in B2 is 4, which is
higher than 13. Hence, B2 does not satisfy P2, and LB2 =
LB1 = 5. For the instance displayed in Figure 2 (b), we have
B2 = {16, 17, 18, 19}. The priorities of all four stacks are
respectively 2, 1, 5, 4 from the left to the right, and the lowest
one is 5. The highest priority of blocks in B2 is 16, which is
lower than 5. Hence, B2 satisfies P2, and LB2 = LB1 + 1 =
9 + 1 = 10.

3) LB3: A Generalization of LB2

Property 3. At least one non-BG move has to be implemented
on a block in each of the top k layers, if : (1) the target block
is not in the top k layers, and (2) the highest priority of BP
blocks in the top k layers is lower than the lowest priority of
all stacks after removing the top k − 1 layers.

� Argument and Lower Bound Development:
Condition (1) in Property 3 ensures that the target block
remains unmoved until at least one block has been relocated
from each of the top k layers. Hence, the first move of a block
from each of the top k layers is a relocation. Moreover, a BP
block (e.g., a block above the target block) exists among each
of the top k layers. Condition (2) ensures that any BP block
in one of the top k layers remains BP after the first relocation
implemented in that layer. Therefore, the first move of a block
in each of the top k layers is a non-BG move.

Tricoire et al. [27] introduce and analyze this property, and
propose a lower bound based on both Properties 1 and 3.
Specifically, their lower bound is set to LB1 + k, as long as
the maximum top k layers satisfy the conditions of Property 3
in the initial configuration C. This lower bound is referred to
as LB3 as it probably is the third lower bound appears in the
literature. Note that, LB3 generalizes and dominates LB2 [27]
since Property 3 generalizes Property 2.

The time complexity of an algorithm to compute LB3 can
be O(B), although the conditions of Property 3 have to be
checked several times (i.e., for k = 1, . . . ,K, and K < B/S).
Our reasoning is as follows. (i) The target block can be found
with a time complexity of O(B). Without loss of generality, let
it be below the top Kth layer and there are at least K blocks
in each stack. (ii) The highest priority of BP blocks among
the top 1st layer can be computed with a time complexity
of O(S), and that of the top kth (2 ≤ k ≤ K) layers can
be computed with a time complexity of O(S) based on the
results of the top k − 1th, i.e., S comparison operations. (iii)
The lowest priority of stacks after removing the top K − 1th

layers can be computed with a time complexity of O(B),
and the lowest priority of stacks after removing the top kth

(1 ≤ k ≤ K − 2) layers can be computed with a time
complexity of O(S) based on the results of the top k + 1th,
i.e., 2S− 1 comparison operations. (iv) Given the above data,
the conditions of Property 3 can be checked with a time
complexity of O(1) for any k = 1, · · · ,K. Following the
calculation B+S+ (K− 1)S+B+ (K− 2)(2S− 1) +K <
2B+3KS+2 < 5B+2, we conclude the time complexity of
the overall algorithm as O(B). Since its derivation is a direct
extension of that of LB2, LB3 is applicable to all the eight
variants with individual moves.
� Revisit and Demonstration:
Let B3 be the collection of blocks in the top k layers.
Property 3 can be expressed as: fBG(B3) ≥ k if B3 satisfies
the conditions of Property 3 (B3 satisfies P3 for short). Given
the fact that B3 ⊆ B, we have

f(B) ≥fBG(B) + fBG(B) ≥
∑
b∈B

fBG({b}) + fBG(B3)

≥|B1|+ fBG(B3) ≥ |B1|+ k.

7

Hence, if B3 is the maximum top k layers satisfying P3, this
derivation exactly gives LB3 as a valid lower bound.
� Illustration:
For the instance displayed in Figure 2 (a), B3 = {4, 13, 6, 5}
for k = 1. The target block is 1 and is not in B3. The priorities
of all four stacks are respectively 4, 13, 2, 1 from the left to
the right, and the lowest one is 13. The highest priority of
BP blocks in B3 is 4, which is higher than 13. Therefore, B3

does not satisfy P3 for k = 1. Therefore, no B3 satisfies P3,
and LB3 = LB1 + k = 5 + 0 = 5. For the instance displayed
in Figure 2 (b), B3 = {16, 17, 18, 19; 6, 14, 5, 4} for k = 2.
The target block is 1 and is not in B3. The priorities of all
four stacks after removing the top 1 (= 2− 1) layer of blocks
are respectively 2, 1, 5, 4 from the left to the right, and the
lowest one is 5. The highest priority of BP blocks in B3

is 6, which is lower than 5. Therefore, B3 satisfies P3 for
k = 2. We can further evaluate a larger B3 by setting it to
{16, 17, 18, 19; 6, 14, 5, 4; 2, 12, 9, 8}, i.e., k = 3. Again, the
target block is 1 and is not in B3. The priorities of all four
stacks after removing the top 2 (= 3− 1) layers of blocks are
respectively 2, 1, 9, 7 from the left to the right, and the lowest
one is 9. The highest priority of BP blocks in B3 is 6, which
is higher than 9. Hence, B3 does not satisfy P3 for k = 3. As
a conclusion, we have the maximum B3 that satisfies P3 when
k = 2, and LB3 = LB1 + k = 9 + 2 = 11.

4) LB-N: Another Generalization of LB2

Property 4. Consider the initial configuration C where the
target block is in stack s. Perform an experiment by relocating
each block above the target block once without considering the
stack height limit or moving blocks in other stacks.

If some of the relocated block(s) cannot be transformed to be
WP in any of such experiments, we can conclude with respect
to C that either (1) at least one BB move has to be implemented
on one of the relocated blocks, or (2) at least one GB or
GG move has to be implemented on a block with the highest
priority in one of the other S − 1 stacks.

� Argument and Lower Bound Development:
Since all the relocated blocks are BP in C, i.e., above the
target block, the condition of Property 4 ensures that some of
them have to be implemented with BB moves if the priorities
of other S−1 stacks are not lowered beforehand. The priority
of a stack can be lowered only if its block with the highest
priority, i.e., a WP block, is retrieved or relocated. Since the
target block is below the relocated blocks, no WP block can be
retrieved before completely relocating those blocks. Therefore,
the priorities of other S − 1 stacks can only be lowered by
relocating WP blocks, i.e., conducting GB or GG moves. In
conclusion, at least one non BG move has to be implemented
on one of the relocated blocks or a block with the highest
priority in one of the other S − 1 stacks.

Tanaka and Mizuno [26] introduce and analyze this prop-
erty, and propose a new lower bound based on both Properties
1 and 4, which is referred to as LB-N. They further have a
slight modification by considering the stack height limit in a
specific situation. As such a change is rather minor, we do not
include it in the following discussions to minimize distractions.

Specifically, LB-N is set to LB1+1 if the condition of Prop-
erty 4 is satisfied according to an iterative procedure, and LB1

otherwise. First, they check the condition of Property 4 for the
initial configuration. If satisfied, they increase LB-N by 1 and
terminate. Otherwise, they remove the target block as well as
all blocks above it, and recheck the condition of Property 4 for
the updated configuration (and the updated target block). They
repeat the above procedure until LB-N = LB1 + 1 or all the
blocks are removed. Note that, if a block is removed then all
blocks above it are removed, which suggests that an initially
BP (WP, respectively) block remains BP (WP, respectively)
after the removal. Hence, the validity of the aforementioned
iterative procedure is guaranteed [26].

For a target block i, the time complexity of checking the
condition of Property 4 can be Bi logS, where Bi is the num-
ber of blocks above block i at the beginning of the iteration
if stacks are sorted in the increasing order of their priorities
beforehand [26]. The logS comes from the dichotomy to
select an appropriate stack for each relocated block. However,
the priority of the stack of the target block is changed after
removing blocks during each iteration. The time complexity of
finding the new order of the stack is O(logS), since priorities
of other stacks remain unchanged and dichotomy can be used.
Then stacks have to be resorted with a time complexity of
O(S). Therefore, the time complexity of the whole algorithm
for LB-N is O(BS).

LB-N initially is proposed for unrestricted variant 9, where
it generalizes LB2 [26]. Indeed, it can be directly applied
to four variants with distinct priorities and individual moves.
For other four variants with duplicate priorities and individual
moves, we note that it could also be applied if its derivation
can be modified with some minor changes. For example, when
multiple target blocks exist, we can simply keep one but
remove other target blocks and the blocks above them from C.
The updated configuration allows us to perform the operations
presented in Property 4 to derive a lower bound to C.
� Revisit and Demonstration:
During one iteration, let B4 be the collection of the blocks
above the target block and a block with the highest priority in
each of the other S−1 stacks (if not empty). Then, Property 4
can be expressed as: fBG(B4) ≥ 1 if B4 satisfies the condition
of Property 4 (B4 satisfies P4 for short). Given the fact that
B4 ⊆ B, we have

f(B) ≥fBG(B) + fBG(B) ≥
∑
b∈B

fBG({b}) + fBG(B4)

≥|B1|+ fBG(B4) ≥

{
|B1|+ 1, if B4 satisfies P4
|B1|, otherwise

which exactly gives LB-N as a valid lower bound.
� Illustration:
For the instance displayed in Figure 2 (a), block 5 is above
the target block, i.e., block 1, in stack 4, and the blocks
with the highest priority in each of the other three stacks are
respectively blocks 4, 13 and 2 from the left to the right.
Hence, B4 = {5} ∪ {4, 13, 2}. Since block 5 can become
WP if is relocated to stack 2, B4 does not satisfies P4, and
we update the configuration by removing blocks 1 and 5.

8

For this new configuration, block 2 becomes the target block
and blocks 6 and 7 are above it in stack 3. The blocks with
the highest priority in each of the other three stacks are
respectively blocks 4, 13 and 3 from the left to the right.
Hence, B4 = {6, 7} ∪ {4, 13, 3}. Since one of blocks 6 and 7
cannot become WP if both of them are relocated only once,
B4 satisfies P4, and we set LB-N = LB1 + 1 = 5 + 1 = 6.
For the instance displayed in Figure 2 (b), blocks 17, 14,
12 and 10 are above the target block in stack 2, and the
blocks with the highest priority in each of the other three
stacks are respectively blocks 2, 5 and 4 from the left to the
right. Hence, B4 = {17, 14, 12, 10}∪{2, 5, 4}. Since block 17
cannot be relocated once to be WP, B4 satisfies P4, and we
have LB-N = LB1 + 1 = 9 + 1 = 10.

C. New Structural Properties
In this subsection, we present four new structural properties

for some subsets of the initial configuration. Note that existing
properties (i.e., P2 and P3) heavily depend on the concept
of “layer”, i.e., a subset of S blocks that are physically of
the same depth in all stacks. And only physically adjacent
layers are considered together. Different from this natural one,
we introduce the new “virtual layer” concept, which consists
of S blocks such that each of them is from a unique stack,
but they might be of different depths. Moreover, multiple
virtual layers that are not physically adjacent could be easily
considered. Clearly, for this very flexible and general structure,
if some connections to the necessary relocation moves can be
established, it definitely provides a fundamental and powerful
tool to analyze the BRP. To the best of our knowledge, no
similar structure has been considered in any of prior research.

1) Property 5: An Insight from a Virtual Layer

Theorem 3. (Property 5) Pick a block from each of the S
stacks to form a virtual layer. At least one non-BG move has
to be implemented on blocks of this virtual layer, if : (1) there
exists a block piled below the virtual layer such that its priority
is higher than the highest priority of blocks in the virtual layer,
and (2) the highest priority of BP blocks in the virtual layer
is lower than the lowest priority of all stacks after removing
blocks above the virtual layer.

Proof: Consider the first move of a block in the virtual layer.
Without loss of generality, assume that it is implemented on
block i. We will prove that this move is a non-BG move.

When block i is the first one in the virtual layer to be relo-
cated, other blocks in the virtual layer remain in their initial
positions. Then we consider the following two situations. (i) If
block i is initially WP, it cannot be retrieved, since condition
(1) ensures that a block with a higher priority has not been
retrieved yet. So, this first move must be a GB or GG move. (ii)
Otherwise, if block i is initially BP, it cannot be relocated to
be WP, since condition (2) ensures that any destination stack
is with a higher priority. Therefore, this first move is a BB
move. In conclusion, the first move in the virtual layer must
be a non-BG move, and Theorem 3 is proved. �
� Illustration:
Let B5 be a virtual layer. For the instance displayed in Figure

2 (b), we can have B5 = {2, 12, 18, 8}, and the highest priority
of its blocks is 2. Note that block 1 is below the virtual layer
and its priority is higher than 2. The priorities of all four stacks
after removing blocks above the virtual layer are respectively
2, 1, 5 and 7 from the left to the right, and the lowest one is
7. As the highest priority of BP blocks in B5 is 8 (lower than
7), B5 satisfies the conditions of Property 5 (B5 satisfies P5
for short). Hence, we have fBG(B5) ≥ 1.

2) Property 6: An Extension to Multiple Non-overlapping
Virtual Layers

Utilizing the general framework in Theorems 1 and 2, we
take advantage of Theorem 3 to derive the following corollary.

Corollary 1. (Property 6) Given k non-overlapping virtual
layers, each of which satisfies P5, then at least k non-BG
moves will be implemented on blocks of those virtual layers.

� Illustration:
For the instance displayed in Figure 2 (b), we can have
three non-overlapping virtual layers B5

1 = {16, 17, 18, 19},
B5
2 = {6, 14, 5, 4}, and B5

3 = {2, 12, 9, 7}, which all satisfy
P5. Therefore, we can have fBG(B5

1 + B5
2 + B5

3) ≥ 3. Note
in the illustration following Property 3 that, only 2 non-BG
moves can be guaranteed if Property 3 is applied.

Unlike the conventional concept of top k layers used in
Property 3, those virtual layers in Corollary 1 are not neces-
sarily to be top layers or piled consecutively. Moreover, given
the top k layers that satisfies P3, any virtual layer formed by
blocks in the top k layers satisfies P5. Hence, it can be easily
seen that Property 3 is a special case of Property 6.

Corollary 2. With the same configuration C, Property 6
subsumes Property 3 as a special case.

To identify a virtual layer satisfying P5, we have designed
two algorithms both with O(BS) time complexity. Details of
the two algorithms, referred to as A5 and A5*, are presented
in Appendix A. Clearly, they can always be reused to iden-
tify multiple non-overlapping virtual layers satisfying P6. In
addition, as shown in Appendix A, our algorithms generalize
the subset selection procedure of P3. Note that the top layers
satisfying P3 will also be identified by our algorithms, as they
always start with physical layers from the top of C.

3) Property 7: An Extension to Overlapping Virtual Layers

Next, we extend to consider a more complex block subset
where two virtual layers share an overlapped block. Actually,
two virtual layers can cross once through the shared block so
that one layer does not need to be above the other layer.

Theorem 4. (Property 7) Consider two virtual layers that both
satisfy P5 and share exactly one WP block. If the priority of
the shared WP block is lower than the lowest priority of other
S−1 stacks (i.e., excluding the one with the shared WP block)
after removing blocks above both of the two layers, then either
at least 2 non-BG moves will be implemented on blocks in the
two virtual layers, or at least 1 GB and 1 BG moves will be
implemented on the shared WP block.

9

Proof: We consider the first move of a block in each of those
two virtual layers. Without loss of generality, we assume that
those moves are implemented on block i1 in the first layer
and block i2 in the second layer respectively, and block i1 is
moved before block i2.

We consider the following two situations. (i) If block i1
is the shared WP block, then the move on block i1 is a GB
move, and a BG move is needed for block i1 in the latter
moves. Therefore, at least 1 GB and 1 BG moves have to be
implemented on the shared WP block. (ii) If block i1 is not
the shared WP block, then the move on block i1 is a non-BG
move since the first virtual layer satisfies P5. Since the shared
WP block is not moved, all blocks of the second virtual layer
remain in their initial positions after the move of block i1.
Then the move on block i2 is also a non-BG move since the
second virtual layer satisfies P5. Therefore, at least 2 non-BG
moves have to be implemented on blocks in those two virtual
layers. In conclusion, Theorem 4 is proved. �
� Illustration:
Let B7 be two virtual layers sharing one WP block. For
the instance displayed in Figure 2 (b), we can have B7 =
{16, 17, 5, 19}∪ {6, 14, 5, 4}, where the shared block is block
5, and the two virtual layers are B5

1 = {16, 17, 5, 19} and
B5
2 = {6, 14, 5, 4}. Note that both the two virtual layers satisfy

P5. The priorities of the other three stacks after removing
blocks above both of the two virtual layers are respectively 2, 1
and 4 from the left to the right, and the lowest one is 4, which
is higher than the priority of the shared WP block. Therefore,
B7 satisfies the conditions of Property 7 (B7 satisfies P7 for
short), and we have fBG(B7) ≥ 2.

To identify a block subset B7 satisfying P7 for a given
shared block, we have designed an algorithm with O(BS)
time complexity. Details of this algorithm, referred to as A7,
are presented in Appendix B.
Remark:
The consideration of BG moves has been shown in Property 1,
which is rather straightforward due to the initially BP blocks.
Nevertheless, it is worth pointing out that the possible BG
move presented in Theorem 4 is actually for an initially WP
block, which definitely is not obvious. This new understand-
ing, as well as the following Theorem 5 and the consequently
strong lower bound, is obtained through a deeper analysis and
a more involved reasoning on a particular structure. Hence, we
believe that, with the support from our general framework, a
more comprehensive understanding on the BRP and stronger
lower bounds can be expected by studying more sophisticated
structures and deriving richer insights.

4) Property 8: A Forced Move due to Retrieval

Different from those derived with layer concepts, in the
following, we introduce a new property that considers non-
BG moves of some blocks, which is similar to Property 4. In
fact, it is a generalization of Property 4.

Theorem 5. (Property 8) Consider the initial configuration
C where a block (say block i) is piled in a stack (say stack
s). First pick some block(s) from the above of block i, which
are with priorities lower than that of block i, to form the first

block subset. Then pick at most one WP block from each of
the other S − 1 stacks, which is again with a priority lower
than that of block i, to form the second block subset.

Perform an experiment by first removing all the blocks
except blocks in those two subsets from C, and then relocating
each block of the first subset once without considering the
stack height limit or moving blocks of the second subset.

If some of the relocated block(s) cannot be transformed to be
WP in any of such experiments, we can conclude with respect
to C that either (1) at least one BB move has to be implemented
on blocks of the first subset, or (2) at least one GB or GG move
has to be implemented on blocks of the second subset.

Proof: It is clear that to retrieve block i, blocks of the first
subset must be moved away from stack s. Since they are
all with priorities lower than that of block i, they can only
be relocated. The condition of Property 8 ensures that some
of these block(s) have to be implemented with BB moves
if blocks of the second subset are not moved beforehand. If
blocks of the second subset are moved beforehand, then they
can only be relocated, since all of them are also with priorities
lower than that of block i, i.e., they should be retrieved after
block i. As they are initially WP, they have to be implemented
with GB or GG moves if moved beforehand. Therefore, at least
one non-BG move has to be implemented on blocks of those
two subsets. In conclusion, Theorem 5 is proved. �
� Illustration:
Let B8 be a union of the two block subsets proposed in
Property 8. For the instance displayed in Figure 2 (a), blocks
6 and 7 are above block 2 in stack 3, blocks 4 and 3 (with
priorities lower than that of block 2) are respectively in stacks
1 and 4. Hence, we can have B8 = {6, 7}∪{4, 3}. Since one of
blocks 6 and 7 cannot become WP if both of them are relocated
only once, B8 satisfies the condition of Property 8 (B8 satisfies
P8 for short), and we have fBG(B8) ≥ 1. Moreover, blocks
11 and 12 are above block 8 in stack 1, blocks 9 and 10 (with
priorities lower than that of block 8) are respectively in stacks
3 and 4. Hence, we can have another B8 = {11, 12}∪{9, 10}.
Since one of blocks 11 and 12 cannot become WP if both of
them are relocated only once, this B8 also satisfies P8, and we
also have fBG(B8) ≥ 1.

It is straightforward that Property 8 generalizes Property 4,
since a block subset satisfying P4 always satisfies P8, but not
vice versa. Therefore, we can have the following corollary.

Corollary 3. With the same configuration C, Property 8
subsumes Property 4 as a special case.

To identify a block subset B8 satisfying P8 for a given block
i, we have designed an algorithm with a time complexity of
O(B logS). Details of this algorithm, referred to as A8, are
presented in Appendix C. As proven in Appendix C, if a block
subset satisfying P4 is identified in the derivation of LB-N
(otherwise LB-N trivially reduces to LB1), at least one block
subset satisfying P8 can be derived by A8.

We also would like to note that a block subset satisfying
P8 contains no less than S blocks, and actually can always
be reduced to contain exactly S blocks (see Proposition A-2
presented in Appendix C). As argued in the next subsection,

10

this observation could be useful in identifying more nontrivial
block subsets to derive a stronger lower bound.

D. A Stronger Lower Bound

In this subsection, by fully making use of both existing
and new properties, we present a new lower bound that
could be much stronger than all existing ones. Based on
the general framework presented in Theorems 1 and 2 and
our demonstrations on interpreting previous lower bounds, it
can be easily seen that different partitions of the complete
block set B generally lead to different lower bounds. Hence,
deriving the strongest lower bound can be converted into a
combinatorial optimization problem, assuming that we have an
exact understanding on the necessary relocations of all types
of block subsets. Nevertheless, neither we have investigated all
significant block subsets nor our understanding on necessary
relocations is thorough. Under such a situation, we focus on
four non-dominated properties, and design a fast heuristic
procedure to partition B into critical block subsets and to
compute a strong lower bound.

Specifically, Properties 1, 5/6, 7 and 8 will be explored and
evaluated to design this new lower bound, which is referred
to as LB4. Note that Properties 2 and 3 are generalized by
Property 5/6, and Property 4 is generalized by Property 8.
The basic idea of our procedure is to use Properties 5/6,
7 and 8 one by one following an appropriate order. We
first pick the maximum number of block subsets satisfying
Property 7 using Algorithm A7, since two relocations can
be derived from a block subset containing 2S − 1 blocks,
less than the two block subsets containing 2S blocks. We
then pick the maximum number of block subsets satisfying
Property 5 from the unpicked blocks using Algorithm A5 (or
its modification A5*). We finally pick the maximum number of
block subsets satisfying Property 8 from the unpicked blocks
using Algorithm A8. In the end, LB4 is set to the sum of LB1

and the number of necessary relocations arising from those
block subsets. Note that on top of Algorithm A5, we have a
modified version A5* (see Appendix A) to fully make use of
the virtual layer concept. In our numerical study, we embed
each of them within the overall algorithm for LB4 to build
two implementations. If their outputs are different, we simply
take the larger one as the final LB4.

The time complexity of the above procedure for LB4 is
O(B2S). We reason it as follows. (i) LB1 is computed
once, Algorithm A5 (or A5*) is used at most B/S times,
both A7 and A8 are used at most B times. (ii) Their time
complexities are respectively O(B), O(BS), O(BS) and less
than O(B logS). Following the calculation B+B/S×BS+
B×(BS+B logS) = B2S+B2 logS+B2+B, we conclude
the overall time complexity as O(B2S).

Similar to Properties 2 and 3 behind LB2 and LB3, Proper-
ties 5 and 7 can be directly applied to the eight BRP variants
with individual moves. Different from Property 4, Property
8 can also be directly applied without modification to those
eight BRP variants, given that a target block is not specifically
considered. As a result, LB4 can be directly applied to all the
eight BRP variants with individual moves.

Based on Theorems 1 and 2, we next prove that LB4 is a
valid lower bound that dominates all existing ones.

Theorem 6. LB4 is a valid lower bound to f(B), and it
dominates LB1, LB2, LB3 and LB-N.

Proof: Let B1 be the collection of BP blocks in the initial
configuration. Let B7

1, · · · ,B7
l be the picked subsets satisfying

P7, and b1, · · · , bl be the corresponding shared WP blocks.
Let B5

1, · · · ,B5
m be the picked subsets satisfying P5, and

B8
1, · · · ,B8

n be the picked subsets satisfying P8. Note that,
B7
1, · · · ,B7

l ,B5
1, · · · ,B5

m,B8
1, · · · ,B8

n are not overlapping with
each other. According to Theorems 1 and 2, we have

f(B) ≥fBG (B) + fBG (B)

≥fBG (B1 ∪ {b1, · · · , bl}
)

+

fBG (B7
1 ∪ · · · ∪ B7

l ∪ B5
1 ∪ · · · ∪ B5

m ∪ B8
1 ∪ · · · ∪ B8

n

)
≥fBG (B1

)
+

l∑
i=1

fBG ({bi})+

l∑
i=1

fBG (B7
i

)
+

m∑
i=1

fBG (B5
i

)
+

n∑
i=1

fBG (B8
i

)
=fBG (B1

)
+

l∑
i=1

(
fBG ({bi}) + fBG (B7

i

))
+

m∑
i=1

fBG (B5
i

)
+

n∑
i=1

fBG (B8
i

)
≥|B1|+ 2l +m+ n

which exactly gives LB4 as a valid lower bound. Assume that
the top k physical layers are identified in the derivation of LB3.
According to the discussion after Corollary 2 (as well as that
in Appendix A), they satisfy Property P5/P6 and will definitely
be identified by Algorithm A5. Hence, we have m≥k−2l, and

LB4 ≥|B1|+ 2l +m+ n ≥ |B1|+ 2l + (k − 2l) + n

≥|B1|+ k = LB3 ≥ LB2 ≥ LB1.

Similarly, assume a subset satisfying P4 is found in the deriva-
tion of LB-N. According to the discussion after Corollary 3
(as well as Proposition A-1 in Appendix C), at least a subset
satisfying P8 can be derived by Algorithm A8. Hence we have

LB4 ≥

{
|B1|+ 1 = LB-N, if 2l +m = 0

|B1|+ 2l +m ≥ |B1|+ 1 = LB-N, otherwise.

In conclusion, Theorem 6 is proved. �
� Illustration:
For the instance displayed in Figure 2 (a), no subset B7 or
B5 is picked, but two subsets B8

1 = {6, 7} ∪ {4, 3} and B8
2 =

{11, 12} ∪ {9, 10} are picked. Therefore, LB4 = 5 + 2× 0 +
0 + 2 = 7. For the instance displayed in Figure 2 (b), a subset
B7 = {16, 17, 5, 19}∪{6, 14, 5, 4} is first picked, two subsets
B5
1 = {2, 12, 18, 8} and B5

2 = {3, 10, 9, 7}) are subsequently
picked, and no subset B8 is picked. Therefore, LB4 = 9 + 2
× 1 + 1 × 2 + 0 = 13. Given that LB1, LB2, LB3 and LB-N
for this instance are respectively 9, 10, 11 and 10, it indicates
that LB4 is much stronger.

11

Remarks:
We would like to highlight that, under the general framework
presented in Theorems 1 and 2, the development of a strong
lower bound can be standardized into two steps. (i) We
discover some new structural properties from a block subset,
and derive an insight on the involved necessary relocations and
their move types. (ii) Based on the pool of those properties
(and the corresponding block subsets), including existing ones
and newly discovered one(s), we design an algorithm to parti-
tion the complete block set B and to determine the necessary
relocations associated with block subsets, aiming to maximize
the total number of relocations collected over those subsets.

IV. EXACT COMPUTATIONAL METHODS

In addition to the derivations of the lower bounds on the
number of relocations, we present in this section a new MIP
model of the BRP that can be directly computed by an MIP
solver. After observing that some strong MIP relaxations of the
BRP can be computed quickly, we develop an MIP formulation
based exact algorithm that can further improve our solution
capability. As shown in Section VI, comparing to the state-
of-the-art formulation, the two approaches have significantly
better computational performances.

As previously mentioned, a particular system might have
additional concerns and requirements, and MIP formulations
are actually flexible and general to handle them. This advan-
tage is illustrated in the next section where results developed
in this section are extended to accommodate several practical
considerations that often occur in container yards or steel slab
yards. Unless otherwise stated, the BRP is referred to variant
9, a rather standard one, in the remainder of this paper.

A. A New MIP Formulation of the BRP

Because of specifications of the BRP, we note that all
existing MIP formulations define 0-1 variables for each block
regarding its dynamic position(s) among stacks during the
whole retrieval process [6], [22], [30]. Clearly, real instances
will incur large numbers of binary variables, which cause these
formulations difficult to compute. In this paper, we introduce
0-1 variables to define the adjacency relationship between a
pair of blocks and lift-up and lift-down operations involved in
a relocation move, without considering stacks in the retrieval
process. With this strategy, the number of variables can be
reduced significantly, and our formulation, as shown in Sec-
tion VI, is computationally much more friendly than the state-
of-the-art one. Next, we introduce necessary notations for sets
and parameters to support our model development. Recall that
B := {1, . . . , B} and S := {1, . . . , S} have been introduced
to represent the sets of blocks and stacks, respectively.
B′ = B ∪ {B+1}: the extended set of blocks, noting that

block B+1, a virtual block, represents the floor, regardless of
stacks.
C ∈ {0, 1}B×(B+1): the matrix representing the initial

configuration of blocks. Specifically, Cij = 1 if block i is
piled directly upon block j, and 0 otherwise.
H: the height limit (in terms of blocks) of stacks, i.e., the

maximum number of blocks can be piled on a stack.

hi: the height of (i.e., the vertical position of) block i in C.
L: the lower bound of the number of relocations.
T : the number of relocation turns, where a relocation

turn (turn in short) includes a relocation move and all the
subsequent retrieval moves before the next relocation move
[22]. It is set as an upper bound of the number of relocations.

T = {1, 2, ..., T}: the set of relocation turns, which naturally
partitions the complete retrieval process into T stages. For
simplicity, we also use 0 to denote the initial stage before any
relocation.

With those notations, our BRP problem can be precisely
stated as follows.

Problem 1. Given a configuration C with B blocks (of distinct
priorities) piled on S stacks with height limit H , and a crane
that moves one block at a time and retrieves blocks from 1 to
B sequentially. Determine a sequence of moves with the least
number of relocations to retrieve all blocks.

Next, we define decision variables and present the complete
MIP formulation. As mentioned, 0-1 variables are introduced
to describe the adjacency relationship between a pair of
blocks and lift-up and lift-down operations involved in every
relocation turn. To facilitate an easy understanding, constraints
and their interpretations are presented groupwise based on
their connections.
� Variables:
xtij : equals 1 if block i is piled directly upon block j at the

end of turn t, and 0 otherwise.
ŷtij : equals 1 if block i is directly relocated from (i.e., lifted-

up from) block j during turn t, and 0 otherwise. Note that
i 6= j.
y̌tij : equals 1 if block i is directly relocated to (i.e., lifted-

down to) and piled upon block j during turn t, and 0 otherwise.
Note that i 6= j.
ztij : equals 1 if block i is readily retrieved from the top of

block j during turn t, and 0 otherwise. Note that i < j.
uti: the height of block i just after the lift-down move of

the relocation in turn t.
� Objective function:

min
∑
i∈B

∑
j∈B′\{i}

∑
t∈T

y̌tij (o1)

� Constraints:

(i) Initial and dynamic relationships between blocks.

x0ij = Cij ∀i ∈ B; j ∈ B′\{i} (x1)

xtij = xt-1ij − ŷtij + y̌tij ∀i ∈ B; j ∈ B′, j<i; t ∈ T (x2)

xtij = xt-1ij − ŷtij + y̌tij − ztij ∀i ∈ B; j ∈ B′, j>i; t ∈ T (x3)

xTij = 0 ∀i ∈ B; j ∈ B′\{i} (x4)

xtij ∈ {0, 1} ∀i ∈ B; j ∈ B′\{i}; t ∈ T ∪ {0} (x5)

This set of constraints defines the dynamic adjacency rela-
tionship, due to lift-up and lift-down operations and retrieval
moves in a relocation turn, between blocks i and j during the
retrieval process.

12

(ii) Restrictions on the lift-up operation per turn.∑
i∈B

∑
j∈B′\{i}

ŷtij = 1 ∀t ∈ T, t ≤ L (ŷ1)

∑
i∈B

∑
j∈B′\{i}

ŷtij ≤
∑
i∈B

∑
j∈B′\{i}

ŷt-1ij ∀t ∈ T, t>L (ŷ2)

ŷtij ≤ xt-1ij ∀i ∈ B; j ∈ B′\{i}; t ∈ T (ŷ3)∑
j∈B′\{i}

ŷtij≤
∑

j∈B′\{i}

xt-1ij −
∑

j∈B\{i}

xt-1ji ∀i ∈ B; t ∈ T (ŷ4)

ŷtij ∈ {0, 1} ∀i ∈ B; j ∈ B′\{i}; t ∈ T (ŷ5)

Constraints in (ŷ1)-(ŷ2) guarantee exactly one lift-up operation
is performed per turn among the first L turns, and no more
than one can be done in any subsequent turn. Also, (ŷ2)
suggests that, given that the number of necessary relocations
could be less than T , empty turns will be arranged after actual
relocation turns. Constraints in (ŷ3)-(ŷ4) ensure the feasibility
of a lift-up operation using the block relationship from the
previous turn. Note that, as the virtual block representing the
floor is introduced, the right-hand-side of (ŷ4) equals 0 if block
i is not the topmost one in a stack.

(iii) Restrictions on the lift-down operation per turn.∑
j∈B′\{i}

y̌tij =
∑

j∈B′\{i}

ŷtij ∀i ∈ B; t ∈ T (y̌1)

∑
j∈B\{i}

y̌tji ≤
∑

j∈B′\{i}

xt-1ij −
∑

j∈B\{i}

ŷtji ∀i ∈ B; t ∈ T (y̌2)

∑
j∈B

y̌tj(B+1) ≤ 1−
∑
j∈B

ŷtj(B+1) ∀t ∈ T (y̌3)∑
j∈B\{i}

y̌tji≤
∑

j∈B′\{i}

xt-1ij −
∑

j∈B\{i}

xt-1ji ∀i ∈ B, t ∈ T (y̌4)

∑
j∈B

y̌tj(B+1) ≤ S −
∑
j∈B

xt-1j(B+1) ∀t ∈ T (y̌5)

y̌tij ∈ {0, 1} ∀i ∈ B; j ∈ B′\{i}; t ∈ T (y̌6)

Constraints in (y̌1)-(y̌3) guarantee that the lift-down and lift-
up operations of a turn should be performed with the same
block, but upon two different blocks. Constraints in (y̌4)-(y̌5)
represent that a relocated block can only be piled on the top
of a topmost block or directly on the floor.

(iv) Restrictions on the retrieval moves per turn.

ztij ≤ xt-1ij − ŷtij + y̌tij ∀i∈B; j ∈ B′, j > i; t∈T (z1)∑
j∈B′,j>i

ztij≤
∑

j∈B′\{i}

xt-1ij –
∑

j∈B,j>i
(xt-1ji –ŷtji+y̌

t
ji) ∀i∈B; t∈T

(z2)∑
j∈B′,j>i

∑
τ∈T,τ≤t

zτij≤
∑

j∈B′,j>i-1

∑
τ∈T,τ≤t

zτ(i-1)j ∀i∈B\{1}; t∈T

(z3)
ztij ∈ {0, 1} ∀i ∈ B; j ∈ B′, j>i; t ∈ T (z4)

Constraints in (z1)-(z2) ensure that a retrieval move is imple-
mentable, i.e., a target block is not blocked by a lower prior-
itized block. Constraints in (z3) guarantee that the prioritized
retrieval list is followed throughout the retrieval process.

(v) Restrictions on the stack height limit per turn.

uti≥utj+1−H(1−xt-1ij +ŷtij−y̌tij) ∀i∈B; j∈B\{i}; t∈T (u1)

uti ∈ {1, . . . ,H} ∀i ∈ B; t ∈ T (u2)

Overall, our MIP formulation, which is referred to as
BRP-m3 following the convention in the literature, is sum-
marized as follows.

BRP-m3 : (o1)
s.t. (x1), . . . , (x5), (ŷ1) . . . (ŷ5), (y̌1) . . . (y̌6)

(z1) . . . (z4), (u1), (u2)

� Model Modifications for Other Variants:
With some minor modifications, BRP-m3 actually can handle
7 more variants out of 16 ones. We first modify it to consider
the unrestricted BRP with duplicate priorities.

As a block’s ID does not indicate its priority, we let ip
represent block i’s priority. Also, let Bk = {i ∈ B : ip = k},
i.e., the set of blocks of priority k. Clearly, a BRP variant with
distinct priorities is a special case with |Bk| = 1 for 1 ≤ k ≤
B. Note that blocks’ priorities only affect their retrieval moves,
not other moves. Hence, we only need to replace constraints
in (x2)-(x3) and (z1)-(z4) of BRP-m3 by the following ones.

xtij=x
t-1
ij −ŷtij+y̌tij ∀i ∈ B; j ∈ B′, jp<ip; t ∈ T (x2*)

xtij=x
t-1
ij −ŷtij+y̌tij−ztij ∀i∈B; j∈B′\{i}, jp≥ip; t∈T (x3*)

ztij≤xt-1ij −ŷtij+y̌tij ∀i∈B; j∈B′\{i}, jp≥ip; t∈T (z1*)∑
j∈B′\{i},jp≥ip

ztij≤
∑

j∈B′\{i}

xt-1ij −
∑

j∈B,jp>ip

(xt-1ji −ŷtji+y̌tji)

∀i∈B; t∈T (z2*)

|B(ip-1)|×
∑

j∈B′\{i},jp≥ip

∑
τ∈T,τ≤t

zijτ≤∑
k∈B(ip -1)

∑
j∈B′\{k},jp≥kp

∑
τ∈T,τ≤t

zkjτ ∀i∈B, ip≥2; t∈T (z3*)

ztij ∈ {0, 1} ∀i ∈ B; j ∈ B′, jp≥ip; t ∈ T (z4*)

To consider restricted BRPs where only forced moves are
allowed, we introduce the following constraints to ensure that
we will keep relocating blocks above a target block until it is
retrieved.∑
j∈B′\{i}

ŷtij≥
∑

j∈B\{i}

ŷt-1ji −
∑

j∈B′\{i},jp≥ip

zt-1ij

∀i ∈ B; t ∈ T\{1} (ŷ6)
ŷti(B+1) = 0 ∀i ∈ B; t ∈ T (ŷ7)

Regarding a BRP variant with the incomplete retrieval, it
can be equivalently converted to one with duplicate priorities
and the complete retrieval, by assigning no-to-retrieve blocks
with the same lowest priority and ignoring their retrieval
moves in the resulting solution. Overall, with the afore-
mentioned discussions, it can be seen that BRP-m3 can be
modified to solve all eight BRP variants with individual moves.
Certainly, we recognize that those BRP-m3 based models
might not be strong since variant-specific properties could be
used to strengthened them to achieve a better computational

13

performance. As our focus is on variant 9 and on BRP-m3,
we leave it as a future research direction.

� Model Simplifications:
Next, we present a few rather simple modifications that can
effectively reduce our MIP model’s complexity, while do not
hurt its correctness. One is that a couple of groups of discrete
variables are relaxed into continuous ones. Another one is that
some constraints are actually dominated by others so that they
can be eliminated. The last one is that a set of constraints can
be included to ensure that block 1 is retrieved as soon as
possible, which decreases the size of feasible set.

Proposition 1. BRP-m3 can be simplified without sacrificing
its correctness by the following three modifications.
(a) Relax integer variables xtij and uti to be continuous ones;
(b) Eliminate constraints in (ŷ3), (z1) and (z2);
(c) Augment BRP-m3 with the following equalities.

zt1i=ŷ
t
j1 ∀i∈B′ and C1i=1; j∈B and Cj1=1; t∈T (e1)∑

t∈T
ŷti1 = 1 ∀i ∈ B and Ci1 = 1 (e2)

y̌ti1 = 0 ∀i ∈ B\{1}; t ∈ T (e3)
xti1 = ŷti1 = 0 ∀i ∈ B\{1} and Ci1 = 0; t ∈ T (e4)
ŷt1i = y̌t1i = 0 ∀i ∈ B′\{1}; t ∈ T (e5)
xt1i = zt1i = 0 ∀i ∈ B′\{1} and C1i = 0; t ∈ T (e6)
ut1 = h1 ∀t ∈ T (e7)

Detailed proofs are shown in Appendix D. As those modifi-
cations can be made easily and are computationally effective,
we adopt them as default in our study and refer BRP-m3 to
the simplified MIP formulation in the remainder of this paper.

Remarks:
(i) Note that parameter T is needed in our formulation (as
well as in all other MIP formulations for the unrestricted
BRP), while the minimum number of relocations is unknown
beforehand. In our numerical study, we adopt the optimal
value of the restricted BRP to derive this bound, which has
been utilized in the state-of-the-art formulation BRP-m2 [22].
Moreover, a stronger lower bound L is preferred as shown
in (ŷ1). Hence, the new stronger lower bound presented in
Section III can be directly applied.
(ii) One non-trivial issue associated with traditional MIP
formulations is symmetricity, noting that stacks are identical.
This issue could incur a heavy computational burden for an
MIP solver. Nevertheless, given that our variable definitions
do not depend on stacks, this issue is naturally removed from
our formulation. Moreover, comparing to the state-of-the-art
formulation BRP-m2, we note that our BRP-m3 is of a smaller
size with less numbers of discrete variables and inequalities.
Let λ = min{H,B − S + 1} × SBT . In BRP-m2, there
are about 4λ discrete variables and 2λ inequalities, while the
corresponding numbers in BRP-m3 are 2.5B2T and B2T (or
simply 4BT if the height limit is ignored). Indeed, for the non-
trivial BRP where 1 < S < B, we have S(S−1) < B(S−1),
which is equivalently to B < BS − S2 + S = (B − S + 1)S.
Together with the fact that HS > B (otherwise relocations

are impossible), it is clear that λ is strictly greater than B2T .
Hence, BRP-m3 is of a smaller size.
(iii) When the stack height limit is negligible or not imposed,
e.g., stacks of steel plates in a steel factory, all variables uit
and constraints in (u1)-(u2) can simply be eliminated from
BRP-m3. Indeed, we note that BRP-m3 has a much stronger
performance compared to existing ones under such a situation.

B. An MIP Relaxation Based Iterative Procedure

We note in our study that some MIP formulations of the
relaxed BRP problems have superior computational perfor-
mances. This observation inspires us to make use of those
relaxations within an algorithmic framework to compute the
original BRP. To this end, we present a study that develops an
MIP relaxation based iterative procedure to derive exact BRP
solutions. To the best of our knowledge, no similar algorithm
design has been reported in the literature on the BRP.

Let a direct blockage be a blockage formed by two blocks
piled in a way such that the lower prioritized one is directly
on top of the higher prioritized one in the same stack. For the
instance displayed in Figure 2 (a) (see Section III), block 7
and block 2 form a direct blockage, but block 6 and block 2 do
not. Unlike the original BRP that focuses on relocation moves,
the next problem, which is a relaxation to the BRP, considers
the number of direct blockages. Recalling that L is a lower
bound to the BRP, we define the new problem as follows.

Problem 2. Given a configuration C with B blocks (of distinct
priorities) piled on S stacks with height limit H , and a crane
that moves one block at a time and retrieves blocks from 1
to B sequentially. Determine a sequence of moves to retrieve
all blocks in a way such that after its L relocations (and all
applicable retrieval moves), the sum of L and the number of
direct blockages in the resulting configuration is minimized.

We next show that it is a relaxation to the original BRP.

Theorem 7. Problem 2 is a relaxation of the BRP defined in
Problem 1.

Proof: We prove it according to the following criteria: (1) any
feasible solution of Problem 1 is a feasible one to Problem 2,
and (2) its objective value with respect to Problem 2 is less
than or equal to that with respect to Problem 1.

On one hand, we consider a feasible solution of the BRP
with U relocations and other retrieval moves. Since we have
L ≤ U , it is naturally feasible to Problem 2.

On the other hand, according to [36], the number of direct
blockages in any configuration is a lower bound of the number
of necessary relocations for that configuration. So, for any
move sequence feasible to the BRP, after implementing its
first L relocations and applicable retrieval moves, the number
of direct blockages in the resulting configuration is less than or
equal to the number of relocations in the remaining sequence.
Therefore, the second criterion is satisfied. In conclusion,
Problem 2 is a relaxation of the BRP. �

In the following, we present an MIP formulation for Prob-
lem 2, which is referred to as BRP-m3R. Because of its con-
nection and similarity to Problem 1, we re-use variables and

14

constraints for model development. Nevertheless, we highlight
that T is defined with respect to {1, 2, ..., L}. Also, to better
describe our iterative procedure, we keep the constant L in the
objective function of this formulation.

BRP-m3R : L+ min
∑
i∈B

∑
j∈B,j<i

xLij (o2)

s.t. constraints of BRP-m3 \ {(x4), (ŷ2), (e2)}

Next, we develop the following algorithm (in pseudo code)
where BRP-m3R is computed and updated over and over to
strengthen the lower bound of BRP-m3, and finally produces
the strongest lower bound, i.e., the optimal value of BRP-m3.

Algorithm IS: Basic Iterative Scheme

1: L← 0, L′ ← a lower bound of BRP-m3
2: while L < L′

3: L← L′

4: update set T in BRP-m3R and solve BRP-m3R
5: L′ ← the optimal value of BRP-m3R
6: return an optimal solution of the last BRP-m3R

Theorem 8. The IS algorithm converges to an optimal solution
of the BRP in a finite number of iterations.

Proof: Note that in this iterative procedure, we first solve
BRP-m3R, i.e., the formulation of Problem 2, with L relo-
cations to optimality. If the optimal value equals L, then we
get a feasible solution of the BRP, since all blocks, including
those in the remaining configuration, have been retrieved or
are simply retrievable. As L is a lower bound of the BRP,
the optimal value of the current BRP-m3R is that of BRP-
m3. Otherwise, we increase L to that optimal value, update
BRP-m3R, and then resolve it. Hence, the lower bound L
always increases before reaching optimality. Given that the
number of relocations in the BRP is finitely bounded (e.g.,
the closed-form upper bound of the BRP in [6]), it follows
naturally that the algorithm converges to an optimal solution
in a finite number of iterations. �

It is worth mentioning that although BRP-m3R will be
computed possibly several times in this iterative scheme, the
total solution time could be much less than that of BRP-m3
if (i) BRP-m3R is easy to solve and (ii) the initial lower
bound L is tight. Indeed, if the strong lower bound derived
in Section III is applied, generally only a couple of iterations
are needed. Moreover, the aforementioned algorithm, referred
to as IS, can be enhanced by a few simple techniques listed
below. As a result, as demonstrated in Section VI, our overall
solution capability can be further improved.
Remarks:
Two fast heuristics to generate initial solutions for Problem
2 at the beginning of each iteration have been designed to
support a commercial solver with a fast computation. Also,
note that BRP-m3 (BRP-m3R, respectively) without the height
limit is a relaxation to that with the height limit. Given that
the former is much easier to compute, a practical strategy is to
derive its optimal solution and verify whether the height limit

is violated over relocation turns. If not, that optimal solution
is also optimal to the latter one (i.e., with the height limit).
Indeed, as shown in our computational experiments, this is
the case among the majority of testing instances. If violated, a
reparation heuristic is designed to convert that solution into a
feasible one, and might again be optimal. The overall enhanced
IS algorithm in pseudo code is presented in Appendix E.
Moreover, an upper bound of the number of relocations is
not needed in our IS algorithms.

V. INDUSTRIAL CONSIDERATIONS AND FLEXIBLE
MODELING

Although we have introduced 4 major features to define 16
different BRP variants, an industrial system often has more
practical restrictions or concerns due to its particular configu-
rations, cost specifications, or working environment. For exam-
ple, from a safety point of view, it is discouraged to have very
heavy containers piled above light ones in a container yard.
Also, in addition to the number of relocations, practitioners
care about the energy consumption in the movements [37], es-
pecially the vertical ones, due to containers’ large weights. As
shown in this section, such practical factors and complexities
actually can be flexibly captured by customizing the standard
MIP formulation BRP-m3. The resulting formulations, which
are again mixed integer programs, can be readily computed by
any professional MIP solver. As professional solvers are public
available and manipulating those solvers is relatively easy, the
flexibility and general applicability of MIP formulations offer
a great advantage to industrial practitioners to handle various
concerns and requirements.

A. BRP with Penalty Coefficients

For 16 typical BRP variants, they treat all relocation moves
equally, regardless the differences among blocks. Nevertheless,
to protect motors, bearings and ropes or chains of a crane, it is
desired to reduce the relocation moves associated with heavy
blocks. Moreover, a common situation in a container yard is
that the weight distribution inside one container might not be
even, whose relocations could cause damages to equipment.
Under those situations, practitioners would like to assign
different penalty coefficients to relocation moves such that
moves of some blocks (e.g., those aforementioned blocks)
should be heavily penalized. Note that it is similar to the non-
uniform relocations discussed in [21] where they build and
compute an MIP model for the restricted BRP.

To reflect this consideration, we just need to modify the
objective function of BRP-m3. Let di be the penalty coef-
ficient of a relocation move on block i. The modified MIP
formulation, denoted by BRP-m3-PC, is

BRP-m3-PC : min
∑
i∈B

di ∑
j∈B′\{i}

∑
t∈T

y̌tij


s.t. constraints of BRP-m3

15

1 2 3 4 turn no.

1

2

3

4

5

6

5 6

tier no.

pair 1

relocation retrieval

pair 2

relocation
7

Fig. 3. Vertical movements of a block during 6 turns

B. BRP Considering Energy Consumptions

Moving heavy blocks consumes a large amount of gas or
electricity, especially when performing the vertical lift-up and
lift-down operations, that is costly. So, many practitioners care
not only the number of relocations, but also the energy con-
sumption in the retrieval process. To reflect this consideration
in our modeling, we augment BRP-m3 with new variables,
constraints, and a modified objective function. Specifically,
new constraints and variables are introduced to capture the
movements of blocks, and the objective function is modified
to jointly minimize those two terms in terms of their weighted
sum. As vertical moves (by the hoist) typically demand much
more energy than horizontal ones (by the trolley on the bridge),
we consider the former ones in this augmented formulation.

To facilitate our understanding, Figure 3 illustrates all
vertical movements of a block during 6 consecutive turns,
where an upwards arrow indicates a lift-up operation and a
downwards arrow indicates a lift-down operation. According
to this figure, this block is initially piled at tier 3 in turn 0,
first relocated to tier 2 in some other stack in turn 2, staying
there in turn 3, relocated again to tier 4 in turn 4, staying
there in turn 5, and finally is retrieved in turn 6. In total, there
are three lift-up operations and three lift-down operations. In
Figure 3, two important facts are noted. First, distances of the
first lift-up and the last lift-down operations are predetermined
by the block’s initial position, which are independent of our
relocation decisions. Second, all other moves appear in pairs,
i.e., a lift-down operation is always followed by a lift-up one,
and those two operations involve the same vertical distance.
Hence, assuming that energy consumption is proportion to the
moving distance, we just need to include paired moves and
the associate distances in the augmented formulation.

Let vti represents the vertical distance, in terms of the
number of tiers, for the lift-down operation of block i in
turn t, and ci (= či + ĉi) be the energy cost of one tier
movement (where či and ĉi are one tier costs of lift-down
and lift-up movements on block i, respectively). Then, the
objective function is updated as the following to represent the
weighted sum over the number of relocations and the cost of
energy consumption.

min α
∑
i∈B

∑
j∈B′\{i}

∑
t∈T

y̌tij + β
∑
i∈B

∑
t∈T

civ
t
i (o3)

where 0 < α < 1 is the weight parameter and β =
1−α

maxi∈B ci(H′−1) normalizes all moving distances with H ′ being
the maximum height that a block can be lifted up to. We next
introduce a set of new constraints to define vti .

vti≥H ′−uti−(H ′−1)

1−
∑

j∈B′\{i}

y̌tij

 ∀i ∈ B; t ∈ T (c1)

vti ∈ [0, H ′ − 1] ∀i ∈ B; t ∈ T (c2)

Note that, the value of uti in BRP-m3 is equal to or greater
than the actual height of block i. Since it is unbounded from
above, the constraints in (c1) are very likely to be trivial. To
address this issue, we introduce the following constraints to
force uti to be equal to the actual height of block i.

uti ≤ utj + 1 + (H − 2)(1− xt-1ij + ŷtij − y̌tij)
∀i ∈ B; j ∈ B\{i}; t ∈ T (c3)

uti ≤ 1 + (H − 1)(1− xt-1i(B+1) + ŷti(B+1) − y̌
t
i(B+1))

∀i ∈ B; t ∈ T (c4)

Overall, the augmented formulation of BRP-m3 considering
energy consumption, referred to as BRP-m3-EC, is summa-
rized as follows.

BRP-m3-EC : (o3)
s.t. constraints of BRP-m3

(c1), . . . , (c4)

As for BRP-m3-PC and BRP-m3-EC, note that they de-
rive optimal solutions (i.e., move sequences) with up to T
relocation turns. Unlike the standard BRP-m3 that simply
minimizes the number of relocations, we would like to set
parameter T to a value larger than that of BRP-m3. By doing
so, those formulations have a large search space and probably
lead to move sequences serving our needs better. Certainly,
practitioners can select an appropriate value for T to avoid
unreasonably many relocations.

C. BRP Subject to Stacking Restrictions

As mentioned, some stacking restrictions should be fol-
lowed in the retrieval process [34]. For example, very heavy
containers should not be piled upon light ones in the container
yard, or very long slabs should not be piled upon short ones
in the slab yard. Those restrictions actually are easily handled
by adding some constraints to BRP-m3.

Let B×i be the set of blocks upon which block i is not
allowed to pile. Then the modified formulation, referred to as
BRP-m3-SR, is as follows.

BRP-m3-SR : min
∑
i∈B

∑
j∈B′\{i}

∑
t∈T

y̌tij

s.t. constraints of BRP-m3

xt-1ij − ŷtij + y̌tij = 0 ∀i ∈ B; j ∈ B×i ; t ∈ T

where B′ is the extended block set (including the floor) defined
in Section IV.

Due to the stacking restrictions, the minimum number of
relocations of the new model could be larger than that of the

16

standard BRP-m3, which suggests that a new upper bound is
needed to set parameter T . Note that it can be easily addressed,
as any heuristic can be used to derive an upper bound.

D. BRP Considering Retrieval Pace

In some practical scenarios, a given retrieval pace of blocks
should be satisfied. For example, in the steel factory, it is
desirable to have the relocation moves and the retrieval moves
mixed evenly. Otherwise, there could be just many relocation
moves but no retrieval ones over a long period. Since no slab is
delivered to the next stage in that period, a smooth production
cannot be guaranteed [35]. One solution is to limit the number
of relocations before retrieving every block.

Like BRP-m3-SR, we just need to add some constraints to
meet this requirement. Let Tmax

i be the maximum number of
relocations allowed before the retrieval of block i. Then the
modified formulation, referred to as BRP-m3-RP, is as follows.

BRP-m3-RP : min
∑
i∈B

∑
j∈B′\{i}

∑
t∈T

y̌tij

s.t. constraints of BRP-m3∑
j∈B′,j>i

∑
τ≤Tmax

i

zτij = 1 ∀i ∈ B

Similar to BRP-m3-SR, the minimum number of relocations
might be larger than that of BRP-m3. Again, a simple heuristic
can be designed to derive an upper bound to set parameter T .

VI. COMPUTATIONAL RESULTS

In this section, we report our numerical results of the lower
bounds, MIP formulations, and the IS algorithms. Following
the tradition in [6], [22], [30], our test bed includes 13 groups,
with 40 instances per group, from an instance set generated in
[2]. Note that those instances are represented in “a-b” format
with “a” denoting the current stack height, i.e., the number of
blocks per stack, and “b” denoting the number of stacks. Also,
for each instance, we consider two situations, where there is
no height limit and the height limit is set to a+ 2 [27].

All experiments are carried out on a desktop computer with
the Windows 10 Professional 64-bit operating system, 32 GB
RAM, and an Intel Core i7 7700 CPU with four 3.6-4.2 GHz
cores and eight threads. Algorithms are implemented in C++
using CPLEX 12.61 and compiled with the Visual Studio
2013 C++ compiler. For all instances, the time limit is set
to 3,600 seconds, the number of threads used is set to 8, and
other parameters are in default settings. When the time limit
is reached before obtaining an optimal solution, we set the
solution time to 3,600 seconds in our report.

A. Strength of Lower Bounds

In this subsection, we compare our new lower bound, i.e.,
LB4, with respect to existing ones appearing in the literature,
i.e., LB1, LB2, LB3 and LB-N. To be fair, we remove all re-
trievable blocks in the initial configurations before computing.
Otherwise, the strength of LB2 and LB3 will be weakened.

0%

5%

10%

15%

20%

25%

30%

3-3 3-4 3-5 3-6 3-7 3-8 4-4 4-5 4-6 4-7 5-4 5-5 5-6

LB₁
LB₂
LB₃
LB-N
LB₄

Fig. 4. Average relative optimality gaps on instances with height limits

0

1

2

3

4

5

6

7

8

3-3 3-4 3-5 3-6 3-7 3-8 4-4 4-5 4-6 4-7 5-4 5-5 5-6

LB₁ LB₂ LB₃ LB-N LB₄

Fig. 5. Maximum absolute optimality gaps on instances with height limits

The first comparison is displayed in Figure 4, which reports
the average relative gaps between the lower bounds and
the actual optimal values, i.e., the average of (opt-LB)/opt
with “opt” being the optimal value and “LB” be one of
the aforementioned lower bounds. We mention that the opti-
mal values are computed by running the codes downloaded
from https://sites.google.com/site/shunjitanaka/brp developed
by Tanaka and Mizuno [26]. The numerical results clearly
confirm that our LB4 often has much smaller relative gaps,
and strictly dominates all existing lower bounds for the test
bed. Moreover, for instances with larger height limits and less
stacks, the dominance of LB4 is more significant.

Our second comparison is on the largest differences between
the lower bounds and the actual optimal values in every
group, i.e., opt − LB, as shown in Figure 5. Obviously, the
overall trend in Figure 5 largely agrees with that in Figure 4,
showing LB4 outperforms other lower bounds. We highlight
two more points. The first one is that existing lower bounds are
actually close to each other and demonstrate similar patterns.
Nevertheless, LB4 could be very different from them. Note
that LB4 could be 4 relocations smaller than LB1 in group 5-4,
while other lower bounds are not more than 2 relocations than
LB1. Another one is that, in the most of worst cases, LB4 is
less than the optimal value by just a couple of relocations. This
observation is critical to our IS algorithms, which indicates that
their convergences generally can be achieved in only a couple
of iterations if LB4 is adopted for initializations.

In Figure 6, we finally present and compare the percentages
of instances over which the lower bounds are equal to the
optimal values. Again, our LB4 has a clearly better perfor-

https://sites.google.com/site/shunjitanaka/brp

17

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3-3 3-4 3-5 3-6 3-7 3-8 4-4 4-5 4-6 4-7 5-4 5-5 5-6

LB₁
LB₂
LB₃
LB-N
LB₄

Fig. 6. Optimality percentages on instances with height limits

TABLE II
COMPARISON OF BRP-M2 AND BRP-M3 WITHOUT A HEIGHT LIMIT

Case
#Feasible #Optimal Time(s) Time*(s) #Nodes*

m2 m3 m2 m3 m2 m3 m2 m3 m2 m3

3-3 40 40 40 40 2.2 0.2 2.1 0.2 149 7
3-4 40 40 40 40 169.8 1.4 168.6 1.3 2046 168
3-5 37 40 34 40 893.0 21.2 416.7 1.3 3333 65
3-6 27 40 19 39 2181.8 129.7 583.7 1.4 2757 24
3-7 24 40 11 38 2851.6 213.4 878.1 1.5 3924 1
3-8 6 40 0 35 3600.0 565.1 - - - -
4-4 27 40 19 39 2297.5 328.9 857.7 4.0 3813 118
4-5 7 38 3 28 3463.6 1322.0 1777.7 1.6 3425 0
4-6 3 34 2 18 3491.1 2290.8 1416.2 7.3 1707 38
4-7 0 26 0 10 3600.0 2922.9 - - - -
5-4 5 31 3 14 3364.5 2541.9 456.3 1.1 1049 0
5-5 0 13 0 2 3600.0 3434.7 - - - -
5-6 0 4 0 2 3600.0 3483.5 - - - -
sum 216 426 171 345 - - - - - -

mance over all existing lower bounds over all instances. In
particular, for instances of small scales, our LB4 is very likely
to be the optimal value. Certainly, with larger height limits
and more stacks, such possibility becomes smaller, which can
be explained by the increasing complexity of larger instances.

B. Computational Results Without a Height Limit

In this subsection, we present the performance data of our
computational methods, and benchmark with those of BRP-
m2, which has been shown to be the most effective one in
the literature [22]. For BRP-m2, rather than trivially setting
the height limit to B, we set it to B − S + 1, which can be
easily argued that spreading irretrievable blocks among stacks
is always preferred.

Table II provides and compares CPLEX performance data
of MIP formulations BRP-m2 (i.e., m2) and BRP-m3 (i.e.,
m3). Columns “#Feasible” and “#Optimal” give the numbers
of instances with feasible and optimal solutions before the time
limit, respectively. Column “Time(s)” represents the average
solution time in seconds on all instances of each group. As we
use the time limit as the solution time when an instance cannot
be solved, the average solution time could be misleading and
biased against BRP-m3. To do a fair comparison, we include
two more columns “Time*(s)” and “#Nodes*”, which provide
the average solution time and the average number of B&B
nodes over instances solved to optimality by BRP-m2.

TABLE III
COMPARISON OF ALL FOUR METHODS WITHOUT A HEIGHT LIMIT

Case
#Optimal Time(s) #Iters

m2 m3 IS IS* m2 m3 IS IS* IS IS*

3-3 40 40 40 40 2.2 0.2 0.3 0.1 1.2 0.3
3-4 40 40 40 40 169.8 1.4 1.9 1.5 1.2 0.5
3-5 34 40 40 40 893.0 21.2 29.8 47.5 1.2 0.3
3-6 19 39 39 39 2181.8 129.7 151.6 204.6 1.1 0.2
3-7 11 38 38 39 2851.6 213.4 232.9 170.7 1.1 0.2
3-8 0 35 35 36 3600.0 565.1 543.2 448.4 1.0 0.3
4-4 19 39 37 37 2297.5 328.9 372.7 320.4 1.4 0.8
4-5 3 28 26 28 3463.6 1322.0 1410.5 1234.2 1.1 0.6
4-6 2 18 20 21 3491.1 2290.8 2165.7 1763.2 1.1 0.4
4-7 0 10 10 14 3600.0 2922.9 3173.3 2517.0 1.1 0.5
5-4 3 14 13 14 3364.5 2541.9 2595.2 2482.2 1.5 1.2
5-5 0 2 4 6 3600.0 3434.7 3334.0 3167.4 1.0 0.3
5-6 0 2 1 2 3600.0 3483.5 3560.3 3464.9 1.0 0.5
sum 171 345 343 356 - - - - - -

Based on the results in Table II, we note that our new
MIP formulation BRP-m3 has a superior computational per-
formance over the known best one BRP-m2. We can find that,
much more instances can be solved to feasibility or optimality
using formulation BRP-m3 than using BRP-m2, especially
for difficult instance groups. Regarding the computational
time, our new formulation has a drastically stronger power.
Especially for instances that can be solved by BRP-m2, it is
often the case that BRP-m3 solves to optimality a few hundred
times quicker, with averagely two orders magnitude faster than
BRP-m2. A similar comparison can be found in the numbers of
B&B nodes. It is worth pointing out that for the six instances
in 4-5 and 5-4 exactly solved by BRP-m2, our BRP-m3 model
generates an optimal solution without any B&B operation,
while BRP-m2 averagely involves 2,237 B&B nodes. Indeed,
we observe that a large portion of instances in each group can
be solved without any B&B operation. Hence, we believe that
BRP-m3 is fundamentally different from existing ones, and is
very close to the ideal formulation [38] of the BRP.

In Table III we benchmark computational performances of
IS algorithms, including the basic (i.e., IS) and the enhanced
(i.e., IS*) implementations, with respect to BRP-m2 and BRP-
m3. Column “#Iters” gives the average number of iterations
over instances solved to optimality by each of the two IS
algorithms. Note that, for IS*, the number of iteration is set to
zero when a heuristic directly produces an optimal solution.
Hence, the average number of iterations of IS* could be less
than 1. As can be seen, although those IS algorithms are
iterative procedures, they perform similar or better than BRP-
m3, noting that respectively 101% and 108% more instances
have been solved to optimality than BRP-m2. Especially for
the challenging instances in group 4-7 and 5-5, the enhanced
IS* clearly outperforms regular MIP formulations by solving
significantly more instances. As for the number of iterations,
it can be seen that those IS algorithms generally terminate
in just a couple of iterations. Nevertheless, for some difficult
instances, more iterations (up to 6) have been involved that
demand a lot of computational time and degrade the overall
performances.

18

TABLE IV
COMPARISON OF BRP-M2 AND BRP-M3 WITH HEIGHT LIMITS

Case
#Feasible #Optimal Time(s) Time*(s) #Nodes*

m2 m3 m2 m3 m2 m3 m2 m3 m2 m3

3-3 40 40 40 40 1.2 0.2 1.2 0.2 83 8
3-4 40 40 40 40 64.8 3.5 64.4 3.4 1861 174
3-5 40 40 38 40 455.2 46.5 290.0 5.4 3602 79
3-6 35 40 25 39 1755.2 162.6 623.2 8.3 3773 69
3-7 30 40 17 39 2482.6 212.6 809.2 4.0 3924 0
3-8 14 39 3 35 3562.3 718.3 3164.6 22.4 6261 59
4-4 31 40 25 37 1762.0 515.7 659.1 21.8 5548 343
4-5 13 35 6 21 3235.0 1992.7 1165.9 10.8 5040 35
4-6 6 30 2 15 3456.7 2480.7 730.8 16.6 2262 49
4-7 1 14 0 7 3600.0 3155.2 - - - -
5-4 8 22 3 11 3338.7 2697.3 114.2 4.4 919 0
5-5 0 8 0 2 3600.0 3448.0 - - - -
5-6 0 0 0 0 3600.0 3600.0 - - - -
sum 258 388 199 326 - - - - - -

C. Computational Results With Height Limits

In this subsection, we present and analyze the performances
of our computational methods on instances with height limits.
Similar to Table II, we first provide and compare in Table IV
CPLEX performance data of MIP formulations BRP-m2 (i.e.,
m2) and BRP-m3 (i.e., m3).

Based on Table IV, we note again that BRP-m3 has a supe-
rior performance over BRP-m2. Generally, on the instances
with height limits, BRP-m3 is able to compute 50% and
64% more with feasible and optimal solutions respectively
over BRP-m2. Also, for instances exactly solved by BRP-
m2, it is common that BRP-m3 solves to optimality 4 to 200
times quicker, with averagely 50 times faster than BRP-m2.
A similar comparison can be found in the numbers of B&B
nodes.

In Table V we benchmark IS algorithms with respect to
BRP-m2 and BRP-m3. On difficult instances that BRP-m2
performs very poorly, e.g., those in group 3-8, 4-5, · · · , 5-6, the
enhanced IS* has a clear advantage. Overall, it is able to solve
73% more instances to optimality over BRP-m2. It is worth
noting that although the basic IS performs slightly poorer
than BRP-m3, the enhanced IS* is much better than BRP-
m3. Hence, it verifies the benefits of including enhancement
techniques on improving our solution capability. Specifically,
for the 356 instances solved to optimality ignoring height
limits, just 52 of them require reparation and 13 of them are
successfully repaired. Again, just a couple of iterations are
needed for the IS algorithms.

D. Analysis on Influence of the Height Limit

In this subsection, we analyze the influence of the height
limit on the performances of different computational methods.
The numbers of instances solved to optimality are shown in
Figure 7. From this figure, we note that the instances without
a height limit are actually more challenging to solve for BRP-
m2. One explanation is that more binary variables have to
be introduced to describe the possible stack height during
the retrieval process, resulting in a significantly increased
dimensionality. As our modeling approach only needs vari-
ables describing the relationship between each pair of blocks,

TABLE V
COMPARISON OF ALL FOUR METHODS WITH HEIGHT LIMITS

Case
#Optimal Time(s) #Iters

m2 m3 IS IS* m2 m3 IS IS* IS IS*

3-3 40 40 40 40 1.2 0.2 0.4 0.1 1.2 0.3
3-4 40 40 40 40 64.8 3.5 6.0 1.6 1.2 0.5
3-5 38 40 40 40 455.2 46.5 58.1 32.2 1.2 0.3
3-6 25 39 39 39 1755.2 162.6 172.2 190.5 1.1 0.3
3-7 17 39 37 39 2482.6 212.6 513.4 212.3 1.1 0.3
3-8 3 35 34 35 3562.3 718.3 748.6 514.7 1.0 0.4
4-4 25 37 34 36 1762.0 515.7 732.7 425.7 1.4 1.0
4-5 6 21 22 27 3235.0 1992.7 1889.7 1573.4 1.0 0.8
4-6 2 15 15 19 3456.7 2480.7 2426.6 2029.5 1.2 0.5
4-7 0 7 4 12 3600.0 3155.2 3319.6 2652.7 1.0 0.4
5-4 3 11 9 13 3338.7 2697.3 2871.1 2565.3 1.6 1.2
5-5 0 2 2 3 3600.0 3448.0 3454.3 3330.1 1.0 0.0
5-6 0 0 0 1 3600.0 3600.0 3600.0 3552.8 - 1.0
sum 199 326 316 344 - - - - - -

0

50

100

150

200

250

300

350

400

m2 m3 IS IS*

with height limits without a height limit

Fig. 7. Number of instances solved to optimality

it naturally avoids that issue. Another observation is that
although the height limit has a non-trivial impact on the basic
IS algorithm, enhancement techniques can actually largely
reduce that impact, rendering the enhanced IS algorithm the
most robust solution method.

E. Computational Results of Customized MIP Formulations

In this subsection, we present and analyze the performances
of our customized formulations with additional industrial
considerations on modified instances.

Specifically, on the basic instances presented above, we
set the penalty coefficients di as follows to generate testing
instances.

di =

{
1, if b ≤ d1/2Be
2, otherwise.

To generate instances considering energy cost, we set the cost
coefficients ci = 3 for all i ∈ B, the maximum lift-up height
H ′ = H + 1, and the weight parameter α = 0.7. Also, for
both BRP-m3-PC and BRP-m3-EC, parameter T is set to a
value by rounding up 133% of that in BRP-m3.

Also, to generate instances with stacking restrictions, we set
B×i , i.e., the set of blocks upon which block i is not allowed

19

to pile, as follows.

B×i =

{
blocks above block i, if block i is in stack 1 in C
∅, otherwise.

Finally, to generate instances considering retrieval pace, we
set Tmax

i , i.e., the maximum number of relocations allowed
before the retrieval of block i, as follows.

Tmax
i =

{
h(i) + 1, if b ≤ d1/2Be
T, otherwise

where h(i) returns the relocation turn in which block i is
retrieved using a simple heuristic.

To focus on evaluating our MIP formulations under four
different industrial considerations, we select 3 (out of 13)
groups of instances to perform our computational studies,
i.e., 120 instances in total from group 3-4, 4-4 and 5-4.
Results of four BRP-m3 MIP formulations (simply denoted
by PC, EC, SR, RP, respectively), together with the basic MIP
formulation (denoted by BA) on instances with corresponding
modifications (with BA being tested on the basic instances)
are shown in Tables VI and VII. Note that column “#Nodes*”
presents the average number of B&B nodes over instances
solved to optimality by all the five formulations, which are
actually the instances solved to optimality by EC.

Based on results in Tables VI and VII, it can be seen that
our BRP-m3 is a flexible and effective basic model to build on.
For four extensions with practical considerations, except the
one with energy cost, their performances are generally com-
parable to or better than that of the basic BRP-m3. Although
BRP-m3-PC has a different objective function and BRP-
m3-SR and BRP-m3-RP have some new constraints, adding
those complexities to BRP-m3 does not lead to a substantial
degradation in its solution capability. Actually, BRP-m3-RP,
i.e., BRP-m3 with retrieval pace constraints, could perform
orders-of-magnitude faster than that of the standard BRP-
m3. Hence, comparing to the specialized algorithms whose
developments are generally challenging and demanding, BRP-
m3, together with an MIP professional solver, is a user-friendly
and effective platform to address more involved requirements
arising from the practice with a rather stable performance.

Moreover, the superior performance demonstrated by BRP-
m3-RP is worth a further investigation. Comparing its optimal
values to those of BRP-m3, we observe that they are very
close. As shown in Table VIII, on 72% of total 238 instances,
BRP-m3-RP produces optimal values that are same as those
of BRP-m3. Even when they are different, at most 2 to 3
more relocations are involved. Given BRP-m3-RP’s drastically
better computational speed, it would be beneficial to study
how to use it to exactly or approximately solve the basic
BRP-m3 and its extensions. Another observation is that the
equalities reflecting the retrieval pace considerations, which
are actually generalized upper bound (GUB) constraints [39],
play a critical role in generating strong cutting planes and
in reducing the size of B&B tree for a professional MIP
solver. Therefore, it inspires us to explore the BRP and derive
similar constraints. Specifically, we should derive bounds on
the earliest and latest possible relocation turns in the moving

sequence between which a block can be retrieved, and supply
the related GUB constraints to BRP-m3 for fast computation.

Finally, we would like to mention the new challenge from
considering the energy cost in the BRP. As shown in Section
V, in addition to simply counting the number relocations
across all blocks, we must track every relocation movement
associated with a particular block in the retrieval process. Such
a consideration renders BRP-m3-EC with a structure that is
very much different from those of other BRP-m3 extensions
and very hard to compute. Indeed, note from Tables VI and
VII, imposing a height limit is helpful to achieve a better
computational performance in BRP-m3-EC, contrary to our
previous understanding developed in all other experiments.
Given that the energy cost is a common concern among
practitioners, it would be desired to carry out polyhedral and
cutting plane studies to strengthen BRP-m3-EC for a better
performance. Alternatively, specialized algorithms, e.g., B&B
algorithms, could be developed to complement the current
algorithm study on the BRPs.

VII. CONCLUSION

In this paper, we study the unrestricted BRP with dis-
tinct retrieval priorities, the complete retrieval and individual
moves. Our results include a general framework to derive
strong lower bounds on the number of necessary relocations,
a set of demonstrations with respect to existing lower bounds,
and a new but stronger one. Moreover, we develop two exact
computational methods: a new MIP formulation for the BRP,
and a novel MIP formulation based iterative procedure. The
MIP formulation is further customized into four extensions,
each of which addresses a particular industrial consideration.
Our computational results show that the newly proposed lower
bound greatly outperforms all existing ones in the literature,
and is often less than the optimal value by just a couple of
relocations. Also, comparing to a recently published state-
of-the-art formulation, our two new computational methods
demonstrate superior performances, especially on instances
without a height limit, where our methods could be multi-order
magnitude faster. Moreover, the customized MIP formulations
display a stable performance in computing most of BRP
instances, rather insensitive to additional complexities from
different industrial considerations.

Future research directions include identifying non-trivial
subsets and their properties, and continuing the tradition to
derive stronger lower bounds under the presented general
framework. Also, as a new type of structural insights, it is
of a great interest to derive bounds on the earliest and latest
possible relocation turns in the moving sequence between
which a block can be retrieved. Naturally, those bounds can
be supplied to develop fast B&B algorithms. Regarding the
new MIP formulations, one direction is to perform polyhedral
studies to gain deep theoretical understandings and to achieve
computational improvements, especially for the formulation
considering blocks’ movements and energy cost. Another
direction is to extend the presented formulations and the
iterative procedure to solve other BRP variants with more
practical considerations.

20

TABLE VI
RESULTS OF CUSTOMIZED FORMULATIONS WITHOUT A HEIGHT LIMIT

Case
#Feasible #Optimal Time(s) #Nodes*

BA PC EC SR RP BA PC EC SR RP BA PC EC SR RP BA PC EC SR RP

3-4 40 40 40 40 40 40 40 38 40 40 1.4 6.3 231.0 1.6 0.3 41 385 5923 59 0
4-4 40 40 40 40 40 39 36 15 39 40 328.9 727.8 2355.6 267.4 1.7 26 134 7791 56 0
5-4 31 23 24 28 40 14 10 2 12 40 2541.9 2878.1 3427.8 2698.9 29.2 0 150 3647 0 0
sum 111 103 104 108 120 93 86 55 91 120 - - - - - - - - - -

TABLE VII
RESULTS OF CUSTOMIZED FORMULATIONS WITH HEIGHT LIMITS

Case
#Feasible #Optimal Time(s) #Nodes*

BA PC EC SR RP BA PC EC SR RP BA PC EC SR RP BA PC EC SR RP

3-4 40 40 40 40 40 40 40 40 40 40 3.5 8.2 140.1 2.6 0.4 175 348 4745 172 1
4-4 40 40 39 40 40 37 33 22 37 40 515.7 1115.1 2139.5 606.2 3.3 230 561 9227 339 1
5-4 22 17 16 19 40 11 7 3 9 38 2697.3 3100.5 3353.8 2844.4 279.9 0 44 1183 0 0
sum 102 97 95 99 120 88 80 65 86 118 - - - - - - - - - -

TABLE VIII
RESULTS OF BRP-M3-RP COMPARED WITH BRP-M3

Case
without a height limit with height limits

#Optimal #RP=BA max(RP-BA) #Optimal #RP=BA max(RP-BA)

3-4 40 36 2 40 36 2
4-4 40 25 2 40 28 2
5-4 40 24 2 38 23 3
sum 120 85 - 118 87 -

APPENDIX A
ALGORITHMS A5 AND A5* FOR A BLOCK SUBSET

SATISFYING PROPERTY 5

To identify virtual layers satisfying P5, Algorithm A5
proceeds by first evaluating blocks in the top physical layer.
If they satisfy P5, we remove this layer from C, and check
the emerging top physical layer. If a block in a physical layer
causes it to violate P5, we replace the block with the one
directly below it to construct an actual virtual layer. We repeat
the last step in the virtual layer with respect to P5, until either
one virtual layer satisfying P5 is derived or no more virtual
layer can be constructed. Details of A5 are listed below.

Algorithm A5: Identify a Block Subset Satisfying P5

1: B5 ← the top layer of the current C ; found← false
2: wihle B5 6= ∅ and found = false
3: found← true
4: for each block i in B5

5: if block i causes B5 to violate P5
6: if block i is not on the floor
7: update B5 by replacing i with the block
8: underneath it
9: else

10: B5 ← ∅
11: found← false; break
12: return B5

Note that a WP block in a virtual layer definitely causes
it to violate P5 if this block’s priority is higher than (or not
lower than if duplicate priorities exist) the highest priority of
blocks below the virtual layer. Similarly, a BP block causes
this layer to violate P5 if its priority is higher than (or not
lower than if duplicate priorities exist) the lowest priority of
all stacks after removing blocks above the virtual layer.

The time complexity of A5 is O(BS). We reason it as
follows. (i) Blocks are replaced by their underneath blocks
at most B times, and at most S blocks are checked during
each replacement, therefore blocks are evaluated at most BS
times with a time complexity of O(1) each time. (ii) If a
block is replaced by its underneath block, we update the
highest priority of blocks below the new virtual layer and
the lowest priority of stacks after removing blocks above
the new virtual layer. (iii) The two updates can be finished
with S − 1 and 1 comparison operations respectively, if
the highest priority of blocks below the underneath block
is computed beforehand. (iv) The highest priority of blocks
below each block can be computed as preprocessed data
with a time complexity of O(B). Following the calculation
BS+B(S−1 + 1) +B = 2BS+B, we conclude the overall
time complexity as O(BS).

It can be easily seen that A5 tends to construct a virtual
layer with blocks in the top physical layers. To consider other
blocks in C, we modify A5 to A5* that could lead to a different
virtual layer and then a stronger lower bound. The basic idea
is that, given a virtual layer constructed by the original A5,
we seek to update it with blocks piled at the lowest possible
positions while ensuring its eligibility. The pseudo code of
A5* is omitted here for its simplicity. Its time complexity is
the same as that of A5, i.e., O(BS).

APPENDIX B
ALGORITHM A7 FOR A BLOCK SUBSET SATISFYING

PROPERTY 7
Given a WP block i piled in a stack s, we run Algorithm

A7 to identify a subset satisfying P7 in the following three
steps. (i) Pick S − 1 blocks in a way such that they are from

21

distinct stacks in the other S − 1 stacks. Together with block
i, we form a virtual layer satisfying P5. (ii) Repeat step (i) to
form another virtual layer satisfying P5. (iii) Check whether
a GB move of block i is ensured. The pseudo code is omitted
here due to its similarity to that of Algorithm A5. Also, the
time complexity of A7 is the same as that of A5, i.e., O(BS).

APPENDIX C
ALGORITHM A8 FOR A BLOCK SUBSET SATISFYING

PROPERTY 8

Given a block i piled in a stack s, we run Algorithm A8 to
identify a subset B8 satisfying P8 in the following two steps.
Note that all the following operations are conducted on a copy
of the initial configuration C, which is denoted by C′.

(1) Initialization. First pick the blocks above block i that
have priorities lower than that of i to form subset B8,1. Then
pick a block with the highest priority from each of the other
S − 1 stacks, if not empty, to form subset B8,2. Finally, set
B8 = B8,1 ∪ B8,2.

(2) Verification. First remove blocks of B\B8 from C′, sort
the S − 1 stacks in a non-decreasing order of their priorities.
Then successively relocate blocks of B8,1 (in stack s) once,
without considering the stack height limit, to convert them to
be WP. If a block can be relocated to be WP in multiple stacks,
relocate it to a stack with the highest priority [26]. If it cannot
be relocated to be WP, stop and conclude B8 satisfies P8.

Details of Algorithm A8 are shown as follows.

Algorithm A8: Identify a Block Subset Satisfying P8

1: B8 ← B8,1 ← B8,2 ← ∅;C′ ← C
2: B8,1 ← blocks above block i and with lower priorities
3: B8,2 ← a block with the highest priority from each stack

of set S\{s}
4: remove blocks of B\{B8,1 ∪ B8,2} from C′
5: sort stacks in the non-decreasing order of their priorities
6: for each block j in B8,1

7: if block j can be relocated to be WP
8: relocate block j to the last feasible stack
9: else

10: B8 ← B8,1 ∪ B8,2; break
11: return B8

The time complexity of A8 is reasoned as follows. (i) The
initialization is with a time complexity of O(B). (ii) The
verification is similar to checking the condition of Property
4, therefore is with a time complexity of O(|B8,1| logS) if
stacks are sorted beforehand [26]. (iii) The time complexity
of sorting stacks can be O(S logS). Following the calculation
B+|B8,1| logS+S logS, we conclude that the time complex-
ity of A8 is less than O(B logS).

Actually, the slight modification of LB-N considering the
stack height limit [26], which is omitted in Section III to
minimize distractions, can be embedded into Algorithm A8.
Then we have the following proposition.

Proposition A-1. If a block subset B4 satisfying P4 is obtained
in the derivation of LB-N, a block subset B8 satisfying P8 can
be derived by applying Algorithm A8 to some block.

Proof: Recall that LB-N is an iterative procedure that might
remove blocks from the initial configuration. Without loss of
generality, for the current configuration, assume block i, which
is piled in stack s, as the current target block when B4 is
derived. Then B4 = B4,1∪B4,2, where B4,1 includes the blocks
above block i and with lower priorities, and B4,2 includes a
block with the highest priority from each of the other S − 1
stacks, both in the current configuration.

In the initial configuration, we apply A8 to block i and set
B8 = B8,1∪B8,2, where B8,1 includes the blocks above block
i and with lower priorities, and B8,2 includes a block with the
highest priority from each of the other S − 1 stacks.

Since the initial configuration subsumes the current config-
uration, it can be inferred that B8,1 ⊇ B4,1 and the priority
of the block in stack s′ and B8,2 is not lower than that of
the block in stack s′ and B4,2 for s′ ∈ S\{s}. Clearly, if we
cannot relocate all blocks of B4,1 to be WP, neither can we
do those of B8,1.

Given that B4 satisfies P4, i.e., some block(s) in B4,1 cannot
be relocated to be WP, it follows that some block(s) in B8,1

also cannot be relocated to be WP, i.e., the condition of
Property 8 is satisfied. To conclude, a B8 satisfying P8 can
be derived by applying A8 to block i. �

We observe that a subset B8 satisfying P8 might contain
some redundant block(s) that can be removed without losing
P8. To provide more flexibility to our lower bound derivation
framework, we reduce a B8 satisfying P8 to contain exactly
S stacks while ensuring this property.

We first define a key concept: barrier block. Considering
the verification step in A8, a block j of B8,1 is piled in stack
s, and is to be relocated to one of the other S − 1 stacks. If
a higher prioritized block k is already piled in one of those
stacks, then block j cannot be relocated to that stack to be WP.
Hence we call block k a barrier block of block j. For a block
j of B8,2, which will not be relocated in the verification step
of A8, we define its barrier blocks as those in B8,2 that are
with higher or equal priorities. Then we can have the following
proposition.

Proposition A-2. Given a block subset satisfying P8, we can
always pick exactly S blocks out of it to build a new B8

satisfying P8 by the following procedure.
(i) Pick a block from stack s that cannot be relocated to be

WP in the verification step of A8.
(ii) Pick a barrier block of the above picked block from the

first of the S − 1 sorted stacks.
(iii) Pick a barrier block of the previously picked block from

the second of the S − 1 sorted stacks, and repeat the process
until a block is picked from the last of the S−1 sorted stacks.

Proof: We first show that the above procedure is feasible,
i.e., the S picked blocks are available. Recall the relocation
rule in the verification step of A8, a block is relocated to the
highest possible prioritized stack, i.e., the latest possible stack.

22

Therefore, for a block picked from one of the S − 1 sorted
stacks, there must exists a barrier block of it in the next stack.

We then show that latter picked blocks are actually the
barrier ones of former picked blocks. It is obvious, since the
barrier relationship is transitive. For example, given the second
picked block is a barrier one of first picked block, and the third
picked block is a barrier one of the second picked block, we
have the third picked block is also a barrier one of first picked
block. Therefore, when relocating a block, all blocks piled in
the S − 1 sorted stacks are its barrier blocks.

At last, we verify the reduced B8. Recall the definition of
barrier block, a block cannot be relocated to a stack to be WP
if one of its barrier blocks is already in that stack. Then, in the
verification of the reduced B8, a block can only be relocated
to an empty stack to be WP, since all blocks piled in the S−1
sorted stacks are its barrier blocks. When relocating the last
block, each of the S− 1 stacks is occupied by a barrier block
of it, hence it cannot be relocated to be WP. In conclusion,
the reduced B8 satisfies P8, and Proposition A-2 is proved. �

Details of the reduction procedure, referred to as A8-s, are
shown below. As the reduction can be made easily and helps
us to derive a non-BG relocation with a smaller B8, we adopt
it as a default step in A8 when performing the lower bound
derivation.

Algorithm A8-s: Reduce a Block Subset Satisfying P8

1: j ← a block in stack s that cannot be relocated to be WP
2: B8 ← {j}
3: for each stack s′ in S\{s}
4: k ← a barrier block of block j at the lowest tier
5: j ← k; B8 ← B8 ∪ {j}

APPENDIX D
PROOF OF PROPOSITION 1

As for relaxing integer variables to continuous ones, it can
be easily verified that there exists one optimal solution such
that those continuous variables take integer values, due to the
integrality of related variables. So, we focus on detailed proofs
of the other two statements.
Proof: (b) As for eliminated constraints in (ŷ3), (z1) and (z2),
they are actually implied or dominated by (y̌2), (y̌3), (x2), (x3)
and (y̌4) as shown below.

First, if ŷtij = 0, (ŷ3) trivially holds. Otherwise, i.e., ŷtij = 1,
we can derive y̌tij = 0 from (y̌2) and (y̌3), and can further
derive (ŷ3) from (x2) and (x3) as follows.

ŷtij = xt-1ij − xtij ≤ xt-1ij ∀i ∈ B; j ∈ B′, j < i; t ∈ T
ŷtij = xt-1ij − xtij − ztij ≤ xt-1ij ∀i ∈ B; j ∈ B′, j > i; t ∈ T

Hence, in either case, (ŷ3) can be derived from (y̌2), (y̌3), (x2)
and (x3).

Second, (z1) can be derived from (x3) as follows.

ztij=x
t-1
ji –ŷtji+y̌

t
ji–x

t
ji ≤ xt-1ji –ŷtji+y̌

t
ji ∀i∈B; j∈B′, j>i; t∈T

Third, we use the contradiction to show that (z2) can be
eliminated. Assuming that a constraint in (z2) is violated, there

exists a block i, which is piled beneath a lower prioritized
block k after the tth relocation move (hence xt-1ki − ŷtki +
y̌tki = 1 and

∑
j∈B′\{i} (xt-1ij −ŷtij+y̌tij) = 1), that is retrieved

during turn t (hence
∑
j∈B′,j>i z

t
ij = 1). Then we can infer

the following two constraints from (x2) and (x3).∑
j∈B′\{i}

xtij=
∑

j∈B′,j<i

xtij+
∑

j∈B′,j>i

xtij

=
∑

j∈B′\{i}

(xt-1ij −ŷtij+y̌tij)−
∑

j∈B′,j>i

ztij=1−1=0

∑
j∈B\{i}

xtji=
∑

j∈B\{i,k}

xtji + xtki (note that k > i)

=
∑

j∈B\{i,k}

xtji + (xt-1ki −ŷtki+y̌tki) ≥ 0+1=1

Considering (y̌4), we have the following constraint.∑
j∈B\{i}

y̌t+1ji ≤
∑

j∈B′\{i}

xtij−
∑

j∈B\{i}

xtji≤0−1,

which causes the formulation infeasible. Hence solutions
satisfying (x2), (x3) and (y̌4) naturally satisfy (z2), which
indicates the latter one is not necessary.

(c) As for the set of new constraints. Note that it does not
hurt to require that block 1 is retrieved as soon as possible in
the retrieval process. Such consideration is actually reflected
in constraints (e1)-(e7). Specifically, equalities in (e1) ensure
that block 1 is retrieved whenever the one directly piled upon
it is relocated. Obviously, that block is relocated from the top
of block 1 exactly once, i.e., (e2). Since block 1 is retrieved,
no other block can be relocated to the top of it, i.e., (e3) and
(e4), and it cannot be relocated or retrieved, i.e., (e5) and (e6).

Let τ denote the turn in which block 1 is retrieved. Clearly,
we have block 1 remained in its initial position for t ≤ τ ,
which gives ut1 = h1 for t ≤ τ . For t > τ , since xt-11j =
ŷt1j = y̌t1j = 0 for all j 6=1, constraints in (u1), i.e., the only
constraints restricting uti, reduce to ut1 ≥ utj + 1 −H for all
j 6= 1. It is trivially true given the fact that its right-hand-side
is less than or equal to 1 and ut1 ≥ 1. Hence, imposing (e7)
for t ∈ T will not eliminate any optimal move sequence. �

APPENDIX E
ENHANCED ITERATIVE SCHEME

Since the fast computation heuristics and the reparation
heuristics are rather simple, we present their main ideas and
omit the detailed pseudo codes. Following the myopic strategy,
the two fast heuristics determine the next move by minimizing
the number of direct blockages or the value of LB4 of the
resulting configuration for each turn. On the other hand, the
reparation heuristic seeks to fix a solution violating the height
limit by repairing some relocation moves. A conservative
strategy is used first: if a relocation move leads to a block
over the height limit, we change its destination to a stack of
a lower height, while ensuring that all the following moves of
the whole block set remain applicable. If the strategy fails at
a turn, switch to a more aggressive strategy: to generate new
moves for the failed turn and all the following turns by one
of the fast heuristics.

23

Algorithm IS*: Enhanced Iterative Scheme

1: L← 0, L′ ← a lower bound of BRP-m3
2: while L < L′

3: L← L′

4: generate initial solutions by two fast heuristics
5: if objective value of the best initial solution sln1 is L
6: break
7: update and compute BRP-m3R without a height limit
8: (sln1, L′)← the optimal solution and objective value
9: if sln1 satisfies the height limit

10: return sln1
11: repair sln1 and get sln2
12: if the objective value of sln2 equals L
13: return sln2
14: L← 0
15: while L < L′

16: L← L′

17: generate initial solutions by two fast heuristics
18: if objective value of the best initial solution sln3 is L
19: break
20: update and compute BRP-m3R with a height limit
21: (sln3, L′)← the optimal solution and objective value
22: return sln3

ACKNOWLEDGMENT

The authors thank the associate editor and the reviewers
for their constructive comments that prompt us to discuss the
applicability and flexibility of our methods, and improve the
clarity of some details. The authors thank Shunji Tanaka for
providing instances, codes and games on his website (https:
//sites.google.com/site/shunjitanaka/brp) that are very helpful
to understand the BRP. The authors also thank Ting Li for her
constructive suggestions on this research topic.

REFERENCES

[1] K. H. Kim and G. P. Hong, “A heuristic rule for relocating blocks,”
Comput. Oper. Res., vol. 33, no. 4, pp. 940–954, 2006.

[2] M. Caserta, S. Voß, and M. Sniedovich, “Applying the corridor method to
a blocks relocation problem,” OR Spectrum, vol. 33, no. 4, pp. 915–929,
2011.

[3] F. Forster and A. Bortfeldt, “A tree search procedure for the container
relocation problem,” Comput. Oper. Res., vol. 39, no. 2, pp. 299–309,
2012.

[4] H. J. Carlo, I. F. Vis, and K. J. Roodbergen, “Storage yard operations in
container terminals: Literature overview, trends, and research directions,”
Eur. J. Oper. Res., vol. 235, no. 2, pp. 412–430, 2014.

[5] J. Lehnfeld and S. Knust, “Loading, unloading and premarshalling of
stacks in storage areas: Survey and classification,” Eur. J. Oper. Res., vol.
239, no. 2, pp. 297–312, 2014.

[6] M. Caserta, S. Schwarze, and S. Voß, “A mathematical formulation and
complexity considerations for the blocks relocation problem,” Eur. J.
Oper. Res., vol. 219, no. 1, pp. 96–104, 2012.

[7] R. Zhang, S. Liu, and H. Kopfer, “Tree search procedures for the blocks
relocation problem with batch moves,” Flex. Serv. Manuf. J., vol. 28, no.
3, pp. 397–424, 2016.

[8] H. Zhang, S. Guo, W. Zhu, A. Lim, and B. Cheang, “An investigation
of IDA* algorithms for the container relocation problem,” in Int. Conf.
Ind. Eng. Appl. Appl. Intell. Syst., Springer, Berlin, Heidelberg, 2010, pp.
31–40.

[9] W. Zhu, H. Qin, A. Lim, and H. Zhang, “Iterative deepening A*
algorithms for the container relocation problem,” IEEE Trans. Autom.
Sci. Eng., vol. 9, no. 4, pp. 710–722, 2012.

[10] S. Tanaka and K. Takii, “A faster branch-and-bound algorithm for the
block relocation problem,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 1,
pp. 181–190, 2016.

[11] K. E. Y. Quispe, C. N. Lintzmayer, and E. C. Xavier, “An exact algorithm
for the blocks relocation problem with new lower bounds,” Comput. Oper.
Res., vol. 99, pp. 206–217, 2018.

[12] V. Galle, S. B. Boroujeni, V. H. Manshadi, C. Barnhart, and P. Jaillet,
“An average-case asymptotic analysis of the container relocation prob-
lem,” Oper. Res. Lett., vol. 44, no. 6, pp. 723–728, 2016.

[13] E. Zehendner and D. Feillet, “A branch and price approach for the
container relocation problem,” Int. J. Prod. Res., vol. 52, no. 24, pp.
7159–7176, 2014.

[14] E. Zehendner, M. Caserta, D. Feillet, S. Schwarze, and S. Voß, “An
improved mathematical formulation for the blocks relocation problem,”
Eur. J. Oper. Res., vol. 245, no. 2, pp. 415–422, 2015.

[15] K. C. Wu and C. J. Ting, “A beam search algorithm for minimizing
reshuffle operations at container yards,” in Proc. Int. Conf. Log. Marit.
Syst., Busan, Korea, September, 2010, pp. 15–17.

[16] C. Expósito-Izquierdo, B. Melián-Batista, and J. M. Moreno-Vega, “An
exact approach for the blocks relocation problem,” Expert Syst. Appl.,
vol. 42, no. 17–18, pp. 6408–6422, 2015.

[17] S. Borjian, V. Galle, V. H. Manshadi, C. Barnhart, and P. Jaillet, “Con-
tainer relocation problem: Approximation, asymptotic, and incomplete
information,” arXiv preprint arXiv: 1505.04229, 2015.

[18] D. Ku and T. S. Arthanari, “On the abstraction method for the container
relocation problem,” Comput. Oper. Res., vol. 68, pp. 110–122, 2016.

[19] Y. Wan, J. Liu, and P. C. Tsai, “The assignment of storage locations to
containers for a container stack,” Nav. Res. Logist., vol. 56, no. 8, pp.
699–713, 2009.

[20] L. Tang, W. Jiang, J. Liu, and Y. Dong, “Research into container
reshuffling and stacking problems in container terminal yards,” IIE Trans.,
vol. 47, no. 7, pp. 751–766, 2015.

[21] V. Galle, C. Barnhart, and P. Jaillet, “A new binary formulation of the
restricted container relocation problem based on a binary encoding of
configurations,” Eur. J. Oper. Res., vol. 267, no. 2, pp. 467–477, 2018.

[22] M. M. da Silva, S. Toulouse, and R. W. Calvo, “A new effective unified
model for solving the pre-marshalling and block relocation problems,”
Eur. J. Oper. Res., vol. 271, no. 1, pp. 40–56, 2018.

[23] M. Caserta, S. Schwarze, and S. Voß, “A new binary description of the
blocks relocation problem and benefits in a look ahead heuristic,” in Eur.
Conf. Evol. Comput. Comb. Optim., Springer, Berlin, Heidelberg, 2009,
pp. 37–48.

[24] R. Jovanovic and S. Voß, “A chain heuristic for the blocks relocation
problem,” Comput. Ind. Eng., vol. 75, pp. 79–86, 2014.

[25] C. Expósito-Izquierdo, B. Melián-Batista, and J. M. Moreno-Vega,
“A domain-specific knowledge-based heuristic for the blocks relocation
problem,” Adv. Eng. Inform., vol. 28, no. 4, pp. 327–343, 2014.

[26] S. Tanaka and F. Mizuno, “An exact algorithm for the unrestricted block
relocation problem,” Comput. Oper. Res., vol. 95, pp. 12–31, 2018.

[27] F. Tricoire, J. Scagnetti, and A. Beham, “New insights on the block
relocation problem,” Comput. Oper. Res., vol. 89, pp. 127–139, 2018.

[28] S. Tanaka and F. Mizuno, “Dominance properties for the unrestricted
block relocation problem and their application to a branch-and-bound
algorithm,” in IEEE Int. Conf. Autom. Sci. Eng., Gothenburg, Sweden,
August, 2015, pp. 509–514.

[29] S. Tanaka, “Extension of the dominance properties for the unrestricted
block relocation problem,” in IEEE Int. Conf. Ind. Eng. Eng. Manag.,
Singapore, December, 2015, pp. 224–229.

[30] M. E. H. Petering and M. I. Hussein, “A new mixed integer program
and extended look-ahead heuristic algorithm for the block relocation
problem,” Eur. J. Oper. Res., vol. 231, no. 1, pp. 120–130, 2013.

[31] D. Feillet, S. N. Parragh, F. Tricoire, “A local-search based heuristic for
the unrestricted block relocation problem,” Comput. Oper. Res., vol. 108,
pp. 44–56, 2019.

[32] B. Jin, A. Lim, and W. Zhu, “A greedy look-ahead heuristic for the
container relocation problem,” in Int. Conf. Ind. Eng. Appl. Appl. Intell.
Syst., Springer, Berlin, Heidelberg, 2013, pp. 181–190.

[33] B. Jin, W. Zhu, and A. Lim, “Solving the container relocation problem
by an improved greedy look-ahead heuristic,” Eur. J. Oper. Res., vol. 240,
no. 3, pp. 837–847, 2015.

[34] F. Bruns, S. Knust, N. V. Shakhlevich, “Complexity results for storage
loading problems with stacking constraints,” in Eur. J. Oper. Res., vol
249, no. 3, pp. 1074–1081, 2016.

https://sites.google.com/site/shunjitanaka/brp
https://sites.google.com/site/shunjitanaka/brp

24

[35] L. Tang, H. Ren, “Modelling and a segmented dynamic programming-
based heuristic approach for the slab stack shuffling problem,” Comput.
Oper. Res., vol. 37, no. 2, pp. 368–375, 2010.

[36] J. Scholl, D. Boywitz, and N. Boysen, “On the quality of simple
measures predicting block relocations in container yards,” Int. J. Prod.
Res., vol. 56, no. 1-2, pp. 60–71, 2018.

[37] I. López-Plata, C. Expósito-Izquierdo, J. M. Moreno-Vega, “Minimizing
the operating cost of block retrieval operations in stacking facilities,”
Comput. Ind. Eng., vol. 136, pp. 436–452, 2019.

[38] L. A. Wolsey, “Integer programming,” New York: Wiley, 1998.
[39] M. Conforti, G. Cornuéjols, and G. Zambelli, “Integer programming,”

Berlin: Springer, 2014.

	I Introduction
	II Literature Review
	II-A Problem Classification
	II-B Literature on Restricted BRP Variants
	II-C Literature on Unrestricted BRP Variants

	III Derivations of Lower Bounds on the Number of Relocations
	III-A A General Framework for the Derivation of Lower Bounds
	III-B A Revisit of Existing Lower Bounds
	III-C New Structural Properties
	III-D A Stronger Lower Bound

	IV Exact Computational Methods
	IV-A A New MIP Formulation of the BRP
	IV-B An MIP Relaxation Based Iterative Procedure

	V Industrial Considerations and Flexible Modeling
	V-A BRP with Penalty Coefficients
	V-B BRP Considering Energy Consumptions
	V-C BRP Subject to Stacking Restrictions
	V-D BRP Considering Retrieval Pace

	VI Computational Results
	VI-A Strength of Lower Bounds
	VI-B Computational Results Without a Height Limit
	VI-C Computational Results With Height Limits
	VI-D Analysis on Influence of the Height Limit
	VI-E Computational Results of Customized MIP Formulations

	VII Conclusion
	Appendix A: Algorithms A5 and A5* for a Block Subset Satisfying Property 5
	Appendix B: Algorithm A7 for a Block Subset Satisfying Property 7
	Appendix C: Algorithm A8 for a Block Subset Satisfying Property 8
	Appendix D: Proof of Proposition 1
	Appendix E: Enhanced Iterative Scheme
	References

