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Abstract— Web services integrate various components in the
Internet of Things (IoT). In a Web service-based data-collection
system with multiple smart sensor nodes periodically sampling
and estimating the same unknown physical parameter of interest,
the smart sensor nodes first submit their estimates to the Web
server, and then, the server picking the one with the minimum
error seems to be a practical way to arrive at a minimum
error estimate (MEE). More submissions provide the Web server
with more candidates to consider, which can maximize the
probability of the server guaranteeing the MEE, while also
leading to more network traffic. Therefore, how to make the
optimal tradeoff between network traffic and sensing accuracy
arises as an interesting problem. This article proposes a network
traffic-dependent probability threshold policy within an intended
underlying optimization-theoretical framework to address this
problem. The policy is such that the smart sensor nodes submit
their estimates and corresponding estimation errors (ECEEs) to
the Web server within a tolerable network traffic threshold while
maximizing the probability of the server delivering the MEE.
Theoretical analysis, simulation, and field experiments document
and illustrate its performance.

Note to Practitioners—This article addresses the interesting
tradeoff between sensing accuracy and network traffic demand
in the Web service-based data-collection system that operates
in some remote areas with limited network traffic. It helps
to improve the operation efficiency of the Internet-of-Things
(IoT) systems that employ Web service technology to enable the
Web server to deliver minimum error estimate with maximum
probability while keeping the network traffic within a given
range. Our simulation and experimental investigations show that
the solution developed here outperforms existing solutions.
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NOMENCLATURE

MEE Minimum error estimate.
ECEE Estimate and corresponding estimation error.
si i th smart sensor nod.e
n Number of all smart sensor nodes.
N = {s1, s2, . . . , sn}, the set of all smart sensor

nodes.
�1 An action, submit the estimate to the Web server.
�2 An action, do not submit the estimate to the

Web server.
Ai = {�1,�2}, the set of all actions of si .
ai Action taken by si .
a−i = (a1, a2, . . . , ai−1, ai+1, . . . , an), the vector

of actions taken by the opponents of si .
Ui = Ui (ai ), the payoff of si .
π = (P{a1 = �1}, P{a1 = �2}, . . . , P{a1 = �n}),

the policy.
P{X} Probability that event X occurs.
G = [0 1] × [0 1] × · · · × [0 1]� �� �

n

, the policy space

of π .
Pπ Cumulative probability under π .
Cπ Cumulative network traffic consumed under π .
Q Available network traffic in a periodic cycle.
ei Estimation error of si .
δi indicates whether the sever obtains the MEE by

si taking ai .
Ci (ai ) Network traffic consumed by si taking ai .
c Average network traffic consumed by an

estimate-submission without data block.
ε Average variation of network traffic consumed

by an estimate-submission per additional
estimate submitted to the Web server.

ζi represents that si is the i th node submitting the
estimate.

π∗ Optimal policy in G, it is the optimal policy
for each sensor nodes to determine whether to
submit its estimate to the Web server in order to
maximize the probability of obtaining the
minimum error estimate while maintaining
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the server network traffic at the required level.
r Number of smart sensor nodes that must

take �1.
P(r) = Pπ (P(r) is used in the Appendix).
C(r) = Cπ (C(r) is used in the Appendix).
r∗ = arg maxr∈{1,2,...,n}P(r), the optimal r ,

the number of sensor nodes that must submit their
estimates to the server under the optimal policy.

I. INTRODUCTION

W ITH the capability to enable communication between
machines via the Worldwide Web, Web services have

infiltrated into various Internet-of-Things (IoT) applications
to bridge different components, such as Web server and
smart sensor nodes [1]–[4], where the latter differs from the
traditional sensor nodes by having the intelligence to make
decisions [5].

The structure of a Web service-based data-collection system
with multiple smart sensor nodes is shown in Fig. 1, in which
the nodes: 1) are independent of, and cannot communicate
with, each other; 2) periodically sample and estimate the
same unknown physical parameter of interest; 3) obtain their
ECEEs1 and submit the ECEEs to the Web server according
to some criteria; and 4) have no knowledge of each other’s
ECEE.

The Web server works according to the following mecha-
nism [6], [7]. To initiate a transmission control protocol (TCP)
connection with the Web client, the Web server must listen on
a network port for the client request. If the TCP connection
is successfully built, and the Web client request is made, then
a response with several hundred bytes must be issued from
the Web server to the client no matter whether this request
is successful or not. If successful, then a data packet with
the required information will be given; otherwise, a detailed
reason for the failure will be included in the response.

The smart sensor nodes do not know and cannot obtain each
other’s estimates, so, for the Web server to obtain the MEE,
all the nodes first submit their estimates to the Web server,
and then, the server picking the one with the minimum error
seems to be a practical method [8]. However, each submission
has to consume network traffic, and the network resource may
be too limited to support all the submissions. Therefore, new
policies are needed to balance the network traffic and sensing
accuracy under the environments where the available network
resource is not sufficient to support each node to issue a data
packet to the Web server. Section II provides a review of the
related literature.2

1The rest of this article will not differentiate between “estimate” and
“ECEE.”

2The readers may wonder why not letting the smart sensor nodes obtain
information on others’ estimates by requesting from the Web server. The
abovementioned mechanism shows that the Web server cannot actively send
this information to the smart sensor nodes because the latter plays the role of a
Web client. Whenever this information is requested by the smart sensor node,
it has to initiate a request to and receive a response from the Web server,
which leads to network traffic cost [7]. Thus, this is infeasible under the
environments where the average network resource is not sufficient to support
each smart sensor node to issue a data packet to the Web server.

Fig. 1. Structure of a Web service-based data-collection system with multiple
smart sensor nodes (for each sensor node, its estimate and corresponding
estimation error are private to it before reaching the Web server).

To achieve the abovementioned balance, this article attempts
to find an effective policy to maximize the probability of the
Web server obtaining the MEE with the cumulative network
traffic consumed being no larger than a given threshold based
on six conditions as listed in the follows.

1) Each smart sensor node can obtain an estimate which is
private to the node before reaching the Web server.

2) The sensor nodes have no knowledge of each other’s
estimates and whether the other nodes have submitted
their estimates or not and cannot obtain this information
from the Web server or by mutual communication.

3) To let the Web server obtain the MEE, some (at least
one) estimate-submissions from the nodes to the Web
server must happen, and the MEE will be selected by
the Web server from among all the estimates submitted
(the Web server can recognize the relative MEE).

4) Each smart sensor node will submit its estimate only if
it considers that it has a smaller estimation error than all
the previous ones that have submitted their estimates;

5) Each smart sensor node has a node number which is
arbitrary and exclusive (it is private to the node).

6) The other dependable source, such as power, is sufficient
for each sensor node to make decision and submission.

Accordingly, we have made in this article two contributions
as follows.

1) An optimization-theoretical framework is established
for the Web service-based data-collection system with
multiple smart sensor nodes.

2) We develop a network traffic-dependent probability
threshold policy for the smart sensor nodes to determine
whether to submit their estimates to the Web server in
order to maximize the probability of the server obtaining
the MEE while maintaining the required level of network
traffic.

The rest of this article is organized as follows. We will
review the relevant literature in Section II, state and for-
mulate the problem in Section III, present the algorithms
in Section IV, carry out algorithm analysis in Section V,
perform experiments in Section VI, and draw conclusions in
Section VII.

II. LITERATURE REVIEW

Web services have been employed into sensor net-
works, such as a sink node, but with more powerful
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functions [9]–[12]. However, resource constraints imposed by
practical application conditions often prohibit the use of Web
service technologies [13], [14]. To overcome this difficulty,
the mutual communication of smart sensor nodes has been
exploited to optimally allocate limited resources to multiple
nodes [15]. For example, when the network traffic is limited,
some smart sensor nodes are selected as proxies, and they
first receive the information from the other nodes and then
filter the dummy information that wastes network traffic [16].
However, mutual communication between smart sensor nodes
is not allowed everywhere [17], which drives us to focus
on the design of strategies for smart sensor nodes to inter-
act with the Web server on the condition that the network
resource is constrained, and the sensor nodes cannot exchange
information.

The Web service-based data-collection system with multiple
smart sensor nodes aims to increase the level of accuracy of
estimations of the physical parameters of interests. Receiv-
ing more estimates from the smart sensor nodes allows the
Web server to report with greater sensing accuracy. However,
this creates challenges when the network traffic available
to smart sensor nodes is not at the level to support each
estimate-submission [18]. Hence, many advanced studies have
been carried out over the past decades. Based on the structure
of the methods, we roughly divide them into three classes:
probability-dependent threshold algorithm (PDTA) [19], net-
work traffic exhaustive algorithm (NTEA) [20], and web
service request-assistant algorithm (WSRA) [21].

PDTA commands the smart sensor nodes to submit their
estimates to the Web server with a fixed probability [19]. For
example, Beyah and Cai [22] proposed a probabilistic network
model in which the data of smart sensor nodes is transmitted
probabilistically. Liu et al. [23] developed a data-collection
scheme for the sensor networks to conduct data transmission
probabilistically. NTEA requires the network traffic to support
as many estimate-submissions as possible until exhausted [20].
For example, Kyusakov et al. [24] embedded simple object
access protocol (SOAP)-based Web services into smart sensor
nodes to enable them to use as much network traffic as
possible. Glombitza et al. [25] implemented Web services
on smart sensor nodes without restrictions on the use of
network traffic supplied. WSRA lets the smart sensor nodes
acquire knowledge of the relative MEE by requesting from
the Web server [21]. For example, Han et al. [26] made
use of the service-oriented architecture (SOA) to establish
a building automation system with multiple smart sensor
nodes that capture the needed information from the Web
server. Khan et al. [27] comprehensively classified the mobil-
ity sink-dependent data collection and dissemination policies
into three policies in all of which the mobility sink plays the
role of the Web server and provides the needed information
for the other smart sensor nodes. However, PDTA does not
ensure that the server can obtain at least one estimate; NTEA
always leads to waste of network traffic, and WSRA’s feedback
from the server to the smart sensor nodes must consume
network traffic [28], [29]. Therefore, an effective strategy in
practice to make the optimal tradeoff between network traffic

Fig. 2. Working time sequence of smart sensor nodes as the form of sequence
diagram.

and sensing accuracy is called for, with the available network
traffic constrained.

To balance the network traffic and sensing accuracy in
the network traffic-constrained environment for the Web
service-based data collection system in which the smart sens-
ing nodes cannot exchange information, the noncooperative
game framework seems to be a feasible one in which each
smart sensor node wants to maximize its utility function,
as researched in our previous work [30]. However, what is
solved in this article is the probability of the Web server
achieving the MEE at the required level of network traffic. It is
the sum of utility functions of all smart sensor nodes and a sin-
gle criterion optimization problem and not the maximization of
individual utility functions as in the standard noncooperative
game with the Nash equilibrium [31]. Therefore, the noncoop-
erative game aspect has to be eliminated. Instead, the intended
underlying optimization framework aiming at a single criterion
optimization problem [32] is adopted. Accordingly, the main
contribution is the formulation of the problem of smart sensor
nodes determining whether to submit their estimates to the
Web server or not, under network traffic constraints, as an
optimization problem, and further develop a technique to
capture the optimal tradeoff between the network traffic and
sensing accuracy.

III. PROBLEM STATEMENT AND FORMULATION

A. Problem Statement and Main Challenges

The data-collection system in Fig. 1 is working in a periodic
way, as shown in Fig. 2: at the beginning of a time interval with
fixed length (we call it a periodic cycle and assume that it is
chosen small enough so that the unknown physical parameter
of interest does not change significantly within a cycle): 1) the
smart sensor nodes start to sample and estimate the unknown
physical parameter; 2) if the periodic cycle ends, then the
nodes submit their estimates to the Web server according to
some criterion3; and 3) the server picks the estimate with
minimum error from all the estimates submitted and sees it
as the MEE. The procedure repeats in the next cycle [33].

Each smart sensor node can obtain an estimate, but does
not know and cannot obtain others’ estimates. The estimates

3This article aims to design such a criterion.
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Fig. 3. Process of two smart sensor nodes making decisions.

in different sensor nodes differ from each other,4 and can
successfully reach the Web server if they are submitted. The
way that all the sensor nodes submitting their estimates to the
Web server and then the server picking the one with minimum
error leads to unnecessary network traffic. For example, for the
two sensor nodes s1 and s2, as shown in Fig. 3, if s2 has a
smaller estimation error than s1 and has submitted its estimate
to the Web server, then it is unnecessary for s1 to submit its
because its estimate cannot help the Web server to decrease the
estimation error, while its estimate-submission has to consume
network traffic. Unfortunately, s1 has no knowledge of s2’s
estimate, as well as whether s2 has submitted its estimate
or not, and cannot acquire this information by asking s2 or
requesting from the Web server, because s2 and s1 cannot
mutually communicate, and the Web server mechanism shows
that the server cannot actively send this information to s1.
Therefore, s1 cannot compare its estimate with s2’s before
making the decision. With this in mind, the problem this article
would like to solve can be stated as follows, with the precise
formulation given in Section III-B as an optimization problem.

Problem [Estimate-Submission Decision Problem (ESDP)]:
To design a policy for each smart sensor node to determine
whether to submit its estimate to the Web server in order to
maximize the probability of the server obtaining the MEE
while maintaining the network traffic at the required level.

Accordingly, the process of ESDP can be described as
follows: in each periodic cycle, when the data-sampling is
stopped, each smart sensor node obtains an estimate and
submits its estimate only if it believes that it has a smaller
estimation error than the others submitting their estimates
ahead of it.

The main challenges lie in that the smart sensor nodes
have no information on others’ estimates, as well as whether
these estimates have been submitted to the Web server and
cannot obtain this information from the server or by mutual
communication when making its decision.

B. Problem Formulation

Nomenclature lists the notations used in the rest of this
article.

We formulate the ESDP as an optimization problem and
first introduce a tuple [32]

�N, (Ai )|i∈{1,2,...,n}, (Ui )|i∈{1,2,...,n} (Ci )|i∈{1,2,...,n}� (1)

to describe the estimate-submission decision process. Here,
the following holds.

4This is true because it is almost impossible for two different smart sensor
nodes to have the same estimate even in the same environment [34].

Algorithm 1: NTPTA
Input: si , n, c, ε, Q, �1, �2, N;
Output: ai ;

1 foreach si ∈ N do
2 if i ∈ {1, 2, . . . , r∗} then
3 ai ← �1;
4 else
5 generate a random sample θ from uniform

distribution U(0, 1);

6 if 0 < θ ≤ r∗

i − 1
then

7 ai ← �1;
8 else
9 ai ← �2;

10 Pπ∗ ← r∗

n
+�n

i=r∗+1

�
1

n

��
r∗

i − 1

�
or

r∗

n
− r∗

n
ln

r∗

n
(for large n)

1) N = {s1, s2, . . . , sn} is the set of all smart sensor nodes.
2) Ai = {�1,�2} is the set of all actions of si ∈ N with

�1 and �2 denoting, respectively, whether si submits or
does not submit its estimate to the Web server.

3) Ui = Ui (ai ) is the payoff of si with ai ∈ Ai being the
action taken by si and the payoff denoting the probability
of the Web server ending up with the MEE when si takes
action ai .

4) Ci = Ci (ai ) is the network traffic consumed when si

takes action ai .
Let π denote the policy defined by

π = (P{a1 = �1}, P{a2 = �1}, . . . , P{an = �1}). (2)

Then, since P{ai = �1} ∈ [0 1], the policy space G of π can
be given by

G = [0 1] × [0 1] × · · · × [0 1]� �� �
n

. (3)

In a periodic cycle, let Pπ denote the cumulative probability
of the Web server obtaining the MEE under π and Cπ denote
the cumulative network traffic consumed under π . Now, we are
ready to state ESDP as an optimization problem that can be
solved by programming as

max
π∈G

Pπ

s.t. Cπ ≤ Q (4)

where Q is the available network traffic consumed in a
periodic cycle,5 which is not at a sufficient level to support all
the smart sensor nodes s1, s2, . . . , sn to submit their estimates.

In the following, we will show that the formulation of ESDP
in (4) can be written in terms of the parameters in (1).

Denote by e1, e2, . . . , en the estimation errors of
s1, s2, . . . , sn ; then, we have

MEE = min(e1, e2, . . . , en) (5)

5nc+ ((n(n + 1))/2)ε is an upper bound of Q. It is the minimum level of
network traffic that can support all sensor nodes to submit their estimates and
always larger than Q.
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and, recalling the footnote 3, we have

ex �= ey . (6)

s1, s2, . . . , sn are identical to each other except their esti-
mates, so we have

P{ei = min(e1, e2, . . . , en)} = 1

n
. (7)

Let δi be the indicator function of whether the Web server
achieves the min(e1, e2, . . . , en) with si taking ai , that is,

δi =
	

1, min(e1, e2, . . . , en) is obtained with si taking ai

0, otherwise.

(8)

Then, by (7) and the definition of �1 and �2, we have

P{δi = 1|ai} =

⎧⎪⎪⎨⎪⎪⎩
P{ei = min(e1, e2, . . . , en)} = 1

n
ai = �1

0, ai = �2

(9)

and further by the definition of Ui (ai ), we have

Ui (ai ) = P{δi = 1|ai = �1}P{ai = �1}
+ P{δi = 1|ai = �2}P{ai = �2} = P{ai = �1}

n
(10)

Pπ =
n�

i=1

Ui (ai) =
n�

i=1

P{ai = �1}
n

. (11)

Let constant c denote the average network traffic con-
sumed by an estimate-submission without data block. More
estimate-submissions lead to more data blocks, and the net-
work traffic consumed by an estimate-submission varies under
different number of blocks. Let constant ε denote the average
value of such variation per additional estimate submitted to
the Web server; then

Ci (ai ) = (c + ζiε)P{ai = �1} + 0P{ai = �2}
= (c + ζiε)P{ai = �1} (12)

Cπ =
n�

i=1

Ci (ai ) =
n�

i=1

(c + ζiε)P{ai = �1} (13)

where ζi denotes that si is the i th smart sensor node submitting
the estimate.6

Therefore, the ESDP in (4) can be formally rewritten as

max
π∈G

n�
i=1

P{ai = �1}
n

s.t.
n�

i=1

(c + ζiε)P{ai = �1} ≤ Q. (14)

6The conditions 5) and 6) in Section II-A indicate that we can always let
si be the ith smart sensor node deciding whether to submit the estimate.

IV. ALGORITHMS

A. Our Algorithm: NTPTA

The network traffic-dependent probability threshold algo-
rithm (NTPTA) working ∀si ∈ N to determine whether to
submit its estimate to the Web server or not is formally given
in Algorithm 1, where π∗ is the optimal policy for each
sensor node to determine whether to submit its estimate to the
Web server in order to maximize the probability of the server
obtaining the MEE while maintaining the network traffic at the
required level, and r∗ determined by (16) or (17) (for large n)
is the number of sensor nodes that must submit their estimates
to the server under the optimal policy π∗.

Brief Description of NTPTA: ∀si ∈ N: 1) if r∗ is deter-
mined, then NTPTA checks whether i ∈ {1, 2, . . . , r∗};
2) if yes, then ai = �1; 3) otherwise, generates a ran-
dom sample θ from uniform distribution U(0, 1); 4) checks
whether θ lies in (0 (r∗/(i − 1))]7; 5) if yes, then si takes
�1; and 6) otherwise, �2. After all the smart sensor nodes
take actions, Pπ∗ is (r∗/n) + �n

i=r∗+1(1/n)(r∗/(i − 1)) or
(r∗/n)− (r∗/n) ln(r∗/n) (for large n).8

B. Other Algorithms

We compare NTPTA with three existing popular algorithms
as summarized in Section II: PDTA, NTEA, and WSRA in
Algorithms 2, 3, and 4, respectively.

Brief Description of PDTA: ∀si ∈ N, PDTA requires si to
submit its estimate with probability (2Q/(n(2c + (n + 1)ε))).

Brief Description of NTEA: ∀si ∈ N: 1) if i ∈
{1, 2, . . . , 
(2Q/(2c + (n + 1)ε))�}, then si takes �1 and
2) else, �2. In other words, NTEA lets the smart sensor
nodes submit their estimates successively until the remaining
network traffic cannot support an estimate-submission.

Brief Description of WSRA: ∀si ∈ N: 1) if i ∈
{1, 2, . . . , 
(Q/(2c + (n + 1)ε))�}, then si requests the server
for erelative and takes �1 and �2 under ei < erelative and
ei ≥ erelative, respectively and 2) else, si takes �2. In other
words, the nodes in WSRA can compare their estimation error
with that of the relative MEE requested from the server before
taking action.

V. ANALYSIS OF ALGORITHM

The analysis consists of: 1) optimality analysis showing that
NTPTA makes the optimal tradeoff between network traffic
and sensing accuracy and 2) performance analysis showing
that NTPTA is better than PDTA, NTEA, and WSRA.

7We use a random sample θ obeying uniform distribution U(0, 1) to obtain
the probabilities. Especially, we generate θ from uniform distribution U(0, 1)
to charge the action of the sensor nodes that just submit their estimates
with respective probabilities: for such kind of sensor node, if the random
sample θ generated from uniform distribution U(0, 1) lies in the interval
(0 (r∗/(i − 1))], then the sensor node si should submit its estimate, otherwise
not.

8 Pπ∗ = (r∗/n) +�n
i=r∗+1(1/n)(r∗/(i − 1)) is the exact value of Pπ∗

no matter whether the number n of sensor nodes is small or large, while
Pπ∗ ≈ (r∗/n)− (r∗/n) ln(r∗/n) is the approximate value of Pπ∗ when n is
just large (the latter is easier to calculate than the former when n is large), but
the approximation error is no larger than 5% for n ≥ 20. For example, it is
4.25% 1.71%, 0.85%, and 0.09% for n = 20, 50, 100, and 1000, respectively.
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Algorithm 2: PDTA [19]
Input: si , n, c, ε, Q, �1, �2, N;
Output: ai ;

1 foreach si ∈ N do
2 generate a random sample θ from uniform distribution

U(0, 1);

3 if 0 < θ ≤ 2Q

n(2c + (n + 1)ε)
then

4 ai ← �1;
5 else
6 ai ← �2;

Algorithm 3: NTEA [20]
Input: si , n, c, ε, Q �1, �2, N;
Output: ai ;

1 foreach si ∈ N do

2 if i ∈
�

1, 2, . . . ,

�
2Q

2c+ (n + 1)ε

��
then

3 ai ← �1;
4 else
5 ai ← �2;

Algorithm 4: WSRA [21]
Input: si , n, c, ε, Q, �1, �2, N;
Output: ai ;

1 //erelat ive is the estimation error of the relative MEE
obtained by server;

2 foreach si ∈ N do

3 if i ∈
�

1, 2, . . . ,

�
Q

2c+ (n + 1)ε

��
then

4 let si request the Web server for erelat ive;
5 if ei < erelat ive then
6 ai ← �1;
7 else
8 ai ← �2;

9 else
10 ai ← �2;

A. Optimality of NTPTA

Under condition 3) in Section II-A, we let r denote the
number of smart sensor nodes that must take �1.

Theorem 1: The optimal policy π∗ = (P{a1 = �1},
P{a2 = �1}, . . . , P{an = �1}) for (4) or (14) is given by

P{ai = �1} =
⎧⎨⎩1, i ∈ {1, 2, . . . , r∗}

r∗

i − 1
, i ∈ {r∗ + 1, r∗ + 2, . . . , n} (15)

where r∗ is determined by

r∗ = max

�
r

���� r�
i=1

(c + iε)+
n�

i=r+1

r(c + iε)

i − 1
≤ Q,

r ∈ {1, 2, . . . , n}
�

(16)

or (for large n)

r∗ = max

�
r

���� r

�
c + nε − (r − 1)ε

2

�
− r(c + ε) ln

r

n
≤ Q,

r ∈ {1, 2, . . . , n}
�

(17)

with

Pπ∗ = r∗

n
+

n�
i=r∗+1

�
1

n

� �
r∗

i − 1

�
(18)

or (for large n)

Pπ∗ ≈ r∗

n
− r∗

n
ln

r∗

n
. (19)

Proof: See the Appendix.
Equation (15) provides the structure of the optimal policy

π∗, and (16) and (18) show how to obtain r∗ and Pπ∗ ,
respectively. Meanwhile, for large n, (17) and (19) provide the
approximate solution, and the approximation error is no larger
than 5% for n ≥ 20 (for example, it is 4.25% 1.71%, 0.85%,
and 0.09% for n = 20, 50, 100, and 1000, respectively).

Theorem 1 guides the smart sensor nodes to deter-
mine whether to submit their estimates to the Web
server or not. Especially, s1, s2, . . . , sr , sr∗+1, sr∗+2, . . . , sn

should submit their estimates with respective probabilities
1, 1 . . . , 1� �� �

r∗
, 1, (r∗/(r∗ + 1)), . . . , (r∗/(n − 1)). Theorem 1 lays

the sound foundation for NTPTA.

B. Performance Comparison

Let PPDTA, PNTEA and PWSRA denote, respectively,
the cumulative probabilities of the Web server obtaining the
MEE by PDTA, NTEA, and WSRA.

Theorem 2: Under the same network traffic, Pπ∗ > PPDTA ≥
PNTEA > PWSRA, where Pπ∗ is determined by Algorithm 1.

Proof: See the Appendix.
Theorem 2 shows that the performance of NTPTA is better

than that of PDTA/NTEA/WSRA in terms of maximizing the
probability of the Web server obtaining the MEE under the
same level of network traffic. This result follows because of
the following.

1) NTPTA ensures that the Web server can obtain at least
one estimate while PDTA does not.

2) NTPTA in every periodic cycle makes full use
of the network traffic, while NTEA and WSRA
both always waste at least (2cQ/(2c+ (n + 1)ε)) −
c
(2Q/(2c + (n + 1)ε))� ≥ 0.

3) NTPTA does not request from the server while WSRA
does.

In summary, NTPTA has a better performance than PDTA,
NTEA, and WSRA by not only considering a more realistic
model but also avoiding wasting network traffic.

VI. SIMULATION AND FIELD EXPERIMENT VERIFICATION

A. Experimental Setup

In this section, we compare NTPTA against PDTA, NTEA,
and WSRA through both simulations on MATLAB and field
experiments on the experimental systems, as shown in Fig. 4.
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The experimental system consists of smart sensor nodes,
hotspot (smartphone), 4G base, operators’ network, and Web
server (laboratory-based server). The smart sensor nodes with
Wi-Fi but without 4G function working in the remote area
are connected to the Web server with the help of the hotspot
that enables the mutual conversion between Wi-Fi and 4G.
Especially, the smart sensor nodes locally connect the hotspot
through a shared Wi-Fi network, while the hotspot remotely
communicates with the Web server through the 4G network
that is provided by the 4G base.

The Web server is implemented on a laboratory-based
personal computer (PC) with the working voltage, resolution,
CPU, and hard disk being 220-V ac, 1366 × 768, Proces-
sor Intel Core i3-3220 CPU at 3.30 GHz, and 500 GB,
respectively.

The smart sensor node consists of temperature sensor
ER-TH-M5, transmission media universal serial bus, electrical
logic converter MAX232, microprocessor MSP430, and serial-
interface/Wi-Fi converter HLK-RM04. The smart sensor nodes
were assigned with a task to sample the temperature every 18 s
before stopping sampling in the periodic cycle set as 5 min.

MAX232 [35] and HLK-RM04 [36] are both signal convert-
ers with working voltage 5 V, where the former converts the
Recommended Standard 232 (RS232) to transistor–transistor
logic (TTL) signal, while the latter converts the TTL to trans-
mission control protocol (TCP) data package. Here, we sup-
plied 5-V voltage for them and the universal serial bus.

As a mixed-signal processor, MSP430 can work under the
voltage from 1.8 to 3.3 V [37], and we supplied 3.3 V here.
It can work under the 0–25 MHz frequency, and we supplied
4 MHz here. By its P3.4 and P3.5 pins, it can send the com-
mands to and receive the samples from ER-TH-M5, respec-
tively, through the universal serial bus and MAX232 with Baud
Rate 9600 b/s. By its P3.6 and P3.7 pins, it can send the
samples to and receive the Web service response from the
Web server, respectively, through the universal serial bus and
HLK-RM04 with a baud rate of 9600 b/s. It makes use of its
timer, Timer A (TA), to realize the duration of 18 s and 5 min.

As a digital sensor to sample the temperature, ER-TH-M5
can work under the voltage from 7 to 25 V [38], and we
supplied 10 V here. It can work under the 4-MHz frequency,
matching MSP430’s, so we supplied 4 MHz here. By the
TXD/D+ and RXD/D− pins, it can send the samples to and
receive commands from MSP430, respectively, through the
universal serial bus and MAX232 with Baud Rate 9600 b/s.

To calibrate all the sensors, we first selected the sensors
having the same type, i.e., all the temperature sensors are
ER-TH-M5, and then resumed them to default settings. The
noise produced in the temperature measurement is the thermal
noise of the sensor. It obeys normal distribution with mean
value 0 and variance 0.52 given by the temperature sensor
datasheet.9 Its spectrum is a uniform distribution with a
magnitude of 0.52.

The Wi-Fi network uses the band of 2.4G and the protocol
of IEEE 802.11 b. The channel capacity available to a single
smart sensor node approximates 1000 B. When all smart

9See https://wenku.baidu.com/view/8958c21314791711cc79174a.html.

sensor nodes are operating, the channel capacity available to
each sensor node is approximately between 1000 and 1300 B,
but totaling to less than the available network traffic Q.

We constrained the channel capacity by the built-in function
“data limit” of the hotspot (smartphone). It allows us to
set the channel capacity limit. When the limit is reached,
the hotspot will be automatically disabled, the Wi-Fi network
will disappear, and the connection of the smart sensor nodes to
the Web server will be terminated. This means that the channel
capacity constraint occurs in the hotspot.

The smart sensor nodes work periodically as stated in
Section I, with the periodic cycle of 5 min. We obtained the
MEE by the following steps: In a periodic cycle: 1) each
smart sensor node iteratively calculates its estimate and
corresponding estimation error by the first and second equa-
tions, respectively, in (20), which is proposed in our previous
work [33] (see (15) in [33]), where, at time t , zt is the sample,
σ 2

z,t is the sample variance, �μt is the Bayesian posterior
estimate (�μt is initialized as the first sample, i.e., z1), and�σ 2

t is the Bayesian posterior estimation error (�σ 2
t is initialized

as the reference sensing accuracy given by the temperature
sensor datasheet); 2) if the periodic cycle ends, then the smart
sensor node considers the last Bayesian estimate as the truth
measurement and submit it and the corresponding Bayesian
estimation error to the Web server according to our proposed
algorithm or the algorithms compared against ours; and 3) the
server picks the Bayesian estimate with minimum Bayesian
estimation error from all the estimates submitted and sees it
as MEE

�μt =
σ 2

z,t�μt−1 + zt�σ 2
t−1

σ 2
z,t +�σ 2

t−1

, �σ 2
t =

σ 2
z,t�σ 2

t−1

σ 2
z,t +�σ 2

t−1

. (20)

In the simulations, the software package of MATLAB
Simulink Communication Block Set in [39] was used to estab-
lish the simulation environment: 1) the smart sensor nodes and
Web server were both simulated by existing sensor models in
Simulink; 2) the network channel was modeled by additive
white Gaussian noise (AWGN) channel in Simulink allowing
the setting of channel capability limit (according with Fig. 4,
we replaced Bluetooth in [39] with Wi-Fi/4G network); and
3) the message collision and loss were calculated by path loss
block in Simulink. To emulate the real scenario, simulations
share the same noise with field experiments, i.e., we added
the white Gaussian noise with mean value 0 and variance
0.52 to the simulated observations. Its spectrum is a uniform
distribution with a magnitude of 0.52.

B. Parameter Identification

Some parameters are identified before simulations and field
experiments. We briefly state how to complete this. By (16)
or (17) or Algorithm 1, the parameters should be identified
are c and ε. For c, an estimate-submission package from the
smart sensor node contains 800 B, and a Web service response
package contains 200 B, without data block on the Internet,
so c = 800 + 200 = 1000 B. For ε, it is calculated by (21),
where Cwith and Cwithout are the accumulative network traffic
consumption, with and without data block, respectively, and nε
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Fig. 4. Architecture of the experimental system. The smart sensor nodes work in the remote field area, while the Web server runs in the laboratory. There
exists a 4G instead of the Wi-Fi network in the field area, while the smart sensor nodes have Wi-Fi instead of 4G function. Because of the higher cost of 4G
than Wi-Fi and the limit of the experimental budget, it is infeasible to equip each smart sensor node with a 4G module and a subscriber identity module (SIM)
card. The dashed two-way arrows denote wireless communication channels.

is the number of ε introduced by data blocks that are caused by
sensor nodes submitting estimates in a shared Wi-Fi network

ε = Cwith − Cwithout

nε
. (21)

We let ten smart sensor nodes submit their estimates succes-
sively. This means that Cwithout = 1000× 10 = 10 000 B and
nε = 55 (see footnote 10).10 In the test, we measured Cwith =
10 055 B, so we have ε ≈ (10 055 − 10 000)/55 = 1 B.
To emulate the real scenario, simulations and field experiments
share the same c and ε and are both carried out by the
following three parts.11

1) Carry out experiments under ten pairs of (n, Q),
as shown in Table I.

2) Carry out experiments under ten pairs of (n, Q),
as shown in Table II, according to changing the
number n of sensor nodes at the same level of the
background of network traffic Q.

3) Carry out experiments under ten pairs of (n, Q),
as shown in Table III, according to changing the
background of network traffic Q while keeping the
number n of sensor nodes unchanged.

C. Simulation Results
Thirty replications of the simulation are performed in total,

the same as the field experiments. The 30 simulation results
consist of three parts and are concluded, respectively, as the

10The hotspot (smartphone) always consumes network traffic even though
there is no estimate-submission due to the reason that some built-in
applications cannot be completely shut down and always lead to net-
work traffic cost. The network data corresponding to such consump-
tion and the estimate-submissions jointly produce data blocks. More
estimate-submissions make more data blocks, and the network traffic con-
sumed by an estimate-submission varies under a different number of blocks. ε
denotes the average value of such variation per additional estimate submitted
to the Web server. Therefore, for ten sensor nodes successively submitting
estimates, the numbers of ε introduced by the first, second, . . ., tenth
estimate-submissions are 1, 2, . . . , 10, respectively, summing to 55. ε may
be, of course, positive, 0, or negative.

11Because of the limits of the experiment field, the field experiments do
not share the same number of sensor nodes with simulations.

TABLE I

TEN PAIRS OF (n, Q) IN THE SIMULATION AND FIELD EXPERIMENT

(n IS THE NUMBER OF ALL SENSOR NODES, AND Q IS
THE AVAILABLE NETWORK TRAFFIC)

TABLE II

TEN PAIRS OF (n, Q) IN THE SIMULATION AND FIELD EXPERIMENT

ACCORDING TO CHANGING THE NUMBER n OF SENSOR NODES AT

THE SAME LEVEL OF THE BACKGROUND OF NETWORK TRAFFIC Q ,
WHERE 284.138, AND 16.785 kB ARE THE AVERAGE VALUE

OF Q IN THE FIRST AND SECOND COLUMNS,
RESPECTIVELY, OF TABLE I

form of standard box plot in Fig. 5(a)–(c), which displays
the probability of the Web server obtaining the MEE under
ten pairs of (n, Q) set, as shown in the first column of
Tables I–III, respectively. From Fig. 5(a)–(c), we can find that
NTPTA does a better job than PDTA, NTEA, and WSRA in
maximizing the probability of the Web server obtaining the
MEE no matter whether (n, Q) comes from Tables I, II or III.
Especially, the average probabilities of the 30 simulations
by NTPTA, PDTA, NTEA, and WSRA are 0.9143, 0.8673,
0.8613, and 0.7296, respectively, which shows that NTPTA
leads to higher probability than PDTA, NTEA, and WSRA
with 5.42%, 6.15%, and 25.31%, respectively, and validates
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Fig. 5. (a)–(c) Ten simulation results under ten pairs of (n, Q) as shown in the first column of Tables I–III, respectively [(b) concludes the simulation
results according to changing the number n of sensor nodes at the same level of the background of network traffic Q, and (c) concludes the simulation results
according to changing the background of network traffic Q while keeping the number n of sensor nodes unchanged]. and (d)–(f) Ten field experiment results
under ten pairs of (n, Q) as shown in the second column of Tables I–III, respectively [(e) concludes the failed experiment results according to changing the
number n of sensor nodes at the same level of the background of network traffic Q, and (f) concludes the field experiment results according to changing the
background of network traffic Q while keeping the number n of sensor nodes unchanged]. The dashed lines show the average theoretical probabilities.

TABLE III

TEN PAIRS OF (n, Q) IN THE SIMULATION AND FIELD

EXPERIMENT ACCORDING TO CHANGING THE BACKGROUND OF

NETWORK TRAFFIC Q WHILE KEEPING THE NUMBER n OF
SENSOR NODES UNCHANGED, WHERE 110 AND 25 ARE

THE APPROXIMATE AVERAGE VALUE OF n
IN THE FIRST AND SECOND COLUMNS,

RESPECTIVELY, OF TABLE I

the potential of NTPTA in improving the sensing accuracy for
Web service-based data-collection systems.12

D. Field Experiment Results
Similar to the abovementioned simulation results,

the 30 field experiment results consist of three parts

12Fig. 5 concludes the simulation and experiment results as the form of
boxplots [40], where the bottom and top of the box are the first and third
percentile, respectively, the bar inside the box is the median, the lower bar
below the box is the lowest datum still within 1.5 interquartile range (IQR) of
the first quartile (IQR is the difference between the third and first percentiles),
the upper bar over the box is the highest datum still within 1.5 IQR of the
third quartile, the lower red + below the box is the data outside of 1.5 IQR of
the first quartile, the upper red + over the box is the data outside of 1.5 IQR of
the third quartile (the lower and upper red + are both called extreme outliers),
and the rest of lines are used to shape the box plot [33]. This figure shows
the probability of the Web server guaranteeing the MEE under different pairs
of channel capability limits and smart sensor nodes, not the error. Since the
probability lies in [0, 1], the magnitude of its boxes or bars is 1.

and are concluded respectively as the form of standard
box plot in Fig. 5(d)–(f), which displays the probability
of the Web server obtaining the MEE under ten pairs of
(n, Q) set as shown in the second column of Tables I–III,
respectively. From Fig. 5(d)–(f), we can find that NTPTA
still does the best job. Especially, the average probability
of the 30 field experiments by NTPTA, PDTA, NTEA, and
WSRA are 0.8867, 0.8487, 0.8233, and 0.7134, respectively,
which shows that NTPTA leads to higher probability
than PDTA, NTEA, and WSRA with 4.48%, 7.70%, and
24.29%, respectively, and validates the potential of NTPTA
in improving the sensing accuracy for Web service-based
data-collection systems again.

We depicted the average theoretical probabilities as the
form of dashed lines in Fig. 5, from which we can find
that the overall trend of relative ranking of probabilities in
the simulations, the field experiments, and theory are the
same, despite the field experiments having the largest variance,
due to something unknown and difficult to capture in the
experiment field, such as sensor failures, network disturbance
and instability, and data package losses [41].

In summary, under the same network traffic, a higher proba-
bility of the Web server obtaining the MEE can be achieved by
NTPTA than PDTA, NTEA, and WSRA. Meanwhile, we can
find something reasonable in the following.

1) Fig. 5(a)–(c) is similar to each other, and Fig. 5(d)–(f)
is also similar to each other. The reason is that the
available network traffics 184.7 and 16.79 kB in Table II
approximate the average value of Q in the first and sec-
ond columns, respectively, of Table I, and the numbers
250 and 25 of sensor nodes in Table III approximate
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the average value of n in the first and second columns,
respectively, of Table I.

2) Fig. 5 shows that the conclusion of Theorem 2,
i.e., under the same level of allowed network traffic,
Pπ∗ > PPDTA ≥ PNTEA > PWSRA holds.

VII. CONCLUSION

For the Web service-based data-collection system with mul-
tiple smart sensor nodes periodically sampling and estimating
the same unknown physical parameter of interest, this article
has focused on designing a criterion for its smart sensor
nodes to decide whether or not to submit their estimates to
the Web server in order to maximize the probability of the
server obtaining the minimum error estimate while meeting
the condition of the required level of network traffic. Within an
optimization-theoretical framework, a new algorithm NTPTA
has been proposed and validated by theoretical analysis,
simulation, and field experiments. Since smart sensor nodes
nowadays are the foundations of CPS and IoT from the
hardware or software points of view, and the Web service is
an important communication element in the IoT system and
the CPS, the estimate-submission management of smart sensor
nodes based on NTPTA helps IoT system and CPS to operate
in a network traffic efficient way while maintaining acceptable
levels of estimation error, especially under network resource
constraints.

Given that, in some cases, smart sensor nodes can com-
municate with each other, so our future work will focus on
designing similar criteria for such scenarios.

APPENDIX

Proof of Theorem 1: First, we prove the sufficiency that
some smart sensor nodes must take �1 (see condition 3), so,
without loss of generality, we consider that sk1 , sk2 , . . . , skr are
these nodes (r, k1, k2, . . . , kr ∈ {1, 2, . . . , n}), that is,

P{ai = �1} = 1, i ∈ {k1, k2, . . . , kr }. (22)

Then, by (9), (22), and the definition of Ui (ai), we have

Ui (ai ) = P{δi = 1|ai = �1}P{ai = �1}
+ P{δi = 1|ai = �2}P{ai = �2}

= 1

n
∀i ∈ {k1, k2, . . . , kr } (23)

min(e1, e2, . . . , en) ∈ or /∈ {ek1 , ek2 , . . . , ekr }. If the latter
holds, then ∀si ∈ N − {sk1 , sk2 , . . . , skr }, it always has
the intelligence to consider that sk1 , sk2 , . . . , skr , . . . , sk j−1

have submitted their estimates ahead of it ( j ∈ {r +
1, r + 2, . . . , n}, k1, k2, . . . , k j−1 ∈ {1, 2, . . . , n}), and if
min(ek1 , ek2 , . . . , ek j−1) ∈ {ek1 , ek2 , . . . , ekr }, then there are
valid grounds for it to perform the estimate-submission
since its estimation error may be smaller than those of
sk1 , sk2 , . . . , sk j−1 . With this in mind and the conditions 1),
2), and 4) in Section II-A, we have

ai =
	

�1,
min(ek1 ,ek2 ,...,ek j−1 )∈{ek1 ,ek2 ,...,ekr },

i=k j∈{1,2,...,n}−{k1,k2,...,kr }
�2, otherwise

(24)

further by (7) and (24), and considering that {1, 2, . . . , n} −
{k1, k2, . . . , kr } can be relabeled as {kr+1, kr+2, . . . , kn}, and
si and ai can be relabeled as sk j and ak j , respectively, we have

P{ai = �1}
= P{min(ek1 , ek2 , . . . , ek j−1) ∈ {ek1 , ek2 , . . . , ekr }}

=
r�

x=1

P{ekx = min(ek1 , ek2 , . . . , ek j−1)}

= r

j − 1
∀i = k j ∈ {kr+1, kr+2, . . . , kn}. (25)

Then, by (9) and (25) and the definition of Ui (ai ), we have

Ui (ai , a−i ) = P{δi = 1|ai = �1}P{ai = �1}
+ P{δi = 1|ai = �2}P{ai = �2}

= r

n( j − 1)
∀i = k j ∈ {kr+1, kr+2, . . . , kn}.

(26)

The condition 5) in Section II-A shows that the subscripts of
s1, s2, . . . , sn are arbitrary, so, by (23) and (26), and relabel-
ing sk1 , sk2 , . . . , skn and ak1 , ak2 , . . . , akn as s1.s2. . . . , sn and
a1, a2, . . . , an , respectively, Ui (ai ) can be written as

Ui (ai ) =

⎧⎪⎨⎪⎩
1

n
, i ∈ {1, 2, . . . , r}

r

n(i − 1)
, i ∈ {r + 1, r + 2, . . . , n}.

(27)

sk1 , sk2 , . . . , skr must submit their estimates, so, by the
definition of ε and ζi , we have

Ci (ai) = c + ζiε i ∈ {k1, k2, . . . , kr } (28)

and by (25), we have

Ci (ai ) = cP{ai = �1} + 0P{ai = �2}
= r(c + ζiε)

j − 1
∀i = k j ∈ {kr+1, kr+2, . . . , kn}. (29)

Similar to (27), we have

Ci (ai ) =
⎧⎨⎩c + ζiε, i ∈ {1, 2, . . . , r}

r(c + ζiε)

i − 1
, i ∈ {r + 1, r + 2, . . . , n}. (30)

In a periodic cycle, the earlier estimate-submission suffers less
data-block than the later ones, so (30) can be given by

Ci (ai ) =
⎧⎨⎩c + iε, i ∈ {1, 2, . . . , r}

r(c + iε)

i − 1
, i ∈ {r + 1, r + 2, . . . , n}. (31)

Equations (27) and (31) show that Ui (ai ) and Ci (ai ) both
depend on r . Thus, we denote P(r) as the cumulative proba-
bility of the Web server obtaining the min(e1, e2, . . . , en) and
C(r) as the cumulative network traffic consumed, that is,

P(r) = Pπ =
n�

i=1

Ui (ai) (32)

C(r) = Cπ =
n�

i=1

Ci (ai ). (33)
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Then, by (27) and (32), we have

P(r) = r

n
+

n�
i=r+1

�
1

n

��
r

i − 1

�
(34)

and by (31) and (33), we have

C(r) =
r�

i=1

(c + iε)+
n�

i=r+1

r(c + iε)

i − 1
. (35)

Therefore, (14) can be specifically rewritten as

max
r∈{1,2,...,n}

�
r

n
+

n�
i=r+1

�
1

n

��
r

i − 1

��

s.t.
r�

i=1

(c + iε)+
n�

i=r+1

r(c + iε)

i − 1
≤ Q. (36)

By (34), we have

P(r + 1)− P(r) =
n�

i=r+2

�
1

n

��
1

i − 1

�
≥ 0 (37)

and by (35), we have

C(r + 1)− C(r) = ε +
�

i=r+2

c + iε

i − 1
> 0 (38)

which means that P(r) and C(r) are both increasing functions
of r . Thus, the solution denoted by r∗ for (36) is given by

r∗ = max{r | C(r) ≤ Q, r ∈ {1, 2, . . . , n}} (39)

and

max
r∈{1,2,...,n} P(r) = P(r∗). (40)

Now, by (32), (34), and (35), we have (16) and (18).
By (34), we have

P(r) = r

n
+ r

n

n�
i=r+1

�
1

n

��
n

i−1

�
= r

n
+ r

n

n−1
n�

y= r
n

�
1

n

��
1

y

�
(41)

so, for large n, we have

P(r) ≈ r

n
+ r

n

� 1

r
n

�
1

y

�
dy = r

n
− r

n
ln

r

n
. (42)

By (35), we have

C(r) = r

�
c + nε − (r − 1)ε

2

�
+ r(c+ ε)

n−1
n�

y= r
n

�
1

n

��
1

y

�
(43)

so, for large n, we have

C(r) ≈ r

�
c + nε − (r − 1)ε

2

�
− r(c + ε) ln

r

n
. (44)

Now, by (32), (39), (40), (42), and (44), we have (17) and (19).

Second, we prove the necessity that combining (4), (11),
(14), (36), (39), and (40), we have

Pπ∗ = max
π∈G

n�
i=1

P{ai = �1}
n

= max
r∈{1,2,...,n} P(r)

= P(r∗) = r∗

n
+

n�
i=r∗+1

�
1

n

��
r∗

i − 1

�
(45)

and by (15), we have

r∗�
i=1

P{ai = �1}
n

+
n�

i=r∗+1

P{ai = �1}
n

= r∗

n
+

n�
i=r∗+1

�
1

n

��
r∗

i − 1

�
= RHS(45). (46)

By (30) and (31), we have

r∗�
i=1

(c + ζiε)P{ai = �1} +
n�

i=r∗+1

(c + ζiε)P{ai = �1}

=
r∗�

i=1

(c + iε)P{ai = �1} +
n�

i=r∗+1

(c + iε)P{ai = �1}

(47)

and combining (4), (13), (14), (36), (39), and (40), we have

Q ≥ max
π∈G

Cπ = max
π∈G

n�
i=1

(c + ζiε)P{ai = �1}

= max
r∈{1,2,...,n}C(r) = C(r∗)

=
r∗�

i=1

(c + iε)+
n�

i=r∗+1

r∗(c + iε)

i − 1
(48)

and then, by (15) and (47), we have

r∗�
i=1

(c + iε)P{ai = �1} +
n�

i=r∗+1

(c + iε)P{ai = �1}

=
r∗�

i=1

(c + iε)+
n�

i=r∗+1

r∗(c + iε)

i − 1
= RHS(48) (49)

where r∗ is determined by (16) or (17) (for large n). This then
completes the proof of Theorem 1. �

Proof of Theorem 2: Let Cπ∗ , CPDTA, CNTEA, and CWSRA
denote, respectively, the network traffic consumed by NTPTA,
PDTA, NTEA, and WSRA. First, we compare Cπ∗ with CPDTA
under Pπ∗ = PPDTA. By (18), we have

Pπ∗ =
r∗�

i=1

1

n
+

n�
i=r∗+1

�
1

n

��
r∗

i − 1

�
(50)

and by (16) and (35), we have

Cπ∗ =
r∗�

i=1

(c + iε)+
n�

i=r∗+1

r∗(c + iε)

i − 1
. (51)
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Let QPDTA denote the equivalent network traffic consumed by
PDTA without data block; then, we have

PPDTA =
r∗�

i=1

�
1

n

��
QPDTA

nc

�
+

n�
i=r∗+1

�
1

n

��
QPDTA

nc

�
(52)

CPDTA =
r∗�

i=1

(c+ iε)
QPDTA

nc
+

n�
i=r∗+1

(c + iε)
QPDTA

nc
. (53)

By our running assumption, the level Q is not sufficient to
support all the smart sensor nodes to submit their estimates,
so we have

n�
i=1

(c + iε) > Q (54)

and further have

QPDTA ≤ 2Q

n(2c + (n + 1)ε)
nc < nc. (55)

By Pπ∗ = PPDTA, (50), and (52), we have

r∗�
i=1

�
1− QPDTA

nc

�
+

n�
i=r∗+1

�
r∗

i − 1
− QPDTA

nc

�
= 0 (56)

and by (51) and (53), we have

Cπ∗ − CPDTA =
r∗�

i=1

(c + iε)

�
1− QPDTA

nc

�

+
n�

i=r∗+1

(c + iε)

�
r∗

i − 1
− QPDTA

nc

�
. (57)

Further by (56), we have (note that c is a positive constant)

Cπ∗ − CPDTA

=
r∗�

i=1

iε

�
1− QPDTA

nc

�
+

n�
i=r∗+1

iε

�
r∗

i − 1
− QPDTA

nc

�
.

(58)

By (55) and (56), we have
n�

i=r∗+1

�
r∗

i − 1
− QPDTA

nc

�
< 0. (59)

By (58), we have

Cπ∗ − CPDTA

≤
n�

i=r∗+1

(i − r∗)ε
�

r

i − 1
− QPDTA

nc

�

+ r∗ε
� r∗�

i=1

�
1− QPDTA

nc

�
+

n�
i=r∗+1

�
r∗

i − 1
− QPDTA

nc

��
(60)

and then, combining with (56) and (59), we have (note that ε
is a positive constant)

Cπ∗ − CPDTA ≤
n�

i=r∗+1

(i − r∗)ε
�

r

i − 1
− QPDTA

nc

�

≤ ε

n�
i=r∗+1

�
r

i − 1
− QPDTA

nc

�
< 0 (61)

which means that Cπ∗ < CPDTA under Pπ∗ = PPDTA. Network
traffic and sensing accuracy are two contradictory metrics, so,
under Cπ∗ = CPDTA, we have

Pπ∗ > PPDTA. (62)

Second, we compare PPDTA with PNTEA under CPDTA =
CNTEA = Q. By Algorithms 2 and 3, we have

PPDTA = 2cQ

nc(2c+ (n + 1)ε)
(63)

PNTEA = 1

n

�
2cQ

c(2c+ (n + 1)ε)

�
(64)

and hence we have

PPDTA − PNTEA = 1

n

�
2Q

2c + (n + 1)ε
−

�
2Q

2c + (n + 1)ε

��
≥ 0 (65)

which means that

PPDTA ≥ PNTEA. (66)

Third, we compare PNTEA with PWSRA under CNTEA =
CWSRA = Q. By Algorithm 4, we have

PWSRA = 1

n

�
Q

2c + (n + 1)ε

�
(67)

and, hence, combining with (64), we have

PNTEA > PWSRA. (68)

Finally, by (62), (66), and (67), we have

Pπ∗ > PPDTA ≥ PNTEA > PWSRA (69)

and this concludes the proof of Theorem 2. �
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