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Abstract—The recent increase in applications of high dimen-
sional data poses a severe challenge to data analytics such as
supervised classification, particularly for online applications. To
tackle this challenge, efficient and effective methods for feature
extraction are critical for the performance of classification analy-
sis. The objective of this work is to develop a new supervised fea-
ture extraction method for high dimensional data. It is achieved
by developing a Clustered Discriminant Regression (CDR) to ex-
tract informative and discriminant features for high dimensional
data. In CDR, the variables are clustered into different groups
or sub-spaces, within which feature extraction is performed
separately. The CDR algorithm, which is a greedy approach,
is implemented to obtain the solution towards optimal feature
extraction. One numerical study is performed to demonstrate the
performance of the proposed method for variable selection. Three
case studies using healthcare and additive manufacturing datasets
are accomplished to demonstrate the classification performance
of the proposed methods for real-world applications. The results
clearly show that the proposed method is superior over the
existing method for high dimensional data feature extraction.

Note to Practitioners—This paper forwards a new supervised
feature extraction method termed Clustered Discriminant Re-
gression (CDR). This method is highly effective for classification
analysis of high dimensional data such as images or videos, where
the number of variables is much larger than the number of
samples. In our case studies on healthcare and additive manu-
facturing, the performance of classification analysis based on our
method is superior over the existing feature extraction methods,
which is confirmed by using various popular classification al-
gorithms. For image classification, our method with elaborately
selected classification algorithms can outperform convolutional
neural network (CNN). In addition, the computation efficiency
of the proposed method is also promising, which enables its online
applications such as advanced manufacturing process monitoring
and control.

Index Terms—Discriminant regression (DR), Clustering, Vari-
able selection, Classification analysis, Greedy algorithm, Health-
care, Additive manufacturing (AM).

NOMENCLATURE

N Number of training samples
P Number of variables
K Number of clusters
L Number of class labels
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i, j, n Index of variables, clusters, and samples
X RN⇥P data matrix
Xi ith column of X
xn nth row of X
tn Label of xn, tn 2 {1, . . . , L}
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I. INTRODUCTION

AS one of the most important techniques in machine
learning, classification analysis has played a crucial role

in solving a large variety of real-world problems, such as
image processing [1], text mining [2], quality control [3], etc.
For example, in the control system of additive manufacturing
(AM), classification analysis is one key component to identify
different defects in process monitoring. Meanwhile, with the
rapid development of data acquisition technology, high dimen-
sional data is prevalent in AM, such as image/video data [3],
point cloud [4], etc. The increase in dimensionality of sensor
data poses a severe challenge to many existing classification
algorithms for both accuracy of the analysis and computational
efficiency [5], especially for the ill-posed case where the
number of samples, namely, N , is much less than the number
of features, namely, P . This ill-posed case, namely, P � N , is
very common in some applications such as high dimensional
genetic data where the number of samples (patients) is limited
[6], manufacturing process monitoring data where data under
abnormal or failure conditions is relatively hard to capture
[7]. In order to address this challenge, it is necessary to apply
feature extraction methods to the raw data before executing
classification algorithms.

Discriminant regression (DR) [8] is an effective supervised
feature extraction method for the case of ill-posed high di-
mensional data where P � N . Consider a data set that
consists of N samples {(xn, tn)}Nn=1 where xn 2 RP , and
tn 2 {1, 2, . . . , L} denotes the class label of the n-th sample.
The data matrix X can be written as X = [x1, . . . ,xN ]>. DR
follows the general framework of multivariate linear regression
(MLR) [9] with a specific class indicator matrix as response
variables, which has the following form

Y = XW +E, (1)

where Y 2 RN⇥L is the response matrix, W 2 RP⇥L is the
projection matrix, and E 2 RN⇥L is the random error matrix.
One typical way to encode Y 2 {0, 1}N⇥L, which apply a
vector valued class code for each of the sample, is as follows,

Ynt =

(
1 if tn = t

0 Otherwise.
(2)

The classic DR determines the projection matrix WcDR 2
RP⇥L via the minimization of the least square error,

WcDR = argmin
W

1

N
kY �XWk2F . (3)

The optimal W is given by

WcDR = (XX>)+XY, (4)

where (·)+ denotes Moore–Penrose inverse. As a result of least
square form of regression, various regularization techniques
can be readily incorporated into the formulation to improve
model sparsity and generalization ability. Taking the form of
multivariate ridge regression [10], the penalized DR (pDR)
[11] problem aims to solve the below problem

WpDR = argmin
W

1

N
kY �XWk2F + �kWk2F , (5)

where � > 0 is the regularization coefficient. The optimization
problem (5) has the following unique solution [10]:

WpDR = (XX> +N�IP )
�1XY. (6)

In DR, XWcDR and XWpDR are the extracted low dimen-
sional feature matrices, where each sample is in RL. In other
words, the dimension of extracted features is upper bounded
by L.

Under mild conditions, the solutions of (4) and (6) have
been shown to be equivalent to the solutions from linear
discriminant analysis (LDA) [8] and regularized linear dis-
criminant analysis (RLDA) [11], respectively. The superiority
of the DR formulation over LDA/RLDA formulations is that
it can lead to efficient and scalable implementations due
to the least square formulation. However, DR suffers from
severe problems when tackling the case of ill-posed high
dimensional data. First, correlation between input variables is
not adequately addressed in the process of feature extraction.
In ill-posed high dimensional data, strong empirical correlation
between variables or near linear dependence among a few
variables is often encountered in many applications, which
remains as notorious problems [12]. Second, DR may result
in significant information loss in the form of underfitting.
The underfitting problem is due to the dimension of extracted
features is upper bounded by the number of class labels,
i.e., L, which is typically a small number compared with the
dimension of input data [8], [13].

The objective of this study is to address the challenges
of correlated variables and underfitting discussed above. To
achieve this objective, a new supervised feature extraction
method, namely, clustered discriminant regression (CDR) is
proposed in this paper. The novelty of CDR is twofold here.

(i) An idea to selectively group variables into different clus-
ters, and then perform feature extraction from variables
in each cluster. Accordingly, a unified formulation, which
simultaneously optimizes clustering, variable selection
and fitting error, is proposed.

(ii) An equivalent form of the proposed formulation to the
Convex Integer Program (CIP) is proven. Based upon
this, an efficient greedy algorithm is implemented to
solve the corresponding CIP formulation. In addition,
the theoretical guarantee of the CDR algorithm is also
provided in the paper.

The remainder of this paper is organized as follows. A brief
review of related research work is provided in Section II.
The proposed formulation and its equivalent CIP formulation
are introduced in Section III. The proposed algorithm and its
theoretical guarantee are provided in Section IV, followed by
the numerical study in Section V and real-world case studies in
Section VI for testing and validation of the proposed approach.
Finally, the conclusions and future work are discussed in
Section VII.

II. RESEARCH BACKGROUND

In Section II-A, the review on feature extraction for classifi-
cation is introduced. Related research about the techniques of
clustering, variable selection in regression is reviewed briefly
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in Section II-B. Afterwards, the research gaps of the existing
work are identified in Section II-C.

A. Feature Extraction for Classification

For the ill-posed high dimensional data, it is necessary
to apply feature extraction methods as a pre-processing step
of classification. In the area of bioinformatics analysis, the
ill-posed high dimensional data is very common [6]. In the
literature of bioinformatics analysis, there are a number of
feature extraction techniques. Among them, kernel principal
component analysis (KPCA) [14], local linear embedding
(LLE) [15], and ISOMAP [16] have been widely applied and
proven their success in bioinformatics analysis. These unsu-
pervised feature extraction methods explore the relationship
of the input data X, however, they do not utilize the data of
class labels. On the other hand, supervised feature extraction
aims to build a connection between extracted features and class
labels and thus has the potential to improve the classification
accuracy. LDA is one of the most widely used methods in
supervised feature extraction [17], which involves a compu-
tational intensive eigenvalue problem. However, LDA has the
singularity problem of sample covariance matrix in the case
of the ill-posed high dimensional data. In order to solve the
singularity problem, RLDA [18] is proposed by adding an
additional identical matrix to the sample covariance matrix to
stabilize the sample covariance estimator. It has been shown
that LDA and RLDA have a very close relationship with DR
and pDR, respectively. Specifically, Sun et al. [13] found that
DR is equivalent to LDA under mild conditions, leading to
a scalable and efficient implementation. Based on a carefully
designed class indicator matrix Y, it has been proven that pDR
is equivalent to RLDA [11]. The limitation of DR and pDR
is that the number of extracted features is upper bounded by
the number of class labels, namely, L, which causes loss of
important information.

B. Clustering and Variable Selection in Regression

In the case of ill-posed high dimensional data regression, it
is very common for the variables (predictors) to be highly
correlated [19], [20]. In the literature, there are two types
of strategies reviewed below that aim to obtain a robust
estimation by exploring the correlation among variables.

In the first type of strategy, clustering, the cluster-based
estimation has very good predictive potential and yields more
stable results [12], [21], [22]. For instance, to reveal groups
of genes which act together and whose collective expression
is strongly associated with an outcome variable of interest
for microarray data, Dettling and Bühlmann [21] presented
Pelora, an algorithm based on penalized logistic regression
analysis. This method does not explicitly take correlation-
structure among the variables into account and still exhibits
difficulties when groups of variables are nearly linearly de-
pendent. Accordingly, Bühlmann et al. [12] proposed a cluster
group lasso, which identifies groups among the variables using
(for instance) hierarchical clustering, and then applies the
group lasso to the resulting groups. Furthermore, Witten et al.

[22] proposed the cluster elastic net (CEN) that simultaneously
estimates regression coefficients and clusters variables in a

multivariate regression model, to identify sets that have the
highest correlation with the response.

Variable selection, the second type of strategy, is an impor-
tant approach in improving the performance of regression [9].
The advantage of variable selection in our application is that it
can remove the redundant information. Li and Li [23] proposed
to develop a network-constrained regularization procedure for
fitting linear-regression models and variable selection, where
the variables in the regression model are genomic data with
graphical structures. Furthermore, the same authors considered
the general problem of regression analysis when the predictor
variable are nodes on a graph under the same procedure
[24]. Huang et al. [25] proposed a penalized method for
variable selection and estimation that explicitly incorporates
the correlation patterns among predictors. This method is
based on a combination of the minimax concave penalty and
Laplacian quadratic associated with a graph as the penalty
function. In [26], Xue and Qu proposed a new Semi-standard
PArtial Covariance (SPAC) which reduces correlation effects
from other predictors while incorporating the magnitude of
coefficients.

Often times, these two strategies work together to achieve
better performance. For instance, octagonal shrinkage and
clustering algorithm for regression (OSCAR) [27] was pro-
posed to simultaneously select variables while clustering them
into predictive clusters. The technique is based on penalized
regression with a geometrically intuitive penalty function that
shrinks some coefficients to exactly zero. Penalized adaptive
clustering and sparsity (PACS) [28] encouraged correlated
variables to take on identical coefficient estimates via the
use of a novel penalty function that can be interpreted as
an octagonal constraint region. Robust versions of PACS
(RPACS) [29] has been proposed by replacing the least squares
and non robust weights in PACS with MM estimation and
robust weights depending on robust correlations instead of
person correlation, respectively.
C. Research Gap Identification

In the case of ill-posed high dimensional data, there are
two problems. Namely, (1) the correlation between variables
is not properly explored and (2) the underfitting is caused by
the dimension of class labels. Although various techniques
are introduced to address the first problem including vari-
ables/coefficients clustering and variable selection in Section
II-B, they cannot mitigate the underfitting problem as intro-
duced in Section II-A. In addition, they cannot control the
cardinality for variable selection. Therefore, this paper seeks
to address these research gaps by devising a new supervised
feature extraction method, namely, the clustered discriminant
regression.

III. PROPOSED METHOD

In this section, a new method for supervised feature ex-
traction using pDR, namely, CDR, is proposed in Section
III-A. It integrates clustering variables and selecting variables
together with pDR into one formulation. This formulation
is a mixed integer problem. In order to derive the solution
for our formulation, an equivalent Convex Integer Program
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formulation, which can be solved in a more efficient way,
is proposed in Section III-B. Some theoretical results of the
algorithm performance can also be achieved.

Fig. 1. Framework of the proposed method

A. Unified Formulation for the First Two Steps Procedure

As discussed in Section II-B, it is beneficial to integrate
clustering and variable selection to address the correlation
problem. For reader’s convenience, the pDR model (5) is
mentioned again here

WcDR = argmin
W

1

N
kY �XWk2F .

Based on the model of pDR, our proposed clustered discrim-
inant regression takes advantages of clustering and variable
selection, which consists of three steps summarized in Fig. 1.
Considering the index set {1, . . . , P} for the variables in X,
the three steps procedure of clustered discriminant regression
follows,

Step 1 Variable clustering and selection: find a partition
G where [K

j=1Gj ⇢ {1, . . . , P} and Gr \ Gl =
;, 8r 6= l, to separate X into disjoint clusters
XG1 ,XG2 , . . . ,XGK .

Step 2 Feature extraction from each cluster: apply pDR
on XGj ’s to obtain the projection matrices W =
{WG1 ,WG2 , . . . ,WGK}.

Step 3 Construct final feature set F by serial feature fusion
[30] for classification analysis:

F = (FG1 ,FG2 , . . . ,FGK ),

where FGj = XWGj is the extracted feature from
jth cluster.

For the testing dataset, the same scheme of Step 3 can be
applied to construct the final feature since the clustering G
and the projection matrices W have already been identified in
Step 1 and Step 2.

However, there is still some room for improvement in
the above procedure. Namely, Step 1 and Step 2 are in
a sequential manner, they have two independent objective
functions, where the clustering and variable selection result

from Step 1 are independent of the feature extraction in
Step 2. As a result, the feature extraction is not synchronized
together with the clustering and variable selection since the
objective function for clustering and variable selection is not
related to the class labels, while the class labels are the target
of feature extraction in our work. To address this limitation, a
unified formulation is proposed to integrate Step 1 and Step 2.
The formulation, aims to optimize the clustering and variable
selection G and pDR projection matrices W simultaneously
under the cardinality constrains assigned to each cluster for
variable selection, is as follows.

min
G,W

KX

j=1

1

N
kY �XWGjk2F + �jkWGjk2F

subject to |Gj |  gj , j = 1, . . . ,K,

(7)

where kWGjk2F = Tr(W>
Gj

WGj ) represents the ridge
regularization term to avoid over-fitting issue, WGj (i, ) =
0, 8i /2 Gj for the variables not in jth cluster, gj is the
maximum number of variables can be selected in jth cluster,
and �j is regularization coefficient. The regularization term
in formulation (7) can also replaced by lasso regularization
term kWGjk1 [31]. The reason to use ridge regression term
instead of lasso is that given the clustering result G, ridge
based method can result in close form solutions, leading to
a more tractable and scalable formulation (see Theorem 1 in
Section III-B), while the lasso based method needs iterative
algorithm to achieve a solution. Therefore, lasso based method
is computational expensive and not scalable. Our formulation
looks like a ridge regularization except the summation sign. In
our formulation, variables in each cluster Gj are selected to
have maximum correlation with the label response Y, satis-
fying the cardinality constrains. There are different definitions
of indicator matrix Y 2 RN⇥L in the literature. The one
showed in (2) is most common used while there are also
many other variants of label indicator matrices defined in [11],
[13]. Our proposal (7) differs from previous work in various
aspects. First, the summation of least square error is not only
the loss function for pDR and variable selection but also the
similarity measurement for clustering. Second, the constrains
in the formulation is the cardinality enforced in each cluster
for the purpose of variable selection. The formulation (7) is an
integrated one but also brings challenges since it is nonconvex
mixed integer problem, which is intractable without further
development. Therefore, an equivalent tractable formulation
of (7) is developed in next Section III-B.

B. Equivalent Formulation

As mentioned above, the optimization problem (7) is a
nonconvex mixed integer optimization problem. The usual
way to solve this type of problem is big-M method, which
indeed tries to solve for the optimal projection matrices
W in (7) directly [32]. In this paper, an equivalent convex
integer program formulation is derived in order to avoid the
calculation of continuous variables, namely, W , which enables
us to have a more efficient way to implement the greedy
algorithm [33] with theoretical guarantee. To reformulate the
problem (7) as a convex integer program, the main idea is
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to separate the optimization in (7) into two steps: (i) first,
optimize over W by fixing clustering result of variables and
satisfying the cardinality constrains for each cluster, and (ii)
then select the best combination of variables based on the
cardinality constrains. After the first step, it turns out that it
is a convex integer program. For a given clustering result G,
WGj can be obtained independently using multivariate ridge
regression. Similar as (6), each WGj has the following close
form solution:

WGj =

(
(X>

Gj
XGj +N�jI|Gj |)

�1X>
Gj

Y i 2 Gj

0 i /2 Gj .
(8)

Assuming that the optimal object value of formulation (7) is
v
⇤. By substituting (8) in the objective function of (7), the

problem (7) is equivalent to

v
⇤ = min

G

1

N

KX

j=1

Tr
⇣
Y>�GjY

⌘

subject to |Gj |  gj , j = 1, . . . ,K,

(9)

where �Gj = IN �XGj (X
>
Gj

XGj +N�jI|Gj |)
�1X>

Gj
. Now

the only decision variable of problem (9) is G. Based on the
result from [32], [34], the problem in (9) can be formulated
into a CIP formulation, which is described as follows.

Theorem 1. The formulation (7) is equivalent to the following

convex integer program optimization problem:

min
�

KX

j=1

�j

LX

t=1

Y>
t [N�jIN +

PX

i=1

�ijXiX
>
i ]

�1Yt

subject to
KX

j=1

�ij = 0 or 1,

PX

i=1

�ij  gj ,

�ij 2 {0, 1}8i, j.
(10)

Proof: See proof in APPENDIX A.
Based on the equivalent formulation (10), the decision

variable is reduced to the assignment matrix � 2 {0, 1}P⇥K

only. Therefore, the algorithm to solve this formulation is
readily to be developed in next section.

IV. PROPOSED CDR ALGORITHM

In this section, the CDR algorithm to solve (10) is proposed,
which is a greedy approach as shown in Fig. 2. In addition,
the performance guarantee of the CDR algorithm is also
provided. The greedy approach, i.e., forward selection, has
been commonly used for the best subset selection [33]. The
idea of the greedy approach is to select a variable which
minimizes the marginal decrement of objective value in (10)
while the constrains are satisfied. For a given selected subset
G 2 [P ] and an index i /2 G, the marginal objective value
difference by adding i to G can be computed explicitly via
the Sherman-Morrison formula [35] as below:

y>[AG +XiX
>
i ]

�1y � y>A�1
G y = � (y>A�1

G Xi)2

1 +X>
i A

�1
G Xi

Fig. 2. Procedure of the proposed algorithm for CDR

A�1
G[{i} = A�1

G � A�1
G XiX>

i A
�1
G

1 +X>
i A

�1
G Xi

,

where AG = N�IN +
P

i2G XiX>
i is the positive defi-

nite matrix based on subset G. This formula avoids heavy
computation for matrix inverse at each iteration. It mo-
tivates us an efficient implementation of the CDR algo-
rithm, which is detailed in Fig. 2. In our proposed algo-
rithm, at each iteration, {AGjXi}i2[P ] {X>

i AGjXi}i2[P ]

and {Y>
t AGjXi}i2[P ],t2[L] need to be kept track of, which

has space complexity O(NPL). In addition, updating them
from one iteration to another costs O(NPL) operations per
iteration. In total, the space and time complexity of the algo-
rithm are O(NPLK) and O(NPLKg), respectively, where
g = max

j
gj is the maximum cardinality among all clusters.

Next, we are going to investigate the CDR solution and to
prove that it can be very close to the true optimal, in particular
when the regularization coefficient �j is not too small. At the
beginning, define ✓g to be the largest eigenvalue of all the
matrices XGX>

G with |G| = g, i.e.,

✓g = max
|G|=g

�max(XGX
>
G),

for each G ⇢ [P ]. Accordingly, ✓1  ✓2  · · ·  ✓P , and
by default, let ✓0 = 0. Define � = min

j
�j , � = max

j
�j , and

� = max
j

✓gj
N�j

. Our main result of near-optimality of the CDR

algorithm is stated as below. That is, if P � N +
PK

j=1 gj ,
then the objective value of CDR algorithm will be quite close
to any optimal value from (7) as �j grows.

Lemma 1. Suppose that P � N+
PK

j=1 gj , then the algorithm

output, i.e., v
G

, of the CDR algorithm is bounded by

v
⇤  v

G  (1 + �)(1� �)v⇤,
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where � = ✓

K(N�+✓1)(1+�)2
log( P+1

P+1�
PK

j=1 gj
), and ✓ is

defined as

✓ = min
G2[P ],|G|�P�

PK
j=1 gj

�min(XGX
>
G).

Proof: See proof in APPENDIX B.
In addition, remark that WGj of the CDR algorithm can be

compute as (8) after obtaining the assignment matrix �. In the
next theorem, the derived estimator from the CDR algorithm is
showed to be quite close to an optimal solution set {WG⇤

j
}Kj=1.

Theorem 2. Let {WG⇤
j
}Kj=1 be the optimal solution set

to (7) with selected set {G⇤
1, G

⇤
2, . . . , G

⇤
K} and {WGj}Kj=1

be the solution set from CDR algorithm with selected sets

{G1, G2, . . . , GK}. If P � N +
PK

j=1 gj , then

KX

j=1

kWGj �WG⇤
j
kF  2K

p
N✓maxv⇤

N�+ �min
+

s
↵KNv⇤

N�+ �min
,

(11)
where G

U
j = Gj [ G

⇤
j , ✓max = max

j2[K]
✓|Gj\G⇤

j |, �min =

min
j2[K]

�min(X>
GU

j
XGU

j
), and

↵ = (1 + �)(1� �)� 1.

Proof: See proof in APPENDIX C.
If P < N +

PK
j=1 gj , then ✓ = 0 based on its definition.

However, the condition P � N +
PK

j=1 gj is quite mild in
the case of high dimensional regression. Theorem 2 gives the
upper bound of error between the CDR estimator and global
optimal estimator. It also shows asymptotic optimality of the
CDR algorithm. When � increases, ↵ is closer to 0. As a result,
the CDR estimator becomes more accurate because the error
term in (11) becomes smaller when � increases. Specially, the
error term vanishes if � ! +1.

V. NUMERICAL STUDY

To evaluate the performance of the proposed CDR algo-
rithm, numerical illustration of CDR algorithm on synthetic
data is conducted in this section. All results in this section are
the average results of ten repetitions for comparison. The CPU
of the computer used in the experiments is an Intel R� Xeon R�

Processor E3-1220 v3 (Quad Core, 3.10 GHz Turbo, 8MB).
In this numerical study, the clustering and variables selec-

tion result G is assumed to be known in order to evaluate the
performance of the CDR algorithm by how good the algorithm
can identify the right support of W . In Section V-A, the
procedure of data generation for evaluation of our algorithm is
introduced. The numerical results are summarized in Section
V-B.

A. Simulation Data Generation

In order to simulate the clustering effect in variables, the
data matrix X is generated from a multivariate normal distri-
bution, where the covariance matrix has two blocks structure.
Each sample (row) in X is drawn independent identically
distributed (i.i.d.) from the multivariate normal distribution;
that is

xn ⇠ N(0,⌃), 8n 2 [N ].

Fig. 3. Procedure of the proposed algorithm for data generation

Followed from [27], [32], [34], the covariance matrix ⌃ can
be parametrized by the correlation coefficient ⇢1, ⇢2 2 [0, 1)
as ⌃ij = ⇢

|i�j|
1 , if i, j  P/2; ⌃ij = ⇢

|i�j|
2 , if i, j > P/2; 0,

otherwise. For simplicity, the case L = 2 and K = 2 is consid-
ered in our numerical experiments. For each block, projection
matrix Wj is generated to have the same binary response
Y to simulate our situation. The response Y 2 {0, 1}N⇥2

and projection matrices W1 2 RP⇥2 and W2 2 RP⇥2 are
generated synthetically in a iterative way, which is described
in Fig. 3. To control the signal-to-noise ratio (SNR) [34], the
value of �2 can be chosen by satisfying

SNR =
var

�
XW1(, 1)

�
+ var

�
XW1(, 2)

�

�2
= 9,

where W1(, j) represents the jth column of matrix W1.

TABLE I
NUMERICAL PERFORMANCE OF CDR ALGORITHM

P
Cardinality
(g1, g2)

Samples.Size (N ) CPU. Time
(Seconds)

Avg. False
Alarm Rate

2000

(5,5)
250 5.21 18.0%
500 13.64 10.0%
1000 40.96 0.0%

(10,10)
250 9.24 27.0%
500 29.11 22.0%
1000 79.46 13.0%

(15,15)
250 15.57 41.3%
500 43.08 28.0%
1000 138.10 18.7%

(20,20)
250 19.23 52.5%
500 49.99 32.0%
1000 158.50 22.0%

B. Numerical Results

The performance of the CDR algorithm is evaluated by
comparing the support of estimated W using the CDR al-
gorithm and the actual support of W in the data generation
process. Avg. False Alarm Rate is used here for the perfor-
mance evaluation. In our numerical experiments, there are
different combinations of (g1, g2), N used in the following
cases, where (g1, g2) 2 {(5, 5), (10, 10), (15, 15), (20, 20)}
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and N 2 {250, 500, 1000}. For all the testing instances, tuning
parameters ⇢1 = 0.8, ⇢2 = 0.2, �1 = �2 = 0.1, and
P = 2000 are used for data simulation. The experiment results
are listed in TABLE I. It can be clearly seen that as (g1, g2)
grows, Avg. False Alarm Rate increases for the same N . When
(g1, g2) = (5, 5) and N = 1000, the CDR algorithm can detect
all the correct variables. Under the same (g1, g2), Avg. False

Alarm Rate decreases as N increases. It implies that the CDR
algorithm’s ability to identify right variables improves as the
sample size N increases. This can be justified by the inequality
(11) in Theorem 2, the first term in the right hand side of
inequality is the major error for the upper bound because it
is quadratic order of

q
K

N�+�min
when K

N�+�min
> 1. When all

the variables can be identified correctly, this first error term
vanishes because ✓max = 0 in (11). If more variables can be
detected correctly, the first error term is smaller because ✓max
becomes smaller. Even though it is very hard to calculate W⇤,
the results in TABLE I show the ability of CDR algorithm to
recover the supports of true W⇤ and to estimate the true W⇤.

VI. REAL-WORLD CASE STUDIES

In this section, the proposed method is applied to three real-
world case studies for classification. Section VI-A: Arcene
Cancer Dataset from UCI [36] is used. The data consists
of cancer patients and healthy patients. Section VI-B: Fused
Filament Fabrication (FFF) AM process [3]. The data is
acquired from a digital microscope at sampling rate of 1
Hz. Section VI-C: Electron Beam Melting (EBM) Metal AM
process. High resolution CCD camera is used to capture
images of printed parts. In all experiments, all the pixels
in an image are vectorized for convenience of operation.
pDR, KPCA, ISOMAP, and LLE are selected as benchmarks
for comparison. To evaluate the classification performance
of different feature extraction methods, KNN [37], Naïve
Bayes Classifier (NBC) [38], SVM [39], LDA [17] and nerual
network (NN) [40] are selected as classification algorithms. All
the Y’s are encoded as representation in (2) for simplicity. �j’s
are selected through cross validation. All results in this section
are the average results of ten repetitions for comparison.

Since the data in Sections VI-B and VI-C are AM images,
it is necessary to compare with popular methods in deep
learning. Specifically, convolutional neural network (CNN)
[41] has been applied to AM and shown its success in
[42]–[44]. Therefore, we compare our method with CNN
regarding the classification performance. The structure of CNN
used in this paper contains five convolutional layers and
one fully-connected layer, which is selected so that it has
best classification performance. For ith convolutional layer
(i = 1, . . . , 5), the number of filters is 2i+2 with size 3 ⇥ 3,
batch normalization and max pooling are used together with
the ReLU activation function. For the final fully-connected
layer, it uses the Softmax activation function for classification.
The maximum number of epochs is set to 20, which makes
CNN converges for all the cases.

A. Arcene Cancer Classification

This case study demonstrates the classification performance
on Arcene Cancer Dataset [36]. This is a mass-spectrometric
dataset, which contains 7000 continuous input variables. In
addition, there are 200 records in which 88 of 200 are cancer
patients, 112 of 200 are healthy patients. Therefore, this is a
two-class classification problem.

In our experiment, 60%, 30% and 20% of patients from
each class are selected as the training dataset. The remaining
is treated as the testing dataset. For our method, 1 ⇠ 20
clusters are conducted in the experiments for classification.
For all these cases, 3500 out of 7000 variables are selected
as equally spaced as possible for different clusters (if 3
clusters, cluster 1 to 2 have 1167 variables and cluster 3
has 1166 variables). The best performance among different
number of clusters represents our method, namely, CDR(Best).
In addition to pDR, KPCA, ISOMAP, and LLE are selected
as feature extraction methods for comparison since they have
been widely applied in the literature of bioinformatics analysis
[6] where P � N . The average F-score is reported in TABLE
II.

For all the cases, our method shows the best classification
results except that LLE has the best classification performance
in one case. The proposed CDR can not only improve over
pDR but also outperform popular feature extraction methods
in bioinformatics analysis. For comparison with pDR, CDR
has different degrees of improvement over pDR for different
classification algorithms. For NBC, SVM, and NN, there is a
significant improvement on the performance of classification.
When the percentage of training sample decreases, there is a
decreasing trend of classification performance. However, our
proposed CDR can still maintain high classification accuracy.

Fig. 4. (a) Normal; (b) Under-fill caused by fan; (c) Under-fill caused by
feed rate (Red boxes are Region of interest) [3]

B. Polymer Additive Manufacturing Process

In this subsection, a polymer AM dataset is used to explore
the effect of number of clusters on different classification
algorithms. AM, which is also called 3D printing, is the
process of joining materials to make objectives from 3D
models, usually in a layer by layer fashion [3].

In this work, a desktop fused filament fabrication (FFF)
3D printer, namely, a Hyrel System 30M 3D printer, is used
to print a test artifact, which is a cuboid of dimensions 2
in.⇥2 in.⇥2 in. The machine has an extruder with 0.5 mm
nozzle diameter and uses acrylonitrile butadiene styrene (ABS)
with a diameter of 1.75 mm as filament for printing. In
reality, the FFF printing process frequently occurred defects
such as voids, over-fill, under-fill, etc. Therefore, sensor based
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TABLE II
CLASSIFICATION RESULTS OF ARCENE CANCER DATA FOR DIFFERENT TRAINING TESTING RATIO USING DIFFERENT CLASSIFICATION ALGORITHMS

(training sample %,
testing sample %)

Feature
extraction

KNN
(k = 3)

NBC LDA SVM NN

(60%, 40%)

KPCA 0.6620 0.6531 0.6798 0.6798 0.6620
ISOMAP 0.7341 0.6620 0.7002 0.7256 0.7040

LLE 0.8108 0.6907 0.8620 0.7999 0.8522
pDR 0.8068 0.4190 0.8316 0.5093 0.7046

CDR(Best) 0.8719 0.8648 0.8421 0.8665 0.8897

(30%, 70%)

KPCA 0.6505 0.6454 0.5976 0.6505 0.6378
ISOMAP 0.6838 0.6306 0.6580 0.7070 0.6870

LLE 0.7670 0.7063 0.7967 0.7689 0.7860
pDR 0.7850 0.3802 0.7836 0.5915 0.7829

CDR(Best) 0.7988 0.7725 0.8109 0.8076 0.8195

(20%, 80%)

KPCA 0.6671 0.6270 0.6804 0.6559 0.6604
ISOMAP 0.6525 0.5846 0.6257 0.6501 0.6529

LLE 0.7092 0.6841 0.7068 0.7004 0.7424
pDR 0.6748 0.5129 0.7182 0.5691 0.6755

CDR(Best) 0.7363 0.7122 0.7412 0.7186 0.7512
Note: The bold numbers are the best performance for each training testing ratio.
CDR(Best) represents the best performance of CDR where K = 1 ⇠ 20.

TABLE III
CLASSIFICATION RESULTS FOR POLYMER AM DATA USING DIFFERENT CLASSIFICATION ALGORITHMS

Classification
algorithm

Feature
Extraction Accuracy Precision Recall F-score CPU. Time

(Seconds)

KNN (k = 3)

KPCA 0.6475 0.6626 0.6320 0.6367 0.0628
ISOMAP 0.6888 0.7055 0.6716 0.6773 0.1025

LLE 0.6455 0.6805 0.6300 0.6347 0.1142
pDR 0.7380 0.7727 0.6949 0.7033 0.0210

CDR(Best) 0.8010 0.8320 0.7694 0.7876 0.0508

NBC

KPCA 0.3832 0.3825 0.3811 0.3786 0.0478
ISOMAP 0.7784 0.7769 0.7741 0.7690 0.0781

LLE 0.8142 0.8126 0.8097 0.8044 0.0870
pDR 0.6664 0.6298 0.5985 0.5981 0.0160

CDR(Best) 0.8904 0.8912 0.8880 0.8822 0.0200

LDA

KPCA 0.6475 0.6626 0.6320 0.6367 0.0508
ISOMAP 0.7077 0.7239 0.6775 0.6902 0.0830

LLE 0.7552 0.7564 0.7238 0.7385 0.0924
pDR 0.7512 0.7801 0.7095 0.7206 0.0170

CDR(Best) 0.7865 0.8045 0.7530 0.7671 0.0380

SVM

KPCA 0.6406 0.6589 0.6254 0.6285 0.2348
ISOMAP 0.8689 0.8578 0.8469 0.8520 0.3832

LLE 0.7586 0.7513 0.7473 0.7438 0.2469
pDR 0.4954 0.7240 0.2808 0.3280 0.0785

CDR(Best) 0.8974 0.8918 0.8832 0.8803 0.0906

NN

KPCA 0.6317 0.6381 0.6155 0.6172 0.0568
ISOMAP 0.7586 0.7636 0.7356 0.7412 0.0927

LLE 0.7198 0.7252 0.7021 0.7033 0.1033
pDR 0.7137 0.7261 0.6702 0.6723 0.0190

CDR(Best) 0.8983 0.8982 0.8749 0.8763 0.0358
CNN (End-to-End) 0.8552 0.8435 0.8396 0.8404 0.0102

Note: The bold numbers are the best performance for each classification algorithm.
CDR(Best) represents the best performance of CDR where K = 1 ⇠ 40.

classification is often used for online monitoring the process
of manufacturing. In this paper, high quality images of part
surface being printed are collected by two digital microscopes
at sampling frequency of 1Hz, which are installed at the two
sides of the extruder of 3D printer. Images for normal, under-
fill feed rate, and under-fill fan as shown in Fig. 4 can be
collected by setting up the machine parameters, which has
been studied through design of experiments in [3]. For each
image, a region of interest (ROI) is utilized, which is cropped
from the original image (640⇥480 pixels) to a smaller region
(80 ⇥ 80 pixels) right below the nozzle as shown in Fig. 4.
The image in ROI is transformed into a vector with 6400
variables for testing different algorithms. For each variable, it

represents pixel value ranging from 0 ⇠ 255. In total, there
are 305 normal images, 197 under-fill feed rate images and
153 under-fill fan images.

In our experiments, 3200 out of 6400 variables are selected
as equally spaced as possible for different clusters (if 6
clusters, cluster 1 to 5 have 533 variables and cluster 6 has 534
variables). The average statics for accuracy, precision, recall
and F-score, is used as the final result to verify the effec-
tiveness of classification. The results summarized in TABLE
III, where CDR(best) represents the best performance of our
method by ranging the number of clusters from 1 to 40. It
shows that our method outperforms pDR, KPCA, ISOMAP,
and LLE for all the five classification algorithms. Especially
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Fig. 5. Classification performance on Poly AM data for different algorithms: (a) KNN; (b) NBC; (c) LDA; (d) SVM; (e) NN.

NBC, SVM, and NN, there is a significant improvement on
the performance of pDR. For comparison with CNN, the
classification performance of our method with different clas-
sifiers varies. Our proposed CDR with classifiers NBC, SVM,
and NN, can achieve better classification performance than
CNN does. The average computational time for constructing
feature and classification of a single observation is less than
0.1 seconds (equivalent to 10 Hz) for all the classification
algorithms in CDR(Best). It can be observed in TABLE III that
although it is not as fast as the benchmark method, pDR, it is
sufficient for online defect diagnosis of FFF processes since
the computational speed (10 Hz) is faster than the sampling
rate for the images (1 Hz) during the printing process.

On the other hand, the effect of number of clusters on the
performance of classification is an interesting and valuable
problem to explore since it is also a quite important problem
in the clustering literature. However, the results in TABLE III
cannot reflect the effect of number of clusters. Accordingly,
the classification results based on F-score are plotted in Fig. 5
via number of clusters. For most of cases, the F-score is higher
than the pDR (red dash line) corresponding to each classifica-
tion algorithm as shown in Fig. 5. For all these classification
algorithms, there is an increasing trend at the beginning in
terms of F-score. After reaching a specific number of clusters
(depends on the classification algorithm), the classification
performance starts to decrease. This case study demonstrates
the power of clustering due to the additional information it
brings in.

(a) Raster (b) Dehoff (c) Random

Fig. 6. (a) Raster; (b) Dehoff; (c) Random (Yellow square boxes are selected
random samples); L7, D7, and R are the markers to identify samples using
different scan strategies.

C. Metal Additive Manufacturing Process

In this subsection, metal AM data from Electron Beam
Melting (EBM) process is used to evaluate classification
performance on different training/testing ratio and different
number of variables to be selected. In the printing process, the
machine ARCAM Q10 plus is applied to print samples with
dimensions 15mm⇥15mm⇥25mm using Ti-6Al-4V powder.

In EDM, there are three different scan strategies, i.e., Dehoff,
raster and random [45] during the printing process. By using
different scan strategies, it provides different surface patterns
of the printed samples. After printing three different samples
by Dehoff, raster and random scan strategies, a high resolution
CCD camera is used to capture very detailed 2D information
about the top surface (15mm⇥15mm) quality. The image data
shown in Fig. 6 are the surface patterns of Dehoff, raster and
random, respectively. The objective of classification in this
case study is to identify the scan strategy based on the surface
patterns. For each image in Fig. 6, the size is 1448⇥1928. To
obtain multiple training samples, 120 images of size 60 by
60 are randomly selected without overlap from the upper part
of each image (500⇥1928) since bottom part with letter and
number has lots of defects such as porosity. In total, there are
120 images of Raster pattern, 120 images of Dehoff pattern,
and 120 images of Random pattern available for experiments.
For each image 60 by 60, it is transformed into a vector with
3600 variables, where each variable represents pixel value
ranging from 0 to 255, for testing different algorithms.

In our experiment, 70%, 60% and 50% of images from
each pattern are selected as the training dataset. The remaining
is treated as the testing dataset. For our method, 1 ⇠ 20
clusters are conducted in the experiments for classification.
For all these cases, 1600 out of 3600 variables are selected
as equally spaced as possible for different clusters. The best
performance among different number of clusters represents our
method, namely, CDR(Best). The average F-score is reported
in TABLE IV. The classification result implies that our method
shows better classification result for different training phases.
Specifically, all classification algorithms have different degrees
of improvement over pDR. NBC and SVM exhibit significant
improvement, which is consistent with the results in section
VI-B. The classification results of NBC and SVM for pDR
are poor because the dimension of extracted features is three,
which caused severe underfitting. For comparison with CNN,
our method with all classifiers can achieve similar performance
with CNN. For the case of 70% training samples, our method
with KNN, NBC, LDA, and SVM can achieve better perfor-
mance than CNN; For the case of 60% training samples, our
method with KNN, NBC, LDA, and SVM can achieve better
performance than CNN; For the case of 50% training samples,
our method with KNN, LDA can achieve better performance
than CNN.

The TABLE IV only shows the classification results using
1600 out of 3600 variables. In order to explore the effect
of total number of variables to be used on classification
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TABLE IV
CLASSIFICATION RESULTS OF METAL AM DATA FOR DIFFERENT TRAINING TESTING RATIO USING DIFFERENT CLASSIFICATION ALGORITHMS

(training sample %,
testing sample %)

CNN
(End-to-End)

Feature
extraction

KNN
(k = 3)

NBC LDA SVM NN

(70%, 30%) 0.9729

KPCA 0.5000 0.5000 0.5000 0.5000 0.5000
ISOMAP 0.9307 0.9218 0.9296 0.9207 0.9014

LLE 0.9238 0.9144 0.9205 0.9245 0.9030
pDR 0.9324 0.2438 0.9095 0.3210 0.6164

CDR(Best) 0.9963 0.9944 0.9944 0.9824 0.9432

(60%, 40%) 0.9709

KPCA 0.4865 0.4759 0.4920 0.5240 0.5123
ISOMAP 0.9249 0.9068 0.8814 0.9163 0.9089

LLE 0.9125 0.9017 0.9054 0.8928 0.8802
pDR 0.9270 0.2493 0.9007 0.3534 0.5586

CDR(Best) 0.9839 0.9841 0.9860 0.9799 0.9508

(50%, 50%) 0.9789

KPCA 0.4725 0.4824 0.5059 0.4520 0.4987
ISOMAP 0.9051 0.9008 0.8749 0.8721 0.8722

LLE 0.8469 0.8944 0.8755 0.8591 0.8500
pDR 0.9228 0.2510 0.8952 0.3926 0.5138

CDR(Best) 0.9832 0.9693 0.9866 0.9423 0.9432
Note: The bold numbers are the best performance for each training testing ratio.
CDR(Best) represents the best performance of CDR where K = 1 ⇠ 20.

TABLE V
CLASSIFICATION RESULTS OF METAL AM DATA VIA DIFFERENT

NUMBER OF SELECTED VARIABLES

PK
j=1 gj K

KNN
(k = 3)

NBC LDA SVM NN

3200

6 0.9944 0.0654 0.9935 0.3921 0.7012
8 0.9953 0.1796 0.9879 0.3331 0.7484
10 0.9907 0.6169 0.9860 0.4851 0.7814
12 0.9907 0.9879 0.9879 0.7579 0.7873

1600

6 0.9851 0.9257 0.9785 0.7081 0.8088
8 0.9869 0.9888 0.9822 0.8939 0.8420
10 0.9916 0.9842 0.9683 0.9777 0.8758
12 0.9889 0.9889 0.9730 0.9843 0.8831

800

6 0.9832 0.9776 0.9655 0.9592 0.8689
8 0.9841 0.9841 0.9794 0.9814 0.9033
10 0.9907 0.9897 0.9805 0.9860 0.9253
12 0.9889 0.9916 0.9898 0.9889 0.9591

400

6 0.9795 0.9814 0.9794 0.9804 0.8361
8 0.9814 0.9832 0.9833 0.9860 0.8613
10 0.9842 0.9898 0.9851 0.9889 0.8522
12 0.9814 0.9917 0.9804 0.9907 0.8524

performance, for 70% training samples, the cases of 3200,
1600, 800, and 400 variables are conducted for classification.
For each case, 6, 8, 10, 12 clusters are selected for the
consideration of clustering effect. TABLE V summarizes the
results of different classification algorithms. For KNN and
LDA, the classification results are very similar for different
number of variables and clusters. For NBC, SVM and NN,
the classification results are improved when the number of
variables is decreased. It shows that selecting proper number
of variables can remove redundant information to improve
the performance of classification. This case study shows that
our method preserves classification performance for different
training/test ratio and the variable selection scheme in our
method is very effective.

VII. CONCLUSION

In this paper, a new supervised feature extraction method is
developed for high dimensional data to address two problems
arisen in DR. The proposed CDR considers clustering, vari-
able selection together with minimizing the fitting error. To

access the solutions efficiently, a greedy algorithm for CDR
is implemented with performance guarantee. The numerical
study shows that the CDR algorithm is able to recover the true
supports and find near-optimal solutions. The classification
results of the Arcene Cancer Dataset demonstrate that our
algorithm outperforms pDR and popular methods in bioin-
formatics analysis, namely, KPCA, LLE and ISOMAP. More
importantly, two case studies based on additive manufacturing
process images illustrate that the effectiveness of clustering
and variable selection on classification in real-world appli-
cations. For AM image classification, our proposed method
with elaborately selected classification algorithms can achieve
better classification performance than CNN.

Additionally, there are still some aspects of CDR that
deserve further investigations. First, as the experimental results
show that the number of clusters can affect the performance
of classification. Therefore, finding the relationship among
number of clusters and the performance of classification is
one of the next steps of research. Second, the cardinality gj

assigned to jth cluster is also critical to the classification
performance. Thereafter, how to estimate the cardinality for
each cluster can be further investigated. Third, the parallel
version of CDR algorithm needs further research in order to
improve the computation efficiency for different requirements
of applications.

APPENDIX A
PROOF OF THEOREM 1

Proof: The objective function in (9) can be rewritten as,

1

N

KX

j=1

Tr
⇣
Y>�GjY

⌘

=
1

N

KX

j=1
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t=1

Y>
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(12)
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where Yt is tth column of Y. The first equality is from the
definition of trace. Next,
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(13)
The first equality is the definition of �Gj . The second, third
and fourth equalities are straightforward mathematical algebra.
Move the second term in the most right hand side of (13) to
the most left, then

(I|Gj | +
1

N�j
XGjX

>
Gj

)�Gj = IN .

Therefore, the below equality can be observed,

�Gj = N�j [N�jIN +XGjX
>
Gj

]�1

= N�j [N�jIN +
PX

i=1

�ijXiX
>
i ]

�1
.

(14)

This equality (14) is also observed in [32], [34]. Combined
(14) with (12), the objective function in (10) is valid. The
binary variable �ij = 1 if i 2 Gj and 0, otherwise. The
constrains in (9) ensure that each variable is selected at most
once into a cluster and the cardinality assigned to each cluster.

APPENDIX B
PROOF OF LEMMA 1

Proof: Suppose that {G⇤
1, G

⇤
2, . . . , G

⇤
K} be the optimal

solution for the CIP problem. According to the definition of
✓gj , the inequality N�jIN +
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holds, thus,
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According to Step 3 of Algorithm in Fig. 2, for any given
Gj , |Gj | < gj , and AGj = N�jIN +

P
i2Gj
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i . For any

i /2 [P ] \G, it can be observed that
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Suppose that
PK

j=1 |Gj | = ⌧ � 0, using the equality (16),
the CDR value v

⌧ is bounded as (17),

v
⌧ 

⇣
K � ✓

(N�+ ✓1)(1 + �)2

X

i2[⌧ ]

1

P + 1� i

⌘kYk2F
N

.

(17)
If

PK
j=1 |Gj | = 0, then (17) holds trivially. Suppose thatPK

j=1 |Gj | = ⌧ � 0, the inequality (17) holds. LetPk
j=1 |Gj | = ⌧ + 1, the following inequality can be obtained

by induction,

v
⌧+1 = v

⌧ + min
i2[P ]\([K

j=1Gj)
�j

LX

t=1

(Y>
t [AGj +XiX

>
i ]

�1
Yt

�Y>
t A

�1
Gj

Yt)

 v
⌧ +

�j

P � ⌧

X

i2[P ]\([K
j=1Gj)

LX

t=1

�
(Y>

t A
�1
Gj

Xi)2

1 +X>
i A

�1
Gj

Xi

 v
⌧ �

N�
2
j

(P � ⌧)(N�+ ✓1)
⇥

LX

t=1

Y>
t A

�1
Gj

(X[P ]\([k
j=1Gj)X

>
[P ]\([k

j=1Gj)
)A�1

Gj
Yt

 v
⌧ �

N�
2
j✓

(P � ⌧)(N�+ ✓1)(N�j + ✓gj )
2
kYk2F

 K

N
kYk2F

� ✓

(N�+ ✓1)(1 + �)2

X

i2[⌧+1]

1

P + 1� i

kYk2F
N

,

where the first inequality is due to minimum value is no
larger than the average of all the remaining values, the second
inequality is because AGj ⌫ N�jIN , kXik22  ✓1 and the
definition of �, and the third inequality is due to the fact
that AGj � (N�j + ✓gj )IN , ✓  �min

�
X[P ]\GX

>
[P ]\G

�
. The

last inequality is because of the induction and definition of �.
According to the inequality

P
i2[⌧ ]

1
P+1�i �

R ⌧
0

1
P+1�xdx =

log( P+1
P+1�⌧ ), then

v
G  K(1� �)

kYk2F
N

. (18)

Combine (18) with (15), the following holds,

v
⇤  v

G  (1 + �)(1� �)v⇤.

There are something need to be notified about Theorem 1.
(i) The condition P � N+

PK
j=1 gj is quite mild under this

paper’s setting, however, it cannot guarantee ✓ > 0. Based
on the definition, ✓ = min

G2[P ],|G|=P�
PK

j=1 gj
�min(XGX>

G).

On the other hand, if the matrix X is said to satisfy
(P �

PK
j=1 gj)-restricted isometry property (RIP) with

restricted isometry constant �P�
PK

j=1 gj
2 (0, 1) , then

we have
✓ � 1� �P�

PK
j=1 gj

according to [46].
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(ii) Given that ✓ > 0, if � is larger, the objective value of
CDR approach becomes closer to the true optimal value.

(iii) When K = 1, L = 1, our result reduces to the result in
[34].

APPENDIX C
PROOF OF THEOREM 2

Proof: Consider the CDR estimator WGj from (8),

1

N
kY �XWGjk2F + �jkWGjk2F

� 1

N
kY �XWG⇤

j
k2F � �jkWG⇤

j
k2F

=� 2Tr

✓
(WGj �WG⇤

j
)>

h 1

N
X(Y �XWG⇤

j
)� �jWG⇤

j

i◆

+Tr

✓
(WGj �WG⇤

j
)>

h 1

N
X>X+ �jIP

i
(WGj �WG⇤

j
)

◆

=2Tr

✓
(�WGj +WG⇤

j
)>

h 1

N
X̃j(Y �XWG⇤

j
)
i◆

+Tr

✓
(WGj �WG⇤

j
)>

h 1

N
X>X+ �jIP

i
(WGj �WG⇤

j
)

◆

�� 2

N
kWGj �WG⇤

j
kF kX̃j(Y �XWG⇤

j
)kF

+
�
�j +

�min(X>
GU

j
XGU

j
)

N

�
kWGj �WG⇤

j
k2F

�� 2

N

q
✓|Gj\G⇤

j |kY �XWG⇤
j
kF kWGj �WG⇤

j
kF

+
�
�+

�min(X>
GU

j
XGU

j
)

N

�
kWGj �WG⇤

j
k2F

��

s
4✓|Gj\G⇤

j |v
⇤

N
kWGj �WG⇤

j
kF

+
�
�+

�min(X>
GU

j
XGU

j
)

N

�
kWGj �WG⇤

j
k2F ,

where X̃j is defined as follows,
(
X̃j

Gj\G⇤
j
= XGj\G⇤

j

X̃i̇ = 0 if i /2 Gj \G⇤
j .

The first equality is mathematical algebra and the sec-
ond one is due to the optimal condition of WG⇤

j
, where

� 1
NX>

G⇤
j
(Y�XG⇤

j
WG⇤

j
)+�jWG⇤

j
= 0. The first inequality

is due to the Cauchy inequality Tr(AB)  kAkF kBkF ,
the second inequality is because of kX̃j(Y � XWG⇤

j
)kF q

✓|Gj\G⇤
j |kY �XWG⇤

j
kF , and the last inequality is due to

kY �XWG⇤
j
kF 

p
Nv⇤.

Take the summation over the above inequality, then

↵v
⇤ �

KX

j=1

1

N
kY �XWGjk2F + �jkWGjk2F

� 1

N
kY �XWG⇤

j
k2F � �jkWG⇤

j
k2F

� �
r

4✓maxv⇤

N

KX

j=1

kWGj �WG⇤
j
kF

+
�
�+

�min

N

� KX

j=1

kWGj �WG⇤
j
k2F

� �
r

4✓maxv⇤

N

KX

j=1

kWGj �WG⇤
j
kF

+
N�+ �min

NK
(

KX

j=1

kWGj �WG⇤
j
kF )2.

The first inequality is the result from Theorem 1, the second
inequality is due to the definition of ✓max and �min, and the last
inequality is because of Cauchy inequality (

PK
j=1 kWGj �

WG⇤
j
kF )2  K

PK
j=1 kWGj �WG⇤

j
k2F . Accordingly,

KX

j=1

kWGj �WG⇤
j
kF  2K

p
N✓maxv⇤

N�+ �min
+

s
↵KNv⇤

N�+ �min
.

The above inequality is because any solution of the following
quadratic inequality ax

2�bx�c  0 with a, b, c > 0 is upper
bounded by b

a +
p

c
a .
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