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The INCLUSIVE system: A general framework for
adaptive industrial automation

Valeria Villani, Lorenzo Sabattini, Paulina Barańska, Enrico Callegati, Julia N. Czerniak, Adel Debbache,
Mina Fahimipirehgalin, Andreas Gallasch, Frieder Loch, Rosario Maida, Alexander Mertens, Zofia Mockałło,

Francesco Monica, Verena Nitsch, Engin Talas, Elisabetta Toschi, Birgit Vogel-Heuser, JeanMarc Willems,
Dorota Żołnierczyk-Zreda, and Cesare Fantuzzi

Abstract—While modern production systems are becoming
increasingly technologically advanced, the presence of human
operators remains fundamental in industrial workplaces. To
complement and enhance the capabilities of human workers,
approaches based on adaptive automation have been introduced.
They consist in adapting the behavior of the system according
to the user’s capabilities and effort. In this paper, we present
a general holistic framework for adaptive automation, called
INCLUSIVE, that assists the operator during working tasks. The
system consists of three modules. First, a thorough characteri-
zation of the operator’s constitutional and situational condition
is provided; based on this, proper tailored adapation is given
and, if necessary, further training and support are provided. The
framework has been implemented and tested considering three
industrial use cases, selected as representative of a wide area of
interest for the industry in Europe, in terms of both production
requirements and involved operators. Tests have been carried
out in real production environments, considering real production
tasks carried out by 53 shop floor workers. Results have shown
that workers’ satisfaction when using the INCLUSIVE system
and their performances were increased with respect to customary
interaction systems currently used in industries. Moreover, the
achieved results were used to formulate a set of recommendations
for the design and implementation of an adaptive interaction
system in relation to ensuring worker satisfaction and system
usability in an industrial environment, as well as performance
requirements.

Note to Practitioners—This article was motivated by the fact
that, despite modern advanced automation, human operators are
still central in the manufacturing process. However, technologi-
cal progress often causes challenging interaction with complex
industrial systems. The goal of this paper is to introduce a
complete framework for adaptive automation, with the ultimate
goal of facilitating the interaction of human operators with
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complex industrial systems. The framework relies on three
modules: measurement of human capabilities, adaption of the
interaction system, and additional teaching and support. The
three modules are discussed at high level, independently of the
target application. Moreover, to facilitate their application in
specific working contexts, examples are provided with respect to
three different industrial applications. Results of tests carried out
with shop floor operators show that implementing the proposed
framework allows better working performance and increases
worker satisfaction with the use of automation.

Index Terms—Human-machine interaction, User centered au-
tomation, Adaptive interaction systems, Human factors.

I. INTRODUCTION

With the advent of Industry 4.0, a striking feature of modern
manufacturing systems is the focus on advanced automation.
This combines technological progress and diversified needs
of market, such as product customization and small batches
production [1]. This trend adds to human-centricity of the
factories of the future, where humans and automated systems
cooperate and work in symbiosis [2]. Human operators are
being placed in the center of attention, in the sense that
automation is seen as a complement and enhancement of the
cognitive capabilities of humans by advanced sensing and the
higher precision of machines. In this regard, Romero et al. [2]
have introduced the term Operator 4.0, to refer to operators
of human cyber-physical systems who perform work aided by
machines if and when needed. The results are more flexible,
inclusive and safe workplaces, as well as better work condi-
tions, increased productivity and improved quality. Moreover,
this means increased worker satisfaction and work wellbeing,
more empowered and engaged workers and increased interest
towards factory work as a career, attracting young talented
people [3].

The design of automatic machines that dynamically adapt to
the cognitive and physical demands of users falls in the domain
of the so-called adaptive automation, which goes back several
decades [4]–[6]. The goal is to overcome common problems
in automation, such as over-reliance, skill degradation, and
reduced situation awareness [7]. This can be achieved by
adapting the behavior of the system, for example dynamically
allocating functions, simplifying the task or changing the level
of autonomy of the machine [8]. A variety of frameworks
for adaptive human-automation systems have been suggested
along these lines. Classical approaches are technocentric [9],
[10]: the level of adaptation to introduce is decided based on
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context features and enabling technologies, such as tasks, en-
vironmental conditions and hardware [11]–[13]. In particular,
Lee and Martinez Lastra in [11] consider the case of adaptive
interfaces of industrial monitoring systems, whereas Jammes
and Smit refer to process industries in [12], and cognitive
production environments are considered by Wallhoff et al. in
[13]. In [14], Mourtzis and Vlachou propose a cyber-physical
system for adaptive shop-floor scheduling and condition-based
maintenance. The system aims to support adaptive scheduling
by taking shop floor monitoring data and information related
to maintenance into consideration.

Other approaches to adaptive automation are anthropocen-
tric, since they resort to user-centered design and adapt the
behavior of the system considering user’s capabilities and
comfort during the interaction [15], [16]. In this regard,
Romero et al. in [17] propose an anthropocentric architecture
for adaptive automation that takes into account various criteria
in the operating environment such as time-lapse, performance
degradation, age-, disability- and inexperience-related limi-
tations of operators to increase their working capabilities.
Carpanzano et al. introduce an automation framework for im-
proving workers’ well-being in [18], by exploring the dynamic
real time interactions among closed loop control functions and
human workers. The works by Michalos et al. in [19] and
Tsarouchi et al. in [20] consider assembly applications and
propose dynamic task allocation between the robot and human
worker based on information coming from cameras and other
similar devices. Vision systems have been used to assess task-
required motor skills of a worker [21] and to track a worker’s
motion and inform the robot about what the worker is currently
doing and what they will be doing next [19], [20], [22], [23].
Further, eye tracking has been considered for personalized
gaze interaction and gaze behavior analysis [24].

Other approaches propose to adapt the interaction collecting
more detailed information about the human subject. This can
be done by monitoring a worker’s cognitive and emotional
conditions and exploiting physiological parameters that allow
for retrieving insights such as anxiety, fear, boredom, fatigue
or exhaustion, as proposed by Arai, Fujita and Kato in [25] and
[26] and by Talignani Landi et al. in [27]. An adaptive human-
aware cell for collaborative robotics for robotized injection
molding has been developed by Bettoni et al. in [28]. The
activity is characterized by such a high production pace that
it forces the operator to work under an external and very fast
pace determinant, with consequent effects on the cognitive de-
mand and on the output quality. To overcome this, it has been
proposed to dynamically allocate tasks to the robot or to the
worker, based on the worker’s mental and physical fatigue and
progress in the process [28]. In [29] Haslgrübler et al. present
a framework for adaptive human-in-the-loop assembly tasks.
Specifically, the system estimates worker’s skills, cognitive
load and visual attention to provide the best possible assistance
with the least necessary disruption. However, in some cases,
information about cognitive and emotional condition of the
user is used to assess acceptability of human-system interac-
tion in an industrial environment without providing adaptation
of system behavior [25], [30], [31]. Building upon this, Villani
et al. in [32] the ethical, legal and societal implications

related to adaptive automation have been discussed and the
concept of MATE systems has been proposed. Specifically,
MATE systems represent an instance of adaptive automation,
which is achieved by the interconnection of three modules:
measurement of user’s capabilities, adaptation of interaction,
and teaching of the lacking competence [32].

Moving along these lines, in this paper we present a gen-
eral framework for adaptive automation, called INCLUSIVE
system, that assists the operator during working tasks. The
system adapts the interaction in terms of information load
of the HMI and automation capability of the machine, and
provides specific guidance when needed, as preliminarily
presented by Villani et al. in [33]. As a consequence, the
INCLUSIVE system can be seen as an instance of MATE
systems [32]. The aim is to provide a smart interaction system
for compensating workers’ limitations (e.g., due to age or
inexperience), while taking full advantage of their knowledge.
The ultimate goals are threefold: the first objective is to
increase operator’s satisfaction towards their job; the second is
to increase overall job efficiency; the third to allow an inclusive
work environment accessible to any operator, regardless of
age, education, impairments and working experience. This
would allow, for example, elderly, disabled, inexperienced and
other vulnerable operators to access working positions they
would be otherwise barred from.

The proposed framework has been implemented considering
three industrial use cases, found to be representative of a
wide area of interest for the industry in Europe in terms
of both production requirements and involved operators. The
INCLUSIVE system has, hence, been tested in real production
environment with 53 shop floor workers. The effectiveness of
the approach has been assessed with subjective and objective
measurements. In particular, feedback from test participants
was collected with a questionnaire on their satisfaction and
system usability [34]. Moreover, objective measurements of
users’ mental strain were collected and these were correlated
with subjective feedback information.

A. Contribution and organization of the paper
The main contributions of this work to the state-of-the-art

are the following:
1) we propose a general approach to adaptive automation

that is not limited to the considered use cases (as done
in [18]–[20], [22], [23], [28], [35]) and we provide
concrete instructions about how to implement it in other
applications;

2) the proposed approach consists in a holistic framework
that fully supports workers, thus enabling an inclusive
work environment, as opposed to approaches based on
technocentric adaptive automation [11]–[14];

3) with the Measure module, we provide a thorough charac-
terization of workers, thus taking into account all human
characteristics and capabilities that may affect interaction
with a complex system, as opposed to [29]–[31], [35]
where few aspects are typically considered;

4) with the Adapt module, we provide general rules to adapt
any interaction task of industrial automation specifically
to a complete set of worker’s characteristics;
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Fig. 1. Concept of the INCLUSIVE system: to achieve an inclusive work
environment, the system relies on the three modules Measure, Adapt and
Teach.

5) with the Teach module, we combine preliminary instruc-
tions with guidance integrated in the interaction system,
thus providing the correct balance between worker’s need
for support and autonomy, similarly to [29];

6) we provide an extensive validation of the proposed adap-
tive automation framework in industrial use cases, with
real shop floor operators, working tasks and machines,
differently from most of the literature in the domain;

7) finally, we leverage our results to propose some general
recommendations for the design of adaptive automation.

The rest of the paper is organized as follows. In Sec. II we
present in detail the INCLUSIVE system and its components.
Sec. III introduces the considered use cases, describes how
the system has been implemented and provides details about
validation tests. The results of the tests are reported in Sec. IV
and in Subsec. IV-A the outcomes of tests are used to provide
general recommendations for the design and implementation
of a MATE system, such as the INCLUSIVE system. Finally,
Sec. V follows with some concluding remarks.

II. METHODOLOGY: THE INCLUSIVE SYSTEM

The rationale behind the INCLUSIVE system is that, ben-
efiting from adaptive and anthropocentric automation, the
interaction of workers with complex systems is tailored to the
specific characteristics and needs of each worker. To this end,
it is fundamental to build a precise thorough representation
of the worker. Moreover, for least-skilled users specific guid-
ance and training become advantageous. To achieve this, the
INCLUSIVE system relies on three modules: Measure, Adapt
and Teach.

The first set of capabilities is assessed offline, once before
the beginning of interaction tasks, whereas the second set of in-
formation is continuously assessed online, during interaction.
The second module, Adapt, consists in adapting the interaction
to human capabilities. In other words, the system adapts the
organization of the information, the means of interaction and
the automation task that can be carried out by the user based on
the outcome of the Measure module. Finally, the third module,
Teach, provides unskilled users with adequate teaching support
when needed. The system teaches the correct way to interact
with the machine to the unskilled users, also by means of
simulation in virtual and augmented environment. The main

Human 
Behavior

Skills

Perception

Require-
ments

TaskEnviron-
ment

CognitionSituation

ActionConstitution

(a) Internal and external influencing factors in human-machine
interaction. More specific attributes are reported in [36].

Perception Cognition Action

User outputUser input

Information 
output

Information 
input

Recognition/Decision
Action
Action

(b) Information processing in human-machine systems.

Fig. 2. Measure module: human capabilities model.

components underlying the INCLUSIVE system are shown in
Fig. 1.

A. The Measure module

The design of this module followed two steps. Firstly,
we isolated human capabilities that are relevant for human-
machine interaction and might cause individual barriers to an
efficient interaction. Then, we analyzed how to assess such
capabilities.

Factors on human-machine interaction related to operator’s
strain can be distinguished between external and internal, as
shown in Fig. 2(a). External factors are specified by charac-
teristics of the technical system, such as task requirements
or design of graphical user interface. Internal factors are
specified by the individual characteristics of the working
subject. Accordingly, the goal of the Measure module is to
assess internal influencing factors that influence the operator’s
strain. Internal influences are determined by the subject’s
characteristics, which may vary due to the current situation,
and how they processes information.

Regarding information processing, three dimensions con-
stitute a barrier to human-machine interaction: perception of
the machine information input, cognition (recognition and
decision about information), and translation of decision into
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action [37]. These are reported in Fig. 2(b). These processes
require effort based on a certain amount of available cognitive
capacity. Cognitive effort arises if the available resources
extend the required amount of capacity either positively or
negatively. In this case, performance is likely to decrease with
regard to the work task. Hence, the measurement of human
capabilities relies on the assessment of perception, cognition
and action. More specifically, relevant perception capabilities
to be measured include visual, auditory and haptic capabilities.
Cognition might be affected in terms of changed attention,
memory and intelligence capabilities. With regards to action,
human-machine interaction mainly influences it in terms of
motoric and verbal function. These parameters have been
identified and further specified in [36].

Moreover, following Fig. 2(a), other influences to human-
system interaction come from the user’s constitution or
skills and situational factors. Specifically, constitutional factors
mainly refer to culture, age and health, whereas the current
situation affects interaction due to changing fatigue levels,
physical and mental stress, emotions and user performance. As
a consequence, permanent and/or long-lasting user capabilities
can be measured before interaction, whereas current cognitive
effort and performance have to be measured during interaction.

Building upon this analysis of human capabilities rele-
vant during human-system interaction, it is important then
to understand how they can be measured. With regards to
capabilities related to information processing, these can be
measured through established tests. Some examples are re-
ported in Table I. In the case of constitution and skills, simple
questionnaires can be used; they have to be tailored to the
expertise and knowledge required by the system at hand. With
respect to situational factors, they include cognitive effort and
user performance. The most reliable way to track individual
cognitive load of the user is the analysis of physiological
parameters, such as pupil dilation, eye activity, Galvanic skin
response, cerebral activity, body temperature and heart rate
variability [38]–[40]. The measurement is done by means
of proximal and distal measurement techniques. Proximal
measurements rely on wearable devices, which do not limit the
user’s freedom of motion. On the contrary, distal techniques
mainly rely on the use of cameras, implying on the one hand
that this kind of measurement is transparent to the user, but
on the other that the user has to be in the camera’s field view.

Finally, with respect to user performance, it is needed to
track or observe user behaviour while using the system. For
instance, in eye tracking technique, user pattern and perfor-
mance can be tracked in the gaze positions [41]. Recorded
information can be adopted for the development of structural
knowledge maps, such as registering the training evolution
to give support to the operator in the future. Performance
indicators include execution time, reaction time, time for
decisions, execution steps, mistakes and redundancies. Their
suitability strongly depends on the system and the task at hand.

A summary of the proposed model of human capabilities
for interaction systems is reported in Table I. The specific
implementation of the above mentioned concepts for the
Measure module in the INCLUSIVE system is described in
Subsec. III-B.

TABLE I
Measure MODULE: SUMMARY OF THE MODEL OF HUMAN CAPABILITIES

FOR INTERACTION SYSTEMS.

C
O

N
ST

IT
U

T
IO

N
A

L

In
fo

rm
at

io
n

pr
oc

es
si

ng

Perception
– Landoldt’s rings tests [43]
– Ishihara test [44]
– Audiometer

Cognition – see review in [45]

Action
– Functional-Independence-Measure question-
naire [46]
– Fleishman factors [47]
– Purdue Pegboard test [48]

Knowledge – Work experience
– Specific expertise related to the system

SI
T

U
A

T
IO

N
A

L Cognitive effort

– Eye activity [38], [39], [40], [41]
– Brain activity [38], [39]
– Heart rate variability (HRV) [38], [39]
– Galvanic skin response (GSR) [38], [39]

Performance

– Execution time
– Reaction time
– Time for decisions
– Execution steps
– Mistakes
– Redundancies

How to adapt the 
INTERACTION
technologies?

How to adapt to 
measured COGNITION

capabilities?

How to adapt to 
measured PERCEPTION

capabilities?

meta-HMI 
(adaptation rules)

Application-targeted HMI
(depends on the use case)

User profiles and 
task description

Fig. 3. Adapt module: overall organization.

The result of the model is a multidimensional measurement
of human subjects facing an interaction system. In turn, such
measurements identify groups of users that, despite having
different individual capabilities and features, have common
needs and response to the interaction with complex production
systems, as discussed in [42]. As a consequence, this allows to
define clusters of users that have the same need for adaptation
and, hence, general adaptation rules for these clusters.

B. The Adapt module

The goal of the Adapt module is to provide general rules for
the design of industrial HMIs that adapt to the skills and capa-
bilities of operators and compensate their limitations. Building
towards this goal, the first task is to define general guidelines
for adaptive industrial HMIs, which extend established prin-
ciples for the design of HMIs. Being general, such guidelines
define a methodological approach that has general validity
for any industrial application. Adding information about the
application and the operator, it is possible to instantiate such
rules to implement the context-dependent adaptive HMI.

Providing adaptation in the user interface turns out to be
advantageous to the operator if, as a result, they can achieve
a better understanding of the working task, thus feeling more
confident with the entire system and acting more efficiently
on it. In other words, an adaptive HMI should increase the
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user’s situational awareness, by helping them to better perceive
important data, comprehend the current situation and predict
the future status [49]. To achieve this, we provide adaptation
according to three different levels, namely perception, cogni-
tion and interaction, as proposed by Villani et al. in [50]. First,
adaptation to operator perception is considered, which consists
in accommodating their sensorial capabilities and presenting
information accordingly. This level of adaptation refers to how
information is presented. Then, cognition adaptation has to
be taken into consideration: it accounts for the user’s ability
to understand information, which is influenced by skills and
current emotional status and the kind of interaction task. This
level of adaptation refers to what information is presented to
the user. Finally, depending on user sensorial and physical
capabilities, the best interaction means need to be selected to
allow a smooth interaction: this level of adaptation refers to
how interaction is enabled. The whole process underlying the
Adapt module is depicted in Fig. 3.

The definition of perception adaptation rules was started
from the universal design approach. This consists in a method-
ology for the design of objects that are accessible to all
users, regardless of their age, ability and disability [51]. In
particular, some of the guidelines of universal design are
relevant in the context of perception adaptation, since they
allow to address the special needs of subjects with perception
limitations and physical impairments. As regards cognition
adaptation, we have first identified some rules that guide on
how to change the information according to the (current)
cognitive capabilities of the user. These rules refer to the need
to: i) select the most suited quantity and kind of information,
by, for example, showing aggregated data in the presence of
cognitive difficulties; ii) organize and prioritize alarms; iii) let
some users explore the interface, while guiding those with
cognitive difficulties; iv) enable or disable advanced functions
according to cognitive capabilities [50]. To identify the most
appropriate way for the HMI to adapt to the user’s cognitive
capabilities, their constitutional and situational characteristics
need to be taken into account, as well as the kind of task at
hand. Indeed, the adaptation rules apply differently to different
tasks and, in some cases, do not apply at all to specific
tasks. Finally, as regards adaptation of interaction modality,
the specificity of industrial environment makes visual, physical
and auditive interaction the only viable alternatives. Criteria
have been given in [50] to identify which among them is the
most suited according to user constitutional and situational
characteristics, task requirements and work environment.

A summary of the levels of adaptation considered in the
Adapt module is reported in Table II.

Receiving input from the Measure module, the Adapt mod-
ule provides both constitutional and situational adaptation
of the interaction system. Indeed, constitutional adaptation
is dictated by constitutional measurement and accounts for
quasi-static worker profile, mainly linked to their role in
the company. Situational adaptation accounts for temporary
variations around the quasi-static user profile, such as the
worker getting fatigued towards the end of the work shift or
puzzled when facing a new working task. These conditions
are detected by situational measurements of cognitive effort

TABLE II
Adapt MODULE: LEVELS OF ADAPTATION

.

Perception adaptation: how information is presented
Universal design + Common physical impairments

Cognition adaptation: what information is presented
General design rules + Task characteristics

Interaction adaptation: how interaction is enabled

Interaction modalities
User characteristics

+ Task characteristics
Environment

Assistance 
Need

Task
• Type
• Complexity

User
• Capabilities
• Qualification
• Experience

Augmented 
Reality

Speech 
Assistance

Support

Measure Module, 
Adaptive HMI

Fig. 4. Teach module: overview of the online assistance.

and performance and elicit a change in the behavior of the
system, thus leading to situational adaptation (upon worker’s
acceptance).

Finally, it is noteworthy that the adaptive interaction that
can be achieved by means of the proposed levels and rules
can be described in terms of the level of automation [52].
In particular, depending on application context, they allow
to move from the condition in which “the computer offers
no assistance; human must do it all” (level 1), when there
is no adaptation, to higher levels in which “the computer
offers a complete set of action alternatives, and” (level 2)
“narrows the selection down to a few, or” (level 3) “suggests
one, and” (level 4) “executes that suggestion if the human
approves” (level 5). Indeed, the proposed adaptation is suited
for applications where the interaction is always controlled by
the human operator; occasionally, based on the outcome of the
Measure module, control is shared for relief, since the system
helps the human so that her/his burden may be reduced [53].
When this is the case, cognitive automation is implemented by
automating cognitive activities, such as situation assessment,
monitoring, and fault management [54].

C. The Teach module

The Teach module is composed of two separate parts,
namely offline and online training subsystems, which provide
different kind of support to the user and assist them in
different working moments. To comply with diversification
of the workforce, the two systems adapt their characteristics
to performance-influencing factors of the trainee, such as
constitution, disposition and qualification, as measured by the
Measure module.

The aim of the offline training subsystem is to prepare the
operation personnel for their tasks. To this end, it provides
a training environment based on a virtual simulation of the
machine that allows to simulate working procedures. In virtual
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TABLE III
Teach MODULE: TARGET AUDIENCE FOR EACH ASSISTANCE DEVICES (3: ADAPTED /7: UNSUITABLE).

Speech-based assistance AR-based assistance HTML supportHead-mounted display Tablet
U

se
r

ch
ar

ac
te

ri
st

ic
s Low-literate 3 with non-verbal instruction

Age > 50 3 adaption of the visualization
Visually impaired 3 (contrast, font size) + audio-annotation
Deafness 7 3 3 3
Upper limbs 3 3 7 3
Novice with additional visual aids 3 3 3
Qualified 3 3 7 3

Ta
sk

Do-task 3 3 3 3
Comprehend-task with additional visual aids 3 3 3
Manual task 3 3 7 7
UI task 3 3 7 integrated into the pre-existent interface

training systems, adaptation describes the extent to which the
training system can be adapted. Adaptation can be classified
in terms of “adaptivity” and “adaptability” [55]. “Adaptivity”
is initiated by the system and describes the components of the
training system that can be adapted automatically, while the
“adaptability” is initiated by the user and includes components
of the teaching style that users can adapt. Adaptation is
provided in terms of interaction, presentation and complexity,
and training is adapted based on feedback collected during the
training to assess the state of the trainee [56]. To maximize
the effectiveness of this kind of training, the whole interac-
tion system is fully integrated in the virtual environment. In
particular, it includes the adaptive user interfaces developed
in the framework of the Adapt module, so that the user
has access to a reliable replica of the interface running on
the machine to configure or control the virtual machine. As
a result, the virtual training system propagates a gradual
reduction of the instructions with an increasing qualification of
the trainee. This increases the complexity of the training and
increasingly requires the user to remember the worksteps of
the trained procedure. This should support the automation of
the procedure and the transformation to skill-based behavior
[57].

With respect to the online assistance system, it supports
employees while carrying out the procedure at the industrial
machine. The teaching system is triggered by the Measure
module or the adaptive HMI to provide assistance. The offered
assistance consists in instructional methods that reduce the
demand placed on the user’s working memory, according to the
cognitive workload theory [58]. Such methods adopt various
modalities and are adapted to the task to perform and to the
characteristics of the user. Fig. 4 displays an overview of the
approach of the online teaching subsystem. The assistance
system identifies first the assistance need of the user and,
then, selects the best assistance modalities for the specific
cases. Three systems were examined to offer a wide range of
assistance modalities: an augmented reality (AR) and speech-
based assistance for support during the procedures and HTML-
based support to provide separate teaching units. In addition,
in [59] haptic interaction assistance was considered as another
assistance system for manual procedures in virtual training
system.

With respect to user characteristics, a novice operator re-

ceives assistance that is more detailed and targets bigger parts
of a task. Structured online teaching with separate lessons or a
detailed description of the tasks, such as with 3D-animations,
should be offered to novice operators. Experienced operators
receive less advice, like in the form of pop-up messages. A
speech-based assistance system could be a suitable solution
for an experienced operator [60].

Furthermore, the kind of assistance to provide depends also
on the characteristics of the task. In particular, we consider
tasks consisting in either an action to perform (Do-task,
physical manipulations) or a state to observe or comprehend
(Comprehend-task, e.g. verifying the machine state). Visual
representations are appropriate for Comprehend-tasks since
they allow comparing the desired state that is represented by
the assistance system with the real state of the machine.

Tasks are also distinguished by whether they are manual
tasks or user interface (UI) tasks. A manual task typically
requires the use of both hands. The assistance device should
not require manual actions, except haptic assistance to help the
operator to get the feeling of physical properties of the tools
in manual tasks. Indeed, introducing physical components
can improve the efficiency of virtual training systems by
transporting a sense for haptic properties of components. It can
facilitate the transfer of manual skills to the real environment,
as shown in [59]. Moreover, the assistance device should
reduce visual indications in order not to distract the operator.
For UI tasks, it is recommended to avoid the use of an
additional computerized device to not overload the user.

Combining these considerations, Table III displays the task-
and user-specific selection of these devices under consideration
of the limitation of the previous section as well as the
adaptation(s) to be made when not entirely unsuitable.

To summarize, the modules constituting the modules of the
INCLUSIVE system and their main features are reported in
Fig. 5.

III. SYSTEM INTEGRATION AND VALIDATION

A. Use cases

To validate the proposed INCLUSIVE system, we selected
real use cases that depict the scenario of human-machine
systems currently utilized in industrial environments [33].
Specifically, we considered the industrial use cases in Fig. 6,
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Offline Online

MEASURE

Constitutional skills

ADAPT

Perception adaptation
Cognition adaptation
Interaction adaptation

TEACH

Offline virtual training

MEASURE

Physical and cognitive effort

MEASURE

Performance

TEACH

Online speech-based,
AR-based and HTML assistance

Fig. 5. Summary of the modules in the modules of the INCLUSIVE system.

Fig. 6. Use cases considered to validate the INCLUSIVE system.

since they are representative of a wide area of interest for
industry in Europe. These are:

1) woodworking machinery for small companies, typically
run by elderly owners (https://youtu.be/H2UoYpfdM I);

2) automation solutions made for developing countries
(https://youtu.be/ovjeyxITEkM);

3) management of large industrial plants and warehouses
(https://youtu.be/Ms3Flj8xihc).

The first use case refers to machinery used for woodworking
in artisans’ shops. The second one considers a robotic solution
to be applied in a company located in a developing country,
where operations are mostly performed manually. In particular,
the considered robotic solution is for panel bending. Finally,
the third use case refers to the manufacturer of laser-guided
vehicles (LGVs) for coordinated movement of goods in pro-
duction plants and warehouses and automated management of
intralogistics flows.

For each use case, a specific working scenario has been
analyzed in order to derive what are the concrete limitations
of currently implemented solutions in terms of human-system
interaction. Specifically, for the first use case we focused on
the activities related to tuning of the machine, to make it
ready for woodworking (tuning of the tools warehouse, tuning
of the worktable area components) and routine maintenance
procedures. For the second use case, we considered the
standard activities performed by a user for bending a part,
and replacing malfunctioning tools. The working scenario for
the third use case referred to the management of a fleet of
LGVs operated along the production lines and in partially
structured and highly dynamic warehouses. In particular, the
possibility to monitor the status of the fleet was tested, together

with maintenance procedures for encoder recalibration and oil
change.

As regards system architecture, the three modules of the
INCLUSIVE system (Measure, Adapt and Teach) communi-
cate among each other and with the proprietary systems of
the use cases through an adaptive automation middleware1,
which allows for hardware independence and modularity.
Specifically, the middleare is connected to the INCLUSIVE
system via the OPC UA protocol2 and to the proprietary HMIs
via (Fast Ethernet) TCP/IP connection.

B. Implementation of the Measure module

The rationale behind the Measure module described in
II-A is general and does not take into account the speci-
ficity of industrial working systems. To instantiate it in the
INCLUSIVE system, a concept was developed consisting
of different assessment approaches. For this purpose, user
data were assessed within three time levels: static, real-time,
and longitudinal analysis. In this regard, individual resources
were considered in the static analysis, specifically focusing
on users characteristics of the target groups (see Table III).
This analysis addressed constitutional user characteristics and
consisted in a questionnaire, which was integrated in the
HMI and examined the user’s general computer skills, work
experience, experience with the machine and the presence of
visual impairments. The answers given to the questionnaire
are combined to determine the default settings for the initial
user profile, according to the guidelines provided by Villani et
al. in [42].

Cognitive effort was considered by measuring physiological
parameters (real-time analysis). A combination of proximal
and distal measurement techniques was consider to jointly
achieve continuous measurement without interruption of the
task (proximal) and contactless measurement able to capture
any user in front of the sensor (distal). Results of empirical
studies showed that pupil dilation, Galvanic skin response and
heart rate variability were most sensitive to different levels of
cognitive workload (e.g. [40], [61]). In accordance with the
literature (e.g., [38], [39], [62]), physiological signals were
analyzed computing standard indices. The commercial soft-
ware ThingWorx Analytics3 was used to identify meaningful
patterns in the data, leveraging a set of predictive analytic
algorithms and machine learning techniques. A generalized
prediction model for cognitive stress detection was generated,
after training and validation on physiological data from 25
test subjects who were exposed to cognitive stressors: in
other words, they were asked to perform a task demanding
significant mental engagement and attention. Physiological
data were measured with a wearable device, namely Empatica
E4 wristand4. For those working tasks that did not require the
operator to move around the machine, pupillary response was
recorded using FOVIO eye tracking system5.

1https://www.kepware.com/en-us/products/kepserverex/
2https://opcfoundation.org/about/opc-technologies/opc-ua/
3https://www.ptc.com/en/resources/iiot/product-brief/thingworx-analytics
4https://www.empatica.com/research/e4/
5http://www.eyetracking.com/Hardware/Eye-Tracker-List

https://youtu.be/H2UoYpfdM_I
https://youtu.be/ovjeyxITEkM
https://youtu.be/Ms3Flj8xihc
https://www.kepware.com/en-us/products/kepserverex/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.ptc.com/en/resources/iiot/product-brief/thingworx-analytics
https://www.empatica.com/research/e4/
http://www.eyetracking.com/Hardware/Eye-Tracker-List


8

TABLE IV
OVERVIEW OF THE USE CASES AND THE CONSIDERED WORKING SCENARIOS (HRV: HEART RATE VARIABILITY; GSR: GALVANIC SKIN RESPONSE).

Participants Evaluation scenarios Human measurement Performance metrics

U
se

ca
se

1 Machinery for woodworking
18 – Tooling of the tool warehouse – Constitutional questionnaire – Usability questionnaire
(SCM, IT) – Maintenance operation due to error – HRV and GSR via Empatica E4 – Worker satisfaction questionnaire

message about locked spindle – Time needed to perform actions – Physiological parameters
– Time needed and mistakes occurred

U
se

ca
se

2 Robotic bending system
18 – Setting of working parameters – Constitutional questionnaire – Usability questionnaire
(Silverline, TR) – Maintenance procedure for – HRV and GSR via Empatica E4 – Worker satisfaction questionnaire

sensor replacement – Time needed to perform actions – Physiological parameters

U
se

ca
se

3 Management of fleets of LGVs
17 – Assessing the status of the fleet – HRV and GSR via Empatica E4 – Usability questionnaire
(Elettric80, IT) – Maintenance procedure for motor – Pupillary response via FOVIO eye tracker – Worker satisfaction questionnaire

wheel encoder calibration – Time needed (only for non-expert operators) – Physiological parameters

The longitudinal profile contains data about the user perfor-
mance, which aims at deriving additional online and offline
training measures in the Teach module. For this purpose, the
user’s performance when using the system was recorded over
a certain period of time.

All these data were used as input parameters for the Adapt
module, based on which the INCLUSIVE system was indi-
vidually adapted. The implementation of the Measure module
for the considered use cases is summarized in Table IV.
The human measurements regarded both constitutional (static
analysis) and situational factors; moreover, situational factors
were investigated with respect to both cognitive effort (real-
time analysis) and performance (longitudinal analysis). These
analyses represent the subset of the methodologies proposed
in Table I that were identified as the most appropriate for
our use cases. A couple of remarks are noteworthy for use
case 3. First, the questionnaire about constitutional capabilities
was not included in the HMI since tasks and responsibilities
charged to expert and non-expert operators are substantially
different, as described in Subsec. III-C. Expert operators are
in charge of monitoring the status of the fleet and setting
new interventions, who are then typically performed by non-
expert operators. As a consequence, the static profile in this use
case is set based on employee’s profiling by human resources
department. Second, given the nature of tasks charged to expert
operators, longitudinal measurement of performance according
to Table I does not apply to this class of operators since they
need to explore the HMI, as described in Subsec. III-C.

C. Implementation of the Adapt module

The Adapt module was implemented following the guide-
lines discussed in [50]. In particular, with reference to Ta-
ble IV, it was implemented for the first task of the evalu-
ation scenario of each use case, while the second task was
implemented in the online Teach module. It was included
in the user interface to guide in performing maintenance
activities, providing offline and online step-by-step guidance,
when needed by the user. These functionalities are enabled
adaptively based on the outcome of the Measure module.

As regards use case 1, the Adapt module was applied
for tooling the tool warehouse, which is a procedural task

for setup, according to the classification in [50]. Perception
adaption was implemented to accommodate for reduced vision
capabilities by adapting font size to maximize legibility and
providing pictorial representations of tools for redundant pre-
sentation of information, following the principles in Table IV
in [50]. Cognition adaptation was implemented considering
guidance (rule R3 in Table V in [50]), being a procedural
task. Then, as regards interaction adaptation, visual interaction
was considered, since it is a setup task (Table VII in [50]).
More detailed description is reported in [50]. The same rules
were considered for the task related to setting of the working
parameters of the robotic bending system of use case 2.

The Adapt module implemented for use case 3 is reported in
Fig. 7. In particular, we have developed a smart interaction sys-
tem that supports the supervision of a fleet of LGVs in produc-
tion plants or large, partially structured, and highly dynamic
warehouses, compensating variations in roles, skills, cognitive
capabilities, disabilities, education level and age of operators.
An adaptive HMI has been developed that allows to check the
internal status of each vehicle and, hence, schedule and per-
form maintenance activities on a group of LGVs. In the case
of expert operators, the HMI allows to explore any technical
information of the fleet, implementing a level of automation 1.
On the contrary, non-expert operator are informed only of the
tasks they are responsible for and solicited when actions is
needed (level of automation 3). Specifically, with reference to
Fig. 7, the HMI shows specific working parameters and their
trends representative of the working condition and remaining
working life of each vehicle (Fig. 7(a)). Moreover, it highlights
incoming scheduled maintenance activities for the fleet, giving
the opportunity of assigning them to operators (Fig. 7(b)).
The user interface allows expert operators also to enter new
maintenance interventions or postpone existing interventions,
based on the current status of vehicles. In terms of the
proposed three levels of adaptation, perception adaptation
was implemented to accommodate visual impairments due to
reduced vision capabilities and color blindness. Indeed, for
this kind of interface color blindness becomes relevant since
colors are associated to alarms and difference between current
values and thresholds. To this end, adjustment of font size
and color scheme were implemented to maximize legibility
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(a) View of vehicle specific working parameters (available
for expert operators).

(b) View of scheduled maintenance activities for the fleet:
non-expert operators can only see tasks they have been
assigned to.

Fig. 7. Implementation of the Adapt module for use case 3.

and provide adequate contrast between essential information
and its surroundings (Table III in [50]). Cognition adaptation
was implemented in terms of information selection, alarm
organization and functionality enabling, being a supervision
task (rules R1, R2 and R4 in Table V in [50]). Finally, visual
interaction was considered (Table VII in [50]).

D. Implementation of the Teach module

In Fig. 8 we report, as an example, the Teach module
implemented for use case 2. In particular, Fig. 8(a) shows
the virtual training environment reproducing the newly im-
plemented robotic bending system. For this use case, the off-
line training resulted being fundamental to operators, given
that they were new to the robotic system. Indeed, before
the introduction of the INCLUSIVE system, a manually fed
bender was used, whereas with the INCLUSIVE system it as
possible to introduce a robot to feed metal sheets to the bender.

E. Testing sessions

The effectiveness of the INCLUSIVE system has been
tested in sets of tests in real production environment at
companies representative of the use cases, with shop floor
workers. In particular, use case 1 was tested in SCM Group,
in Italy, one of the world leading producers of woodworking
machines. Use case 2 was tested in SILVERLINE, in Turkey,
a company producing domestic appliances. SILVERLINE pro-
duction process uses several kinds of very simple machines for
bending metal parts and components, currently manually fed
mainly because of the variability of the process itself and the
lack of skilled production line personnel capable of managing
automatic machines or robots. Finally, use case 3 was tested

(a) Offline Teach module: virtual training environment.

(b) Online Teach module: HTML support system.

Fig. 8. Implementation of the Teach module for use case 2.

in Elettric80, located in Italy. Elettric80 produces automated
solutions for warehouse management, mainly based on fleets
of LGVs used for goods transportation inside production plants
and logistic warehouses.

An overview of all the tests is reported in Table IV. For
each use case, two evaluation scenarios were identified: these
represent frequent working tasks considered to assess the
effectiveness of the INCLUSIVE system at the use cases.

It is noteworthy that in the use case 1 the same evaluation
scenarios were performed with both the INCLUSIVE system
and the legacy user interface currently used on woodworking
machines. This was not possible in the use cases 2 and 3, since
there is no legacy interface currently in use that performs the
same tasks of the INCLUSIVE interface. Indeed, as regards
the use case 2, the INCLUSIVE system was introduced to
automatize an activity currently done manually. As regards
the use case 3, there is no existing user interface for the
management of a fleet of vehicles.

The whole study was approved by the Ethics Committee of
the Province of Modena, Italy, being the study coordinated by
the University of Modena and Reggio Emilia.

1) Test protocols: Each participant was explained the over-
all goals of the tests and the protocol. Moreover, in compliance
with the General Data Protection Regulation (EU) 2016/679
(GDPR), each test subject and the local coordinator of tests
signed the informed consent form.

At the beginning of the test, participants were asked to self-
assess with respect to their computer skills and knowledge
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of the machine, in order to identify the initial user level for
the INCLUSIVE HMI [36]. To this end, the assessment of
constitutional user’s characteristics in the Measure module was
used. Then, information was given to operators about working
conditions of the INCLUSIVE system by using the simulated
environment in the offline training system, which is part of the
Teach module. Afterwards, operators were instructed to act on
the real system, under real working conditions. In particular,
tests consisted in asking participants to perform the tasks of
the considered evaluation scenarios listed in Table IV. When
needed, realistic details were provided, such as values for
parameters to be set. With respect to maintenance procedures,
the corresponding alarms were forced to appear on the user
interface intermittently during the test session, in order to
invite test subjects to solve them.

For use case 1, these tasks were repeated twice for each
participant, considering the customary user interface and the
INCLUSIVE system. In order to avoid learning effects in
results, half of the users tested the INCLUSIVE HMI before
the customary one, while the other half performed the test in
reverse order.

After performing the tasks, users were asked to fill out
questionnaires measuring system usability [63] and worker
satisfaction [34].

2) Test subjects:
a) Use case 1: A total of 18 participants (17 male, 1

female), between the ages of 19 and 54 (AM = 35; SD = 13.1),
were enrolled in tests. Participants have earned all education
degrees from an elementary school to a master’s degree. The
duration of the employment also varies greatly, ranging from
under six months to, in many cases, over ten years. As a result
of the initial self-assessment of computer skills and knowledge
of the machine, half of the participants reported average
computer skills, whereas the other half reported low computer
skills. Moreover, half reported they had no knowledge of the
machine, whereas the other half reported being familiar with
it. Finally, a test participant had mild cognitive impairments,
whereas two had visual impairments.

b) Use case 2: A total of 18 male operators were enrolled
in the tests. The mean age was 34.6 years (SD = 6.8). A third
of the participants were working as welding operators and
another five participants as bending operators. The remaining
participants were working as polishing, documentation, glass
preparation, or robotic systems operators. Eight of them self-
assessed as expert users, while the remaining as non-expert.
All participants have earned at least a high school diploma,
with five participants having a secondary school diploma.
Three participants graduated from a vocational college. Half of
the participants were working in the current position for one to
two years, two participants between 7 and 12 months, and one
participant for less than six months. As regards constitutional
characteristics, two participants had hearing impairments and
two others impairments at the upper limbs.

c) Use case 3: A total of 17 users (13 male, 4 female)
took part in the questionnaire survey conducted at Elettric80.
The mean age was 29.3 years (SD = 8.2). The youngest
participant was 24 years old, and the oldest participant was
51 years old. Mean job tenure in the company was 2.41 years.

Fig. 9. Overall satisfaction with the INCLUSIVE system.

One participant completed a secondary school, 16 participants
completed university studies with a bachelor’s (6) and master’s
(10) degree.

3) Performance metrics: A thorough assessment of the IN-
CLUSIVE system was achieved by considering objective and
subject performance metrics [64]. Objective metrics consist
in performance related indexes measured during tests, namely
time needed to perform a task and number of mistakes oc-
curred while carrying out the procedure. As regards subjective
metrics, after test sessions, participants were administered the
system usability scale (SUS) questionnaire [63] and the worker
satisfaction questionnaire [34]. The former is an established
tool to assess the usability of a wide variety of products and
services [65], while the latter was developed in the context of
the INCLUSIVE project and is based on a model of worker
satisfaction [34], [66]. This model constitutes a comprehensive
end-user evaluation framework, accounting for the core system
usability principles as well as physical and psychosocial as-
pects of the working environment, and, most importantly, the
end-user evaluation of the INCLUSIVE HMI building modules
(Adapt, Measure and Teach). Thus, the worker satisfaction
questionnaire consists in three sections: physical working con-
ditions, psychosocial working conditions and ethical aspects,
and user’s satisfaction with the INCLUSIVE system and its
modules. Full details about the model and the questionnaire
for worker satisfaction are reported in [34].

IV. RESULTS

The results of the measurement of worker satisfaction with
the proposed adaptive INCLUSIVE system demonstrated that
the majority of the participants assessed the overall satisfaction
with the adaptive system as relatively high: 79.1% of the study
participants were satisfied or even very satisfied with it, as
shown in Fig. 9. Equally, around 70% were satisfied with
the design and ease of the adaptive HMI. Further, the largest
number of the study participants (80%) felt that the HMI
helped them to cooperate efficiently with the machine/robot
and the same number declared that, in general, the HMI helped
them to become more productive in their work. However, more
than 30% declared that the amount of the HMI information
was rather excessive.

The INCLUSIVE system was assessed favorably with re-
spect to the legacy industrial interface, customarily used in
industry for use case 1. Comparative assessment considered
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TABLE V
RESULTS OF SPEARMAN CORRELATION ANALYSIS BETWEEN THE OBJECTIVE PARAMETERS AND THE SUBJECTIVE WORKER SATISFACTION.

HR mean HR T1 mean HR T2 mean HR max HR T1 max HR T2 max LFnu HFnu GSR mean GSR T1 
mean

GSR T2 
mean Temp mean Temp T1 

mean
Temp T2 

mean
Safety functions are readily accessible -0.28 -0.31 -0.19 -0.28 -0.24 -0.24 0.03 -0.39* -0.07 -0.01 0.04 0.27 0.35 0.27
Error messages and warning messages are 
clear -0.21 -0.26 -0.16 -0.30 -0.25 -0.19 0.15 -0.41* 0.09 0.03 -0.02 0.03 0.10 -0.07

Characters are easy to read -0.18 -0.18 -0.05 -0.20 -0.23 -0.11 0.27 -0.46** 0.18 0.14 0.15 0.30 0.38* 0.23
The interface buttons (options) are visible on 
the screen -0.09 -0.09 0.02 -0.15 -0.17 -0.08 0.21 -0.31 0.15 0.20 0.12 0.28 0.39* 0.24

Position of messages on the screen is 
consistent 0.15 0.19 0.17 0.05 0.08 0.14 0.23 -0.16 0.23 0.30 0.41* 0.29 0.34 0.40*

The colors used in the HMI help to better 
perceive the information on the screen 0.03 -0.03 0.16 -0.02 -0.05 0.10 0.39* -0.39* 0.17 0.20 0.21 0.34 0.45** 0.33

The HMI layout is aesthetic -0.24 -0.29 -0.19 -0.37* -0.36* -0.23 0.14 -0.44* 0.03 0.10 0.09 0.21 0.27 0.20
In general. the organization of information is 
clear -0.04 0.08 -0.04 0.00 0.11 -0.08 0.12 -0.03 0.37* 0.45** 0.50** 0.27 0.28 .409*

The changing interface distracts me -0.37* -0.31 -0.36* -0.27 -0.20 -0.36* 0.10 -0.04 0.34 0.33 0.26 -0.01 0.01 0.11
In general. the layout of the adaptive HMI is 
appropriate -0.12 -0.06 -0.12 -0.11 -0.02 -0.15 0.19 -0.25 0.25 0.28 0.46** 0.32 0.36* 0.40*

Use of terms throughout system is consistent 
and understandable 0.02 -0.02 0.04 -0.09 -0.05 -0.05 0.25 -0.46** -0.07 0.12 -0.02 0.13 0.22 0.16

I can easily find all the information I need -0.10 -0.06 -0.13 -0.18 -0.11 -0.14 0.08 -0.21 0.00 0.14 0.08 0.17 0.18 0.37*
I can easily return to the earlier steps 0.06 0.01 0.07 -0.04 -0.06 -0.02 0.23 -0.38* -0.17 0.04 -0.03 0.20 0.28 0.21
The number of operations to perform a 
task/to achieve a goal/to set up a process is 
optimal

-0.16 -0.21 -0.08 -0.23 -0.26 -0.12 0.20 -0.53** -0.08 0.03 -0.11 0.25 0.32 0.14

The HMI helps me to more efficiently 
cooperate with the machine/robot. -0.02 -0.12 0.07 -0.18 -0.10 -0.03 0.16 -0.44* -0.10 0.01 0.05 0.20 0.27 0.20

In general. the HMI helps me to be more 
productive in my work -0.04 -0.10 0.05 -0.24 -0.15 -0.08 0.16 -0.41* -0.03 0.11 0.02 0.17 0.25 0.26

I feel I can be easily guided when I get 
lost/commit an error 0.04 0.01 0.05 -0.15 -0.17 -0.01 0.36* -0.27 -0.06 0.02 -0.10 0.33 0.29 0.33

I trust the system and that my personal data 
will not be abused -0.13 -0.11 -0.08 -0.23 -0.27 -0.16 0.00 -0.46** -0.30 -0.18 -0.32 0.26 0.33 0.25

Heart rate (HR): HR mean: mean HR throughout the test; HR mean T1: mean HR in the first part of the test; HR mean T2: mean HR in the last part of the test; HR max: maximum HR throughout the test; HR max T1: maximum HR in the first 
part of the test; HR max T2: maximum HR in the last part of the test. Heart Rate Variability (HRV): HFnu: high-frequency normalized spectral power throughout the test; LFnu: low-frequency normalized spectral power throughout the test. 
Galvanic Skin Response (GSR): GSR mean: mean GSR throughout the test; GSR mean T1: mean GSR in the first part of the test; GSR mean T2: mean GSR in the last part of the test. Skin temperature (ST): ST mean: mean ST throughout the 
test; ST mean 1: mean ST in the first part of the test; ST mean 2: mean ST in the last part of the test. 

*p<0.05; **p<0.01; ***p<0.001

both subjective (system usability and worker satisfaction) and
objective measurements (time needed and mistakes occurred to
perform requested tasks). In particular, using the INCLUSIVE
system provided a reduction of 36.9% of time needed to
accomplish a task and of 37.5% of occurred mistakes, on
average over 18 test subjects. A thorough analysis of the
results of the tests for use case 1 is reported in [66].

With respect to objective assessment derived from physio-
logical parameters measured with the Empatica E4 wristband
(heart rate, skin temperature, and Galvanic skin response), it
was found in all the use cases that test subjects underwent
sustained mental workload. A correlation analysis of these data
with the results of subjective worker satisfaction was carried
out to identify those objective (physiological) measures that
can be used to monitor the level of satisfaction relating to the
working with the INCLUSIVE system, and to identify which
operations have a negative impact on worker cognitive load
and stress level.

Table V reports the results of this analysis. Specifically, the
first column reports the statements from the worker satisfaction
questionnaire in [34]. The subject’s agreement with statements
were measured with a 4-point Likert scale, where 4 = “to a
large extent” and 1 = “to a very small extent”. The remaining
columns report the physiological parameters derived from
Empatica E4 wristband and used in the analysis. The r-Pearson
correlation analysis was performed using SPSS 23.

The correlation analysis revealed a number of significant
relationships between physiological parameters and subjective
worker satisfaction indicators. In particular, spectral power
in the high frequency band (HFnu, [67]) was most often
correlated with subjective satisfaction with HMI. This out-
come confirms that heart rate variability could be one of the

most responsive factors when measuring human physiological
reactions/strain [38], [39]. In particular, stress is correlated
with the decrease in the high frequency band (HFnu) and
increase of power in the low frequency band (LFnu). In line
with this assumption, but contrary to our expectations, the
results of the correlation analysis indicate that the higher the
level of strain, the higher the level of subjective satisfaction.
The higher levels of physiological parameters are a symptom
of physiological and psychological activation/arousal and do
not have to be interpreted as stress or negative strain. New,
modern working methods, coupled with a new technological
solution to practice could cause an activation state in the users,
but it does not mean that they were experiencing negative
strain or overload. It could be interpreted by every user in a
different way: as a threat or a challenge, which is a positive
approach related to positive psychological effects [68]. While
long-lasting activation could be harmful for person’s health, a
short-term activation/arousal is not necessarily associated with
negative outcomes, depending on stimuli and their interpreta-
tion [68], [69], or various resources [70]. It is possible that
after some time working with the new HMI these physiological
parameters would return to their previous levels. However, said
situation could not be observed during our tests. Therefore,
it may be recommended that future studies could include
longitudinal tests, repeating measurement after longer period
of time, for instance after 6 or 12 months. Finally, it is worthy
to point out that, although the strain level was significantly
higher throughout the tests, users were able to appreciate new
functions of the INCLUSIVE system. It would mean that, even
if the user is stressed or overloaded with work, they is able to
cognitively assess new functions.
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A. Recommendations to ensure worker satisfaction and system
usability

The achieved results were used to formulate a set of
recommendations for the design and implementation of an
adaptive interaction system, rendered in the shape of a MATE
system. The recommendations have been developed according
to the model of worker satisfaction with an adaptive interface
[34] and to the whole INCLUSIVE system functionalities.
These assumptions are based on subjective and objective
measurement of worker satisfaction: the subjective and objec-
tive measurement data have been correlated and the obtained
results analyzed in order to formulate the complete recommen-
dations for the development of an adaptive automation system
applied in an industrial environment that responds to operator
needs and performance requirements. Said recommendations
are summarized in Table VI.

V. CONCLUSION

In this paper we presented a general approach to the holistic
design of industrial interaction systems that adapt to the skills
and capabilities of human operators. The goal is that of
relieving the increasing complexity of modern production sys-
tems by providing operators with usable interfaces, enabling a
smooth and easy interaction. The systems developed according
to the proposed approach allow for inclusive and flexible
working environments accessible to any operator, regardless
of age, education level, cognitive and physical impairments
and experience in the tasks to be performed. This allows,
for example, elderly, disabled, and inexperienced operators,
who are the most vulnerable in the interaction with complex
automatic systems, to access working positions they would be
otherwise barred from.

To implement the proposed methodology, three industrial
use cases were selected as representative of a wide area of
interest for the industry in Europe, in terms of both production
requirements and involved operators. The INCLUSIVE system
has, hence, been tested in real production environments at the
companies leading the use cases, with shop floor workers.
The effectiveness of the approach has been assessed with
subjective and objective measurements. In particular, feedback
from test participants was collected with a questionnaire on
their satisfaction and system usability. Moreover, objective
measurements of users’ mental strain were collected and these
were correlated with subjective feedback information.

Future work will consists in a more extensive assessment
to further validate the proposed methodology for the design
of adaptive interaction systems and propose their concrete
application in industrial working environments. In order for
this to happen, acceptance by workers and trust in the use of
the system need further appropriate scrutiny.
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TABLE VI
RECOMMENDATIONS FOR DESIGN AND IMPLEMENTATION OF AN

ADAPTIVE INTERACTION SYSTEM, IN THE SHAPE OF A MATE SYSTEM.

Recommendations related to monitoring user parameters
An adaptive HMI could include the real-time measurement of physiolog-
ical parameters, e.g.:

– heart rate and heart rate variability
– Galvanic skin response
– body temperature
– pupillary response

An adaptive HMI user should:
– trust the system and that their own personal data will not be abused
– feel that monitoring strain can benefit them
– not feel that an adaptive HMI can challenge their physical comfort

Recommendations related to system adaptation
Interface functions should be modifiable with regard to a certain systems
aspects based on:

– task needs
– user capabilities and skills
– personal user preferences

User parameters (capabilities, skills, personal preferences) should be taken
into account using:

– a-priori user profile (containing the user’s innate and evolved skills
and capabilities, which can be evaluated beforehand and are applied
continuously for the individual)

– real-time user profile (measuring the actual state of the operator
whilst working using physiological parameters measurement)

– longitudinal user profile (analysis of user performance and capabil-
ities development)
The system should maintain those settings appropriated for user when
re-starting
The adaptive interface should help an user to be:

– less stressed using the adaptive HMI
– more confident using an adaptive HMI
– make fewer mistakes/errors using an adaptive HMI

Recommendations related to online and offline training
A guided step-by-step approach would be more suited to the unskilled
user
A more skilled user would work better using shortcuts
The online training might use several ways of assistance, such as:

– AR-based assistance
– speech-based assistance
– support assistance

The online training should be:
– easy to read and perceive
– adequate in relation to an operator’s skills and capabilities
– adapted to a current work task

If there is an offline training system in the adaptive HMI it could replace
or support teaching-in by a trainer for this procedure and it also should
be:

– easy to read and perceive
– adequate in relation to an operator’s skills and capabilities
– adapted to a current work task

Recommendations related to psychosocial working conditions
In their work in general, the adaptive HMI operators should:

– have the possibility of learning new things
– have the possibility of getting help and support from the nearest

superior
– have enough time to perform work tasks
– should not be stressed during their work
– be recognized and appreciated by management

General recommendations related to measuring worker satisfaction
and system usability
Subjective measurements of worker satisfaction and system usability
should be carried out along with the objective measurement in order to
properly interpret the latter ones (in terms of strain or excitement)
Further studies should confirm usability of other wearable devices in mea-
suring a worker’s physiological parameters in various work environments,
performing different tasks
These measurement should be repeated after some time of using the
adaptive HMI (e.g., several months) in order to confirm or disconfirm
worker satisfaction and system usability in the long term
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“Towards a human-centred reference architecture for next generation
balanced automation systems: human-automation symbiosis,” in IFIP
Int. Conf. Advances in Production Management Systems. Springer,
2015, pp. 556–566.

[18] E. Carpanzano, A. Bettoni, S. Julier, J. C. Costa, and M. Oliveira,
“Connecting Humans to the Loop of Digitized Factories’ Automation
Systems,” in Int. Conf. the Industry 4.0 model for Advanced Manufac-
turing. Springer, 2018, pp. 180–193.

[19] G. Michalos, S. Makris, J. Spiliotopoulos, I. Misios, P. Tsarouchi, and
G. Chryssolouris, “ROBO-PARTNER: Seamless human-robot coopera-
tion for intelligent, flexible and safe operations in the assembly factories
of the future,” in Procedia CIRP, vol. 23, no. C, 2014, pp. 71–76.

[20] P. Tsarouchi, A. S. Matthaiakis, S. Makris, and G. Chryssolouris, “On a
human-robot collaboration in an assembly cell,” International Journal of
Computer Integrated Manufacturing, vol. 30, no. 6, pp. 580–589, 2017.
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