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Abstract—Tensor data with rich structural information 

becomes increasingly important in process modeling, monitoring, 

and diagnosis. Here structural information is referred to 

structural properties such as sparsity, smoothness, low-rank, and 

piecewise constancy. To reveal useful information from tensor 

data, we propose to decompose the tensor into the summation of 

multiple components based on different structural information of 

them. In this paper, we provide a new definition of structural 

information in tensor data. Based on it, we propose an additive 

tensor decomposition (ATD) framework to extract useful 

information from tensor data. This framework specifies a high 

dimensional optimization problem to obtain the components with 

distinct structural information. An alternating direction method 

of multipliers (ADMM) algorithm is proposed to solve it, which is 

highly parallelable and thus suitable for the proposed optimization 

problem. Two simulation examples and a real case study in 

medical image analysis illustrate the versatility and effectiveness 

of the ATD framework.  

 
 Note to practitioners—This paper was motivated by a real case 

in medical imaging which is the need of extracting aortic valve 

calcification (AVC) regions from the tensor data obtained from 

computed tomography (CT) image series of the aortic region. The 

main objective is to decompose image series into multiple 

components based on structural information. Similar needs are 

pervasive in medical image analysis as well as the image-based 

modeling, monitoring, and diagnosis of industrial processes and 

systems. Existing methods fail to incorporate a detailed 

description of the properties of the image series that reflect the 

physical understanding of the system in both the spatial and 

temporal domains. In this article, we provide a systematic 

description of the properties of image series and use them to 

develop a decomposition framework. It is applicable to various 

applications and can generate more accurate and more 

interpretable results.  

 
Index Terms—Tensor decomposition, structural information, 

ADMM algorithm. 

 

I. INTRODUCTION 

ITH the recent advancement of sensing technology, 

tensor data with rich structural information are acquired 

for process modeling, monitoring, and diagnosis [1]-[3]. For 

example, tensor data can represent multiple images obtained 
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from CT scanning to illustrate different cross-sections of an 

organ [4]-[6]. In this example, the tensor is of order 3: the first 

mode represents multiple slices of images along the scanning 

direction, and the second and third modes define a cross-

sectional image (Fig. 1). 

Useful information for an application is usually deeply 

buried in tensor data. To reveal this information, we usually 

need to decompose the tensor data into a summation of multiple 

tensor components with the same size, based on domain 

interpretations. For example, the tensor representing the data 

shown in Fig. 1 can be decomposed into three tensor 

components, representing the background of blood and aorta, 

aortic valve calcification regions, and measurement errors. 

Generally, one of the tensor components represents quality 

issues of interest. In the example of the CT images, the 

component representing AVC regions is related to the 

likelihood of the paravalvular regurgitation (PVR) symptom 

after a surgery, which is a key quality index of transcatheter 

aortic valve replacement (TAVR), a common minimum 

invasive surgical procedure for treating aortic stenosis [6]. 

Based on the decomposed components, a prototype for patients’ 

aortic root anatomies can be fabricated using multi-material 3D 

printing for surgical planning to prevent PVR. We refer to the 

decomposition of one tensor into a summation of multiple 

tensors as additive tensor decomposition, to differentiate it from 

the existing low-rank tensor decomposition approaches like 

Tucker and CP decomposition [7].  

The decomposition of the tensor data can be performed based 

on different structural information of the components on 

various modes, driven by the physical knowledge underlying 

the process. In the CT example, we not only need to consider 

the spatial information in each image which are the second and 

third modes, such as every slice of the background tensor is 

smooth, the AVC regions are sparse, and measurement errors 

are usually small independent random values on each pixel. We 

also need to consider the temporal evolvement between images 

along the first tensor mode, such as gradual change of the 

component representing AVC regions across multiple slices. 

The structural difference between the components defines how 

the decomposition should be conducted. From the examples in 

Sections 3 and 4, we illustrate that the applications of ATD are 
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prevalent in engineering, including the real-time monitoring of  

the crack growth on a building surface [8] and the overheating 

areas on industrial facilities [9].  

In this study, we propose a systematic framework for additive 

tensor decomposition, which is based on a set of definitions of 

the structural information of the component tensors in various 

modes. As discussed in Section 3, this general framework 

utilizes the structural representations to specify a class of 

optimization problems that are easily customized for a wide 

range of tensor decomposition applications. In this framework, 

the optimization problems are defined as the summation of 

multiple terms that each term specifies one structural property 

of one tensor component. Such structural properties include the 

sparsity [10], smoothness [11], low-rank [12], and piecewise 

constancy which can be defined in one or multiple modes/slices 

of the tensor components. An alternating direction method of 

multipliers (ADMM) algorithm [13] is adopted for solving the 

problem, as it is highly parallelizable and thus suitable for high 

dimensional data analysis.  

The rest of the paper is organized as follows. The related 

literature is reviewed in Section 2. Section 3 presents the 

definition of the structural information, the additive tensor 

decomposition framework, and the ADMM algorithm. The 

formulation and solution of two specific engineering examples 

are introduced to demonstrate the methodology. Section 4 

further presents the simulation studies based on these two 

examples. In Section 5, a case study involving real data in 

medical imaging is presented, and Section 6 concludes the 

paper. 

II. LITERATURE REVIEW 

Recently, some literature proposed the idea of decomposing 

a data matrix into a summation of multiple components. For 

identifying the anomalies in images, Yan et al. [1] proposed a 

smooth-sparse decomposition method to decompose an image 

into a smooth background and sparse anomalies. Similar 

additive decomposition is demonstrated in the Robust Principal 

Component Analysis (RPCA) [12], which decomposes the data 

matrix into a low-rank component and a sparse component.  

The matrix decomposition framework has demonstrated its 

effectiveness in process monitoring [1, 2] and moving object 

detection [14]. As high dimensional tensors become 

increasingly common, there is an urgent need to extend this idea 

to tensor data. Compared with data matrices, a notable 

characteristic of tensor data is the distinct structural information 

of slices in certain modes. As a result, the tensor should be 

reshaped appropriately, so that the rich structural information 

can be revealed. Although some researchers extended the 

decomposition methods to tensor data, most of them did not 

incorporate this structural information into their decomposition 

strategies. For example, the Spatio-Temporal Smooth Sparse 

Decomposition (ST-SSD) method [2] extended the SSD [1] to 

handling Spatio-temporal tensor data. It only assumed that the 

decomposed two tensor components were either smooth or 

sparse in both time and space, but did not utilize these properties 

on individual modes. The RPCA was adjusted to identify the 

moving objects on a static background in image streams, while 

it was conducted by simply reshaping the spatio-temporal 

tensor to a matrix [14]. To extend the matrix decomposition 

framework to tensor data for generating more accurate and 

interpretable results, it is critical to have a systematic way to 

define the rich structural property of the tensor slices using 

mathematical formulations.  

In the literature, assorted penalization methods have been 

used to promote the desired properties of the estimators in 

regularized regression. These penalties can be used in the tensor 

decomposition framework to enhance the smoothness in one or 

more slices of the tensor [11], promote the sparsity in different 

slices at one or more modes [10], and limit the patterns of 

variations in certain slices of the tensor [12]. Our proposed 

framework, ATD, combines these penalization methods with 

the unique structure of the tensor data into a high dimensional 

optimization problem, which can be solved efficiently with the 

ADMM algorithm [13].  

III. ADDITIVE TENSOR DECOMPOSITION FRAMEWORK 

In this section, we introduce the general ATD framework and 

the solution procedure, and further demonstrate them using two 

examples. Throughout the article, the set {1, … , 𝑛}  is 

represented as [𝑛]. We denote a scalar by a lowercase letter 𝑎, 

a vector by a boldface lowercase letter 𝐚, and a matrix by a 

boldface uppercase letter 𝐀. An order-𝑛 tensor is denoted by a 

calligraphic letter 𝒜 ∈  ℝ𝐼1×𝐼2×⋯×𝐼𝑑, where 𝐼𝑖 is the dimension 

of its 𝑖 th mode. Element ( 𝑖1, … , 𝑖𝑑 ) of the tensor 𝒜  is 

represented as 𝒜(𝑖1, … , 𝑖𝑑) . The (𝑖𝑑1
, … , 𝑖𝑑𝑘

)  slice of the 

tensor 𝒜  at mode 𝑑1, … , 𝑑𝑘  is represented as 

𝒜(: , … , : , 𝑖𝑑1
 , : ,… , : , 𝑖𝑑𝑘

, : , … , : ) , where 𝑖𝑑𝑗
∈ [𝐼𝑑𝑗

] 

represents the elements at mode 𝑑𝑗 , 𝑗 = 1, … , 𝑘. For ease of 

exposition, let 𝒜𝑖𝑑1,…,𝑖𝑑𝑘
 denote 

𝒜(: , … , : , 𝑖𝑑1
 , : ,… , : , 𝑖𝑑𝑘

, : , … , : ) The mode-𝑘 fiber is defined 

by a column vector 𝒜(𝑖1, … , : , 𝑖𝑘−1 , : , 𝑖𝑘+1, … , 𝑖𝑑)  [7]. The 

mode- (𝑟1, … , 𝑟𝐿) matricization of 𝒜 is a matrix 

 
Fig. 1.  A sample of sequential CT scans of the aortic root from the 3rd to the 

7th image 
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𝒜
(𝐼𝑟1…𝐼𝑟𝐿

)×(𝐼𝑞1…𝐼𝑞𝑑−𝐿
)
∈ ℝ(𝐼𝑟1…𝐼𝑟𝐿

)×(𝐼𝑞1…𝐼𝑞𝑑−𝐿
)
, whose element 

at entry (𝑖𝑟1 + (𝑖𝑟2 − 1)𝐼𝑟1 + ⋯+ (𝑖𝑟𝐿
− 1)𝐼𝑟1 … 𝐼𝑟𝐿−1

, 𝑖𝑞1
+

(𝑖𝑞2
− 1)𝐼𝑞1

+ ⋯+ (𝑖𝑞𝑑−𝐿
− 1)𝐼𝑞1

… 𝐼𝑞𝑑−𝐿−1
)  is 𝒜(𝑖1, … , 𝑖𝑑) , 

where {𝑟1, … , 𝑟𝐿} and {𝑞1, … , 𝑞𝑑−𝐿} is a partition of {1, … , 𝑑} 

and 𝑖𝑘 ∈ [𝐼𝑘] for all 𝑘 ∈ [𝑑]. Specifically, 𝒜(𝑗) ∈ ℝ𝐼𝑗×𝐼−𝑗 is the 

mode-𝑗 matricization of 𝒜 whose columns are the slices of 𝒜 

at mode 𝑗, where 𝐼−𝑗 = Π𝑖∈[𝑑]−{𝑗}𝐼𝑖.  

A. General problem formulation  

Assume that an order-d tensor ℳ ∈ ℝ𝐼1×⋯×𝐼𝑑  is 

decomposed into a summation of 𝑚 tensor components 𝒳𝑖  with 

the same size, where 𝑖 ∈ [𝑚], and that there are 𝑛𝑖  structural 

assumptions on 𝒳𝑖 . The decomposition is achieved by 

minimizing the summation of regularization terms specified by 

all structural properties given in Problem (1): 

minimize
𝒳1,…,𝒳𝑚

∑ ∑ 𝜆𝑖,𝑗𝑝𝑖,𝑗(𝒳𝑖)
𝑛𝑖
𝑗=1

𝑚
𝑖=1 , 

 subject to ℳ = ∑ 𝒳𝑖
𝑚
𝑖=1 . (1) 

In Problem (1), 𝑝𝑖,𝑗(∙) specifies the 𝑗th structural property on 

𝒳𝑖 , by taking a large value when 𝒳𝑖  does not satisfy the 

specified structural properties. The trade-off between multiple 

regularization terms is specified by the tuning parameters 𝜆𝑖,𝑗’s. 

Certain structural properties are detailed below, which can be 

applied to either the entire tensor or certain slices.  

Structural property on smoothness. The elements in a 

tensor component 𝒳  or one of its slices should have similar 

values, whenever their indices are close to each other. In other 

words, the entire tensor 𝒳 or the slices at certain modes should 

be smooth [1, 2]. We use mode-(𝑑1, … , 𝑑𝑘) smoothness of a 

tensor to describe the similarity among different slices at mode 

𝑑1, … , 𝑑𝑘 , which can be represented as 𝑝(𝒳) =

∑ ‖𝐃𝑑𝑠

𝑙 𝒳(𝑑𝑠)‖𝐹

2𝑘
𝑠=1 , where 𝐃𝑑𝑠

𝑙 ∈ ℝ𝐼𝑑𝑠×𝐼𝑑𝑠 , s ∈ [𝑘]  are finite 

difference matrices of order 𝑙  on mode 𝑠  [1]. The notation 

‖𝐀‖𝐹  represents the Frobenius norm of 𝐀. For example, when 

𝒳 is an order-3 tensor whose first mode represents time and 

every 𝒳(𝑖1, : , : )  represents an image, the mode- (2,3) 

smoothness essentially indicates that each image is smooth 

(Fig. 2 (a)). The mode-(1) smoothness, on the other hand, 

indicates that all vectors 𝒳(: , 𝑖2, 𝑖3) compose a smooth curve 

for every element (𝑖1, 𝑖2) , where 𝑖2 ∈ [𝐼2]  and 𝑖3 ∈ [𝐼3] . It 

means that the slices of 𝒳 change smoothly in temporal mode 

(Fig. 2 (b)).  

Structural property on sparsity. Some tensor components 

represent the anomaly and isolated features, and sparsity is 

needed for them. To reflect the understandings of the problem, 

the sparsity in a tensor may be specified mode-(𝑑1, … , 𝑑𝑘) 
sparsity. We use mode-(𝑑1, … , 𝑑𝑘)  sparsity to describe the 

sparsity among slices at mode 𝑑1, … , 𝑑𝑘 , which can be 

represented as 𝑝(𝒳) =

∑ ⋯∑ ‖vec (𝒳(: , … , : , 𝑖𝑑1
 , : , … , : , 𝑖𝑑𝑘

, : , … , : ))‖
2

𝐼𝑑𝑘
𝑖𝑑𝑘

=1

𝐼𝑑1
𝑖𝑑1=1 , 

which is the group Lasso penalty. For example, the mode-(1) 
sparsity indicates that only some slices at mode 1 contain non-

zero values (Fig. 3 (a)). The mode-(2,3) sparsity indicates that 

each slice at mode 1 is sparse (Fig. 3 (b)). Note that mode-

(1, … , 𝑑)  sparsity is equivalent to the sparsity of the whole 

tensor as 𝑝(𝒳) = ∑ ⋯∑ ‖𝒳(𝑖1, … , 𝑖𝑑)‖2
𝐼𝑑
𝑖𝑑=1

𝐼1
𝑖1=1 =

‖vec(𝒳)‖1, as indicated in Fig. 3 (c). 

Structural property on the variation patterns. In many 

applications, certain modes of the tensor data have a limited 

number of variation patterns. In other words, appropriate 

reshaping operations should be applied to transform the 

associated slices of the tensor to low-rank matrices. We define 

the mode-(𝑙1, … , 𝑙𝑞) low rank of slices at mode 𝑑1, … , 𝑑𝑘 where 

(𝑙1, … , 𝑙𝑞) ∩ (𝑑1, … , 𝑑𝑘) = ∅ as follows: let {𝑠1, … , 𝑠𝑑−𝑞−𝑘} =

[𝑑] − {𝑙1, … , 𝑙𝑞} − {𝑑1, … , 𝑑𝑘} , the mode- (𝑙1, … , 𝑙𝑞) 

matricization of each slice at mode 𝑑1, … , 𝑑𝑘 , 

𝒳(: ,… , : , 𝑖𝑑1
 , : , … , : , 𝑖𝑑𝑘

, : , … , : )  is low rank. Therefore, 

mode-(𝑙1, … , 𝑙𝑞) low rank of slices at mode 𝑑1, … , 𝑑𝑘  can be 

represented as 

𝑝(𝒳) = ∑ ⋯ ∑  

𝐼𝑑𝑘

𝑖𝑑𝑘
=1

𝐼𝑑1

𝑖𝑑1=1

 

‖(𝒳(: , … , : , 𝑖𝑑1
 , : , … , : , 𝑖𝑑𝑘

, : , … , : ))
(𝐼𝑙1…𝐼𝑙𝑞)×(𝐼𝑠1…𝐼𝑠𝑑−𝑞−𝑘

)
‖

∗

, 

where ‖⋅‖∗ is the nuclear norm. We say that a tensor is mode-

(𝑙1, … , 𝑙𝑞) low rank if its mode-(𝑙1, … , 𝑙𝑞) matricization is low 

rank.   There are two examples for order-3 tensors whose first 

mode is time and the rest represent images. First, consider that 

each image in 𝒳  represents a textured background with 

repetitive vertical and horizontal patterns [15]. Then each slice 

𝒳(𝑖1, : , : ) at mode 1 is of mode-(3) low rank (Fig. 4), and the 

tensor can be regularized by 𝑝(𝒳) = ∑ ‖(𝒳(𝑖1, : , : ))‖∗

𝐼1
𝑖1=1 , 

where ‖⋅‖∗ is the nuclear norm. In another example, all images 

in the tensor 𝒳 are similar, representing a static background. 

Then 𝒳  is of mode- (1)  low rank and the regularization 

𝑝(𝒳) = ‖𝒳(1)‖∗
 should be employed.  

 
          (a) mode-(2,3) smoothness                       (b) mode-(2) smoothness 

Fig. 2.  Illustration of the definition of mode-(𝑑1, … , 𝑑𝑘) smoothness 

 

 

 
     (a) mode-(1) sparsity  (b) mode-(2,3) sparsity  (c) mode-(1,2,3) sparsity 

Fig. 3.  Illustration of the definition of mode-(𝑑1, … , 𝑑𝑘)  sparsity 
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Structural information on piecewise constancy. In certain 

applications, some slices of the tensor are piecewise constant. 

Without loss of generality, we formally define mode−(1, … , 𝑞) 

piecewise constancy of slices at mode 𝑞 + 1,… , 𝑞 + 𝑘  as 

follows:  

Definition: 𝒳  is mode- (1,… , 𝑞)  piecewise constancy of 

slices at mode 𝑞 + 1,… , 𝑞 + 𝑘 , if for any 𝑖𝑞+1 ∈

[𝐼𝑞+1] , … , 𝑖𝑞+𝑘 ∈ [𝐼𝑞+𝑘], the set of grid points 𝐼𝑞+𝑘+1 × ⋯×

𝐼𝑞+𝑑  can be partitioned into multiple continuous regions 

𝑅1(𝑖𝑞+1, … , 𝑖𝑞+𝑘), … , 𝑅𝑘(𝑖𝑞+1, … , 𝑖𝑞+𝑘) , such that any two 

order 𝑞 sub-tensors 

𝒳(: , … , : , 𝑖𝑞+1 , : , … , : , 𝑖𝑞+𝑘 , 𝑖𝑞+𝑘+1, … , 𝑖𝑑)

= 𝒳(: , … , : , 𝑖𝑞+1 , : , … , : , 𝑖𝑞+𝑘 , 𝑖𝑞+𝑘+1
′ , … , 𝑖𝑑

′ ) 

where (𝑖𝑞+𝑘+1, … , 𝑖𝑑) and (𝑖𝑞+𝑘+1
′ , … , 𝑖𝑑

′ ) are in the one of the 

same regions. 

This definition can be extended to mode- (𝑙1, … , 𝑙𝑞) 

piecewise constancy of slices at mode 𝑑1, … , 𝑑𝑘  naturally for 

arbitrary slices  (𝑙1, … , 𝑙𝑞) ∩ (𝑑1, … , 𝑑𝑘) = ∅ . Then, mode-

(1, … , 𝑞) piecewise constancy of slices at mode 𝑞 + 1,… , 𝑞 +
𝑘 can be represented as  

𝑝(𝒳) = ∑ ⋯ ∑ ∑  

((𝑖𝑞+𝑘+1,…,𝑖𝑑),(𝑖𝑞+𝑘+1
′ ,…,𝑖𝑑

′))∈𝐸

𝐼𝑞+𝑗

𝑖𝑞+𝑗=1

𝐼𝑞+1

𝑖𝑞+1=1

 

‖vec (𝒳(: , … , : , 𝑖𝑞+1 , : , … , : , 𝑖𝑞+𝑘 , 𝑖𝑞+𝑘+1, … , 𝑖𝑑) −

𝒳(: ,… , : , 𝑖𝑞+1 , : ,… , : , 𝑖𝑞+𝑘 , 𝑖𝑞+𝑘+1
′ , … , 𝑖𝑑

′))‖
2
,  

where ((𝑖𝑞+𝑘+1, … , 𝑖𝑑), (𝑖𝑞+𝑘+1
′ , … , 𝑖𝑑

′ )) ∈ 𝐸  means that 

(𝑖𝑞+𝑘+1, … , 𝑖𝑑)  is in the neighborhood of (𝑖𝑞+𝑘+1
′ , … , 𝑖𝑑

′ ) . 

Specifically, the neighborhood can be defined as  

Queen-type neighborhood:  

𝐸 = {((𝑖1, … , 𝑖𝑑), (𝑖1
′ , … , 𝑖𝑑

′ )): |𝑖𝑠
′ − 𝑖𝑠| ≤ 1, 𝑠 = 1,… , 𝑑}; 

Rook-type neighborhood:  

𝐸 = {((𝑖1, … , 𝑖𝑑), (𝑖1
′ , … , 𝑖𝑑

′ )): |𝑖𝑠
′ − 𝑖𝑠| = 1,1 ≤ 𝑠 ≤ 𝑑, 𝑖𝑗 =

𝑖𝑗
′ for all 𝑗 ≠ 𝑠}. 

In multiple change-point detections, most adjacent slices at 

temporal mode  𝑑𝑠  in slices at mode (𝑑1, … , 𝑑𝑘) shall be the 

same if instantaneous change seldom happens, where 𝑠 ∉ [𝑘]. 
It is defined as mode-(𝑑𝑠) piecewise constancy of slices at 

mode 𝑑1, … , 𝑑𝑘 .  This characteristic of the tensor can be 

regularized using a fused lasso penalty [16],  

𝑝(𝒳)

= ∑ ⋯ ∑ ∑ ‖vec (𝒳(: , … , : , 𝑖𝑑1
 , : , … , : , 𝑖𝑑𝑘

, : , … , 𝑖𝑑𝑠

𝐼𝑆−1

𝑖𝑠=1

𝐼𝑑𝑘

𝑖𝑑𝑘
=1

𝐼𝑑1

𝑖𝑑1=1

+ 1,… , : ) − 𝒳(: , … , : , 𝑖𝑑1
 , : , … , : , 𝑖𝑑𝑘

, : , … , 𝑖𝑑𝑠
, … , : ))‖

2
 . 

For example, when 𝒳 is an order-3 tensor whose first mode 

represents time and every 𝒳(𝑖1, : , : )  represents an image, 

mode-(1) piecewise constancy of 𝒳  indicates that 

instantaneous change among images seldom happens at 

temporal mode (Fig. 5 (a)). For another example, mode-(2) 

piecewise constancy of slices at mode  1  means that it is 

piecewise constant inside each image along mode 2 (Fig. 5 (b)). 

With the regularization terms promoting the above-

mentioned properties, formulation (1) is versatile and can be 

tailored for many applications. Two specific examples are 

below.  

1) Example 1: Monitoring crack growth on the surface of 

engineering structures 

Engineering structures are often subject to fatigue stress 

which leads to crack in the structure materials such as concrete 

surfaces and beams. Image-based crack detection becomes 

popular due to its high efficiency and objective assessment of 

deterioration. However, the irregular size of cracks and 

irregularly illuminated conditions in the acquired images are the 

main challenges in this inspection method [17]. In this example, 

we show the capability of ATD method in monitoring the crack 

growth under irregular illuminated conditions. We take images 

of a concrete wall at a fixed orientation every day to monitor 

the growth of a crack on it. All images collected in 𝐼1 days can 

be represented in a tensor ℳ ∈ ℝ𝐼1×𝐼2×𝐼3 , where 𝐼2 × 𝐼3 is the 

size of each image. Our objective is to decompose ℳ into a 

summation of two components, the background of the wall 𝒳1 

and the crack 𝒳2 . The backgrounds of the images are all 

smooth, but they are subject to the variation caused by the 

unstable brightness conditions. To describe the smoothness of 

each image, the regularization is represented as mode-(2,3) 

smoothness 𝑝1,1(𝒳1) = ‖𝐃2
1𝒳1(2)‖𝐹

2
 and 𝑝1,2(𝒳1) =

‖𝐃3
1𝒳1(3)‖𝐹

2
, where 𝐃𝑖

1′𝑠 ∈ ℝ𝐼𝑖×𝐼𝑖  are first-order difference 

matrix [1] for 𝑖 = 1, … ,3 

𝐃𝑖
1 =

[
 
 
 
 
 
1 −1   𝟎
1 −1    
 1 −1   
  ⋱ ⋱  
  1 −1  
𝟎   1 −1]

 
 
 
 
 

. 

The crack is a consecutive line limited to a local region on 

the wall [8], and it grows slowly. It is subject to the variation 

caused by the unstable brightness conditions, therefore the pixel 

intensity on the same line can be different. Therefore, the 

 
Fig. 4.  mode-(3) low rank of slices at mode 1 
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temporal smoothness is represented as ‖𝐃1
2𝒳2(1)‖𝐹

2
  which is 

mode-(1) smoothness, where 𝐃1
2 ∈ ℝ𝐼1×𝐼1  is the second-order 

difference matrix with modified Neumann boundary condition 

[18], 

𝐃1
2 =

[
 
 
 
 
 
−1  1   𝐎
1 −2 1   
 1 −2 1  
  ⋱ ⋱  
  1 −2 1
𝐎    1 −1]

 
 
 
 
 

. 

The mode-(1,2,3) sparsity of the anomaly is represented as 

‖vec(𝒳2)‖1. In total, the optimization problem specified by the 

ATD framework is given as  

minimize
𝒳1,𝒳2

𝜆1,1‖𝐃𝟐
1𝒳1(2)‖𝐹

2
+ 𝜆1,2‖𝐃3

1𝒳1(3)‖𝐹

2

+ 𝜆2,1‖𝐃1
2𝒳2(1)‖𝐹

2
+ 𝜆2,2‖vec(𝒳2)‖1, 

 subject to ℳ = 𝒳1 + 𝒳2. (2) 

where 𝜆1,1, 𝜆1,2, 𝜆2,1, 𝜆2,2 are tuning parameters. 

2) Example 2: Monitoring the spots of overheating on a 

heated surface 

High temperature is one of the root causes for equipment 

degradation. Infrared thermography (IRT) can provide the 

thermal image of the entire measured equipment.  Therefore, it 

has been successfully utilized in condition monitoring in 

numerous industries including nuclear, aerospace, and paper 

industries [19]. In this example, we show the capability of ATD 

framework of monitoring the spot of overheating on a heated 

surface. A thermal camera was installed above a surface of a 

fluidized catalytic cracking regenerator, to monitor the spots of 

overheating [9]. Spots of overheating were observed as few 

small regions on the monitored surface in which the 

temperature is much higher than other sections of the surface. 

In general, some hotspots’ locations may change in different 

time frames and others may appear at the same location 

throughout the monitoring period. Apart from the hotspots, the 

background temperature of the surface was smooth and varying 

slowly over time, driven by the heated material inside the 

container and the environmental condition that affects the 

cooling.  

The collected thermal images form a tensor ℳ ∈ ℝ𝐼1×𝐼2×𝐼3 . 

Our objective is to decompose it into three tensors 𝒳1, 𝒳2, and 

𝒳3 that represent the varying background, the static hotspots, 

and the moving hotspots respectively. Among them, all images 

in 𝒳1  are smooth, and this property is regularized by mode-

(2,3)  smoothness 𝑝1,1(𝒳1) = ‖𝐃2
1𝒳1(2)‖𝐹

2
 and 𝑝1,2(𝒳1) =

‖𝐃3
1𝒳1(3)‖𝐹

2
.  Also, variations of the images of the background 

are only driven by the heating and cooling effects, and thus all 

background images reside in a low-rank subspace. Therefore, 

𝒳1(1)  should have the low-rank property and another 

regularization 𝑝1,3(𝒳1) = ‖𝒳1(1)‖∗
 is employed. Most 

elements in 𝒳2  are zero, which is regularized by 𝑝2,2(𝒳2) =

‖vec(𝒳2)‖1. Also, the images in 𝒳2 are similar, which means 

that they should also reside in a low-dimensional subspace, and 

thus 𝒳2  is also regularized by mode- (1)  low rank penalty 

𝑝2,1(𝒳2) = ‖𝒳2(1)‖∗
. Finally, most elements in 𝒳3 are zero, so 

the regularization on 𝒳3 is given by 𝑝3,1(𝒳3) = ‖vec(𝒳3)‖1. 

Put everything together, we formulate Problem (3) using the 

ATD framework  

minimize
𝒳1,𝒳2,𝒳3

𝜆1,1‖𝐃2
1𝒳1(2)‖𝐹

2
+ 𝜆1,2‖𝐃3

1𝒳1(3)‖𝐹

2
+ 𝜆1,3‖𝒳1(1)‖∗

 

+𝜆2,1‖𝒳2(1)‖∗
+ 𝜆2,2‖vec(𝒳2)‖1 + 𝜆3,1‖vec(𝒳3)‖1, 

 subject to ℳ = 𝒳1 + 𝒳2 + 𝒳3, (3) 

where 𝜆1,1, 𝜆1,2, 𝜆1,3, 𝜆2,1, 𝜆2,2 and 𝜆3,1 are tuning parameters.  

We will follow up on solution procedures, simulated images 

(Fig. 6 and Fig. 7), and simulation results for the Problems (2) 

and (3) in the latter part of the paper.  

B. Problem solution 

Notice that Problem (1) is convex and bounded from below 

by zero. Therefore, an optimal solution to this problem exists. 

To deal with the high dimensionality of the decision variables, 

we adopt an ADMM algorithm to solve this problem [13]. In 

Problem (1), there are 𝑛𝑖  additive terms associated with the 

same variable 𝒳𝑖 . We introduce 𝑛𝑖  new ancillary tensors 

𝒳𝑖
(1)

, … ,𝒳𝑖

(𝑛𝑖)  as copies of 𝒳𝑖 , and further let �̃�𝑖 =

(𝒳𝑖
(1)

, … ,𝒳𝑖

(𝑛𝑖))  and �̃� = (�̃�1, … , �̃�𝑚) .  Then, formulation 

(1) is transformed into  

 minimize 𝑓(�̃�) + 𝑔(�̃�), (4) 

where 𝑓(�̃�) = ∑ ∑ 𝜆𝑖,𝑗𝑝𝑖,𝑗 (𝒳𝑖
(𝑗)

)
𝑛𝑖
𝑗=1

𝑚
𝑖=1 , and 𝑔(�̃�) = 𝐼𝐶(�̃�). 

Here 𝐼Ω(𝑥) refers to an indicator function that takes value 0 

when 𝑥 ∈ Ω , and takes value +∞  if 𝑥 ∉ Ω . The set 𝐶 =

{𝒳𝑖
(1)

= ⋯ = 𝒳𝑖

(𝑛𝑖), 𝑖 ∈ [𝑚]} ∩ {ℳ = ∑ 𝒳𝑖
(1)𝑚

𝑖=1 } . The 

canonical form (4) can be solved using the ADMM algorithm 

listed in Algorithm 1. 

 

Algorithm 1 ADMM algorithm 

Initialize 𝒵 and �̃� as the same data structure as �̃�, with all 

their elements being 0.  

Do: 

(1) Save (𝒵prev, �̃�prev) ← (𝒵, �̃�). 

(2) Update �̃� = prox
𝜂𝑓(𝒵prev − �̃�prev). 

(3) Update 𝒵 = prox
𝜂𝑔(�̃� − �̃�prev). 

(4) Update �̃� = �̃�prev + �̃� − 𝒵. 

Until: ‖�̃� − �̃�prev‖ < 𝜖, ‖𝒵 − 𝒵prev‖ < 𝜖. 

 
(a) mode-(1) piecewise constancy of 𝒳  (b) mode-(2) piecewise constancy of                
                                                                      slices at mode 1 

Fig. 5.  Illustration of the definition of mode-(1, … , 𝑞) piecewise constancy 
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In Algorithm 1, the parameter 𝜂 defines the step size. The 

proximal operator is defined as proxℎ(𝒳) =

argmin𝒴 (ℎ(𝒴) +
1

2
‖vec(𝒳 − 𝒴)‖2

2).  Two essential steps of 

Algorithm 1 are evaluating the proximal operators for 𝜂𝑓 and 

𝜂𝑔 in Steps (2) and (3). As 𝑓 is the summation of multiple terms 

involving non-overlapping tensors 𝒳𝑖
(𝑗)

’s, its proximal operator 

can be expressed using the proximal operators of individual 

𝑝𝑖,𝑗(⋅)’s, as indicated by the separable property of the proximal 

operator [13],  

proxℎ(𝐱1, 𝐱2) = (proxℎ1
(𝐱1), proxℎ2

(𝐱2)) 

if ℎ(𝐱1, 𝐱2) = ℎ1(𝐱1) + ℎ2(𝐱2). 
Using the separable property again, the proximal operators of 

each 𝑝𝑖,𝑗 (𝒳𝑖
(𝑗)) can be expressed via the proximal operators of 

quadratic functions, norms, and other simple functions, whose 

closed-forms are available [13]. As for 𝑔(�̃�), the separable 

property of the proximal operator 𝐼𝐶  can be invoked again, by 

noting that   

𝐼𝐶(�̃�) = ∑ 𝐼𝐶𝑖1,…,𝑖𝑑
(�̃�1(𝑖1, … , 𝑖𝑑),… , �̃�𝑚(𝑖1, … , 𝑖𝑑))𝑖1,…,𝑖𝑑

, 

where 

𝐶𝑖1,…,𝑖𝑑
= {𝒳𝑖

(1)(𝑖1, … , 𝑖𝑑) = ⋯ = 𝒳𝑖

(𝑛𝑖)(𝑖1, … , 𝑖𝑑), ∀ 𝑖 ∈

[𝑚]} ∩ {ℳ(𝑖1, … , 𝑖𝑑) = ∑ 𝒳𝑖
(1)(𝑖1, … , 𝑖𝑑)𝑚

𝑖=1 }  

and �̃�𝑖(𝑖1, … , 𝑖𝑑) = (𝒳𝑖
(1)(𝑖1, … , 𝑖𝑑),… ,𝒳𝑖

(𝑛𝑖)(𝑖1, … , 𝑖𝑑)).  

Each set 𝐶𝑖1,…,𝑖𝑑
 is an affine subset within ℝ∑ 𝑛𝑖

𝑚
𝑖=1  defined by 

a system of linear equations: 

𝐶𝑖1,…,𝑖𝑑
=

{(𝒳1
(1)(𝑖1, … , 𝑖𝑑),… ,𝒳1

(𝑛1)
(𝑖1, … , 𝑖𝑑),… ,𝒳𝑚

(𝑛𝑚)
(𝑖1, … , 𝑖𝑑)) ∈

ℝ∑ 𝑛𝑖
𝑚
𝑖=1  | 𝒳𝑖

(1)(𝑖1, … , 𝑖𝑑) = ⋯ =

𝒳𝑖

(𝑛𝑖)(𝑖1, … , 𝑖𝑑),ℳ(𝑖1, … , 𝑖𝑑) =

∑ 𝒳𝑖
(1)(𝑖1, … , 𝑖𝑑)𝑚

𝑖=1 ,   𝑖 ∈ [𝑚]}  

denoting the space of the element (𝑖1, … , 𝑖𝑑)  of all tensors 

𝒳𝑖
(𝑗), 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛𝑖]. The proximal operator of  𝐼𝐶𝑖1,…,𝑖𝑑

 is thus 

a projection onto 𝐶𝑖1,…,𝑖𝑑
 that can be evaluated using 

Proposition 1 (also given in reference [13]).  

Proposition 1 Let Ω = {𝐱| 𝐀𝐱 = 𝐛}. The proximal operator 

of 𝜂𝐼Ω(𝐱)  is given by: prox𝜂𝐼Ω
(𝐱) = projΩ(𝐱) = 𝐱 −

 𝐀⊤(𝐀⊤𝐀)−1(𝐀𝐱 − 𝐛) , where  projS(𝐱) = argmin𝐲∈𝐒‖𝐱 −

𝐲‖2.  
Note that the input size of each function 𝐼𝐶𝑖1,…,𝑖𝑑

 is ∑ 𝑛𝑖
𝑚
𝑖=1 , 

which is the total number of structural properties of all 

components. This is generally a small number and is irrelevant 

to the total number of elements in the tensor. Therefore, the size 

of 𝐀  is not too big. Also, the proximal operators of 𝐼𝐶𝑖1,…,𝑖𝑑
 

involves the same matrix 𝐀  for any element (𝑖1, … , 𝑖𝑑) . 

Therefore, the matrix 𝐀⊤(𝐀⊤𝐀)−1 only needs to be calculated 

once. Finally, the proximal operators of all 𝐼𝐶𝑖1,…,𝑖𝑑
’s can be 

evaluated in parallel. These three features significantly boost 

computational speed.  

Now, let us revisit the two examples in the previous section 

and give the solution procedure for these specific problems.  

The solution to Example 1. To solve Problem (2), we define 

�̃� = (𝒳1
(1)

,𝒳1
(2)

,𝒳2
(1)

,𝒳2
(2)

) . The functions of 𝑓  and 𝑔  in 

Problem (2) are 

𝑓(�̃�) = 𝜆1,1𝑝1,1(𝒳1
(1)

) + 𝜆1,2𝑝1,2(𝒳1
(2)

) +

𝜆2,1𝑝2,1(𝒳2
(1)

) + 𝜆2,2𝑝2,2(𝒳2
(2)

); 

𝑔(�̃�) = 𝐼
𝒳1

(1)
=𝒳1

(2)
; 𝒳2

(1)
=𝒳2

(2)
; 𝒳1

(1)
+𝒳2

(1)
=ℳ

(�̃�). 

The proximal operators of 𝑝1,1 , 𝑝1,2 , 𝑝2,1 ,  𝑝2,2  and 𝑔  are 

evaluated using the following procedure:  

If 𝑝(𝐱) =  ‖𝐀𝐱‖2
2 , then the proximal operator of 𝜂𝑝(⋅)  is 

prox𝜂𝑝(⋅)(𝐱) = (2𝜂𝐀⊤𝐀 + 𝐈)−1𝐱 . Therefore, the proximal 

operators associated to the smoothness penalization 𝑝1,1, 𝑝1,2, 

and 𝑝2,1 can be respectively expressed as  

[prox𝜂𝜆𝑖,𝑗𝑝𝑖,𝑗
(𝒳)](𝑠) = (2𝜆𝑖,𝑗𝜂𝐃𝑠

𝑙⊤𝐃𝑠
𝑙 + 𝐈)

−1
𝒳(𝑠). (5) 

The proximal operator of 𝑝2,2 can be evaluated using 

prox𝜂𝜆2,2𝑝2,2
(𝒳) = (𝒳 − 𝜆2,2𝜂ℐ)+

, (6) 

where ℐ ∈ ℝ𝐼1×𝐼2×𝐼3  is a tensor with all elements being 1’s. 

The calculation of (𝒴1
(1)

, 𝒴1
(2)

, 𝒴2
(1)

, 𝒴2
(2)

) =

prox
𝜂𝑔[𝒳1

(1)
,𝒳1

(2)
,𝒳2

(1)
,𝒳2

(2)
]  is performed for each set of 

corresponding elements of 𝒴1
(1)

, 𝒴1
(2)

, 𝒴2
(1)

, 𝒴2
(2)

. Specifically, 

the (𝑖1, 𝑖2, 𝑖3) element is updated via 

[𝒴1
(1)(𝑖1, 𝑖2, 𝑖3),𝒴1

(2)(𝑖1, 𝑖2, 𝑖3),𝒴2
(1)(𝑖1, 𝑖2, 𝑖3), 

𝒴2
(2)(𝑖1, 𝑖2, 𝑖3)]

⊤
 = 𝐱 − 𝐀⊤(𝐀⊤𝐀)−1(𝐀𝐱 − 𝐛), 

(7) 

where 

𝐱 = (𝒳1
(1)(𝑖1, 𝑖2, 𝑖3),… ,𝒳2

(2)(𝑖1, 𝑖2, 𝑖3))
⊤
,  𝐛 = [

0
0

ℳ(𝑖1, 𝑖2, 𝑖3)
], 

𝐀 = [
1 −1 0 0
0 0 1 −1
1 0 1 0

].  

Here matrix I represents the identity matrices of appropriate 

dimension.  

The optimization problem (2) can therefore be solved using 

the ADMM algorithm listed in Algorithm 2. 

 

Algorithm 2 ADMM algorithm for Example 1 

Initialize 𝒵 = (𝒵1
(1)

, 𝒵1
(2)

, 𝒵2
(1)

, 𝒵2
(2)

) and �̃� =

(𝒰1
(1)

,𝒰1
(2)

,𝒰2
(1)

,𝒰2
(2)

)   with the same data structure as 

�̃� = (𝒳1
(1)

,𝒳1
(2)

,𝒳2
(1)

,𝒳2
(2)

). Set all their elements to 0.  

Do: 

(1) Save (𝒵prev, �̃�prev) ← (𝒵, �̃�). 

(2)  Update all mode-2 fibers in 𝒳1
(1)

, all mode-3 fibers in 

𝒳1
(2)

 and all mode-1 fibers in 𝒳2
(1)

 in For loops (2a-2c) 

and assign each element of 𝒳2
(2)

 in (2d) in parallel. 

(2a) For all 𝑖 ∈ [𝐼1] 𝑘 ∈ [𝐼3]: 

𝒳1
(1)(𝑖, : , 𝑘) = (2𝜆1,1𝜂𝐃2

1⊤𝐃2
1 +

𝐈1
(1)

)
−1

(𝒵1,prev
(1) (𝑖, : , 𝑘) − 𝒰1,prev

(1) (𝑖, : , 𝑘)) , where 
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𝐃2
1 ∈ ℝ(𝐼2−1)×𝐼2 is the first-order difference matrix 

and 𝐈1
(1)

∈ ℝ𝐼2×𝐼2 is the identity matrix; 

(2b) For all 𝑖 ∈ [𝐼1], 𝑗 ∈ [𝐼2]: 

𝒳1
(2)(𝑖, 𝑗, : ) = (2𝜆1,2𝜂𝐃3

1⊤𝐃3
1 +

𝐈1
(2)

)
−1

(𝒵1,prev
(2) (𝑖, 𝑗, : ) − 𝒰1,prev

(2) (𝑖, 𝑗, : )) , where 

𝐃3
1 ∈ ℝ(𝐼3−1)×𝐼3 is the first-order difference matrix 

and 𝐈1
(2)

∈ ℝ𝐼3×𝐼3 is the identity matrix; 

(2c) For all 𝑗 ∈ [𝐼2], 𝑘 ∈ [𝐼3]: 

𝒳2
(1)(: , 𝑗, 𝑘) = (2𝜆1,2𝜂𝐃1

2⊤𝐃1
2 +

𝐈2
(1)

)
−1

(𝒵2,prev
(1) (: , 𝑗, 𝑘) − 𝒰2,prev

(1) (: , 𝑗, 𝑘)) , where 

𝐃1
2 ∈ ℝ(𝐼1−1)×𝐼1  is the second-order difference 

matrix and 𝐈2
(1)

∈ ℝ𝐼1×𝐼1 is the identity matrix; 

(2d) 𝒳2
(2)

= (𝒵2,prev
(2)

− 𝒰2,prev
(2)

− 𝜆2,2𝜂ℐ)
+

.  

(2e) �̃� ← (𝒳1
(1)

,𝒳1
(2)

,𝒳2
(1)

,𝒳2
(2)

). 
(3) For all (𝑖1, 𝑖2, 𝑖3): 

(𝒵1
(1)(𝑖1, 𝑖2, 𝑖3),… , 𝒵2

(2)(𝑖1, 𝑖2, 𝑖3)) 

←  𝐱 − 𝐀⊤(𝐀⊤𝐀)−1(𝐀𝐱 − 𝐛), 
where 

𝐱 = (𝒳1
(1)(𝑖1, 𝑖2, 𝑖3) −

𝒰1
(1)(𝑖1, 𝑖2, 𝑖3),… ,𝒳2

(2)(𝑖1, 𝑖2, 𝑖3) − 𝒰2
(2)(𝑖1, 𝑖2, 𝑖3))  

        and  

𝐀 = [
1 −1 0 0
0 0 1 −1
1 0 1 0

], 𝐛 = [
0
0

ℳ(𝑖1, 𝑖2, 𝑖3)
]. 

(4) Update �̃� = �̃�prev + �̃� − 𝒵. 

Until: ‖�̃� − �̃�prev‖ < 𝜖, ‖𝒵 − 𝒵prev‖ < 𝜖. 

 

The solution to Example 2. First, we define the copies �̃� =

(𝒳1
(1)

,𝒳1
(2)

,𝒳1
(3)

,𝒳2
(1)

,𝒳2
(2)

,𝒳3
(1)

) . The problem is then 

transformed into the canonical formulation (4), where 𝑓(�̃�) =

𝜆1,1𝑝1,1(𝒳1
(1)

) + 𝜆1,2𝑝1,2(𝒳1
(2)

) + 𝜆1,3𝑝1,3(𝒳1
(3)

) +

𝜆2,1𝑝2,1(𝒳2
(1)

) + 𝜆2,2𝑝2,2(𝒳2
(2)

) + 𝜆3,1𝑝3,1(𝒳3
(1)

)  and 

𝑔(�̃�) = 𝐼
𝒳1

(1)
=𝒳1

(2)
=𝒳1

(3)
;𝒳2

(1)
=𝒳2

(2)
;𝒳1

(1)
+𝒳2

(1)
+𝒳3

(1)
=ℳ

(�̃�).  

To perform the ADMM algorithm, we need to evaluate the 

proximal operators of all 𝑝𝑖,𝑗’s and 𝑔.  

The proximal operators of 𝑝1,1 and 𝑝1,2 are evaluated in the 

same way as that 𝑝1,1 and 𝑝1,2 in Example 1.  

[prox𝜂𝜆𝑖,𝑗𝑝𝑖,𝑗
(𝒳)](𝑠) = (2𝜆𝑖,𝑗𝜂𝐃𝑠

𝑙⊤𝐃𝑠
𝑙 + 𝐈)

−1
𝒳(𝑠). 

(8) 

The proximal operators of 𝑝1,3 and 𝑝2,1 are in the form of the 

nuclear norm, whose proximal operator is given by 

prox𝜂‖⋅‖∗
(𝐀) = ∑(𝜎𝑖 − 𝜂)+𝐮𝑖𝐯𝑖

⊤

𝑖

, (9) 

for which 𝐀 = ∑ 𝜎𝑖𝐮𝑖𝐯𝑖
⊤

𝑖  is the singular value decomposition 

of 𝐀 [13]. 

The proximal operators of functions 𝑝2,2 and 𝑝3,1 are in the 

form of ℓ1-norm. Their proximal operators are given by 

prox𝜂‖⋅‖1
(𝒳) = (𝒳 − 𝜂)+. (10) 

The operation prox𝜂𝑔 is again calculated on the groups of the 

same elements in the five input tensors by Proposition 1. The 

calculation of (𝒴1
(1)

, 𝒴1
(2)

, 𝒴1
(3)

,𝒴2
(1)

, 𝒴2
(2)

, 𝒴3
(1)

) =

prox
𝜂𝑔[𝒳1

(1)
,𝒳1

(2)
,𝒳1

(3)
,𝒳2

(1)
,𝒳2

(2)
,𝒳3

(1)
]  is performed for 

each set of corresponding elements of 

𝒴1
(1)

, 𝒴1
(2)

,𝒴1
(3)

, 𝒴2
(1)

, 𝒴2
(2)

, 𝒴3
(1)

. The (𝑖1, 𝑖2, 𝑖3)  element is 

updated via 

[𝒴1
(1)(𝑖1, 𝑖2, 𝑖3),𝒴1

(2)(𝑖1, 𝑖2, 𝑖3),𝒴1
(3)(𝑖1, 𝑖2, 𝑖3), 

𝒴2
(1)(𝑖1, 𝑖2, 𝑖3),𝒴2

(2)(𝑖1, 𝑖2, 𝑖3),𝒴3
(1)(𝑖1, 𝑖2, 𝑖3)]

⊤
 

= 𝐱 − 𝐀⊤(𝐀⊤𝐀)−1(𝐀𝐱 − 𝐛), 

(11) 

with 𝐱 = (𝒳1
(1)(𝑖1, 𝑖2, 𝑖3),… ,𝒳3

(1)(𝑖1, 𝑖2, 𝑖3))
⊤
,  

𝐀 = [

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
1 0 0 1 0 1

] and 𝐛 = [

0
0
0

ℳ(𝑖1, 𝑖2, 𝑖3)

].  

The canonical form (3) can be solved using the ADMM 

algorithm listed in Algorithm 3. 

 

Algorithm 3 ADMM algorithm for Example 2 

Initialize 𝒵 = (𝒵1
(1)

, 𝒵1
(2)

, 𝒵1
(3)

, 𝒵2
(1)

, 𝒵2
(2)

, 𝒵3
(1)

) and �̃� =

(𝒰1
(1)

,𝒰1
(2)

,𝒰1
(3)

,𝒰2
(1)

,𝒰2
(2)

,𝒰3
(1)

)  as the same data 

structure as �̃� = (𝒳1
(1)

,𝒳1
(2)

,𝒳1
(3)

,𝒳2
(1)

,𝒳2
(2)

,𝒳3
(1)

), with 

all their elements being 0.  
Do: 

(1) Save (𝒵prev, �̃�prev) ← (𝒵, �̃�).  

(2) Update all mode-2 fibers in 𝒳1
(1)

, all mode-3 fibers in 

𝒳1
(2)

, all elements of 𝒳2
(2)

, all elements of  𝒳3
(1)  in 

parallel with 𝒳1(1)
(3)

 and 𝒳2(1)
(1)

 in (2a)-(2e) below.  

(2a) For all 𝑖 ∈ [𝐼1] 𝑘 ∈ [𝐼3]: 

𝒳1
(1)(𝑖, : , 𝑘) = (2𝜆1,1𝜂𝐃2

1⊤𝐃2
1 +

𝐈1
(1)

)
−1

(𝒵1,prev
(1) (𝑖, : , 𝑘) − 𝒰1,prev

(1) (𝑖, : , 𝑘))
(2)

, 

where 𝐃2
1 ∈ ℝ(𝐼2−1)×𝐼2  is the first-order difference 

matrix and 𝐈1
(1)

∈ ℝ𝐼2×𝐼2 is the identity matrix; 

(2b) For all 𝑖 ∈ [𝐼1], 𝑗 ∈ [𝐼2]: 

𝒳1
(2)(𝑖, 𝑗, : ) = (2𝜆1,2𝜂𝐃3

1⊤𝐃3
1 +

𝐈1
(2)

)
−1

(𝒵1,prev
(2) (𝑖, 𝑗, : ) − 𝒰1,prev

(2) (𝑖, 𝑗, : ))
(3)

,  where 

𝐃3
1 ∈ ℝ(𝐼3−1)×𝐼3  is the first-order difference matrix 

and 𝐈1
(2)

∈ ℝ𝐼3×𝐼3 is the identity matrix; 

(2c) 𝒳1(1)
(3)

= ∑ (𝜎𝑖 − 𝜂)+𝐮𝑖𝐯𝑖
⊤

𝑖 , where ∑ 𝜎𝑖𝐮𝑖𝐯𝑖
⊤

𝑖  is the 

singular value decomposition of (𝒵1,prev
(3)

−

𝒰1,prev
(3)

)
(1)

; 

(2d) 𝒳2(1)
(1)

= ∑ (𝜎𝑖 − 𝜂)+𝐮𝑖𝐯𝑖
⊤

𝑖 , where ∑ 𝜎𝑖𝐮𝑖𝐯𝑖
⊤

𝑖  is the 

singular value decomposition of (𝒵2,prev
(1)

−

𝒰2,prev
(1)

)
(1)

; 

(2e) 𝒳2
(2)

= (𝒵2,prev
(2)

− 𝒰2,prev
(2)

− 𝜂)
+

 and 

 𝒳3
(1)

= (𝒵3,prev
(1)

− 𝒰3,prev
(1)

− 𝜂)
+

. 

(3) For all (𝑖1, 𝑖2, 𝑖3): 
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(𝒵1
(1)(𝑖1, 𝑖2, 𝑖3),… , 𝒵3

(1)(𝑖1, 𝑖2, 𝑖3)) 

←  𝐱 − 𝐀⊤(𝐀⊤𝐀)−1(𝐀𝐱 − 𝐛), 

where  

𝐱 = (𝒳1
(1)(𝑖1, 𝑖2, 𝑖3) −

𝒰1
(1)(𝑖1, 𝑖2, 𝑖3),… ,𝒳3

(1)(𝑖1, 𝑖2, 𝑖3) − 𝒰3
(1)(𝑖1, 𝑖2, 𝑖3)),  

𝐀 = [

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
1 0 0 1 0 1

] , and 𝐛 =

[

0
0
0

ℳ(𝑖1, 𝑖2, 𝑖3)

].  

(4) Update �̃� = �̃�prev + �̃� − 𝒵. 

Until: ‖�̃� − �̃�prev‖ < 𝜖, ‖𝒵 − 𝒵prev‖ < 𝜖. 

C. Discussion 

It can be seen from those two examples that the ATD 

framework successfully integrates multiple structural 

information required for every tensor component. It is both a 

unification and an extension of the existing decomposition 

methods, such as the SSD, the STSSD, and the RPCA. In 

particular, when we ignore the temporal smoothness property 

to the crack in Example 1, the formulation will be reduced to 

the SSD method. If we invoke the temporal smoothness 

property to the background, we will arrive at the ST-SSD 

method. However, neither the SSD nor the ST-SSD fully 

describes the setup of Example 1, because neither of them 

incorporates the information that the crack is smooth in time but 

sparse in space and that the background is smooth in space but 

may not be smooth in time. In Example 2, if we did not 

distinguish the static anomaly and static background, the 

problem formulation would be reduced to the RPCA for 

foreground detection. However, the RPCA cannot fully 

describe the setup of Example 2 because it does not incorporate 

the sparsity information of static hotspots or smoothness 

information of the background.  

We can also see from solution algorithms of those two 

examples that the adopted ADMM algorithm is highly 

parallelable. For example, in steps 2(a-c) of Algorithm 2, the 

update of each tensor component can be done fiber by fiber; In 

step 3, the update of each element can be performed in parallel. 

This operation can be distributed on several processors which 

is highly suitable for tensor with high dimensions.  

In the following subsections, we first discuss the selection of 

tuning parameters and then analyze the non-unique solution 

issue: what to do if the decomposition cannot be performed. 

D. Selection of tuning parameters 

In the general formulation (1), the tuning parameters need to 

be specified. A large value of the tuning parameter 𝜆𝑖,𝑗 tends to 

enhance the corresponding penalty terms 𝑝𝑖,𝑗(∙).  

If some training samples containing one or more existing 

tensor data 𝒳{1}, … ,𝒳{𝑛} and their real additive components of 

interest 𝒳{1}𝑖 , … ,𝒳{𝑛}𝑖 , 𝑖 ∈ [𝑚]  are available, the optimal 

tuning parameters can be determined by minimizing the error 

[16]: 

�̂� = argmin𝝀 {∑∑𝐿𝑖 (𝒳{𝑗}𝑖 − 𝒳{𝑗}�̂�(𝜆))

𝑛

𝑗=1

𝑚

𝑖=1

}. 

Here 𝒳{𝑗}�̂�(𝜆) is the estimation of the ith tensor component by 

solving the problem involving the 𝑗th training tensor 𝒳{𝑗}  and 

using the tuning parameters 𝝀. 𝐿𝑖(⋅) specifies the loss involving 

the difference between the true component 𝒳{1}  and the 

estimated component 𝒳{1}
̂ (𝜆). The loss function 𝐿𝑖(⋅)’s can be 

selected depending on specific scenarios: if we only care about 

the nonzero part in some components, as in the case of anomaly 

detections, we should use 0-1 loss function  𝐿𝑖(𝒳) =
‖vec(𝒳)‖0; If we care about the value of the extract features, 

we may prefer to use the Frobenious loss: 𝐿𝑖(𝒳) = ‖𝒳‖𝐹. If 

the decomposition result of the ith component is not of interest, 

the loss function of 𝐿𝑖(⋅) can be set to 0. 

If we do not have a training sample, λ should be selected 

empirically based on the structural assumption we want to 

incorporate. It is also suggested that one tuning parameter is 

adjusted at a time based on the result of decomposition, until 

finding the values that lead to the optimal result. In Example 1, 

the decomposed background image generated by larger values 

of 𝜆1,1  and 𝜆1,2  tends to be smoother than that generated by 

small values of 𝜆1,1 and 𝜆1,2. In other words, large values of 𝜆1,1 

and 𝜆1,2 lead to smooth background image. The changes among 

extracted crack images generated by a large value of 𝜆2,1 tends 

to be smoother, and the extracted crack images generated by a 

large value of 𝜆3,1 tends to be sparser. Therefore, we select the 

tuning parameters in this application using the following 

procedure: we first select  𝜆1,1 , 𝜆1,2 , and 𝜆3,1  because the 

selected tensor components are very sensitive to the value 
𝜆3,1

𝜆1,1+𝜆1,2
 . Then, the tuning parameters for temporal smoothness 

penalty 𝜆2,1  is selected accordingly to preserve the low-

intensity pixels on the crack and to shrink intensity of other 

pixels that belongs to the background, because the sparsity 

penalty tends to shrink the value of low intensity pixels in the 

tensor component 𝒳2  to zero, regardless of the low-intensity 

pixels are on the crack or not. In Example 2, a large 𝜆2,1 and 

𝜆1,3  help to enhance the low rank property of the mode-(1) 

matricization of static hotspot tensor and background tensor, the 

extracted moving hotspots generated by a large value of 𝜆3,1 

tends to be sparser, and the background generated by large 

values of 𝜆1,1  and 𝜆1,2 tends to be smoother; the extracted static 

hotspots generated by a large value of 𝜆2,2 tends to be sparser. 

We select the tuning parameters in Example 2 as follows.  First, 

we select 𝜆2,1 , 𝜆1,3 , and 𝜆3,1  to separate the moving hotspots 

and static components, including the background and static 

hotspots. Then, we select 𝜆1,1, 𝜆1,2 , and 𝜆2,2  that control the 

smoothness of the image in the background tensor and the 

sparsity of the static hotspot tensor, to separate the static hotspot 

from the smooth background. 
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E. Problem of nonunique solution  

It should be pointed out that the solution to the optimization 

problem sometimes may not be unique. This is because 

structural assumptions in the framework are not rich enough to 

determine each component. For example, two tensor 

components that have the same sparse structural property are 

not distinguishable under the framework. To generate a unique 

solution, we propose the following two solutions. One solution 

is to incorporate some prior knowledge that distinguishes the 

tensor components that cannot be uniquely identified. For 

instance, if we know that the nonzero elements in two sparse 

tensor components form different shapes, such as square and 

circle, we can express these components using two different 

sets of functional bases to ensure a unique solution. If there is 

no prior knowledge available, we propose to add another 

regularization term 𝜖 ∑ ‖𝒳𝑖‖𝐹
2𝑑

𝑖=1  to the objective function, 

where 𝜖  is a small number. With this term, the objective 

function becomes strongly convex and the unique solution 

exists.  

IV. SIMULATION STUDIES FOR PERFORMANCE EVALUATION 

In this section, we will present our simulation studies on 

those two examples to illustrate the ATD framework and 

demonstrate its effectiveness. 

A. Simulation study for Example 1 

The data for monitoring the crack growing process include 

𝐼1 = 30  consecutive measurement images of size 40 × 40 . 

These images form a tensor ℳ ∈ ℝ30×40×40. We simulate ℳ 

by summing up two tensors 𝒳1  and 𝒳2  that represent the 

background and the crack, respectively. Each 𝒳1(𝑖, : , : ), 𝑖 ∈
[𝐼1], is generated by a 2D smooth Gaussian process representing 

the background. Most values in the image 𝒳2(𝑖, : , : ) are zeros, 

and the non-zero values of 𝒳2(𝑖, : , : ) gradually grows when the 

index 𝑖 increases from 1 to 30, representing the crack growing 

on the wall. These values are generated from i.i.d. 

𝑁(0.1, 0.1) random variables to represent the random lighting 

and shadowing conditions. The first images of Fig. 6(a) and Fig. 

6(b) illustrates the 20th and the 30th images in ℳ, the second 

images in Figs. 6(a) and 6(b) illustrate the corresponding 

images for actual crack which is a continuous line and the third 

images in Figs. 6(a) and 6(b) illustrate the images for the 

simulated crack under irregularly illuminated conditions. 

We then decompose ℳ into two components �̂�1 and �̂�2 by 

solving Problem (2). In the ADMM algorithm, the step size is 

𝜂 = 0.01, and the tuning parameters are 𝜆1,1 = 𝜆1,2 = 1, 𝜆2,1 =

10, and 𝜆2,2 = 0.08. The fifth images of Figs. 6(a) and 6(b) 

illustrate the estimated crack of the 20th and the 30th image using 

the ATD-based method. It is shown that the ATD-based method 

captures the growth of the whole crack accurately. The video 

illustrating the result of the decomposition is provided in the 

supplementary material of this paper.     

For comparison, we also applied the SSD method to each 

image in ℳ. The crack images obtained from the SSD method 

are shown in the fourth images in Figs. 6(a), 6(b). It can be seen 

that the SSD only captures some points on the crack because 

the smoothness of the crack in the temporal mode is ignored. 

The ℓ1  regularization in the SSD encourages sparsity of the 

anomaly but pushes all pixels with low intensity to zero, 

including the ones on the crack. In contrast, the ATD-based 

method also promotes the temporal smoothness of 𝒳2, which 

preserves the pixels with low intensity on the crack, whereas 

penalizes other pixels to zeros.  

B. Simulation study for Example 2 

The tensor ℳ  in Example 2 is generated to simulate the 

consecutive measurements taken from a thermal camera in a 

heated surface monitoring process. It also contains 30 images 

of size 40 × 40 , and it is generated by summing up three 

tensors 𝒳1, 𝒳2, and 𝒳3 of the same size that represents the true 

background, the static hotspot, and the moving hotspot 

respectively. Among them, each mode 1 slice of the tensor 𝒳1 

is generated from  

𝒳(𝑖, : , : ) = 𝑈𝑖𝐓0 + (1 − 𝑈𝑖)𝐓1, 
where 𝐓0 is a 40 × 40 matrix representing the heating effect 

of the heating process, 𝐓1  is a matrix of the same size 

representing the cooling effect and 𝑈𝑖  is a 𝑈[0,1]  random 

variable representing a random combination of the two effects.  

The images representing the matrices 𝐓0 and 𝐓1 are shown in 

Fig. 7. To simulate the heating effect of a single point heating 

 
(a) The 20th image 

 
(b) The 30th image 

Fig. 6.  Illustration of decomposed images using the ATD and the SSD 

methods 
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source at the center of this image, we generate 𝐓0(𝑖, 𝑗) using the 

value of 𝑓0(𝑖, 𝑗), where 𝑓0 is the probability density function of 

𝑁((20,20)⊤, 10𝐈), where 𝐈 is a 2 × 2 identity matrix. Then, we 

transform all values of 𝐓0 linearly such that the maximum and 

minimum value of 𝐓0 are 1 and 0, respectively. With this setup, 

the maximum value within 𝐓0 is 1, located at the center of the 

image; when the pixel moves farther way from the center, the 

value of 𝐓0(𝑖, 𝑗) gradually drops to 0.  To simulate the cooling 

effect, we generate 𝐓1(𝑖, 𝑗)  using a linear function 𝑓1(𝑖, 𝑗) =
𝑐1(𝑖 + 𝑗) + 𝑐2 , where 𝑐1  and 𝑐2  are adjusted so that the 

maximum and minimum value within the matrix 𝐓1 are 0 and 1 

respectively. It represents that the coolant for the surface flows 

from the upper-left corner to the bottom-right corner of the 

image.  

Each image within the tensor 𝒳2 are the same, and the non-

zero values in these images are located in a fixed 2 × 2 

rectangle with intensity value 1 in their lower-left corners. The 

non-zero values in each image of the tensor 𝒳3 are also located 

in a 2 × 2  rectangle with intensity value 1. However, this 

rectangle locates on the upper-left part of the image.  When the 

image index 𝑖 increases, the rectangle in 𝒳3(𝑖, : , : ) moves from 

the left side to the right side across the images. 

We decompose the tensor ℳ into components �̂�1, �̂�2, and 

�̂�3  by solving Problem (3). The step size 𝜂 = 0.01 . Tuning 

parameters are 𝜆1,1 = 𝜆1,2 = 30,  𝜆1,3 =  𝜆2,1 = 1, 𝜆2,2 = 1.9 , 

and 𝜆3,1 = 2. 

In Fig. 8, we illustrate the 20th simulated images, with the 

decomposed background, the static hotspot, and the moving 

hotspot using the ATD method. The decomposed background 

and the moving object from the RPCA method are illustrated in 

the third column. The video illustrating the result of the 

decomposition is provided in the supplementary material of this 

paper. It can be seen that the proposed ATD method 

successfully separates the static background, the static hotspot, 

and the moving hotspot. Comparing the result of the ATD, the 

RPCA can only identify the moving object but fails to separate 

the true background and the static hotspot. This is because the 

RPCA does not consider the spatial smoothness of the 

background.  

From the two simulation studies, we verify that the ATD 

framework provides greater capability of separating the tensor 

of interest into multiple components than the existing methods 

by considering richer structural properties of the components in 

individual slices. 

V. A CASE STUDY WITH THE 3D MEDICAL IMAGE ANALYSIS 

In this section, we revisit the case study in the Introduction: 

medical image analysis for three-dimensional (3D) printed 

phantoms [6], to further demonstrate the advantage of the ATD 

method.  

TAVR is an alternative option for aortic stenosis patients 

with high surgical risk to perform aortic valve replacement [6]. 

AVC has been proposed as an important determinant for PVR 

of TAVR. To avoid PVR, the physicians use multi-material 3D 

printing to fabricate a prototype for patients’ aortic root 

anatomies, upon which they plan the surgery. The parts 

representing the heart tissues and the AVC regions in the 

prototype are manufactured with materials of different 

mechanical properties for accurate simulation. Characterizing 

the shape of the AVC regions based on the patients’ CT 

scanning images is critical for fabricating a geometrically-

accurate prototype, and this task is conventionally 

accomplished by a board-certified cardiologist [6]. In this case 

study, we formulate a problem using the ATD framework, 

aiming at extracting the AVC regions automatically. 

From the pre-procedural contrast-enhanced CT scan of some 

patients’ aortic region, we select 12 images of size 101 × 101 

that are collected sequentially for the aortic value. These images 

form a tensor ℳ of size 12 × 101 × 101. Each image shall be 

divided into 3 regions, including a contrast-enhanced blood 

pool with moderate intensity, the soft tissues with low intensity, 

and the AVC regions with high intensity. We focus on 

separating AVC regions from the blood pool and the soft 

tissues.  

Specifically, the tensor ℳ  is decomposed into three 

components: the background of the blood pool and the soft 

tissues 𝒳1, the AVC regions 𝒳2, and the measurement error 

𝒳3 . Anatomic structure of the heart indicates that the 

background images are smooth, but they are different because 

the outer profiles of the aorta are not the same. Therefore, the 

regularization of smoothness is applied to every image of 𝒳1. 

The AVC regions are small regions attached to the inner side of 

 
Fig. 7.  Illustration of cooling and heating effect temperature field. 

 

 
Fig. 8.  Illustration of the 20th decomposed images using the ATD and the 

RPCA methods 
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the aorta and they do not change much between consecutive 

cross-sections. Therefore, the smoothness regularization in time 

and the sparsity regularization in space is applied to 𝒳2. The 

measurement error generally takes small values, and thus 

squared-ℓ2 norm is applied to 𝒳3. The problem formulation is 

given as follows: 

minimize
𝒳1,𝒳2,𝒳3

𝜆1,1 (‖𝐃1𝒳1(2)‖𝐹

2
+ ‖𝐃1𝒳1(3)‖𝐹

2
) +

𝜆2,1‖𝐃1𝒳2(1)‖𝐹

2
+ 𝜆2,2‖vec(𝒳2)‖1 + 𝜆3,1‖𝒳3‖2

2, 

subject to  ℳ = 𝒳1 + 𝒳2 + 𝒳3. 

With tuning parameters 𝜆1,1 = 10, 𝜆2,1 = 0.7, 𝜆2,2 = 0.16, 

and 𝜆3,1 = 1 , we solved this problem using the ADMM 

algorithm. Fig. 9 (a) illustrates the 3rd-7th images in the solution 

of 𝒳2, reflecting the AVC regions in five consecutive cross-

sections. As discussed before, for 3D printing of the prototype 

of patients’ aortic root anatomies using different materials, we 

care about nonzero part in the extracted image and set all the 

nonzero values in 𝒳2 to 1. The video illustrating the result of 

the decomposition is provided in the supplementary material. 

The result shows that the smooth change of AVC regions 

across different images is captured by the proposed ATD 

method, which reflects the anatomic reality. For comparison, 

we also conduct the SSD to extract the AVC regions on 

individual images. As shown in Fig. 9, for the 3rd-7th images, 

ATD methods achieve similar performance in extracting the 

AVC regions when the intensity of the anomaly region is high 

with respect to the background and noise. In the 7th image (see 

red circles), when the intensity of the AVC regions is low, the 

SSD method failed to fully extract the anomaly region. When 

we use a small tuning parameter for sparse penalty in the SSD 

method, much noise will be introduced into the extracted AVC 

regions.  However, ATD method can still achieve satisfactory 

performance in this case, because the ATD takes the similarity 

of the AVC regions’ locations between images into 

consideration, which helps to preserve the pixels with low 

intensity on the AVC regions, whereas setting other pixels to 

zeros. This case study further illustrates the versatility of the 

ATD framework and demonstrates its ability to solving real-

world problems. It is worth to mention that the values of the 

extracted AVC regions using ATD method is smaller than that 

using the SSD method, due to the extra smoothness penalty 

added in the formulation of ATD method. However, it does not 

affect the boundary of the model, determined by the nonzero 

values in the decomposed images. 

VI. CONCLUSION 

Tensor data becomes increasingly common in engineering 

applications. In this article, we propose an ATD framework to 

extract the quality-related information from tensor data based 

on the structural properties of the tensor components.  

The ATD framework achieves the tensor decomposition 

through integrating multiple types of regularizations on the 

tensor components, corresponding to assorted structural 

information such as smoothness, sparsity, and low rank on 

different modes. In this framework, the corresponding 

structural property to describe the structural information is 

systematically defined for tensor data for the first time. As a 

unification and extension for the existing decomposition 

methods, such as SSD, STSSD, and RPCA, it provides a 

general framework to solve a class of tensor decomposition 

problem. 

Computation is a major challenge of solving additive tensor 

decomposition problems: the number of decision variables is 

the number of the tensor components multiplies the number of 

elements in each tensor, which can be huge. To solve this large-

scale problem efficiently, we adopt a highly parallelizable 

ADMM method.  

Throughout the article, we use two examples to demonstrate 

the versatility of the ATD framework and illustrate its 

effectiveness. The case study in medical image analysis 

demonstrates that the ATD framework can accurately identify 

the AVC regions by capturing its smooth change between 

consecutive images. The authors believe that the ATD 

framework can be applied in an even wider range of 

applications for tensor data analysis.  

REFERENCES 

[1] H. Yan, K. Paynabar, and J. Shi, "Anomaly detection in images with 

smooth background via smooth-sparse decomposition," Technometrics, 

vol. 59, no. 1, pp. 102-114, 2017. 

 
(a) The ATD method decomposed AVC regions in the 4th -7th images 

 
(b) The SSD method decomposed AVC regions in the 4th -7th images 

Fig. 9.  Extracted AVC regions using the ATD and the SSD methods 

 



This work has been submitted to the IEEE for possible publication. Copyright may 

be transferred without notice, after which this version may no longer be accessible 
 

12 

[2] H. Yan, K. Paynabar, and J. Shi, "Real-time monitoring of high-

dimensional functional data streams via spatio-temporal smooth sparse 
decomposition," Technometrics, vol. 60, no. 2, pp. 181-197, 2018. 

[3] H. Yan, K. Paynabar, and J. Shi, "Image-based process monitoring using 

low-rank tensor decomposition," IEEE Transactions on Automation 

Science and Engineering, vol. 12, no. 1, pp. 216-227, 2014. 

[4] O. K. Khalique, R. T. Hahn, H. Gada, T. M. Nazif, T. P. Vahl, I. George, 
B. Kalesan, M. Forster, M. B. Williams, M. B. Leon and A. J. Einstein, T. 

C. Pulerwitz, G. N. Pearson, S. K. Kodali, "Quantity and location of aortic 

valve complex calcification predicts severity and location of paravalvular 

regurgitation and frequency of post-dilation after balloon-expandable 

transcatheter aortic valve replacement," JACC: Cardiovascular 
Interventions, vol. 7, no. 8, pp. 885-894, 2014. 

[5] J. Chen, K. Wang, C. Zhang, and B. Wang, "An efficient statistical 

approach to design 3D-printed metamaterials for mimicking mechanical 

properties of soft biological tissues," Additive Manufacturing, vol. 24, pp. 

341-352, 2018. 
[6] Z. Qian, K. Wang, S. Liu, X. Zhou, V. Rajagopal, C. Meduri, J. R. Kauten, 

Y. H. Chang, C. Wu, C. Zhang. and B. Wang, "Quantitative prediction of 

paravalvular leak in transcatheter aortic valve replacement based on 

tissue-mimicking 3D printing," JACC: Cardiovascular Imaging, vol. 10, 

no. 7, pp. 719-731, 2017. 
[7] T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," 

SIAM review, vol. 51, no. 3, pp. 455-500, 2009. 

[8] N.-D. Hoang, "Detection of surface crack in building structures using 

image processing technique with an improved Otsu method for image 

thresholding," Advances in Civil Engineering, vol. 2018, 2018. 
[9] P. Duda, Ł. Felkowski, and P. Cyklis, "Identification of overheating of an 

industrial fluidized catalytic cracking regenerator," Applied Thermal 

Engineering, vol. 129, pp. 1466-1477, 2018. 

[10] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, "Sparsity 

and smoothness via the fused lasso," Journal of the Royal Statistical 
Society: Series B (Statistical Methodology), vol. 67, no. 1, pp. 91-108, 

2005. 

[11] J. O. Ramsay, "Monotone regression splines in action," Statistical science, 

vol. 3, no. 4, pp. 425-441, 1988. 

[12] E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component 
analysis?," Journal of the ACM (JACM), vol. 58, no. 3, pp. 1-37, 2011. 

[13] N. Parikh and S. Boyd, "Proximal algorithms," Foundations and Trends® 

in Optimization, vol. 1, no. 3, pp. 127-239, 2014. 

[14] T. Bouwmans and E. H. Zahzah, "Robust PCA via principal component 

pursuit: A review for a comparative evaluation in video surveillance," 
Computer Vision and Image Understanding, vol. 122, pp. 22-34, 2014. 

[15] Z. Zhang, A. Ganesh, X. Liang, and Y. Ma, "TILT: Transform invariant 

low-rank textures," International journal of computer vision, vol. 99, no. 

1, pp. 1-24, 2012. 

[16] J. Friedman, T. Hastie, and R. Tibshirani, "The elements of statistical 
learning: data mining, inference, and prediction," 2nd ed., New York, NY, 

USA: Springer Science & Business Media, 2001, pp. 43-94. 

[17] A. Mohan and S. Poobal, "Crack detection using image processing: A 

critical review and analysis," Alexandria Engineering Journal, vol. 57, no. 

2, pp. 787-798, 2018. 
[18] F. O'sullivan, "Discretized Laplacian smoothing by Fourier methods," 

Journal of the American Statistical Association, vol. 86, no. 415, pp. 634-

642, 1991. 

[19] S. Bagavathiappan, B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, 
"Infrared thermography for condition monitoring–A review," Infrared 

Physics & Technology, vol. 60, pp. 35-55, 2013. 

 
 

Shancong Mou is a Ph.D. student in the 

Stewart School of Industrial and Systems 

Engineering at Georgia Institute of 

Technology. He received his B.S. in 

Energy and Power Engineering from Xi’an 

Jiaotong University, Xi’an, China, in 2017. 

His research interests include physics-

informed machine learning, medical image 

analysis, and data analytics for monitoring, 

control and diagnostics of complex engineering systems. He is 

a member of IISE and INFORMS. 

 

Andi Wang is a Ph.D. candidate in the 

Stewart School of Industrial and Systems 

Engineering at Georgia Institute of 

Technology. He received his B.S. in 

statistics from Peking University in 2012 

and a Ph.D. from Hong Kong University of 

Science and Technology in 2016. His 

research interests include advanced 

statistical modeling, large-scale 

optimization, and machine learning for manufacturing and 

healthcare system performance improvements via process 

monitoring, diagnostics, prognostics, and control. He is a 

member of IISE and INFORMS. 

 

Chuck Zhang received the B.S. and M.S. 

degrees in mechanical engineering from 

Nanjing University of Aeronautics and 

Astronautics, Nanjing, China, in 1984 and 

1987, respectively, an MS degree in 

Industrial Engineering from the State 

University of New York at Buffalo in 

1990, and the Ph.D. degree in industrial engineering from the 

University of Iowa, Iowa City, IA, USA, in 1993.  

 Dr. Zhang is currently a Harold E. Smalley Professor with 

the H. Milton Stewart School of Industrial and Systems 

Engineering at the Georgia Institute of Technology, Atlanta, 

GA, USA. He has authored over 190 refereed journal articles 

and 210 conference papers. He also holds 24 U.S. patents. Dr. 

Zhang is a fellow of Institute of Industrial and Systems 

Engineers (IISE). His current research interests include additive 

manufacturing (3-D printing and printed electronics), advanced 

composite and nanocomposite materials manufacturing, and 

bio-manufacturing. 

 

Jianjun Shi received the B.S. and M.S. 

degrees in automation from the Beijing 

Institute of Technology in 1984 and 1987, 

respectively, and the Ph.D. degree in 

mechanical engineering from the 

University of Michigan in 1992. 

  Currently, Dr. Shi is the Carolyn J. 

Stewart Chair and Professor at the Stewart 

School of Industrial and Systems 

Engineering, Georgia Institute of 

Technology. His research interests include the fusion of 

advanced statistical and domain knowledge to develop 

methodologies for modeling, monitoring, diagnosis, and 

control for complex manufacturing systems. 

 Dr. Shi is a Fellow of the Institute of Industrial and Systems 

Engineers (IISE), a Fellow of American Society of Mechanical 

Engineers (ASME), a Fellow of the Institute for Operations 

Research and the Management Sciences (INFORMS), an 

elected member of the International Statistics Institute, a life 

member of ASA, an Academician of the International Academy 

for Quality (IAQ), and a member of National Academy of 

Engineers (NAE).  


	I. INTRODUCTION
	II. Literature review
	III. Additive Tensor Decomposition Framework
	A. General problem formulation
	1) Example 1: Monitoring crack growth on the surface of engineering structures
	2) Example 2: Monitoring the spots of overheating on a heated surface

	B. Problem solution
	C. Discussion
	D. Selection of tuning parameters
	E. Problem of nonunique solution

	IV. Simulation studies for performance evaluation
	A. Simulation study for Example 1
	B. Simulation study for Example 2

	V. A case study with the 3D medical image analysis
	VI. Conclusion
	References

