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Secure Recovery Procedure for Manufacturing

Systems using Synchronizing Automata and

Supervisory Control Theory
L. V. R. Alves, P. N. Pena

Abstract—Manufacturing systems may be subject to external
attacks and failures, so it is important to deal with the recovery
of the system after these situations. This paper deals with the
problem of recovering a manufacturing system, modeled as a
Discrete Event System (DES) using the Supervisory Control
Theory (SCT), when the control structure, called supervisor,
desynchronizes from the physical plant. The desynchronization
may be seen as plant and supervisor being in uncorresponding
states. The recovery of the system may be attained if there is
a word, the synchronizing word, that regardless the state of
each one of them, brings the system and supervisor back to
a known state. The concepts of synchronizing automata are used
to do so. In this paper we show under what conditions a set of
synchronizing plants and specifications leads to a synchronizing
supervisor obtained by the Supervisory Control Theory. The
problem is extended to cope with multiple supervisors, proposing
a local recovery when possible. We also present a simple way
to model problems, composed of machines and buffers, as
synchronizing automata such that it is always possible do restore
synchronization between the control (supervisor) and the plant.

Note to Practitioners—Given the unpredictability of faults
and malicious attacks occurring in industrial systems, recovery
strategies are crucial for a harmonic operation of the plant. The
possibility of leading the system to a known state, recovering
control, is of extreme importance to the safety of industrial
processes. The method proposed in this paper uses well known
concepts of Supervisory Control Theory (SCT) of Discrete Event
Systems (DES), introducing the recovery process (using recovery
events) in the modeling phase such that it is possible to isolate
and fix only the part of the control system subject to the fault.
The result of the proposed approach allows the implementation
of such control system with the recovery procedure directly in
the Programmable Logic Controllers (PLCs).

Index Terms—Discrete Event Systems, Synchronizing Au-
tomata, Supervisory Control Theory, Recovery Procedure.

I. INTRODUCTION

Fault recovery is an essential part of a modern manufactur-

ing system. Most of the data in Smart Plants is accessed over

real-time communication networks, so, in addition to worrying

about sensor and actuator failures, we also need to take into

account malicious attacks to the system. In computational
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systems, such problems can be solved restarting the software,

but in industries, because of safety and reliability constraints,

this restart cannot be naive [1].

In the Supervisory Control Theory (SCT), the supervisor

restricts the dynamics of the system inhibiting the execution

of controllable events in order to guarantee a safe operation

of the system. As shown in Fig. 1, the supervisor estimates

the current state of the plant by observing the occurrence of

events, however this observation is susceptible to problems

originated by malicious attacks and communication problems,

leading the system to a situation where the physical state of

the plant does not correspond to the state estimated by the

supervisor. In some situations, the observations made by the

supervisor can be corrupted as the list of allowed events sent

to the plant.

Starting in the decade of 2000, the increase in the exchange

of information in digital environment increases the concern

with the security of computational systems [2]. Every system

with communication among its agents, as between plant and

supervisor, is susceptible to attacks.

Such attacks are becoming more sophisticated having as

their main objectives to steal information, extortion and sab-

otage [3], [4]. APT - Advanced Persistent Threat are pieces

of software developed to attack specific targets [5] and stay

hidden in these systems for long periods of time.

Another cause of problems in manufacturing systems are

the failures in sensors, actuators and communication systems.

Most of the information that travels in intelligent manufactur-

ing systems is accessed by real time communication networks

[6] and this information may be corrupted or lost.

The problems of recovery of Discrete Event Systems can

be divided into three sub-problems [7]:

1) Detection: Consists in detecting discrepancies between

the state of the system and the specifications/supervisor

[8].

2) Diagnostic: Consists in detecting the fault that generated

the discrepancy. In DES, this problem may be handled

using techniques of diagnosability using automata mod-

els of Discrete Event Systems [9].

3) Recovery: After eliminating the cause of the fault, the

malicious agent or faulty parts, the recovery may be

about changing the state of the system and supervisor

to be consistent.

Shu [10] deals with the recovery of manufacturing systems

firing recovery events when an event sequence leads the system

to a faulty mode. These recovery events cannot be disabled

http://arxiv.org/abs/2008.13062v1
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Fig. 1: System under attack or failure

by the supervisor and they are used by the supervisor in

order to recover the system. On the other hand, Andersson

and coauthors [11]–[13], Bergagard and coauthors [14], [15]

present a method to restart manufacturing systems, modeled

using operations and coordination of operations (COP), after

unforeseen errors using the notion of restart states. In this

context, the restart process act by resynchronizing the physical

state of a plant with the state of COP.

In this paper, we propose the use of the theoretical devel-

opment in Synchronizing Automata to deal with the problem

when the active state of the plant does not match the active

state of the supervisor, after the system suffers an attack of

a malicious agent or after a fault. In this sense, we consider

that the system loses synchronization when the active control

state does not correspond to the active physical state.

Differently from the techniques presented in [11]–[15], if it

is possible to model the system components as synchronizing

automata then it is always possible to restart the system,

and there is no need to insert additional components. We,

also, present a simple method to model conventional problems

of SCT as synchronizing automata inserting recovery events,

similar to those presented in [10].

An automaton is said synchronizing when there is a word,

called synchronizing word, that, when executed by the automa-

ton, leads to the same state, regardless of the state of origin. So,

two identical automata, in different states, will always evolve

to the same state when a synchronizing word is executed [16].

The existence of a synchronizing word has applications in

many fields, such as robotics, assembling, loading and packing

of products [17], [18]. More theoretical development was

presented in the context of industrial automation [19]–[21].

Synchronizing automata were also applied to problems with

partial observability [22] and problems modeled with Petri

Nets [23]–[26].

The contributions of the paper are summarized. First, we

present how the synchronizing automata coexist with the

Supervisory Control Theory and in which cases the synchro-

nization is maintained after the synthesis of a controllable and

nonblocking supervisor. Then, we show how to turn automata

that model the plants and specifications into synchronizing

automata using recovery events (alike [10]) and how they

can be used to resynchronize supervisor and plant. Then, we

expand the obtained results to Local Modular Supervisory

Control, allowing partial recovery of the system, pointed out

as a future challenge in [13].

This paper is organized such that Section II has the prelimi-

naries, where we show the main concepts needed to understand

the results. Section III states the problem this paper aims to

solve. Section IV presents the main results, where we present

conditions under which synchronization survives the syntheses

of supervisors in both in the Monolithic Supervisory Control

and the Local Modular Supervisory Control. In Section V, an

example is presented showing how synchronizing automata

can be used in discrete event systems. The conclusions are in

Section VI.

II. PRELIMINARIES

In this section, we summarize some fundamental concepts

and results of the Supervisory Control Theory (SCT) of

Ramadge and Wonham [27], that are needed for the theoretical

development of the paper. We, also, define some concepts and

notation on the synchronizing automata.

A. Languages and Automata

Let Σ be a finite nonempty set of events, referred to as

an event set. Behaviors of DES are modeled by finite words

over Σ. The set of all finite words composed of events in Σ,

including the empty word ε, is denoted by Σ∗. A subset L ⊆
Σ∗ is called a language. The concatenation of words s, u ∈ Σ∗

is written as su. A word s ∈ Σ∗ is called a prefix of t ∈ Σ∗,

written s ≤ t, if there exists u ∈ Σ∗ such that su = t. The

prefix-closure L of a language L ⊆ Σ∗ is the set of all prefixes

of words in L, i.e., L = { s ∈ Σ∗ | s ≤ t for some t ∈ L }.

A common operation over words and languages is the

natural projection. Given two event sets Σ and Σi, such that

Σi ⊆ Σ, the natural projection PΣ→Σi
: Σ∗ → Σ∗

i is defined

as:

PΣ→Σi
(ǫ) = ǫ

PΣ→Σi
(σ) =

{

σ if σ ∈ Σi

ǫ if σ ∈ Σ \ Σi

PΣ→Σi
(sσ) = PΣ→Σi

(s)PΣ→Σi
(σ), s ∈ Σ∗, σ ∈ Σ.

The inverse projection maps a word built from an event set

Σi to a language in the event set Σ as:

P−1

Σ→Σi
(t) = {s ∈ Σ∗ |PΣ→Σi

(s) = t}.

Both operations can be extended to operate over languages.

For L ⊆ Σ∗:

PΣ→Σi
(L) = {t ∈ Σ∗

i | (∃s ∈ L) [PΣ→Σi
(s) = t]}.

For L ⊆ Σ∗
i :

P−1

Σ→Σi
(L) = {s ∈ Σ∗ | (∃t ∈ PΣ→Σi

(L)) [PΣ→Σi
(s) = t]}.

Definition 1. A Deterministic Finite Automata (DFA) is a 5-

tuple G = (Q,Σ, δ, q0, Qm), where Q is a finite set of states,

Σ is an event set, δ : Q × Σ → Q is the transition function,

q0 ∈ Q is the initial state and Qm ⊆ Q is the set of marked

states.

The transition function can be extended to recognize words

over Σ∗ as δ(q, σs) = q′ with δ(q, σ) = x and δ(x, s) = q′.
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The execution of a word s in a state q, δ(q, s), is denoted by

the concatenation q.s. The same notation is used to represent

this operation over sets. The notation A.s denotes the set of

destination states when the word s is executed from the set of

states A ⊆ Q.

The active event function, defined by Γ : Q → 2Σ, is, given

a state q, the set of events σ ∈ Σ for which δ(q, σ) is defined.

The generated and marked languages are, respectively,

L(G) = {s ∈ Σ∗|q0.s = q′ ∧ q′ ∈ Q} and Lm(G) =
{s ∈ Σ∗|q0.s = q′ ∧ q′ ∈ Qm}. Another language is

defined to include words starting in any state q of G as

LG(q) = {s ∈ Σ∗|q.s = q′ ∧ q, q′ ∈ Q} such that

LG(q0) = L(G). An automaton is said to be nonblocking

if Lm(G) = L(G).

Definition 2. Let G1 = (Q1,Σ1, δ1, q01, Qm1) and G2 =
(Q2,Σ2, δ2, q02, Qm2) be two automata. The parallel compo-

sition of G1 and G2, denoted by G12 = G1||G2 is:

G12 = (Q1 ×Q2,Σ1 ∪ Σ2, δ12, (q01, q02), Qm1 ×Qm2)

where

δ((q1, q2), σ) =



















(δ1(q1, σ), δ2(q2, σ)), if σ ∈ Γ1(q1) ∩ Γ2(q2)

(δ1(q1, σ), q2), if σ ∈ Γ1(q1)\Σ2

(q1, δ2(q2, σ)), if σ ∈ Γ2(q2)\Σ1

undefined, otherwise.

Also, let PΣ1∪Σ2→Σ1
: (Σ1∪Σ2)

∗ → Σ∗
1 and PΣ1∪Σ2→Σ2

:
(Σ1 ∪ Σ2)

∗ → Σ∗
2 be natural projections:

L(G12) = P−1

Σ1∪Σ2→Σ1
(L(G1)) ∩ P−1

Σ1∪Σ2→Σ2
(L(G2))

Lm(G12) = P−1

Σ1∪Σ2→Σ1
(Lm(G1)) ∩ P−1

Σ1∪Σ2→Σ2
(Lm(G2)).

B. Supervisory Control Theory

The Supervisory Control Theory is a formal method, based

on language and automata theory, to the systematic calculus of

supervisors [28]. The system to be controlled is called plant,

the controller agent is called supervisor and the control prob-

lem is to find a supervisor which enforces the specifications

in a minimally restrictive way. The plant is modeled by an

automaton G = ( ,Σ, , , ) and Σ = Σc ∪ Σu where Σc is

the set of controllable events, which can be disabled by an

external agent, and Σu is the set of uncontrollable events,

which cannot be disabled by an external agent. The plant

represents the logical model of the DES, the system behavior

under no control action. The supervisor’s S role is to regulate

the plant behavior to meet a desired behavior K disabling

controllable events.

Let E be an automaton that represents the specification

imposed on G. We say that K = Lm(G ‖ E) ⊆ Lm(G)
is controllable w.r.t. G if KΣuc ∩L(G) ⊆ K . A nonblocking

supervisor V for G such that Lm(V/G) = K exists if and

only if K is controllable w.r.t. G. If K does not satisfy the

condition, then the supremal controllable and nonblocking

sublanguage Sup C(K,G) can be synthesized. It represents

the least restrictive nonblocking supervisor. For G and K , a

monolithic supervisor automaton S can be computed to rep-

resent Sup C(K,G) such that Lm(S) = Sup C(K,G) ⊆ K .

The generated and marked language of a plant G under

the action of a supervisor S are, respectively, L(S/G) and

Lm(S/G) ⊆ L(S/G).
The space explosion of the monolithic supervisor synthesis

can be avoided using decentralized techniques, as the Local

Modular Supervisory Control [29] where one supervisor is

synthesized for each specification, and each one of the super-

visors has only a partial view of the plant. The global plant

G is composed of n sub-plants Hi, i ∈ {1 . . . n}, such that

their event sets ΣHi
are disjoint and G = ||ni=1Hi, also the

global specification E is composed of m sub-specifications

Ej , j ∈ {1 . . .m}, such that their event sets are represented

by ΣEj
and E = ||mj=1Ej . A local plant Gj is such that

Gj = ||a∈Aj
Ha with Aj = {i ∈ {1 . . . n}|ΣHi

∩ ΣEj
6= ∅}.

In the Local Modular Control, the local supervisor Sj =
Sup C(Kj, Gj), where Kj = Lm(Gj ‖ Ej). Each supervisor

is nonblocking by construction, but their combined behaviour

has to be nonblocking in order to have the same behavior

than the monolithic control solution. To check if supervisors

are nonconflicting, the equality in (1) must be verified.

||mj=1Lm(Sj) = Lm(||mj=1Sj). (1)

C. Synchronizing Automata

The original definition of a synchronizing automaton [16]

is presented and the idea is extended to be used in the context

of Supervisory Control Theory. A synchronizing deterministic

finite automaton is a DFA that has a word that, when executed

from any state of the automaton, leads to a known state.

Definition 3. [16] A complete automaton G = (Q,Σ, δ, , )
is synchronizing if and only if for any pair of states q, q′ ∈ Q
there exists a word w ∈ Σ∗, called synchronizing word, such

that q.w = q′.w, ∀q, q′ ∈ Q.

A complete automaton in the definition refers to an au-

tomaton with a complete transition function, that is, transitions

labeled with all the events in the event set are available in each

state. Also, the initial state is irrelevant to the original property,

so it is intentionally omitted in the following example.

Example 1. Consider the synchronizing automaton A =
(Q,Σ, , , ) of Fig. 2. The word w = ab3ab3a leads the

automaton to state 1, regardless the origin state. Using the

notation established before, Q.w = 1, Q = {0, 1, 2, 3}. It is

straightforward that any word sw, s ∈ Σ∗, also leads the

automaton to state 1.

If the word w is a synchronizing word, the operation Q.w
results in a singleton set. Also, the set of all synchronizing

words of an automaton G is denoted by Syn(G):

Syn(G) = {w ∈ Σ∗| |Q.w| = 1}.

III. PROBLEM STATEMENT

Let G be a manufacturing system modeled as a discrete

event system under supervision of a supervisor S, obtained
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Fig. 2: Example 1- Conventional synchronizing automaton

[16].

through Supervisory Control Theory, S ⊆ Lm(G). Consider

that such control system (plant and supervisor) lose synchro-

nization due to a failure or an attack. In such a case, ∃s ∈ Σ∗,

∃σ ∈ Σ, such that sσ ∈ Lm(G)∩S, however, due to a failure

or attack, the transition with σ is not “communicated” to the

supervisor and the current state of the plant does not match

the state estimated by the supervisor. Propose a method to

resynchronize the control system (plant and supervisor), based

on synchronizing automata.

IV. MAIN RESULTS

The main idea of this work is to adapt the Supervisory Con-

trol Theory to deal with synchronizing automata, such that the

features of this model can be used to solve desynchronization

that may be caused by attacks or failures. In order to do so,

we organize this section into four subsections. First we extend

the concept of synchronizing automata to a more specific class

that is the synchronizing automata w.r.t. the initial state and

present some properties (Section IV-A). Then, we present how

synchronizing automata w.r.t. the initial state behave under

some automata operations (Section IV-B) and we show how

these automata can be used in the context of Supervisory

Control Theory (Section IV-C). Finally, we present a method to

model conventional DES problems as synchronizing automata

w.r.t. the initial state (Section IV-D).

A. Basic Definitions

When modeling a system, it is common to use partial

transition functions and work with the language starting at

the initial state. So, the idea of synchronization makes more

sense when defined in relation to the initial state. In Definition

4 a new class of synchronizing automata is presented, the

synchronizing automata w.r.t. the initial state. In this new

definition of synchronicity, the initial state cannot be omitted.

Definition 4. An automaton G = (Q,Σ, , q0, ) is synchro-

nizing w.r.t. the initial state if there exists a word w ∈ Σ∗,

called synchronizing word, such that Q.w = {q0}.

In words, G is a synchronizing automata w.r.t. the initial

state if for any state q ∈ Q of G, there is a word w such that

q.w = q0. The set of synchronizing words w.r.t. the initial

state of an automaton G is represented by Synq0(G). In order

to simplify the notation, we define that Synq0(G) = I .

Example 2. Let A = ( ,Σ1, , , ) be an automaton with

two states, in Fig. 3. The word w = c ∈ Σ∗
1 is the shortest

of the synchronizing words of A and the automaton is a

synchronizing automaton w.r.t. the initial state.

0 1

a

b

c

c

Fig. 3: Example 2: Synchronizing automaton A

Proposition 1 demonstrates some properties of synchroniz-

ing automata w.r.t. the initial state, regarding their languages,

adapted from [16].

Proposition 1. Let G = ( ,Σ, , q0, ) be a synchronizing

automaton w.r.t. the initial state and I 6= ∅. Then:

a) L(G)IL(G) ⊆ L(G);
b) L(G)ILm(G) ⊆ Lm(G);
c) Lm(G)ILm(G) ⊆ Lm(G).

The language Lm(G) is called a synchronizing language.

Proof. Any word s ∈ L(G) leads to a state q (q0.s = q) that,

when followed by a word w ∈ I , reaches state q0 (q.w = q0),

from Definition 3. So, ∀s ∈ L(G), ∀w ∈ I q0.sw = q0.

a) Let s ∈ L(G), and w ∈ I , then:

sw ∈ L(G)I ⊆ L(G)

and q0.sw = q0. We also know that, for any automaton

G, LG(q0) = L(G) and we can concatenate L(G) to

both sides and find:

swL(G) ⊆ L(G)IL(G) ⊆ L(G)L(G). (2)

(2) becomes:

L(G)IL(G) ⊆ L(G). (3)

proving a).

b) Let u ∈ L(G), and w ∈ I , then:

uw ∈ L(G)I

and q0.uw = q0. We also know that, for any automaton

G, LG(q0)∩Lm(G) = Lm(G). So we can concatenate

Lm(G) to uw and:

uwLm(G) ⊆ L(G)ILm(G)

Since ∀s ∈ L(G)I , q0.s = q0, then:

uwLm(G) ⊆ L(G)ILm(G) ⊆ Lm(G).

proving b).

c) Given that:

Lm(G) ⊆ L(G)

we have:

Lm(G)ILm(G) ⊆ Lm(G).
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A synchronizing automaton w.r.t. the initial state is syn-

chronizing to any state if it is also accessible, given that it is

always possible to lead any state to the initial state and then

to any other state.

Corollary 1. If G = (Q, , , q0, ) is a synchronizing au-

tomaton w.r.t. the initial state and every state of G is accessible

then:

a) G is a synchronizing automaton w.r.t. any state q′ ∈ Q;

b) G is coaccessible.

Proof. If G is synchronizing w.r.t. the initial state then there

is a set I 6= ∅ such that

L(G)IL(G) ⊆ L(G),

from (Proposition 1). If G is accessible, for every state q ∈ Q
there is at least a word u ∈ L(G) such that:

q0.u = q (4)

and since I 6= ∅, from any state q′ ∈ Q, q′.w = q0, with

w ∈ I . From (4), we know that q′.wu = q. Then, Q.wu = {q},

wu ∈ I and G is synchronizing w.r.t. state q, showing item

a). If G is accessible, every state q ∈ Qm ⊆ Q is reachable

from the initial state, q0.u = q, with u ∈ Lm(G). If G is

synchronizing, then there exists w ∈ I such that q.w = q0
and from q0 all states are reachable. Then, we can conclude

that G is coaccessible, showing item b).

B. Operations with Synchronizing Automata

In general, it makes little sense, in the Supervisory Control

Theory, to expect a supervisor to be synchronizing when the

automata that originate that supervisor are not. So, our strategy

is to model the system and specification as synchronizing

automata and see under what conditions the synchronization

word survives the synthesis procedure. In this context, it is

important to analyze how the synchronizing word survives the

parallel composition of synchronizing automata.

Lemma 1. Let L ⊆ Σ∗
1 be a synchronizing language and I be

the set of all synchronizing words w.r.t. the initial state of L
and P : Σ∗ → Σ∗

1, Σ1 ⊆ Σ then P−1(L) is a synchronizing

language.

Proof. To show that P−1(L) is a synchronizing language, we

must show that ∃IK , such that P−1(L)IKP−1(L) ⊆ P−1(L).
Since L is a synchronizing language, then LIL ⊆ L (Propo-

sition 1). Applying the inverse projection to both sides:

P−1(LIL) ⊆ P−1(L)

We can decompose the left side of the expression, resulting

in:

P−1(L)P−1(I)P−1(L) ⊆ P−1(L)

replacing P−1(I) = IK and P−1(L) = B we have:

BIKB ⊆ B.

So, B = P−1(L) is a synchronizing language.

In the context of automata, the inverse projection creates

self-loops in all states for each symbol in Σ2 \ Σ1. It is

easy to see that this operation does not turn a synchronizing

automaton unsynchronizing, but only increases the number of

synchronizing words.

Example 3. Let A = ( ,Σ1, , , ) be the synchronizing

automaton w.r.t the initial state previously presented in Fig.3,

Σ1 = {a, b, c} and Σ = {a, b, c, x}. Consider the natural

projection P : Σ → Σ1. In Fig.4, an automaton that models

the language P−1(Lm(A)) is shown. It is easy to see that

any word in IP = (Σ \ Σ1)
∗c(Σ \ Σ1)

∗c∗(Σ \ Σ1)
∗ =

x∗cx∗c∗x∗ ∈ Σ∗ is a synchronizing word w.r.t. the initial state

of the resulting automaton.

0 1

c, x

c

b

a x

Fig. 4: Example 3: Synchronizing automaton w.r.t. the initial

state, modeling the inverse projection of the machine A to Σ.

From the definition of the inverse projection, we can con-

clude that I ⊂ IK , so every synchronizing word of L is also

a synchronizing word of P−1(L).
Now we deal with the intersection operator.

Lemma 2. Let L1, L2 ⊆ Σ∗ be synchronizing languages. Let

I1, I2 be, respectively, the sets of synchronizing words of their

original automata. If I1∩I2 6= ∅, then the nonempty language

K = L1 ∩ L2 is a synchronizing language and its automaton

is synchronizing w.r.t. the initial state.

Proof. From Proposition 1, we have that:

L1I1L1 ⊆ L1 (5)

L2I2L2 ⊆ L2. (6)

for all s ∈ L1 ∩ L2 and w ∈ I1 ∩ I2 is straightforward that

sws ∈ L1I1L1 and sws ∈ L2I2L2, so:

sws ∈ L1I1L1 ∩ L2I2L2. (7)

(7) can be rewritten as:

sws ∈ (L1 ∩ L2)(I1 ∩ I2)(L1 ∩ L2) ⊆ L1 ∩ L2. (8)

then, (L1 ∩L2)I1 ∩ I2(L1 ∩L2) ⊆ L1 ∩L2 and L1 ∩L2 is a

synchronizing language.

Using the last two lemmas, it is possible to define con-

ditions under which the parallel composition maintains the

synchronicity of the original synchronizing automata. This

result is presented in Proposition 2.

Proposition 2. Let G1 = (Q1,Σ1, δ1, q01, Qm1) and G2 =
(Q2,Σ2, δ2, q02, Qm2) be synchronizing automata w.r.t. the

initial state and let Σ = Σ1 ∪ Σ2. The resulting automa-

ton G = G1||G2 is synchronizing w.r.t. the initial state if
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P−1

Σ→Σ1
(I1) ∩ P−1

Σ→Σ2
(I2) 6= ∅, with PΣ→Σi

: Σ∗ → Σ∗
i ,

i ∈ {1, 2}.

Proof. Because G1 and G2 are synchronizing w.r.t. the ini-

tial state, we know, using Lemma 1, that the languages

P−1

Σ→Σ1
(Lm(G1)) and P−1

Σ→Σ2
(Lm(G2)) are also synchroniz-

ing w.r.t. the initial state.

Considering that P−1

Σ→Σ1
(I1) ∩ P−1

Σ→Σ2
(I2) 6= ∅ and also

that:

Lm(G1||G2) = P−1

Σ→Σ1
(Lm(G1)) ∩ P−1

Σ→Σ2
(Lm(G2))

we have, using Lemma 2, that the language Lm(G1||G2) is

a synchronizing language and that G1||G2 is a synchronizing

automaton w.r.t. the initial state.

The next step is to analyze how synchronizing words behave

in the synthesis of controllable and nonblocking supervisors

using the Supervisory Control Theory.

C. Supervisory Control Theory with Synchronizing Automata

The synthesis of a supervisor has 3 main steps: model the

open loop behavior and specifications; compute the desired

language; synthesize the supremal controllable and nonblock-

ing sublanguage. At this point, we assume that we are able to

model and specify using synchronizing automata (we present

how in Section IV-D1).

In the following, we show under what conditions we have

a synchronizing language as a result of the synthesis.

Theorem 1. Let G be a plant and let E be a specification, both

modeled as synchronizing automata w.r.t. the initial state. A

nonempty controllable and nonblocking supervisor S such that

S = SupC(K,G), K = G||E, is a synchronizing automata

w.r.t. the initial state if Σ∗
u ∩ I 6= ∅, with I = Synq0(G ‖ E).

Proof. Let K = G ‖ E = (Q,Σ, , q0, Qm) and S =
(Qs,Σ, , q0, Qms), where Qs ⊆ Q and Qms = Qm ∩ Qs.

In the sense of controllability, every state qf ∈ Q \ Qs is a

bad state, because fails the principle of controllability.

Since Σ∗
u∩I 6= ∅, there is at least a word w = σ1σ2 . . . σn ∈

Σ∗
u ∩ I . There are two possibilities to be considered.

a) the trace w executed from any state q ∈ Q does not visit

a bad state:

If this is the case, since all states of K that are visited

are good states, they will be kept in S. So, w ∈ I is,

also, a synchronizing word of S.

b) the trace w executed from any state q ∈ Q visits a bad

state;

When obtaining S, states of the automaton that imple-

ments K are removed, if they are bad states. If there is a

word w = σ1σ2 . . . σn ∈ Σ∗
u ∩ I , where I = Synq0(K),

then every q′ ∈ Q where q′
σ1...σp

−−−−→ qf
σp+1...σn

−−−−−−→ q0 is

also a bad state and is not in Qs, so every state q that

leads to a bad state, using uncontrollable events, is also

removed, then w is completely removed, indicating that

L(S) = {ǫ} and the supervisor is empty.

After the bad states removal, the accessible part of the

resulting automaton is always coaccessible, using Corollary 1,

then nonblocking.

It is straightforward to apply Theorem 1 to the Local

Modular Supervisory Control of DES [29].

Corollary 2. Let Ej be the local specifications of the system

and Gj = ( ,Σj , , , ), be the local plants, with Σuj ⊆
Σj as the uncontrollable events of Gj and j ∈ {1 . . .m}. If

Gj and Ej are synchronizing automata w.r.t. the initial state,

Σ∗
uj∩Ij 6= ∅, Ij = Synq0(Gj ‖ Ej) then the local supervisors

Sj are also synchronizing automata w.r.t. the initial state.

Proof. This results follows from the direct application of

Theorem 1 to local specifications and local plants.

Corollary 3 shows that synchronizing local supervisors are

nonconflicting.

Corollary 3. Let Sj be the local supervisors of a sys-

tem, defined as synchronizing automata w.r.t. the initial

state, then these modular supervisors are nonconflicting, so

Lm(||mj=1Sj) = ||mj=1Lm(Sj).

Proof. If Sj is synchronizing w.r.t. the initial state, from

Corollary 1, we know Sj is coaccessible and then:

Lm(Sj) = L(Sj). (9)

From Theorem 2, we know that S = ||mj=1Sj is a syn-

chronizing automaton w.r.t. the initial state and is, also,

coaccessible, such that:

Lm(S) = L(S)

replacing S by ||mj=1Sj on both sides:

Lm(||mj=1Sj) = ||mj=1L(Sj).

Using (9) we have

Lm(||mj=1
Sj) = ||mj=1Lm(Sj).

So, the supervisors Sj are nonconflicting.

In the next section synchronization concepts presented so

far are used to implement a recovery procedure for a classical

SCT problem.

D. Synchronization using Recovery Events

In order to integrate the idea of synchronization with the

Supervisory Control Theory, we propose the creation of a

recovery event that connects each state of the plant to the

initial state, including a self-loop in the initial state. Also, if

the specification is of a buffer type, we create a recovery event

to have the buffer move from any state to the initial state. The

same idea can be applied to any other type of specification.

It is important to note that the creation of the recovery

events in a system is only possible when the components of the

system admit a restart procedure regardless their current state.

This restart can be automatic, when the system has a built-

in reset, or manual, when an operator has to manually restart

the system. Although the existence of a restart procedure is

common in many industrial devices, some systems may not

be restarted due to physical restrictions, for instance, systems
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with slow dynamics in which abrupt changes are not possible

(power systems, thermal systems, and so on).

A procedure that turns plant and specification into synchro-

nizing automata is presented next.
1) Modeling: Consider a system composed of machines

M ′
i = (Qi,Σ

′
i, δ

′
i, q0i, ), i ∈ {1 . . .m}, and buffer specifi-

cations B′
j = (Qj ,Σ

′
j , δ

′
j , q0j , ), j ∈ {1 . . . n}. To turn the

automata into synchronizing automata, the procedure is:

a) For each plant M ′
i we redefine it to Mi =

(Qi,Σi, δi, q0i, ) where Σi = Σ′
i ∪ Σri, Σri = {ri},

and δi as:

δi(q, σ) =

{

q0i if σ = ri

δ′i(q, σ) if σ 6= ri.

b) For each buffer specification B′
j we redefine it to Bj =

(Qj ,Σj , δj , q0j , ) where Σj = Σ′
j ∪ {rBj

} and δj as:

δj(q, σ) =

{

q0j if σ = rBj

δ′j(q, σ) if σ 6= rBj
.

2) Synthesis: We propose two modifications to the Super-

visory Control Theory, related to the verification of controlla-

bility and nonblockingness under a new partition of the event

set. Instead of partitioning the event set into controllable and

uncontrollable events, we use a third set of events that carries

the recovery events, as in [10]. This modification is justified

because in the controllability analysis we need the recovery

events to behave as uncontrollable events, but we do not desire

that the recovery events take part on the blocking analysis,

because the system may be blocking and this will be detected

only if recovery events are disregarded.

Definition 5. Let G = ( ,Σ, , , ) be a deterministic finite

automaton, synchronizing w.r.t. the initial state, and let Σ =
Σc∪Σu∪Σr, with Σc as the controllable events set, Σu as the

uncontrollable events set and Σr as the recovery events set.

Any word of cardinality n formed as an arrangement, without

repetition, of the set Σr, with n = |Σr| is a synchronizing

word of G.

As established in Proposition 2, the parallel composition

of two synchronizing automata, w.r.t. the initial state, is also

synchronizing when the intersection between their sets of

synchronizing words, when inverse projected to the complete

event set, is nonempty. Such intersection always exists when

using recovery events, as defined in Section IV-D1.

Corollary 4. Let G1 = ( ,Σ1, , , ) and G2 = ( ,Σ2, ,
, ) be synchronizing w.r.t. the initial state and Σ = Σ1 ∪Σ2

and Σr = Σr1∪Σr2, where Σr ⊂ Σ, Σr1 ⊂ Σ1 and Σr2 ⊂ Σ2.

Also, let I1 and I2 be the sets of synchronizing words of G1

and G2, respectively. The resulting automaton G = G1||G2 is

synchronizing w.r.t. the initial state.

Proof. To show that automaton G = G1||G2 is synchronizing

w.r.t. the initial state it is enough to show that P−1

Σ→Σ1
(I1) ∩

P−1

Σ→Σ2
(I2) 6= ∅, (Proposition 2), PΣ→Σi

: Σ∗ → Σ∗
i , i ∈

{1, 2}.

Let perm(Σa,Σb) = {s : s ∈ Σ∗
a ∧ ∀σ ∈

Σb, |PΣa→{σ}(s)| = 1} be a subset of a Σ∗
a where every event

in Σb occurs only once. When Σa = Σb the resulting language

carries the words that are permutations of the events in Σa.

By definition,

perm(Σr1,Σr1) ⊆ I1

perm(Σr2,Σr2) ⊆ I2

and

perm(Σr,Σr) ⊆ perm(Σr,Σr1)

⊆ P−1

Σ→Σ1
(perm(Σr1,Σr1)) (10)

perm(Σr,Σr) ⊆ perm(Σr,Σr2)

⊆ P−1

Σ→Σ2
(perm(Σr2,Σr2)). (11)

If Σr 6= ∅, we have that perm(Σr,Σr) 6= ∅. From (10) and

(11), perm(Σr,Σr) ⊆ P−1

Σ→Σ1
(I1) ∩ P−1

Σ→Σ2
(I2). Then, we

can say that G = G1||G2, modeled with recovery events, is

synchronizing w.r.t. the initial state.

Now, it is necessary to redefine nonblockingness and

controllability, since there is a new partition to the events

set (including Σr). When verifying nonblocking, recovery

events are ignored because a blocking behavior should not be

turned into nonblocking by recovery events. When verifying

controllability, the recovery events should be considered as

uncontrollable events, because a recovery event should never

be disabled by the supervisor.

The definition of nonblocking for systems with recovery

events is given in Definition 6.

Definition 6. Let G = ( ,Σ, , , ) be a deterministic finite

automata, synchronizing w.r.t. the initial state, with Σr ⊆ Σ.

G is nonblocking if:

L(G) ∩ (Σ \ Σr)
∗ = Lm(G) ∩ (Σ \ Σr)∗

The modified definition of controllability is presented in

Definition 7.

Definition 7. Let G = ( ,Σ, , , ) be a deterministic finite

automata, synchronizing w.r.t. the initial state, so its event set

can be partitioned into Σ = Σc ∪Σu ∪ Σr. A language K ⊆
Lm(G) is controllable if:

K(Σu ∪ Σr) ∩ L(G) ⊆ K.

If K satisfies the condition, then it is controllable, otherwise

the supremal controllable and nonblocking sublanguage can

be synthesized. Theorem 1 is reformulated in Corollary 5.

Corollary 5. Let G = ||mi=1Mi and E = ||nj=1Bj , modeled

as synchronizing automata w.r.t. the initial state, as in Section

IV-D1. Let I be the set of synchronizing words of K = G||E,

if (Σu ∪ Σr)
∗ ∩ I 6= ∅ then a nonempty controllable and

nonblocking supervisor S, synthesized from G and E is, also,

a synchronizing automata w.r.t. the initial state.
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Proof. Using the modeling approach proposed in Section

IV-D1, recovery events are included in the subsystems and

specifications such that:

I ∩ Σ∗
r 6= ∅. (12)

From Definition 7 we know that the recovery events cannot

be disabled by the supervisor (if that happened the controlla-

bility test would fail). Then, Theorem 1 is valid replacing Σu

with (Σu ∪ Σr) in the statement and in the proof.

In such a case, the condition for the validity of the Theorem

is changed to (Σu ∪ Σr)
∗ ∩ I 6= ∅. From (12) we know that

(Σu ∪ Σr)
∗ ∩ I 6= ∅, so the condition is fulfilled and the

supervisor is synchronizing w.r.t. the initial state.

With this approach, a controllable and nonblocking super-

visor is always synchronizing w.r.t. the initial state.

The same approach can be applied to Local Modular Su-

pervisory Control. As presented in Corollary 2, each local

supervisor is controllable and nonblocking. However, even

if the original system is nonconflicting, the nonconflict test

over the supervisors with recovery events is necessary. Since

recovery events do not take part into the nonblockingness

verification, the nonconflicting test of (1) has to be adapted

to ignore recovery events (Definition 8).

Definition 8. Let Sj be the local supervisors of a system,

defined as synchronizing automata w.r.t. the initial state with

event set Σj = Σcj ∪ Σuj ∪ Σrj . These supervisors are

nonconflicting if:

||mj=1Lm(Sj) ∩ (Σj \ Σrj)∗ = Lm(||mj=1Sj) ∩ (Σ \ Σr)∗

In manufacturing systems, the recovery events typically

share a transition with uncontrollable events in the plants,

or are in self-loops. The resulting modular supervisors, when

we remove the recovery events, are equal to the modular

supervisors of the system when modeled without recovery

events. When this is the case, a nonconflicting control system

will be nonconflicting after the recovery events are added.

Next section shows a complete example of the application

of synchronizing automata w.r.t. the initial state using recovery

events to recover from a fault when the plant and the super-

visor become unsynchronized.

V. CASE STUDIES

In this section, we show how to model regular DES

problems (the extended small factory [28] and the Flexible

Manufacturing System [30]) as synchronizing automata and

apply the reset procedure proposed in this paper.

A. Extended Small Factory

Consider an extended version of the small factory, com-

posed of three machines and two unity buffers, Fig. 5.

Originally, each machine is modeled by an automaton M ′
i =

( ,Σi, , , ), i ∈ {1, 2, 3}, with 2 states (idle and working)

and 2 transitions (start and finish). The unity buffers are also

M1 B1 M2 B2 M3

a1 b1 a2 b2 a3 b3

Fig. 5: Extended small factory diagram.

0 1

ai

bi

(a) M ′

i , i ∈ {1, 2, 3}

E F

bi

ai+1

(b) B′

j , j ∈ {1, 2}

Fig. 6: Original automata modeling the extended small factory.

modeled with automata B′
j , j ∈ {1, 2}, with two states and

two transitions (Figure 6).

First, the automata of Fig. 6 are transformed into

synchronizing automata w.r.t. the initial state, by adding

recovery events ri and rBj
to the models, such that

each automaton is brought to the initial state when their

synchronizing word is executed, as described in Section

IV-D1.

In Fig. 7 the model of each part of the system and the shortest

synchronizing word of each machine are shown. The shortest

synchronizing word is the trace ri ∈ Σ∗
ri for each plant and

rBj
∈ Σ∗

Bj
for each specification.

0 1

ai

bi

ri

ri

(a) Mi

E F

bj

aj+1

rBj

rBj

(b) Bj

Fig. 7: Synchronizing automaton Mi, i ∈ {1, 2, 3}, with wi =
ri ∈ I1, and Bj , j ∈ {1, 2}, wBj

= rBj
.

Each local plant Gj = Mj||Mj+1, j = {1, 2}, is also

a synchronizing automaton w.r.t. the initial state, Gj =
( ,Σj ∪ Σj+1 ∪ {rj , rj+1}, , , ), with shortest synchro-

nization word wj ∈ {rjrj+1, rj+1rj}. For G1 (Fig. 8(a)),

w1 ∈ {r1r2, r2r1} and for G2 (Fig. 9(a)), w2 ∈ {r2r3, r3r2}.

We propose to execute a synchronizing word of the super-

visor, that includes the recovery events of the plant, in order

to recover the system. It is straightforward that any word that

brings each original automaton, inverse projected to the same

event set (union of all sets), to their initial states, leads the

composition to its initial state. So, consider a synchronization

word of S1, w1 = r1r2rB1
. If we execute w1 in S1, Fig.8(b),

regardless the original state, we will reach the initial state.

Moreover, any synchronizing word, built for S1 resets also

its correspondent local plant and buffer. If we run w1 in G1

(Fig.8(a)), and its corresponding natural projections in M1,

M2 and B1 (Fig.7(a) and (b)) it will lead us to the initial

state.

Now, we show how the desynchronization may happen and

how to use the synchronizing word to solve it. If a sequence

s = a1 b1 a2 a1 b2a3 ∈ S1||S2 is executed, states (10) of

G1 and (10E) in S1 are reached. Consider now that event
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00

11

1001

r1

r2r1

r2

r1 r2

r1, r2

a1

b1

a2

b2b1

a1

b2

a2

(a) G1 = M1||M2, with a (not unique) shortest synchronizing word
w1 = r1r2.

00E

00F 01F

01E 11E

10E

r1, r2, rB1

a1

r1

r2, rB1

b2, r2

rB1

b1

r1, r2

rB1

b2, r2
r1

rB1
b1

r1, rB1

a1

r1

b2, r2

a2

(b) Resulting supervisor S1, with a (not unique) shortest synchronizing
word w = r1r2rB1

.

Fig. 8: Plant G1 and supervisor S1, obtained for the Extended

Small Factory of Fig. 5.

00

11

1001

r2

r3r2

r3

r2 r3

r2, r3

a2

b2

a3

b3b2

a2

b3

a3

(a) G2

00E

00F 01F

01E 11E

10E

r2, r3, rB2

a2

r2

r3, rB2

b3, r3

rB2

b2

r2, r3

rB2

b3, r3
r2

rB2
b2

r2, rB2

a2

r2

b3, r3

a3

(b) S2

Fig. 9: Plant G2 = M2||M3 with synchronizing word w =
r2r3 and supervisor S2 with synchronizing word w = r2r3rB2

b1 happens in the plant but the supervisor does not observe

it (a malicious agent has hidden such occurrence from the

control). Automaton G1 would move to state (00), and S1

would stay at (10E), since b1 is not observed. At this point, the

system and control are desynchronized. Supervisor S1 disables

a2 in state (10E) until b1 is observed and a1 is considered

by the supervisor as not possible and the control systems

reaches a deadlock. If we apply a synchronizing word of S1,

w = r1r2rB1
, S1 and G1 will move to the initial state.

Next, we analyze the effect that resynchronizing S1 and

G1 causes in S2 and G2. The word w = r1r2rB1
, resets M2

that is a system that is shared by G1 and G2. Supervisor S2

and plant G2 will see w′ = r2 and will be kept in the same

state (selfloops with r2 in states (01) of G2 and (01E) of S2),

namely the recovery is localized for S1 and G1 and S2 and

G2 are kept as before.

In the following, we present a case study of a Flexible

Manufacturing System (FMS), that illustrates the application

of the security recovery procedure in a larger system.

B. Flexible Manufacturing Systems

The Flexible Manufacturing System (FMS) [30] is com-

posed of eight machines: three conveyors (C1, C2 and C3), a

mill, a lathe, a robot, a painting device (PD) and an assembly

machine (AM), as shown on Figure 10.

The automata for the subsystems, modeled as synchronizing

automata w.r.t. the initial state with reset event, are shown in

Figure 11. The safety specifications, that restrict the system to

avoid underflow and overflow in the buffers, are presented in

Figure 12.

A total of 15 recovery events were created, one event for

each plant and specification. Monolithic and Local Modular

Supervisory Control were applied in order to obtain a set of

controllable, nonblocking and nonconflicting supervisors. The

synthesis of supervisors was done using software UltraDES

[31]. The classical algorithms were adapted to cope with

conditions of Corollary 5 and Definition 8.

The application of the monolithic approach leads to a single

supervisor with 70, 272 states, 1, 434, 804 transitions, being

C2

C1 B1

B2

B3

B4

B5

B6

B7

B8

C3

Robot

Lathe

Mill

AM

PD

11

21

12

22

31

33

37, 39

52, 54
51, 53

34

82
81

73
72

32

41

35

42

36

38

30

74
71

61

63

65

64

66

Fig. 10: Diagram of the Flexible Manufacturing System
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0 1
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0 1
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51
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53 54, rm

(e) Mill

0 1

2

71

72, r3
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73 74, r3

(f) C3

0 1

2

3

ra

61

ra

63

64, ra

65

66, ra
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0

3 42

1 5

rr

3536, rr
37

31 39

33

38, rr34, rr

32, rr
30, rr

(h) Robot

Fig. 11: Models of the plants of the Flexible Manufacturing System

1, 054, 080 of these transitions triggered by reset events. The

shortest synchronizing word has 16 events and, if used, will

reset the system (all equipment and supervisors) to the initial

state.

Using the same automata of figures 11 and 12, the resulting

supervisors are conflicting (as they were in the solution

without reset events). The conflict solution is to compose spec-

ifications E7 and E8 as a single local specification, generating

7 nonconflicting supervisors, as presented in Table I.

TABLE I: Supervisors of the Flexible Manufacturing System

(Sj relates to Ej), |w| is the size of one of the shortest

synchronizing words.

Sup. Plants States Trans. Trans. Σr |w|
S1 C1, Robot 18 94 36 3

S2 C2, Robot 18 94 54 3

S3 Mill,Robot 18 90 54 3

S4 Lathe, Robot 21 105 63 3

S5 Robot, AM 44 253 132 3

S6 Robot, AM 44 253 132 3

S7,8 Robot, AM, 260 2441 1560 6
C3, PD

Each supervisor has its own synchronizing words that allow

to recover the whole system applying a partial reset. A

consequence of the partial reset is that the closed loop behavior

after the recovery is not led to the global initial state, but

to an intermediate state where the resetted subsystems are in

the initial states while the rest of the subsystems are kept

untouched.

If a failure happens in one subsystem, the Mill for instance,

the recovery in the two approaches will lead to different

situations. The execution of a monolithic synchronizing word

will take the system to the global initial state. If the Local

Modular Supervisory Control is used, only the synchronizing

word of supervisor S3 has to be run and only the components

(Robot and Mill) are going to be reinitialized. Since the robot

is part of other supervisors, transitions are going to be executed

in each one of the supervisors, in order to resynchronize with

the new state of the robot. The states of the other subsystems

will be kept the same.

VI. CONCLUSIONS

This paper presents a secure recovery procedure based on

concepts of synchronizing automata and Supervisory Control

Theory. This approach can be used to restore systems damaged

by external attacks or temporary unobservability of some

events.

We show under what conditions the synchronicity of the

plants and specifications is inherited by the composed system

and supervisor and expand these results to the Local Modular

Supervisory Control. Then, We present a simple modification

applied to the classical modeling of systems and specifications,

to include recovery events, in order to turn a regular automaton

into a synchronizing one. While the monolithic approach will

lead to a complete reset of the system, the application of the

techniques together with the Local Modular Supervisory Con-

trol allows partial recovery of the system, resetting only the

local plants and supervisors affected by the desynchronization.

Our next steps are to adapt the recovery procedure, allowing

partial resets, even in the monolithic approach; define reset

procedures that do not necessarily lead to the initial state; and

apply the presented recovery techniques to systems that are

already inherently synchronizing.
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