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Diagnosability of event patterns in safe labeled time
Petri nets: a model-checking approach

Yannick Pencolé, Audine Subias

Abstract—Checking the diagnosability of a time discrete event
system usually consists in determining whether a single fault
event can always be identified with certainty after a finite amount
of time. The aim of this paper is to extend this type of analysis to
more complex behaviors, called event patterns, and to propose an
effective method to check diagnosability with the use of model-
checking techniques. To do so, we propose to convert the pattern
diagnosability problem into checking a linear-time property over
a specific time Petri net.

Note to Practitioners—This paper is motivated by the problem
of improving the monitoring and the supervision of systems like
automated and robotised manufacturing systems. Based on a
model of the system, the paper proposes a method to assert with
certainty whether the available set of sensors will always provide
enough information to ensure that a complex and unexpected
behavior has not happened in the system. The proposed method
uses a publicly available model-checking tool to perform this
analysis.

Index Terms—Fault Diagnosis, Diagnosability, Pattern, Time
Petri nets, Discrete Event Systems (DES).

I. INTRODUCTION

Diagnosability is the property of a partially observed dy-
namical system that asserts whether it is always possible
to diagnose with certainty the occurrence of an anticipated
failure [1], [2]. This paper addresses the problem of checking
diagnosability in timed discrete event systems such as auto-
mated and robotised manufacturing systems, communication
protocols. As opposed to most of the previous work the
anticipated type of failures are not represented as single
fault events but as more complex event assemblings called
event patterns [3], [4], [5]. This paper proposes a formal
and effective method to check pattern diagnosability in timed
systems that can be modeled as safe labeled time Petri nets.
The first contribution of the paper is a formal characteriza-
tion of the pattern diagnosis problem in timed system that
extends the one presented in [6] for untimed labeled Petri
nets. The second contribution is a formal extension of the
single fault diagnosability problem as initially defined in [7]
to pattern diagnosability. The proposed definition is language-
based and does not rely on the actual formalism (time Petri
net, time automata,...). We formally prove that this definition
encompasses the single fault diagnosability definition of [7].
The third contribution is about a way to turn the pattern
diagnosability problem into a model-checking problem [8],
[9], [6], by building a specific twin-plant based on a set of
products between the system’s model and the pattern. The
paper proposes an effective solution that uses the off-the-shelf
model-checker TINA [10] and presents experimental results.
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Audine Subias was with LAAS-CNRS, INSA, Univ. Toulouse, France

II. RELATED WORK

The problem of fault diagnosis and diagnosability in DESs
was introduced a few decades ago in [1], [2] and a survey can
be found in [11]. For untimed systems and in the framework
of automata, [2] proposed to check the diagnosability by
detecting fault-indeterminate cycles in a global diagnoser. The
algorithm is however exponential in the number of states of
the global behavioral model. Polynomial algorithms have then
been proposed, directly based on a synchronisation of two
copies of the behavioral model (twin-plant machine in [12] and
verifier in [13]), that look for a pair of infinite behaviors of the
system with the same observable projection, one faulty and one
non-faulty, which proves the system is not diagnosable. More
recently, this diagnosability problem has been revisited using
Petri nets [14]. It was introduced in [15] for unbounded Petri
nets by the use of a diagnoser built from a coverability graph.
[16] proposes the definitions of weak and strong diagnosability
and solve the problem by using net unfolding techniques. [17]
considers a structural approach to give a sufficient condition
for diagnosability relying on T-invariants and formulates the
problem as a linear programming problem. [18] gives sufficient
conditions for diagnosability and undiagnosability of a fault
transition based on the notion of the so called g-markings [19],
representing a set of inequalities to be solved. [20] updates the
verifier to analyse diagnosability on bounded Petri nets based
on minimal explanations to reduce the computational com-
plexity. Similarly, minimal explanations are used in [21] for
bounded nets and in [22] for unbounded nets, for the construc-
tion and the analysis of a compact state space representation
called Basis Reachability Graph (BRG) [23]. The approach
is extended to labeled Petri nets where different transitions
can share the same label in [24]. More recently [25] proposes
an approach for bounded and unbounded Petri nets from the
coverability graph. [26] proposes some reduction rules to apply
on the system model that preserve the diagnosability property
and improve the computation efficiency.

For timed discrete event systems (TDES), the literature
about fault diagnosis and diagnosability is far less developed.
It has been introduced in [7] on timed automata. A fault is
said to be diagnosable if there always exists a finite amount of
time τ after the occurrence of the fault to assert its occurrence
with certainty. If the diagnosability property holds for a fixed
time τ , then the system is τ -diagnosable. In [27], another
diagnosability property based on time ticks is analyzed: the
method relies on a timed product of finite-state generators.
In [28], the decidability and computational complexity of the
problem is presented. The work of [9] reviews the algorithms
for checking diagnosability in automata and timed automata
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and shows that both diagnosability problems can be reduced to
a Büchi emptyness problem based on a twin-plant as defined
in [7]. In the context of Petri nets, the work of [29] deals
with P-time Petri nets under partial observation. The method
is based on the synthesis of a modified state observer and on a
schedulability analysis using linear programming techniques.
Finally, [30] proposes a method for the diagnosability analysis
of labeled T-time Petri nets under partial observation. The
authors develop an approach based on the Modified State Class
Graph proposed in [31] to perform τ -diagnosability analysis
in two steps: they search for ambiguous sequences and, if such
sequences exist, they check for time ambiguities longer than
τ . To the best of our knowledge, this last work is the closest
to our proposal which consists in extending diagnosability
analysis to behavioral event patterns as defined in [6]. The
difference is that our proposal deals with the diagnosability
problem (looking for a time τ such that the system is τ
diagnosable) and not with the τ -diagnosability problem.

The related works presented hereabove only deal with single
faults. Diagnosability of more complex behaviors has also
been investigated but only for untimed DES. In [32], a pattern
is defined as a temporal logic specification over a finite-state
automaton. A fault is then defined as a behavior that does not
match the pattern (that is called a specification in [32]). To
check diagnosability, they propose an ad hoc algorithm that
builds the part of interest of the Kripke structure of the twin
plant by synchronizing faulty and non-faulty behaviors. In [3],
the patterns are defined as automata and they define the pattern
diagnosabililty problem in automata: is it possible to always
assert that the system matched a pattern after a finite sequence
of observations. As in [32] the authors propose an ad hoc
algorithm that builds the Kripke structure of the twin plant
by successive synchronizations. In [33], the same problem
is solved in a decentralized manner by aggregating pattern
recognizers. In [34], patterns define some contexts represented
as regular expressions and the authors propose a method to
solve the pattern diagnosis problem on a class of untimed DES
called active systems. [4] introduces the notion of patterns into
labelled Petri nets. An unfolding approach is then applied on
an updated twin-plant. More recently, [6] extends the work of
[4] to more sophisticated patterns and proposes an effective
method to automatically analyze the diagnosability.

III. BACKGROUND ON LABELED TIME PETRI NETS

A. Definition and Semantics

The labeled time Petri nets [35] constitute a specific class of
Petri nets that maps any transition to a label and a static time
interval that rules the transition firing. Let IQ+ be the set of
nonempty real interval with nonnegative rational end-points.

Definition 1 (LTPN). A Labeled Time Petri Net (LTPN for
short) is a 6-uple N = 〈P, T,A,E, `, Is〉 such that:
• P is a finite set of places;
• T is a finite set of transitions (P ∩ T = ∅);
• A ⊆ (P × T )∪ (T ×P ) is a binary relation that models

the arcs between the places and the transitions;
• E is a finite set of transition labels;
• ` : T → E is a transition labeling function;

• Is : T → IQ+ is a static interval function.

Throughout this paper, the static interval Is(t) of a transition
t is either closed ([a, b]) or semi-closed ([a,+∞[). The preset
pre(t) of a transition t is the set of (input) places pre(t) =
{p ∈ P : (p, t) ∈ A} and the postset post(t) of a transition t
is the set of (output) places post(t) = {p ∈ P : (t, p) ∈ A}. A
state of an LTPN is a couple S = 〈M, I〉. M is the marking
of the net and is a function (M : P → N) that assigns to
each place a number of tokens (or marks). A marking is
usually denoted as a column vector with as many entries as
the number of places. All along this paper, we will consider
that any LTPN is safe i.e. M : P → {0, 1}. I is a partial
firing interval application I: T → IR+ that associates to any
enabled transition t a time interval of R+ (IR+ : intervals
with bounds in R+) in which transition t can be fired. The
lower bound of I(t), also called the date of earlier firing,
is denoted bI(t)c, and its upper bound, also called the date
of later firing, is denoted dI(t)e. A transition t is enabled
by a given marking M (denoted t ∈ enabled(M)) if and
only if (∀p ∈ pre(t),M(p) = 1). An LTPN with an initial
marking M0 is called a marked LTPN. The initial state of a
marked LTPN is given by S0 = 〈M0, I0〉 where I0 is defined
as follows: for any transition t enabled by M0, I0(t) = Is(t).

Intuitively, in an LTPN a transition is firable from a marking
M if it is enabled for a sufficient amount of time i.e an amount
of time within its own static time interval. Formally, a net
transition t is firable from a state S = 〈M, I〉 at a relative
date θ if and only if:

1) t ∈ enabled(M),
2) θ ≥ bI(t)c and for any transition t′ enabled by M , θ is

not greater than the later firing date of t′: θ ≤ dI(t′)e if
I(t′) is right-closed.

Firing a firable transition t at the relative date θ from the
state S = 〈M, I〉 leads to a state S′ = 〈M ′, I ′〉 such that:
• M ′ is such that ∀p ∈ pre(t) \ post(t),M ′(p) = 0, ∀p ∈

post(t) \ pre(t),M ′(p) = 1, else M ′(p) = M(p);
• For any transition t′ ∈ T (t′ 6= t) enabled by M after the

fire of t and enabled by M ′

– if I(t′) = [a, b], I ′(t′) = [max(0, a− θ), b− θ];
– if I(t′) = [a,+∞[, I ′(t′) = [max(0, a− θ),+∞[.

• else I ′(t′) = Is(t
′).

In the following, the fire of a transition t at the relative date
θ is denoted: 〈M, I〉 θt−→ 〈M ′, I ′〉. A state S is reachable in
a marked LTPN if it exists a sequence of firable transitions
S0

θ1t1−→ S1
θ2t2−→ . . .

θktk−→ S, also denoted S0
r−→ S where

r is the timed transition sequence r = θ1t1θ2t2 . . . θktk. The
sequence r will be called a run of the net. Any run r′ =
θ1t1 . . . θiti, i ≤ k is a prefix of r. The set of reachable states
from a state S in a marked LTPN N is denoted R(N,S).
A marking M ′ is reachable from a marking M (also denoted
without ambiguity M ′ ∈ R(N,M)) if there exists a state S′ =
〈M ′, I ′〉 such that S′ ∈ R(N, 〈M, I〉).

B. LTPN extensions and operations

We recall two classical LTPN extensions that will be also
used throughout this paper: inhibitor arc and transition pri-
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orities. An inhibitor arc modifies the enabling conditions of
transition t that were detailed previously for the so-called
regular arcs. With an inhibitor arc (p, t), the input place p
must be empty to enable t. Formally, for an LTPN with both
types of arcs (regular and inhibitor) the set of input places
of a transition t (pre(t)) is then partitioned into pre−(t) and
pre+(t). An arc (p, t) of A is a regular arc if p ∈ pre+(t)
and an inhibitor arc if p ∈ pre−(t). A transition t is enabled
by a marking M (t ∈ enabled(M)) iff ∀p ∈ pre−(t),M(p) =
0 ∧ ∀p ∈ pre+(t),M(p) = 1.

A priority defines a binary relation between two transitions
of an LTPN, denoted t1 � t2, that is transitive, not reflexive
and not symmetrical. A firable transition is not allowed to fire
if a transition with a higher priority is firable at the same date.

We finally introduce some further operations on LTPN.

Definition 2 (Restriction of an LTPN N to the transition t).
The restriction of the LPTN N to the transition t ∈ T (inhibitor
arcs included) is :

N(t) = 〈pre(t) ∪ post(t), {t}, At, {`(t)}, `t, Ist〉 (1)

where (n1, n2) ∈ At iff (n1, n2) ∈ A ∧ (n1 ∈ pre(t)∧n2 =
t) ∨ (n1 = t ∧ n2 ∈ post(t)).

Definition 3 (Union of LTPNs). Let Ni =
〈Pi, Ti, Ai, Ei, `i, Isi〉, i = {1, 2}, the union of N1 and
N2, denoted N1 ∪N2, is the LTPN

N1 ∪N2 = 〈P1 ∪ P2, T1 ∪ T2, A1 ∪A2, E1 ∪ E2, `, Is〉

such that ∀i ∈ {1, 2}: ∀t ∈ Ti, `(t) = `i(t) and ∀t ∈
Ti, Is(t) = Isi(t). If N1 and/or N2 have inhibitor arcs, there
are also in the union N1 ∪N2, similarly for priorities.

Definition 4 (Difference of LTPNs). Let Ni =
〈Pi, Ti, Ai, Ei, `i, Isi〉, i = {1, 2}, the difference of N1

by N2, denoted N1 \N2, is the LTPN

N1 \N2 = 〈P, T1 \ T2, A,E1, `1, Is1〉

such that:
• P = P1 \ {p ∈ P2 : 6 ∃t ∈ T1 \ T2, p ∈ pre(t) ∪ post(t)};
• A = A1 \ {(n1, n2) ∈ A2 : n1 ∈ T2 ∨ n2 ∈ T2};
• ∀t ∈ T1 \ T2, `(t) = `1(t), Is(t) = Is1(t).
Any inhibitor arc of A1 in A is retained as an inhibitor arc

in A. Any priority in N1 between two transitions of T1 \T2 is
also kept in N1 \N2.

C. Timed languages

A timed sequence over a set of labels Σ is a sequence ρ
of pairs (s, d) where d is a duration and s is a symbol of
Σ ∪ {λ}. Throughout this paper, symbol λ will represent the
occurrence of time and will be always considered as a silent
event (λ may be part of Σ or not). The set of timed sequences
over Σ is denoted T (Σ) and T (Σ) ⊆ (Σ ∪ {λ} × R+)+.
Each timed sequence ρ has a canonical representation denoted
[ρ] with only one λ at the end. Suppose for instance that
Σ = {a, b, c}, then ρ = (a, 3).(c, 4).(λ, 2).(b, 1).(b, 2).(λ, 4)
is a timed sequence of T (Σ) also denoted 3a4c2λ1b2b4λ. The

canonical representation of ρ is [ρ] = 3a4c3b2b4λ. Throughout
this paper, only canonical representations are considered.

Consider now a run r of an LTPN S0
r−→ S = 〈M, I〉,

we can associate r with a set of canonical timed sequences,
denoted θ `(r) as follows:

θ `(r) = {[θ `a(r).dλ], d ∈ [0, dmax[}, (2)

where θ `a(r) is the earliest timed sequence of r:
• if r is the empty run (no transition) then θ `a(r) = 0λ;
• if r = θ1t1θ2t2 . . . θktk, k > 0 then θ `a(r) =

[θ1`(t1)θ2`(t2) . . . θk`(tk)0λ].
Date dmax is the latest possible duration stay in state S

(i.e. the minimal upper bound of the current firing intervals
dmax = mint∈enabled(M)(dI(t)e)). Based on the sets θ `(r)
we can define a timed language generated by an LTPN. Let
Q be a subset of R(N,M0), a timed sequence belongs to the
language generated by the marked LTPN if there is a run of
the LTPN that generates the sequence and that leads to a state
whose marking is in Q: such a run is called an admissible run.

Definition 5 (Language of an LTPN over Q). The language
generated by a marked LTPN N over Q is

L(N,Q) =
⋃

r:S0
r−→S=〈M,I〉∧M∈Q

θ `(r)

IV. PROBLEM STATEMENT

The fault diagnosis and diagnosability problems have been
formally defined with the help of timed automata in [7]. We
propose here to extend these definitions to deal with more
complex behaviors than single faults.

A. System model

We consider throughout this paper that the supervised
system is modelled as a safe LTPN denoted Θ =
〈PΘ, TΘ, AΘ,ΣΘ, `Θ, IΘS〉 with an initial marking denoted
M0Θ. ΣΘ represents the set of event types that are effectively
generated by the system (λ 6∈ ΣΘ). In this paper, we assume
that according to the instrumentation only a subset of transi-
tions can be observed. These transitions are associated with a
sensor that generates an output turned into an observable event
by a measurement function. We consider also unobservable
transitions that represent effective system’s event but not
associated with any kind of sensors. Transition labels ΣΘ are
then partitioned into two subsets: ΣoΘ is the set of observable
events and ΣuΘ the set of unobservable ones. Besides this
definition, there are several assumptions about the system.
A0 The system has no deadlock.
A1 The system has no zeno runs.
A2 From any reachable state, there is no infinite sequence of

firable transitions labeled with unobservable events.
A0 states that for any reachable state S there exists a tran-

sition t that is firable from S and such that dI(t)e 6=∞. This
classical assumption is from the seminal work [2]. Assumption
A1 states that the model cannot represent unrealistic evolutions
of the system by forbiding runs that have an infinite number
of events in a finite amount of time [7], [30]. Typically, zeno
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runs are modeled by transition loops, each transition being
associated with a static time interval whose lower bound is
0. Finally, Assumption A2 is also a classical assumption for
diagnosability analyses [2], [7] without which the system is
unlikely diagnosable due to the lack of observations.

Figure 1 presents the model of a system Θ. It consists of
two concurrent processes synchronized to perform together
a specific activity. The first process (on the left part of the
figure) is composed of several activities represented by the
places p1

i , i ∈ {1, . . . , 5} while the activities of the second
process (on the right part of the figure) are modeled by the
places p2

i , i ∈ {1, . . . , 6}. Both processes are synchronized
on transition t12

1 whose firing leads to the marking of a
shared place p12 representing the activity that requires the two
processes. The end of this activity is modeled by the firing of
transition t12

2 that leads to the marking of the places p1
3 and p2

6

so that each process can evolve independently to perform its
own activities. The initial state of each process is given by the
initial marking (places with black dots). Transition labels that
are in bold represent observable events while the others are
unobservable events. It must be noticed that Process 1 (resp.
Process 2) only generates o1 (resp. o2) events as observations.
The timed language generated by the system is

L(Θ) = L(Θ, R(Θ,M0Θ)) (3)

B. Event pattern model

Event patterns gather a set of specific combinations of un-
timed and unobservable events whose occurrence in the system
leads to a situation of interest (i.e. failure, critical/dangerous
situation, safe/unsafe behavior,....). Patterns that are studied
throughout this paper have been introduced in [6] and are
defined as Labeled Petri Nets (LPN), i.e. LTPN such that
Is(t) = [0,+∞[ for any transition t. As for the system model,
transitions labels represent events of the system.

Definition 6 (Pattern). A pattern Ω is an LPN Ω =
〈PΩ, TΩ, AΩ, `Ω,ΣΩ,M0Ω〉 associated with a set of final
markings QΩ ⊂ R(Ω,M0Ω) such that:

1) (unobservable) events of ΣΩ are unobservable (ΣΩ ⊆
ΣuΘ);

2) (initialized) M0Ω 6∈ QΩ;
3) (well-formed) from any reachable marking M , there

exists a run that leads to a marking M ′ ∈ QΩ;
4) (deterministic) from any reachable marking M of

R(Ω,M0Ω) there is no event e ∈ ΣΩ that labels more
than one enabled transition;

5) (stable) from any reachable marking M of R(Ω,M0Ω)
such that M ∈ QΩ any possible run leads to a marking
M ′ such that M ′ ∈ QΩ.

For the sake of simplicity, we denote L(Ω) = L(Ω, QΩ).
Patterns are LPN that aim at representing succinct behaviors
that are unobservable (Condition 1) (L(Ω) ⊂ Σu∗Θ ). Condi-
tion 2 ensures that the pattern does not represent an empty
event sequence. Condition 3 guarantees that any run of the
pattern is always a prefix of a matching run. Condition 4 avoid
ambiguities within the pattern and is required to ensure the
correctness of the combination of a pattern and a system as

detailed later. Finally Condition 5 ensures that once a pattern
has occurred, its effect is definitive (any system’s run that has
a matching run as a prefix is a matching run).

Figure 2 illustrates different types of patterns of interest
for the system of Figure 1. Figure 2a presents k occurrences
of a single event b (pattern Ωb1(k)). The marking of the final
place pp1

k indicates the pattern has occurred then the set of
final markings is given by QΩb

1(k) = {M : M(pp1
k) = 1}. This

pattern extends the classical single fault event pattern that is
usually studied in the literature. Throughout this paper, we will
similarly denote Ωf1 (k) the pattern modeling k occurrences
of the single event f . Figure 2b presents a pattern that
characterizes k occurrences of one event among a predefined
set of events, here among {b, f}. The structure of the pattern
depends on the value of k required. If one wants to consider
one occurrence of one event among {b, f}, it is necessary to
consider the marking of the place pp1

1 and then QΩ2(1) = {M :
M(pp2

1) = 1}. The marking of the place pp2
2 indicates 2

occurrences (2 events b or 2 events f or 1 event b and 1
event f , whatever the ordering) then the set of final markings
is QΩ2(2) = {M : M(pp2

2) = 1}. The number of layers in
the pattern depends on the k value. The k occurrences are
obtained when the place pp2

k is marked hence QΩ2(k) = {M :
M(pp2

k) = 1}. The pattern Ω2(k) can be a base to extend the
classical notion of fault class with k = 1 and the set of events
is the set of n fault class events: {f1, f2, · · · , fn}. In this case,
the pattern has only one layer with as many transitions as fault
class events. Finally, Figure 2c presents a pattern that models 3
consecutive occurrences of event b that are not interleaved with
any occurrence of event f . This pattern can also be extended
into Ω3(k) to model k consecutive occurrences of an event
without any occurrence of another type of event. This last
pattern is interesting as it represents some fairness issues in
the system that might be of interest to detect, QΩ3(k) = {M :
M(pp3

k) = 1}.

C. Pattern diagnosis and diagnosability

This subsection introduces the problem of diagnosing
patterns in timed discrete event systems and defines the
diagnosabilility of a pattern in such a system. For a given
pattern Ω, the diagnosis problem consists in defining an
Ω-diagnoser function that takes as input a timed sequence
of observations and checks for any run of the system
that can generate these observations whether it matches
the pattern Ω or not. It results in the generation of three
possible symbols: Ω−faulty (all the possible runs match
Ω), Ω−safe (none of them match Ω), Ω−ambiguous (some
of them match Ω, some of them do not) [36], [6]. A run
r of the system matches a pattern Ω if one can find in
a word ρ = θ1e1 . . . θnenθn+1λ of θ `(r) a sub-word(∑j1

i=1 θi

)
ej1

(∑j2
i=j1+1 θi

)
ej2 . . .

(∑jk
i=jk−1+1 θi

)
ejk

such that ρΩ = ej1 . . . ejk is a word of L(Ω): this will be
denoted by ρ c ρΩ and more generally by ρ c Ω and r c Ω.

Checking whether a run of Θ can generate the given
observations (i.e. the run is consistent with the observations)
relies on the timed language projection from the alphabet ΣΘ

to the observable alphabet ΣoΘ. Given two alphabets Σ1,Σ2,
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p1
1

p1
2

p1
3

p1
4 p1

5

p12

p2
1

p2
2

p2
3

p2
4

p2
5

p2
6

t11 : o1[3, 4]

t14 : a[0, 3]

t12 : o1[1, 2]

t21 : e[1, 3]

t22 : e[2, 3]

t23 : b[1, 2]

t24 : o2[8, 11]

t25 : o2[1, 2]
t12
1 : d [2, 3]

t12
2 : c[1, 2]

t26 : o2[1, 3]

t13 : f [1, 2]

t15 : o1[1, 2]

Fig. 1: A system Θ composed of two communicating and partially observable timed processes

the projection PΣ1→Σ2
: T (Σ1)→ T (Σ2) of a canonical timed

sequence is defined as follows.
• PΣ1→Σ2

(θλ) = θλ, for any θ ∈ R+;
• if e ∈ Σ2, PΣ1→Σ2

(θe.ρ) = θe.PΣ1→Σ2
(ρ);

• if e ∈ Σ1 \ Σ2, two cases hold
– PΣ1→Σ2

(θeρ) = (θ + θ′)λ, if θ′λ = PΣ1→Σ2
(ρ).

– PΣ1→Σ2
(θe.ρ) = (θ + θ′)e′.ρ′,

if θ′e′.ρ′ = PΣ1→Σ2(ρ) ;
The Ω-diagnoser can then be formally defined as follows.

Definition 7 (Ω-diagnoser). An Ω-diagnoser is a function

∆Ω : T (ΣoΘ)→ {Ω−faulty ,Ω−safe,Ω−ambiguous} with

• ∆Ω(σ) = Ω−faulty if for any ρ ∈ L(Θ) that is consistent
with σ (i.e. PΣΘ→Σo

Θ
(ρ) = σ), ρ c Ω;

• ∆Ω(σ) = Ω−safe if for any ρ ∈ L(Θ) that is consistent
with σ, ρ 6c Ω;

• ∆Ω(σ) = Ω−ambiguous otherwise.

It must be noticed that, even if Definition 7 uses Petri
nets (Θ and Ω notations), this definition is purely language-
based. The diagnosis problem is defined over the set of
timed sequences ρ in L(Θ), the matching relation is de-
fined over event sequences and consistency is achieved
by sequence projection. It follows that Definition 7 de-
fines a problem independently from the underlying model
structure but with respect to their language expressive-
ness (time Petri nets, timed Event Graphs, timed au-
tomata...). Considering now a set of patterns Ω1, . . . ,Ωn,
the diagnoser function of a system can be defined as ∆:
T (ΣoΘ)→

∏n
i=1{Ωi−faulty ,Ωi−safe,Ωi−ambiguous} such

that ∆(σ) = (∆Ω1
(σ), . . . ,∆Ωn

(σ)).
Let us now illustrate the diagnosis problem with a few

examples based on the system of Figure 1 and the family
of patterns of Figure 2.

Example 1. Suppose that the timed sequence that is received
by the diagnoser from the system of Figure 1 is σ1 = 3o12o24λ
(that is the reception of event o1 at date 3 then the reception
of o2 at date 5 and then nothing till date 9). If the problem
is to diagnose the occurrence of one event b, one considers
the pattern Ωb1(1) with the observation sequence σ1. Then
as the event o2 occurs at date 5, transition t25 is fired at
date 5 which means that event b associated with transition
t23 has certainly occurred and the result of the Ω-diagnoser

is: ∆Ωb
1(1)(σ1) = Ωb1(1)−faulty . The pattern Ω2(1) models

one occurrence of an event among {b, f}. In this case at
date 9 places p1

5 and p2
6 are marked in the system model,

so the event f has certainly occurred (firing of transition
t13) and ∆Ω2(1)(σ1) = Ω2(1)−faulty . Finally, ∆Ω3(2)(σ1) =
Ω3(2)−safe (event b has necessarily occurred once, never
twice otherwise a second event o2 would appear in σ1 after
date 9 because of t26).

Pattern diagnosability is the property of the system that
ensures that, once a pattern Ω has occurred in the system
Θ, the Ω-diagnoser is always able to return Ω−faulty after
a finite time. Let time(ρ) denote the global duration (i.e. the
sum of all durations time(ρ = θ1e1 . . . θnen) =

∑n
i=1 θi) of

a timed sequence ρ.

Definition 8 (Pattern Diagnosability). A system Θ is Ω-
diagnosable if

(∃τ ∈ R+),∀ρ1, ρ2 ∈ L(Θ) : ρ1 = ρ′1ρ
′′
1 , time(ρ

′′
1) ≥ τ,

ρ′1 c Ω ∧PΣΘ→Σo
Θ

(ρ1) = PΣΘ→Σo
Θ

(ρ2) =⇒ ρ2 c Ω.
(4)

Definition 8 is also language-based and actually extends
the single fault diagnosability definition of [7] that is based
on time automaton as explained below. Consider a time
automaton TAΘ that generates L(Θ). Let b ∈ ΣuΘ be a single
fault event, it can be modeled in our framework as the single
event pattern represented by Ωb1(1) (see Figure 2a). Then, by
definition the following proposition holds.

Proposition 1. Θ is Ωb1(1)-diagnosable iff TAΘ is diagnos-
able with respect to the single fault event b in the sense of [7].

The diagnosability problem consists in finding a finite
duration τ after the occurrence of a fault or a pattern in the runs
of Θ such that the diagnoser can decide the system is faulty
without any ambiguity. In other words, a system is diagnosable
iff there exists τ such that the system is τ -diagnosable. [7]
introduces such a notion of τ -diagnosability that is also more
recently investigated in [30]. We now extend it to pattern
diagnosability.

Definition 9 (Pattern τ -Diagnosability). A system Θ is (Ω, τ)-
diagnosable if

∀ρ1, ρ2 ∈ L(Θ) : ρ1 = ρ′1ρ
′′
1 , time(ρ

′′
1) ≥ τ,

ρ′1 c Ω ∧PΣΘ→Σo
Θ

(ρ1) = PΣΘ→Σo
Θ

(ρ2) =⇒ ρ2 c Ω.
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pp1
0

pp1
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k

(a) Ωb
1(k): k occurrences of b with

QΩb
1(k) = {M : M(pp1

k) = 1}.

pp2
0

pp2
1

pp2
k−1

pp2
k

. . . . . .
b f

b f

b f

(b) Ω2(k): k occurrences of b or f with
QΩ2(k) = {M : M(pp2

k) = 1}.

pp3
0

pp3
1

pp3
2

pp3
3

b

b

b

f f

(c) Ω3(3), 3 consecutive occurrences of b without
any occurrence of f , QΩ3(3) = {M : M(pp3

3) = 1}.

Fig. 2: A set of patterns.

Example 2. Back to the system of Figure 1, the system is
Ωb1(1)-diagnosable. The occurrence of b (transition t23) can be
diagnosed with certainty based on a single observation of the
date of the first o2 (transitions t24 or t25). If the date of the
first o2 is between 3 and 7, event b has definitely occurred (t25
is fired). If no event o2 is observed between 3 and 7, event
b has certainly not happened (t24 is fired). The occurrence
of the next o2 being between 1 and 2 after an occurrence
of b (transition t25), it shows that the system is (Ωb1(1), τ)-
diagnosable for any τ > 2. In this example, the system
is actually Ωb1(k)-diagnosable for any k. By construction,
Process 2 only generates observable sequences of o2’s and
transition t26 is the only transition to be able to generate o2’s
at even index in the sequence, so t26 is fully observable, so
the date when place p1

2 gets the token is fully observable
and the potential next occurrence of b is diagnosable for the
same reasons as above. Similarly as for k = 1, the system
is (Ωb1(k), τ)-diagnosable for any τ > 2. Consider now the
pattern Ωf1 (1) where event f replaces event b in Ωb1 (see
Section IV-B). Then, the system is not Ωf1 (1)-diagnosable.
Indeed the occurrence of o1 at 2 time units after the marking
of p1

3 can lead either to p1
1 due to t15 or to t14. Note that if

transition t14 : a[0, 3] of Figure 1 is restricted to t14 : a[2, 3],
the system becomes Ωf1 (1)-diagnosable for the same reasons
as b. The system is not Ω2(1)-diagnosable. As discussed above,
event b is diagnosable but it is not sufficient to make Ω2(1)
diagnosable. The issue is that the occurrence of f may be
not diagnosed with certainty while no event b is produced.
As long as b does not occur, there always be an ambiguity
about the disjunction Ω2(1). Note that, with the restriction
t14 : a[2, 3], the system becomes Ω2(1)-diagnosable (as there is
no more infinite ambiguity about the occurrence of f ). Finally,
the system is not Ω3(4)-diagnosable (4 occurrences of event
b’s without any occurrence of f ’s) for the same reason as
above but with the same restriction to t14 : a[2, 3], the system
becomes Ω3(4)-diagnosable.

Looking back at the system of Figure 1, it can be noticed
that each process emits only one type of observable events
(process i emits oi events). Without observing the effective
date of emission of these observations, none of the patterns

described above would be diagnosable. Only the observation
of time is discriminative here. The remaining question is now
how to check that the system Θ is Ω-diagnosable.

V. PATTERN DIAGNOSABILITY ANALYSIS

Based on a model Θ and a pattern Ω, this section describes a
way to turn the Ω-diagnosability checking problem over Θ into
checking a linear-time property over a specific LTPN called a
twin-plant and denoted Γ. Definition 8 asserts that checking
whether a system Θ is Ω-diagnosable consists in determining
that there are no infinite runs r and r′ in Θ with r c Ω and
r′ 6c Ω such that PΣΘ→Σo

Θ
(θ `a(r)) = PΣΘ→Σo

Θ
(θ `a(r′)).

The twin plant gathers into a unique LTPN all the runs
r and r′ of Θ that generate the same observation sequence.
Any run of the twin-plant then characterizes two runs from Θ
with the same observations. Finally, checking Ω-diagnosability
simply consists in determining in the twin-plant that there is
no infinite run that represents a couple of runs (r, r′) such
that r c Ω and r′ 6c Ω. To build the twin-plant, two problems
need to be solved.

1) How to represent in an LTPN that any run of Θ matches
Ω or not? This is solved by the pattern matching product
Θ n Ω defined in Section V-A.

2) How to represent in an LTPN two runs of Θ n Ω
that generate the same observations? This is solved
by applying transition fusions of observable transitions
from two copies Π1 and Π2 of Θ n Ω (Section V-B).

A. Pattern matching product

The first step of the computation of the twin-plant is
to compute an LTPN that represents how a system Θ is
actually matching a pattern Ω: this step is the computation
of an LTPN called the pattern matching product and denoted
Θ n Ω. This product relies on a specific product between the
transitions of Θ and Ω. Let tΘ be a transition of Θ (with
`Θ(tΘ) = a, ISΘ(tΘ) = [α, β], α > 0) 1 with pre(tΘ) =
{PΘ1

1, . . . , PΘ1
nΘ} and post(tΘ) = {PΘ2

1, . . . , PΘ2
mΘ}.

1Recall that Assumption A0 ensures [α, β] is a closed interval and A1
ensures that α > 0.



AUTHOR VERSION 7

Without loss of generality, we assume that tΘ is conflict-free
(no other transition has the same preset).2 Let tΩ be a transition
of Ω labeled with a with pre(tΩ) = {PΩ1

1, . . . , PΩ1
nΩ}

and post(tΩ) = {PΩ2
1, . . . , PΩ2

mΩ}. The transition product
tΘ n tΩ is then the LTPN defined by Figure 3.

PΘ1
1 PΘ1

2 PΘ1
nΘ

. . .

csΘ : λ[α, α]

TiΘ

eΘ : a[0,+∞[
toΘ : λ[β − α, β − α]

PΘ2
1 PΘ2

2 PΘ2
mΘ

. . .

NaΘ

naΘ : λ[0, 0]

PΩ1
1 PΩ1

nΩ

. . .

eΘΩ : a[0,+∞[

PΩ2
1 PΩ2

mΩ

. . .

Fig. 3: Pattern matching product between a transition t of Θ
(`Θ(t) = a, IsΘ = [α, β], α > 0) and a transition of Ω labeled
by a.

In time Petri nets compositionnality is kept only when
synchronizations involve transitions with an interval [0,+∞[
[37] and transitions with a time interval [α, β] cannot be syn-
chronized as is. Indeed, synchronizing two transitions means
that it is necessary to determine a clock enabled only when
the transitions are both enabled and that stops as soon as
one of the local clocks stops. This synchronization is then
impossible by simply merging both transitions and assigning
a time interval to it based on their respective time intervals as
the stop of the synchronized clock depends on the enabling
time of each transition and not on the enabling time of their
synchronization.

It is then required to perform a time decomposition of tran-
sition tΘ to ensure that the synchronization is performed only
on transitions with [0,+∞[ time intervals. The time decom-
position requires the insertion of transitions with silent events
λ (see Section III-C). The result of this time decomposition
is the places TiΘ,NaΘ and transitions naΘ, csΘ, toΘ, eΘ
on the left. This time decomposition ensures that transition
eΘ is firable exactly in the same conditions as the initial
transition tΘ. Indeed, once tΘ is enabled in Θ by the marking
of PΘ1

1, . . . , PΘ1
nΘ, transition csΘ (i.e. clock start) is enabled

in ΘnΩ and is silenty fired exactly at time α > 0 so transition
eΘ starts being firable at time α till time β. At β, either
eΘ or the silent transition toΘ (i.e. time out) is fired, so
eΘ is firable in [α, β] as tΘ and leads to the same postset.
Now, as soon as toΘ is fired, it means that the behavior is
actually not admissible (transition tΘ must have been fired
in [α, β] in Θ as it is conflict-free), the place NaΘ then
permanently holds a token and inhibits any further fire of csΘ.

2Indeed, if tΘ is in conflict with another transition t′Θ, Θ can be trans-
formed by adding two silent transitions λ[0, 0] enabled by the preset of tΘ
and t′Θ. Each silent transition has a postset with one new place that replaces
the preset of either tΘ or t′Θ. New versions of tΘ and t′Θ are then conflict-free
while the generated langage L(Θ) remains the same.

The use of naΘ is then to empty the preset of csΘ in case
of a non admissible behavior. The effective synchronization
of tΘ and tΩ is then represented by transition eΘΩ resulting
from the fusion of tΩ and a copy of the transition eΘ but
as opposed to the classical transition fusion, transition eΘ is
kept to capture the evolutions of the system alone as a pattern
evolution corresponds potentially (in case of matching) to a
sub-word of the system. A transition priority eΘΩ � eΘ is
set between eΘΩ and eΘ which ensures that if both eΘΩ and
eΘ are firable at a given time, only eΘΩ can be effectively
fired. The global definition of the product between a system Θ
and a pattern Ω consists then in applying the suitable transition
product tΘ n tΩ for any couple of transitions (tΘ, tΩ) in Θ
and Ω that share the same event label. It is formally defined
as follows where Θ(tΘ) denotes the restriction of Θ to the
transition tΘ.

Definition 10 (Pattern matching product). The pattern match-
ing product Θ n Ω is the LTPN such that

Θ n Ω = Θ \

 ⋃
(tΘ,tΩ)∈S

Θ(tΘ)

 ∪ ⋃
(tΘ,tΩ)∈S

tΘ n tΩ

where S = {(tΘ, tΩ) : `Θ(tΘ) = `Ω(tΩ)}.

We associate with Θ n Ω, the following initial marking
M0ΘnΩ: for any place p of Θ n Ω, M0ΘnΩ(p) = M0Θ(p)
if p is also a place of Θ, M0ΘnΩ(p) = M0Ω(p) if p is also a
place of Ω and M0ΘnΩ(p) = 0 otherwise. We denote QadmΘnΩ

the set of admissible markings, it consists of all the markings
M such that for any place of type NaΘ, M(NaΘ) = 0. Let
QmatchΘnΩ ⊆ QadmΘnΩ denote the set of admissible markings M
such that the restriction of the marking M to the places of Ω
belongs to the final markings QΩ (see Definition 6). It follows
that the set of runs in ΘnΩ that lead to a marking of QmatchΘnΩ

generates exactly the sub-language of the system that matches
the pattern Ω. Formally, we have:

Theorem 1.
1) L(Θ n Ω, QadmΘnΩ) = L(Θ);
2) L(Θ n Ω, QmatchΘnΩ ) = {ρ ∈ L(Θ) : ρ c Ω}.

Proof. By construction of the time decomposition (Defini-
tion 10), for any transition product tΘ n tΩ, suppose first that
the priority does not exist then eΘ is firable in Θ n Ω in
[α, β] from a given date d iff tΘ is firable in [α, β] from d
in Θ. By adding the priority, the fire of eΘ can be possibly
replaced by the fire of eΘΩ which generates the same label
and only this one as the pattern is deterministic. It follows that
L(Θ n Ω, QadmΘnΩ) = L(Θ). QmatchΘnΩ gathers the markings of
QadmΘnΩ whose restrictions to the places of Ω are final markings
of Ω. If a run r of ΘnΩ leads to a marking of QmatchΘnΩ it then
means it is a run of Θ that generated a word ρ that matches
a word ρΩ of Ω: ρ c Ω. Moreover as Ω is stable (Definition
6 condition 5), any continuation of ρ also matches Ω.

B. Twin plant synthesis

The overall principle is to confront two admissible runs from
Θ n Ω that can produce the same observable timed sequence
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by duplicating the product ΘnΩ. In the following, we denote
Πi, i ∈ {1, 2}, these two copies. Let ΘnΩ = 〈P, T,A,ΣuΘ ∪
ΣoΘ∪{λ}, `, Is〉 then Πi = 〈Pi, Ti, Ai,Σi, `i, Isi〉 is defined as
follows: Pi = P ×{i}, Ti = T ×{i}, ((n, i), (n′, i)) ∈ Ai iff
(n, n′) ∈ A, Σi = ((ΣuΘ∪{λ})×{i})∪ΣoΘ, `i((t, i)) = `(t) if
`(t) ∈ ΣoΘ otherwise `i((t, i)) = (`(t), i), Isi((t, i)) = Is(t).

The twin plant is then obtained by applying a transition
fusion [38] between a transition t1 from Π1 and a transition
t2 from Π2 that share the same observable label `1(t1) =
`2(t2) ∈ ΣoΘ. For i = 1, 2, let pre(ti) = {pi1j}, j ∈
{1, . . . , ni} and post(ti) = {pi2j}, j ∈ {1, . . . ,mj}. Suppose
both transitions are labeled with event o = `1(t1) = `2(t2) and
their respective static interval is [αi, βi], i = 1, 2, the transition
fusion denoted t1||t2 is the LTPN defined in Figure 4.

LTPN t1||t2 is obtained in two steps. The first intermediate
step, similar to the pattern matching product (see Figure 3), is
to compute the time decomposition of both transitions t1 and
t2. Both decompositions independently lead to the creation of
two transitions ej : such a transition ej , not shown in Figure 4,
looks like transition eΘ in Figure 3, it is labeled with event o
and associated with time interval [0,+∞[ and pre(ej) = {Tij}
and post(ej) = {pj2

1 , . . . , pj
2
mj
}. The second and final step

is then to apply the classical transition fusion of e1 and e2 to
obtain the transition e12 of Figure 4.

p11
1 p11

n1

. . .

cs1 : λ[α1, α1]

Ti1

to1 : λ[β1 − α1, β1 − α1]

p12
1 p12

m1

. . .

Na1

na1 : λ[0, 0]

p21
1 p21

n2

. . .

cs2 : λ[α2, α2]

Ti2

e12 : o[0,+∞[

to2 : λ[β2 − α2, β2 − α2]

p22
1 p22

m2

. . .

Na2

na2 : λ[0, 0]

Fig. 4: LTPN t1||t2 resulting from the transition fusion
between a transition t1 from Π1 and a transition t2 from Π2.

Based on the LTPNs Πi = 〈Pi, Ti, Ai,Σi, `i, Isi〉, the twin-
plant Γ is defined as follows.

Definition 11. Let S = {(t1, t2), t1 ∈ T1, t2 ∈ T2, `1(t1) =
`2(t2)}, the twin plant Γ = (PΓ, TΓ, AΓ,ΣΓ, `Γ, ISΓ) is:

Γ =
⋃

i∈{1,2}

Πi \ (
⋃

t:`i(t)∈Σo
Θ

Πi(t))

 ∪ ⋃
(t1,t2)∈S

t1||t2.

Intuitively, the twin plant Γ results from the union of the
two copies of the pattern matching products Π1 and Π2 where
any observable transition ti is removed and transition fusions
are added to Γ: there is one transition fusion per couple of
observable transitions (t1, t2) from Π1 and Π2 respectively
sharing the same event label. Let Mi denote a marking of
Πi, then JM1 ∪ M2K denotes the marking function PΓ →

N such that ∀p ∈ PΓ ∩ PΠ1
, JM1 ∪ M2K(p) = M1(p) and

∀p ∈ PΓ ∩ PΠ2 , JM1 ∪M2K(p) = M2(p). The initial marking
of Γ is then MΓ0 = JMΠ10 ∪MΠ20K where MΠi0 denotes
the initial marking of Πi and the initial state of Γ is then
SΓ0 = 〈MΓ0, ISΓ0〉 with ∀t ∈ TΓ, ISΓ0(t) = ISΓ(t). Finally,
QadmΓ denotes the set of admissible markings of Γ. Let QadmΠi

denote the set of admissible markings of Πi, that is the set
of markings Mi such that Mi is a restriction of an admissible
marking M ∈ QadmΘnΩ with ∀(p, i) ∈ Pi,Mi((p, i)) = M(p):

QadmΓ = {JM1 ∪M2K : M1 ∈ QadmΠ1
∧M2 ∈ QadmΠ2

}. (5)

Definition 12. An admissible run of Γ is a run from the
initial state SΓ0 to any state that is composed of an admissible
marking from QadmΓ .

Through the rest of this section and to simplify the nota-
tions, we introduce the following set of notations. PΓ

o and PΘ
o

respectively stand for their observable projection PΣΓ→Σo
Θ

and
PΣΘ→Σo

Θ
. For i ∈ {1, 2}, PΓ

i denotes a special projection of Γ
on the LTPN Πi: let ρi = PΓ

i (ρ) then ρi is obtained by com-
puting the classical projection ρ′i = PΣΓ→Σi(ρ) ∈ T (Σi), and
by renaming in ρ′i any unobservable event (e, i) ∈ ΣuoΘ ×{i} by
e ∈ ΣuoΘ which means that ρi ∈ T (ΣΘ). We say that a run r of
Γ generates a pair (ρ1, ρ2) if there exists ρ ∈ θ `Γ(r) such that
PΓ

1 (ρ) = ρ1 and PΓ
2 (ρ) = ρ2. The first main property about

this twin-plant Γ is that the set of admissible runs of Γ exactly
generates the set of pairs (ρ1, ρ2) of timed sequences from
L(Θ) that share the same observable projection, as formally
stated in Theorem 2.

Theorem 2.

L(Γ, QadmΓ ) = {ρ ∈ T (ΣΓ) : ρ1 = PΓ
1 (ρ) ∈ L(Θ)

∧ρ2 = PΓ
2 (ρ) ∈ L(Θ) ∧PΘ

o (ρ1) = PΘ
o (ρ2)}.

Proof. See appendix: we need to prove the equality of two
languages. Lemma 1 proves the language inclusion ⊇ by the
use of Definition 11 and Theorem 1. Lemma 2 proves ⊆ based
on Definition 11 and transition fusions.

For any pair (ρ1, ρ2) of timed sequences generated by Γ, as
ρ1 and ρ2 belong to L(Θ), each timed sequence either matches
pattern Ω or not.

Definition 13. A run r of Γ is ambiguous if it is admissible
and the pair (ρ1, ρ2) with ρi = PΓ

i (θ `aΓ(r)), i ∈ {1, 2} is
such that ρ1 c Ω and ρ2 6c Ω.

By Definition 13, we can always associate with an ambigu-
ous run r a pair (ρ1, ρ2) such that ρ1 c Ω and ρ2 6c Ω.
But actually, any pair (ρ′1, ρ

′
2) generated by r holds the same

property by Proposition 2.

Proposition 2. If run r is ambiguous then any pair (ρ1, ρ2)
generated by r is such that ρ1 c Ω and ρ2 6c Ω.

Proof. Pattern matching depends on the effective fire of transi-
tions involving events from the pattern and not on time passing
only. Timed sequences from θ `Γ(r) have the following form:
there exists d ∈ [0, dmax[ such that ρ = [θ `aΓ(r)dλ] (see
Section III-C), only the duration d between the last transition
fire and the end of the timed sequence is different.
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Definition 14. An infinite run r∞ of Γ is an infinite set of
finite runs of Γ {ri}i∈N+ such that for any i > 1, SΓ0

ri−→
Si = SΓ0

ri−1−→ Si−1
θiti−→ Si.

By extension, we say that an infinite run is admissible if
any of its finite run is admissible. Finally, an infinite run is
ambiguous if there exists k ∈ N+ such that ∀n ≥ k, run rn is
ambiguous. Theorem 3 then holds the fundamental result of
the proposed approach.

Theorem 3. A system Θ is Ω-diagnosable if and only if Γ
does not contain ambiguous infinite runs.

Proof. To prove the theorem, we are going to actually prove
that a system Θ is not Ω-diagnosable if and only if Γ contains
an ambiguous infinite run.
(⇒) First, let us remark that, Equation (4) from Definition 8
is equivalent to

∀ρ1, ρ2 ∈ L(Θ),∃τ ∈ R+ : ρ1 = ρ′1ρ
′′
1 , time(ρ

′′
1) ≥ τ,

ρ′1 c Ω ∧PΘ
o (ρ1) = PΘ

o (ρ2) =⇒ ρ2 c Ω.
(6)

The fact that (4) ⇒ (6) is straightforward. Then, from
Equation (6), Equation (4) is obtained by simply selecting the
maximal value τ amongst the possible values of τ ’s (therefore
(4) ⇐ (6)). Assuming Θ is not Ω-diagnosable, then from (6):

∃ρ1, ρ2 ∈ L(Θ),∀τ ∈ R+ : ρ1 = ρ′1ρ
′′
1 , time(ρ

′′
1) ≥ τ,

ρ′1 c Ω ∧PΘ
o (ρ1) = PΘ

o (ρ2) ∧ ρ2 6c Ω.
(7)

Let ρ1, ρ2 ∈ L(Θ) be such that ρ1 = ρ′1ρ
′′
1 , ρ′1 c Ω,

PΘ
o (ρ1) = PΘ

o (ρ2) ∧ ρ2 6c Ω (such a pair exists as Θ
is not Ω-diagnosable). Any prefix σ1 of ρ1 that keeps ρ′1
as a prefix is such that σ1 c Ω. Any prefix σ2 of ρ2 is
such that σ2 6c Ω. Consider now any pair (σ1, σ2) such
that time(σ1) = time(σ2), as PΘ

o (ρ1) = PΘ
o (ρ2), then

PΘ
o (σ1) = PΘ

o (σ2). By Theorem 2 and Proposition 2, there
must exist an admissible and ambiguous run r of Γ that
generates (σ1, σ2). As Θ is not Ω-diagnosable, ρ1 and ρ2

can be arbitrarily long (i.e ∀τ ∈ R+ there exist ρ1 and ρ2

such that time(ρ1) ≥ τ and time(ρ2) ≥ τ ). Assumption
A0 ensures that the number of events in ρ1 and ρ2 is not
bounded. Moreover Assumption A2 ensures that the number of
observable events in ρ1 and ρ2 is not bounded. It follows that it
must exist at least an infinite run r∞ in Γ that is ambiguous:
r∞ is defined as the infinite set of ambiguous runs r that
generate the set of prefixes (σ1, σ2).

(⇐) Suppose that Γ has an ambiguous infinite run r∞.
By Assumption A1, limi→+∞ time(θ `aΓ(ri)) = +∞ and
by assumption A2 limi→+∞ |PΣΓ→Σo

Γ
(θ `aΓ(ri))| = +∞.

Let k ∈ N+ be the lowest index such that any run rn ∈
r∞, n ≥ k is ambiguous. By Definition 13, there exists
an ambiguous pair (ρk1 , ρ

k
2) generated from θ `aΓ(rk). Let

us suppose without loss of generality that ρk1 c Ω and
ρk2 6c Ω. By Proposition 2, any (ρk1θ

kλ, ρk2θ
kλ) gener-

ated from θ `Γ(rk) is also ambiguous and ρk1θ
kλ c Ω,

ρk2θ
kλ 6c Ω. rk+1 is also ambiguous, so there also exists

the ambiguous pair (ρk+1
1 , ρk+1

2 ) generated from θ `aΓ(rk+1).
If `Γ(tk+1) 6= λ, ρk+1

1 = ρk1θ
k+1PΓ

1 (`Γ(tk+1))0λ, oth-
erwise ρk+1

1 = ρk1θ
k+1λ. Similarly, if `Γ(tk+1) 6= λ,

ρk+1
2 = ρk2θ

k+1PΓ
2 (`Γ(tk+1)0λ, otherwise ρk+1

2 = ρk2θ
k+1λ.

By Proposition 2, any (ρk+1
1 θk+1λ, ρk+1

2 θk+1λ) generated
from θ `Γ(rk+1) is also ambiguous and ρk+1

1 θk+1λ c Ω,
ρk+1θk+1

2 λ 6c Ω. The infinite set of pairs {(ρi1, ρi2)}i≥k can
be inductively defined as above. It follows that ∀t ∈ R+, there
exists (ρi1θ

iλ, ρi2θ
iλ) such that ρi1θ

iλ = ρk1ρ
′
1 with ρk1 c Ω,

t = time(ρi1θ
iλ)− time(ρk1) and ρi1θ

iλ c Ω but ρi2θ
iλ 6c Ω.

Therefore, the system Θ is not Ω-diagnosable.

VI. A MODEL-CHECKING PROCEDURE FOR CHECKING
PATTERN DIAGNOSABILITY IN LTPN

A. Model-checking problem

Checking Ω-diagnosability of the system Θ is equivalent
to checking that there is no infinite run that is ambiguous
in Γ. We propose to solve this problem by using the LTPN
model checker TINA [10], [39]. TINA is able to edit LTPN
and verify SE-LTL properties (State/Event Linear Temporal
Logic) over LTPN. A formula ψ is a SE-LTL formula if it
is a universally quantified formula ψ ::= ∀ϕ where ϕ ::=
cst | r | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | �ϕ | ♦ϕ | ϕUϕ. The
constant cst can be ⊥ (false), > (true), dead (deadlock),
div (temporal divergence), sub (partially known state). r
defines constraints e

a
e with

a
∈ {=, <,>,≤,≥} between

arithmetical expressions e involving place and transition sym-
bols from the underlying LTPN. The operators © (next), �
(always), ♦ (eventually) and U (until) have their usual LTL
semantics. Based on SE-LTL, it is in particular possible to
implicitly characterize sets of markings in a given LTPN. For
instance, suppose an LTPN N composed of n ≥ 2 places
p1, p2, . . . , pn. The set Q of markings M ∈ Q of N such
that M(p1) = 1 and M(p2) = 1 can be characterized by the
SE-LTL property denoted MARKINGS(N,Q):

MARKINGS(N,Q) ≡ (p1 = 1 ∧ p2 = 1). (8)

To implement the resolution of the problem as a model-
checking problem, it then suffices to design the SE-LTL for-
mula DIAGNOSABLE(Θ,Ω) that asserts there is no ambiguous
infinite run in Γ. This formula is detailed below step by
step. We recall here that the twin plant Γ results from the
synchronization of two copies Πi = Θi n Ωi, i ∈ {1, 2}.

Diagnosability involves runs in Γ only composed of admis-
sible markings M . A marking Mi from Πi is not admissible
as soon as for one place of type NaΘ (see Section V-A), we
have Mi(NaΘ) 6= 0. Then the following SE-LTL properties
ADM(Πi) (resp. ADM(Γ)) characterize the set of admissible
markings of Πi (resp. Γ):

ADM(Πi) ≡
∧

NaΘ∈Πi

NaΘ = 0. (9)

ADM(Γ) ≡
∧

i={1,2}

ADM(Πi). (10)

Now, MATCH(Πi) is the property of any marking M of Πi

resulting from a pattern matching, firstly M is admissible and
secondly its restriction to the places of Ωi should hold the
properties of the admissible marking set QΩi

:

MATCH(Πi) ≡ ADM(Πi) ∧MARKINGS(Ωi, QΩi
). (11)
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Similarly, the property NOMATCH(Πi) asserts the admis-
sible marking M of Πi is not a matching property, i.e. its
restriction M|Ωi

does not belong to the final markings of Ωi:

NOMATCH(Πi) ≡ ADM(Πi)∧¬MARKINGS(Ωi, QΩi
). (12)

Now, a marking M of Γ is said to be ambiguous, if its
restriction M1 to Π1 is a matching marking but its restriction
M2 to Π2 is not a matching property:

AMBIGUOUS(Γ) ≡ MATCH(Π1) ∧ NOMATCH(Π2). (13)

To finally setup DIAGNOSABLE(Θ,Ω), the idea is to write
that any ambiguous run is finite. So we first need to logically
characterize a finite ambiguous run. As soon as the run
contains an ambiguous marking M , two cases hold. Either
it will eventually reach (♦) an admissible marking M ′ that is
not ambiguous which means that the restriction M ′2 of M ′ is
a matching marking for Π2 (as it is already for Π1):

�AMBIGUOUS(Γ)⇒ ♦(ADM(Γ)⇒ MATCH(Π2)); (14)

or it will eventually reach a dead-end

�AMBIGUOUS(Γ)⇒ ♦(dead). (15)

Theorem 3 can then be translated based on expressions (14)
and (15) into the following SE-LTL property on Γ.

Corollary 1. The system Θ is Ω-diagnosable iff the universally
quantified formula DIAGNOSABLE(Θ,Ω) is true:

DIAGNOSABLE(Θ,Ω) ≡ ∀�AMBIGUOUS(Γ)⇒
♦(ADM(Γ)⇒ (MATCH(Π2) ∨ dead)).

(16)

B. Algorithm and complexity analysis

Algorithm 1 summarizes the method. Line 1 implements
the different steps to compute Γ from Θ and Ω as detailed
in Section V. Line 2 computes the query based on Γ that is
presented in Corollary 1. Line 3 calls the model-checker on
Γ with the query. The model-checker returns as a response
either true or false and in the latter case a counter-example
that is an infinite admissible run of Γ that is ambiguous (see
Definitions 13 and 14). Line 5 retrieves from this run the
involved couple of infinite runs (r1, r2) from Θ.

Algorithm 1: Ω-diagnosability analysis
input : A system Θ and a pattern Ω

1 Γ← TwinPlantSynthesis(Θ,Ω);
2 DIAGNOSABLE(Θ,Ω)← QuerySynthesis(Γ);
3 (resp, run)← CallTina(Γ,DIAGNOSABLE(Θ,Ω));
4 if resp = true then return true;
5 else return (r1, r2)← RunExtractions(run);

output: true iff Θ is Ω-diagnosable
output: If not Ω-diagnosable, a pair of infinite

non-diagnosable runs (r1, r2) of Θ.

The overall complexity of Algorithm 1 is the complex-
ity of the model-checking part of the algorithm that is
performed at line 3. Line 3 actually checks the property

DIAGNOSABLE(Θ,Ω) on the Strong State Class Graph of Γ
(SSCG). The number of states of the SSCG is in O(2|PΓ|).
By construction of Γ (Line 1), |PΓ| linearly depends on |PΘ|
and |PΩ| which means that the SSCG is in O(2|PΘ|) and
in O(2|PΩ|). As stated in [40], checking the satisfiability of
a formula ϕ in Γ is in O(2|PΓ| × 2|ϕ|) = O(2|PΘ| × 2|ϕ|)
where |ϕ| is the length of the formula ϕ. In our case,
|ϕ| = |DIAGNOSABLE(Θ,Ω)| is in O(|QadmΓ |) = O(2|PΘ|)
and in O(|QadmΩ |) = O(2|PΩ|). To summarize, Algorithm 1 is
in the worst case in O(22|PΘ|) and in O(22|PΩ|).

C. Experimental results

We report on the experimental results of the 8 diagnosability
analyses described in Example 2. Table I recalls the 8 scenar-
ios. Two scenarios are based on the system Θ where transition
a[0, 3] has been replaced by a[2, 3]. As the complexity of
the algorithm depends on the number of places in the nets
and on the size of the query (16) of Corollary 1, we first
apply a few optimizations in the proposed algorithm. Firstly,
we optimize the number of non-admissible places NaΘ in
the twin. In theory, there are as many places NaΘ as there
are time decompositions in the system, however as NaΘ
is used to assert whether the current marking is admissi-
ble or not, it is actually possible to merge all the places
NaΘ into one and only one so in the resulting twin, there
are only two places namely NaΘ1 and NaΘ2 to represent
the non-admissible runs of the duplicated systems Π1 and
Π2 (see Section V-B). Secondly, to reduce the size of the
query (16), we do not encode AMBIGUOUS(Γ) (eq (13)) but
only MATCH(Π1) ∧ ADM(Π2) as it is sufficient: we let the
model checker handle the case where NOMATCH(Π2) is false
(i.e. no ambiguity so no diagnosability issue) in the premise
which implies the global question is true (implication). We also
do not encode ADM(Π2) required in MATCH(Π2) (eq (11)) in
the conclusion of the implication as it is implicit (already in
the premise of the implication in ADM(Γ)). Table II presents
the experimental results for these scenarios with the optimized
algorithm. For instance, consider Case 5 where the pattern
is Ω2(1) with QΩ2(1) = {M :M(pp2

1) = 1} (see Figure 2b,
k = 1), the actual optimized query used to get the results in

Case Pattern System

1 Ωb
1(1): one event b Θ

2 Ωb
1(2): two events b Θ

3 Ωb
1(10): ten events b Θ

4 Ωf
1 (1): one event f Θ

5 Ω2(1): one event f or one event b Θ

6 Ω2(1): one event f or one event b Θ: a[0, 3] → a[2, 3]

7 Ω3(4): 4 consecutive events b without an f Θ: a[0, 3] → a[2, 3]

8 Ω3(4): 4 consecutive events b without an f Θ

TABLE I: Diagnosability analyses described in Example 2.
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Table II is:

DIAGNOSABLE(Θ,Ω2(1)) ≡
�(NaΘ1 = 0 ∧NaΘ2 = 0 ∧ pp12

1 = 1)⇒
(♦((NaΘ1 = 0 ∧NaΘ2 = 0)⇒ (pp22

1 = 1 ∨ dead))) (17)

Place name ppi2l denotes the place pp2
l in the corresponding

product Πi (they are pattern places inside Πi). MATCH(Π1)∧
ADM(Π2) is encoded with (NaΘ1 = 0∧pp12

1 = 1∧NaΘ2 =
0). pp22

1 = 1 is the optimized way to encode MATCH(Π2).
Table II presents for each scenario the size of the twin Γ, the
size of the strong state class graph computed by TINA during
the verification and the overall time for the computation of the
results (time that measures the complete computational time
of Algorithm 1). A scenario labeled with OK is a diagnosable
scenario, otherwise it is labeled with KO. All the results are
consistent with the intuition described in Example 2, the most
complex one being obtained in less than 25s in one core of
a Ryzen 7 1770 2.2Ghz. We finally recall that, without any
quantitative information about time, none of these scenarios
would be diagnosable. This explains the size of the SSGs
which implicitly represent all the time interleavings of events.

Γ Size (pl/tr/arcs) SSG st. SSG tr. Time (s) Result

1 44/76/224 65101 188706 1.931 OK
2 46/78/232 101671 290471 2.918 OK
3 62/94/296 394231 1104591 12.074 OK
4 44/76/224 85107 231247 1.957 KO
5 46/84/248 83143 246688 2.560 KO
6 46/84/248 51734 146106 1.518 OK
7 52/94/288 145627 390583 4.163 OK
8 52/94/288 705376 2012231 21.506 KO

TABLE II: Experimental results for Example 2.

VII. CONCLUSION

This paper introduces pattern diagnosability for timed dis-
crete event systems as an extension of the single fault di-
agnosability problem. A fully automated approach to check
the problem over safe LTPN is then formally detailed and
fully implemented as a model-checking problem. One of the
main difficulties is to formally characterize the occurrence of a
pattern which is achieved by the definition of an original pat-
tern matching product. In our perspectives, we plan to extend
this approach to also deal with time patterns and characterize
specific subclasses of decidable problems in LTPN. We also
plan to update the model-checker to specifically deal with
twin-plant construction as initiated in our recent work [41].

APPENDIX

Lemma 1. For any timed sequences ρ1, ρ2 ∈ L(Θ) such that
PΘ
o (ρ1) = PΘ

o (ρ2) = σ there exists a timed sequence ρ ∈
L(Γ, QadmΓ ) such that PΓ

o (ρ) = σ, PΓ
i (ρ) = ρi, i ∈ {1, 2}.

Proof. Theorem 1 states that one can find a run ri in Πi such
that ρ′i ∈ θ `Πi(ri) and ρi is just as ρ′i by renaming the unob-
servable event (e, i) from ρ′i to e. As PΘ

o (ρ1) = PΘ
o (ρ2) = σ,

it follows that both runs ri fire observable transitions not only
at the same date but also with the same label. By definition
of Γ (Definition 11), the firing conditions of any unobservable
transitions from both Πi remain the same in Γ. Consider t1
from r1 and t2 from r2 be the first couple of observable
transitions that is fired. The transition fusion in Γ ensures
that the transition e12 of t1||t2 (see Figure 4) can be fired
at the same date and its postset marking remains admissible.
Therefore, this postset marking gathers the postset markings
of t1 and t2 which means that the firing conditions of next
transitions in r1 and r2 remain the same in Γ. Applying
inductively the same reasoning to the sequence of couples
(t1, t2) of observable transitions fired at the same time in r1

and r2, it follows that we can design an admissible run r of
Γ such that PΓ

o (ρ) = σ, PΓ
i (ρ) = ρi, i ∈ {1, 2}.

Lemma 2. For any timed sequence ρ ∈ L(Γ, QadmΓ ) there
exists a couple of timed sequences ρ1, ρ2 ∈ L(Θ) such that
PΓ
i (ρ) = ρi, i ∈ {1, 2}; and PΓ

o (ρ) = PΘ
o (ρ1) = PΘ

o (ρ2).

Proof. As ρ ∈ L(Γ, QadmΓ ), there exists an admissible run
SΓ0

r−→ S in Γ such that ρ ∈ θ `Γ(r). By Definition 11, r is
a sequence composed of transitions either from the products
Πi∈{1,2} or being transition fusions like t1||t2 where ti is in
Πi. Consider now t1||t2 as the first transition fusion present
in r. As r is admissible, there must be only one fire of
csi∈{1,2} followed by one fire of e12 (transitions from t1||t2,
(see Figure 4)) associated with this first transition fusion t1||t2.
By definition of Γ (Definition 11), the firing condition of any
unobservable transition from Πi∈{1,2} remain the same in Γ,
so the sequence r0

i of any unobservable transition fired in r
from Πi before the fire of transitions csΘi can be fired in the
same conditions in Πi. As the preset of csΘi is the preset of
ti, it means that ti is enabled in Πi at the same time than
csΘi in Γ. As e12 is fired in r it means that ti is firable
at the same absolute date than e12 after the run r0

i in Πi.
The postset marking of e12 being admissible, it also gathers
the postset markings of ti from Πi: it follows that we can
design a run r0

i followed by the fire of ti in Πi that leads
to the marking Mi included in the marking of Γ after the
fire of e12 in r. Applying inductively this reasoning on the
sequence of transition fusions present in r, it follows that we
can design a couple of runs r1 and r2 from r such that there
exists ρ′i ∈ θ `Πi

(ri) and PΠi
o (ρ′i) = PΓ

o (ρ). The result then
follows from Theorem 1.
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