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Abstract—Humans make daily routine decisions based on their
internal states in intricate interaction scenarios. This paper
presents a probabilistically reconstructive learning approach to
identify the internal states of multi-vehicle sequential interactions
when merging at highway on-ramps. We treated the merging
task’s sequential decision as a dynamic, stochastic process and
then integrated the internal states into an HMM-GMR model,
a probabilistic combination of an extended Gaussian mixture
regression (GMR) and hidden Markov models (HMM). We also
developed a variant expectation-maximum (EM) algorithm to
estimate the model parameters and verified it based on a real-
world data set. Experiment results reveal that three interpretable
internal states can semantically describe the interactive merge
procedure at highway on-ramps. This finding provides a basis to
develop an efficient model-based decision-making algorithm for
autonomous vehicles (AVs) in a partially observable environment.

Note to Practitioners—Model-based learning approaches have
obtained increasing attention in decision-making design due
to their stability and interpretability. This paper was built
upon the two facts: (1) Intelligent agents can only receive
partially observable environment information directly through
their equipped sensors in the real world; (2) Humans mainly
utilize the internal states and associated dynamics inferred from
observations to make proper decisions in complex environments.
Similarly, AVs need to understand, infer, anticipate, and exploit
the internal states of dynamic environments. Applying proba-
bilistic decision-making models to AVs requires updating the
internal states’ beliefs and associated dynamics after getting new
observations. The designed and verified emission model in HMM-
GMR provides a modifiable functional module for online updates
of the associated internal states. Experiment results based on the
real-world driving dataset demonstrates that the internal states
extracted using HMM-GMR can represent the dynamic decision-
making process semantically and make an accurate prediction.

Index Terms—Driver interaction behavior, internal state, hid-
den Markov model, Gaussian mixture regression, merge behavior.

I. INTRODUCTION

TAKING an efficient and safe merge at highway on-ramps
is a daily-routine but challenging task for humans and

autonomous agents in the real world [1]. Near 30,000 highway
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Fig. 1. The interaction of the ego vehicle (red) with its nearby surroundings
(black and blue) when merging into the highway from on-ramps. The ego
vehicle makes a proper decision based on its internal model of the dynamic
environment.

merging collisions occurred per year in the USA [2]. Typical
highway traffic issues such as oscillations, congestion, and
speed breakdown are arising incrementally due to inefficient
collaborations between the ego vehicle and its surroundings
[3]. Thus, taking insights into humans’ cooperative merging
processes in a changing context becomes indispensable to
make a safer, more efficient decision for autonomous vehicles
(AVs).

Humans can interact with non-stationary, separately con-
trolled, and partially observable agents seamlessly but do
not need to explicitly model each other’s strategy during the
implementation of complex interaction processes [4]. Inspired
by this, artificial agents (such as AVs) should make high-level
strategy representations based on their observation of other
agents’ low-level actions. The high-level strategy representa-
tion is implicit, known as internal states, which are usually
changing over time [5]. The agents then take actions based on
their previous choices of different plans or strategies. The low-
level action is measurable; however, the other agents’ planning
and internal state changes are unobservable but significant for
the sequential decision process. When merging at highway
on-ramps (as shown in Fig. 1), the human agent can directly
detect the contextual traffic changes through their sensory
dynamics, but not for the underlying states (such as intents)
of the surrounding vehicles, which requires inference from
the directly perceived signals. With this situation, the decision
to merge in congested traffic involves a tremendous amount
of cooperation, courtesy, and risk-taking and must explicitly
consider the internal states’ change and influences [6].

The introduction of internal states allows to mathemati-
cally formulate many existing decision-making problems via
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solvable, tractable mathematical models. A typical, popular
decision-making model is built upon the Markov decision pro-
cess (MDP), which basically describes the sequential decision-
making mechanisms in complex interactive environments such
as the merging procedure at highway on-ramps. One of its
derivations, called partially observable MDP (POMDP), has
been widely used to formulate the decision-making problem
whose partial states are unobservable. Research in [7] defined
the high-level discrete (internal) states of interactive merge
behavior to formulate the decision-making into a solvable
POMDP problem. Another typical model built upon MDP is
deep reinforcement learning (Deep RL), which increases atten-
tion in the decision-making of autonomous driving when com-
bined with deep neural networks [8]–[11]. However, the Deep
RL strategy usually lacks interpretability and generalizability
and can only adapt to well-defined and straightforward tasks.
Besides, Deep RL requires learning the internal states through
returns implicitly [12], being slow, sensitive to hyperparame-
ters, and inefficient in practice [13]. A tractable alternative is
to learn based on a well-predefined model (also called model-
based methods) with explicit internal states. The use of explicit
internal states makes the model definition interpretable and
data utilization efficient [14]. Typical model-based approaches
integrated with internal states include MDP [15], POMDP
[16]–[18], and hidden Markov models (HMM) [19]. POMDP
requires encoding the complete historical information1 into
possible internal states and makes an appropriate decision by
evaluating the current observed state value while decoding the
internal states. Therefore, the implementation of well-defined
internal states can improve the learning efficiency and decision
performance of algorithms.

Most existing research on internal states focuses on inten-
tion prediction of surrounding agents [12], [22]–[25] to pro-
vide the ego vehicle in-depth knowledge of the environment.
However, they mainly focused on the internal state of each
vehicle independently and assumed that the ego vehicle’s inter-
nal states are directly/closely related to their driving decision.
All of them are subjectively defined but beyond rationality. It
is also time-consuming and costly to manually specify the
relevant internal states for complex dynamic environments
since the flood of data and diversity in driving tasks can
overwhelm human insight and analysis.

This paper provides a probabilistically learning approach
to automatically extract the internal states of the multi-vehicle
interactive process (rather than of a single vehicle’s behavior),
which can guide the ego vehicle to make an appropriate
decision. Based on the conclusion of our previous research in
[26], we here developed a probabilistic approach (i.e., HMM-
GMR) to learn and reproduce the internal dynamics of merge
tasks at highway on-ramps. The proposed framework com-
bines HMM with Gaussian mixture regression (GMR) [27]
to leverage temporal information into dynamic processes. The
GMR estimates the internal state and then predicts to verify
the internal states’ effectiveness further. We also compared it
to GMM-GMR that does not consider temporal information

1Historical information can be encoded by recalling past features [20] or
inferring the distribution over possible internal states [21].

into the dynamic process.
The remainder of this paper is organized as follows. Section

II reviews related works on internal states. Section III discusses
the real-world data collection and processing. Section IV
introduces the HMM-GMR model. Section V analyzes the
results and provides further discussions. Finally, Section VI
gives the conclusions.

II. RELATED WORKS

This section first reviews the related works of internal states,
ranging from driving style and driver intention to driving
maneuver. Then, their limitations and the problem to be solved
are summarized.

A. Internal States for Driving Style & Driver Intention

AVs must infer underlying states (e.g., driving styles and
intents) of surrounding vehicles and their interactions to under-
stand the environments fully [28]–[36]. To analyze aggressive
driving and predict the driver intention, researchers in [30]
treated the driving anger as a dynamic internal state and then
built a hybrid model based on HMM. The inferred internal
states can encode trajectories and distinguish different driver
behaviors such as passive, aggressive, tailgater, and speeder
[32]. Besides, the assigned internal state plays a critical role
in the action selection. For example, to deeply understand
the driving environment, research in [33] applied the Latent
Dirichlet Allocation (LDA) model to discover the internal
states of driving habits. Some researchers [35] also presented a
learning-based framework to explicitly infer the internal states
of surrounding vehicles (such as aggressive or conservative)
using graph neural networks and demonstrated its superiority
in complex scenarios such as intersections.

The intention estimation of surrounding vehicles can help
to tackle dense interactions among agents in complex traffic
scenarios [16], [24], [37]–[40]. For example, a multi-class sup-
port vector machine classifier combined with a Bayesian filter
can predict the internal lane-change intention of surrounding
drivers [38]. In order to guarantee the safety, efficiency, and
smoothness of autonomous driving, Bai et al. proposed an
intention-aware online planning approach to estimate pedes-
trian intentions and addressed the uncertainties in a complex
environment [16]. The authors in [24] applied a probabilistic
graphical model (PGM) to predict the internal intentions
of surrounding vehicles in on-ramp merge scenarios. The
structure of PGM allows embedding historical information and
internal states into the system. Experimental results verified
that the PGM-based approach can conservative personification
and ensure the safety of the merging process. Considering the
same observations could lead to different actions in complex
scenarios (intersection or highway merge), Codevilla et al.
[39] explicitly modelled the internal state by introducing
information about the intentions and goals. In this way, the
defined driver’s underlying internal state influenced the driver’s
subsequent actions rather than the observations.
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B. Internal States for Driving Maneuver/Behavior

In a real-world setting, AVs need to understand the sur-
roundings and know the (internal) states of their maneu-
vers and behaviors. Considering the underlying (or internal)
states and plans, Ben-Akiva, et al. [41] proposed an internal
choice methodology for the highway on-ramp merge tasks
in congested traffic and obtained an expected performance.
Besides, Choudhury [22] introduced the internal plans into the
decision process to address the decision-making problem in
lane-change behaviors. Choudhury applied HMM to consider
previous plans when making current decisions and demon-
strated that ignorance of the internal states might cause an
unrealistic understanding of the surrounding traffic environ-
ment. According to the internal states such as car-following,
free-flow, emergency stop, the realization of a car-following
maneuver consists of several actions such as acceleration,
deceleration, and do-nothing [42]. Paschalidis et al. [43]
modeled the stress level of the driver as the internal state
and quantified its influence on decisions. Hsiao, et al. [44]
trained a multi-modal policy using variational autoencoder to
infer discrete internal states of different behaviors in mixed
demonstrations. They verified the associated policy using the
high-dimensional visual information as inputs. A multi-head
network for learning internal states is also presented to predict
relevant decision factors and address the limitations of high-
dimensional images in data-scarce cases [45]. Also, Chen et
al. explained whether and how the end-to-end network policy
understands and responds to the environment by proposing
an interpretable Deep RL with sequential internal states [46].
However, this approach is a model-free model that can not
explain the decision-making process as explicitly as the model-
based approach.

C. Summary

The above discussion indicates that the introduction of
internal states in driving (such as driving style, driver intents,
driver maneuver) enables safer and more efficient algorithms
for AVs. However, the internal states combined with the
probabilistic learning and inference approaches would require
carefully defining the internal states in advance, challenging
in complex driving settings. Moreover, although the learning-
based models sometimes do not need to define the number
and state in advance, it requires defining the reward function
accurately, which is usually a function of the (internal) states
[47]. Therefore, it is necessary to develop an approach that
can systematically learn, define, and infer associated internal
states while preserving interpretability.

III. DATASET AND DATA PROCESSING

A. Real-World Dataset

We utilized the data collected from the real world – the IN-
TERACTION dataset [48], with the following considerations:
• Scenario diversity: The data set covers great interactive

driving scenarios, such as merging scenarios, intersec-
tions, and roundabouts.

(a) Real scene

(b) Data visualization

Fig. 2. The Chinese highway on-ramp merge scenario in the INTERACTION
dataset [48] and the selected local region bounded by the red line.

• Behavior diversity: The data set collects regular and
safe driving behaviors and highly interactive and com-
plex driving behaviors, such as adversarial/irrational/near-
collision maneuvers.

• Clear definition: The data set contains well-defined
physical information, such as vehicles’ position and speed
in longitudinal and lateral directions, the corresponding
timestamp with the resolution of 100 ms, agents’ type
(car or truck), yaw angle, as well as the length and width
of vehicles.

B. Data Processing

The highway on-ramp merge scenarios contained in the
INTERACTION dataset are from Chinese and German traffic,
respectively. The video length of the Chinese (German) merge
scenario is 94.62 (37.92) minutes, which contains 10359 (574)
vehicles. As shown in Fig. 2, the upper two lanes of the
Chinese merge scenario is selected because they contain a
longer duration and a broader variety in driving behaviors.

The data processing is based on our previous research [26].
The definition of vehicles (i.e., ego vehicle, lead/lag vehicles),
merge critical moments (i.e., start moment ts, middle moment
tm, and end moment te), and social preference (rude or
courteous) can refer to [26]. The sequential data during the
whole process with courteous merging behavior between ts
and te are extracted and the merging event amounts to 789.
The extracted data are then randomly divided into a training set
(80% of the dataset) and a testing set (20% of the dataset). The
merge event’s duration is different from each other. To make
the data suitable for HMM-GMR, we screened and re-aligned
the extracted data by taking a trade-off between algorithm
performance and calculation capability.

The variable selection in existing works usually relies on
researchers’ experience and onboard sensors [49], [50]. Our
previous research [26] reveals that the critical variables change
over the merging stages, and redundant variables should be
removed as noises. Only proper variable selection can be
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Fig. 3. Definition of variables for the highway on-ramp merge scenario.

conducive to the inference and learning of internal states
and improve decision-making performance. According to the
variables defined in Fig. 3, different tasks require select-
ing different variables. For model training and internal state
inference, we defined the observation at time t as xt =
[∆vleadx ,∆xlag, vegox , vegoy ]>. To verify the effectiveness of
these learned internal states, we reconstructed some variables
based on the internal state from an internal-state model and
defined the inputs and outputs as

xI
t =

∆vleadx

∆xlag

vegox

 , xO
t = vegoy

The evaluation of variable selection will be given in Section
V-C.

IV. HMM-GMR MODEL

In this section, we developed an HMM-GMR framework to
learn the internal states of the dynamic merge process from
various demonstrations. We also build a probabilistic model
to reproduce the sequential observations from these extracted
internal states, thus verifying the model effectiveness. First, we
will introduce the basis of HMM, including its framework and
parameter estimation via the Baum–Welch algorithm. Then,
we extended the traditional GMR to consider the spatial and
sequential information contained in the HMM.

A. HMM for the Merge Task

For the merge process, we assume it is subject to a Markov
chain – a mathematical model of a sequence of random
variables that evolve over time in a probabilistic manner with
the assumption: The value at next point in time only depends
on the current state and not on what happened before. When
executing complex tasks, human drivers make decisions not
based on their directly-perceived signals, instead of on their
unobservable internal understanding of the world. Therefore,
we treated the internal modes as the discrete latent states sub-
ject to a Markov chain and the observations as the emissions of
associated latent states. This operation allows formulating the
merge task under a HMM framework. As a robust probabilistic
method, HMM is good at dealing with spatial and temporal
variabilities [51]. It can exhibit some degree of invariance to
local warping (compression and stretching) of the time axis.
A typical HMM is built on a discrete Markov model with a
set of finite discrete latent states zt ∈ Z = {1, ...,K} and an
associated observation model p(xt|zt). At time t, the observed

state xt, which only depends on the current latent state zt at
time t, is expressed as a Gaussian distribution

p(xt|zt = k,µk,Σk) ∼ N (xt|µk,Σk) (1)

where µk and Σk represent the center vector and the co-
variance matrix of the k-th Gaussian distribution, respectively.
Formulating the observation model as a Gaussian distribution
is intuitive with the facts: Agents do not behave directly upon
their sensory data because that data is merely an indirect
observation of a hidden real-world [52], and the Gaussian
distribution can be treated as a probabilistic model with
latent states [53]. The Gaussian model parameter estimation
is through the Maximum Likelihood Estimate (MLE).

Given the sequential observations X = x1:T
1 and associ-

ated latent states Z = z1:T with the Markov chain assumption,
their joint probability distribution is derived by

p(X,Z|θ) = p(z1|π)

[
T∏

t=2

p(zt|zt−1,A)

]
T∏
l=1

p(xl|zl,µ,Σ)

(2)
where unknown model parameters θ = {π,A,µ,Σ} need to
be learned. π = {πk} is the initial probability, the entries
πk represent the initial probability of being in state k. The
first observation x1 could be assigned to one of the set of the
latent states Z with a categorical distribution p(z1|π). A is the
transition matrix, and the entries Ajk = p(zt = k|zt−1 = j)
represent the probability of categorizing the current observa-
tion at time t as state k given the last observation at time t−1
being in state j with 0 ≤ Ajk ≤ 1 with

∑
j Ajk = 1. Thus,

A can be denoted as

A =

A11 · · · A1K

...
. . .

...
AK1 · · · AKK

 (3)

The procedure in (2) for the case of HMM is modified as
follows. The corresponding observation x1 can be sampled
based on the initial driving latent state z1 with probabilities
governed by πk. The latent state of the next moment z2 can be
obtained according to the transition probabilities p(z2|z1,A).
Then, a sample for x2 and also z3 can be drawn and so on.
According to the generative procedure, our task becomes to
estimate the probability of latent state sequences z1:T and
the value of θ that can best describe associated observation
sequence x1:T . The following section will detail the related
algorithms.

B. Parameter Learning

For a probabilistic model estimation with latent states in-
volved, an effective way is to conduct estimation iteratively.
One typical approach is the expectation-maximization (EM)
algorithm which performs the maximum likelihood estimation
of HMM. It alternates between estimating the values of
latent states (E-step) and optimizing the model (M-step), then
repeating these two steps until convergence. As a variant of
the EM algorithm, the Baum–Welch algorithm [54], [55] can
evaluate the parameters θ of HMM efficiently.

1We denote x1:T as the shorthand of the sequence {x1, ...,xT }.
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1) E-Step: In the E-step, we fixed the estimated model
parameter at the last iteration (denoted as θold) and then
calculated the marginal probability distribution for latent state
of occupying state k at time t, denoted as γt(k) = p(zt =
k|X,θold) and the posterior probability of transforming from
latent state j at time t − 1 to latent state k at time t,
denoted as ξt(j, k) = p(zt−1 = j, zt = k|X,θold). First,
we determined the posterior distribution of the latent states
p(Z|X,θold) based on X , the observation values and θold,
the model parameters of the EM algorithm at last iteration.
Then, we evaluated the expectation of the log-likelihood for
the complete data as a function of θ

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ)

=

K∑
k=1

γ1(k) lnπk +

T∑
t=2

K∑
j=1

K∑
k=1

ξt(j, k) lnAjk

+

T∑
t=1

K∑
k=1

γt(k) ln p(xt|µk,Σk)

(4)
Here, γt(k) and ξt(j, k) are evaluated via an efficient

forward-backward algorithm [55]. The forward variable αt(k)
accounts for the joint probability of observing all the partial
observation sequence x1:t up to time t and occupying state k
at time t is (see Appendix-A)

αt(k) = N (xt|µk,Σk)

K∑
m=1

αt−1(m)Amk (5)

with α1(k) = πkN (x1|µk,Σk). Similarly, the backward
variable βt(k) accounts for the conditional probability of all
the future partial observation sequence xt+1:T given the state
k at time t is (see Appendix-B)

βt(k) =

K∑
m=1

AkmN (xt+1|µm,Σm)βt+1(m) (6)

with βT (k) = 1. Thus, we can separately update γt(k) and
ξt(j, k) to be a probability measure, respectively, via

γt(k) =
αt(k)βt(k)∑K

m=1 αt(m)βt(m)

ξt(j, k) =
αt−1(j)AjkN (xt|µk,Σk)βt(k)∑K

m=1

∑K
n=1 αt−1(m)AmnN (xt|µn,Σn)βt(n)

(7)

2) M-Step: In the M-step, we updated the parameters θ by
fixing the value of γt(k) and ξt(j, k) estimated in the E-step,
thus optimizing the Q-function alternately. More specifically,
each element of π and A are respectively maximized by

πk =
γ1(k)∑K
j=1 γ1(j)

Ajk =

∑T
t=2 ξt(j, k)∑T

t=2

∑K
n=1 ξt(j, n)

(8)

Besides, equation (4) shows that only its final term depends
on µk and Σk and has exactly the same form as the data-
dependent term in the corresponding function for a standard

mixture distribution for independently identically distribution
data. Therefore, by maximizing the function Q(θ,θold) with
a weighted version of the MLE of a multivariate Gaussian, we
obtain the updates of µk and Σk as

µk =

∑T
t=1 γt(k)xt∑T
t=1 γt(k)

(9)

Σk =

∑T
t=1 γt(k)(xt − µk)(xt − µk)>∑T

t=1 γt(k)
(10)

The above E-step and M-step are performed alternatively
until convergence, and the associated parameters θ are updated
according to the latest estimation. The final obtained optimal
parameters θ∗ can be used to infer the internal states of the
dynamic merge process.

C. Internal States in HMM-GMR

The above section introduces the HMM method to formulate
the sequential observations with latent states. However, the
learn latent states are not exactly equal to the internal states
of the dynamic interaction process. The internal states should
represent the dynamic interaction process and can rebuild and
reproduce the associated behavior efficiently. Therefore, we
define a probabilistic model based on the internal states to
produce a distribution of associated behaviors.

Inspired by the fact that the reproduction of specific move-
ment represented with GMMs can be formalized as a regres-
sion problem [56], we treated the above trained HMM with
Gaussian-based emissions as a Gaussian mixture with certain
sequential constraints. This alteration allows utilizing the
Gaussian mixture regression (GMR) to retrieve associated be-
havior probabilistically. The retrieval performance corresponds
to the representativeness of the learned internal states. Here,
based on the learned HMM parameters θ = {π,A,µ,Σ},
we need to define the dynamic process of the internal states
during the merging process. For a specific observation, we
assume that several finite discrete potential internal states exist
to be assigned, and each of them has different possibilities.
Thus, the internal state, denoted by hk(xI

t ), can be treated as
a probability measure with

∑
k hk(xI

t ) = 1.
As claimed above, the appropriate internal state should be

able to reproduce associated behavior precisely. Therefore, we
can build a GMR model with these internal states integrated
to evaluate the effectiveness. Unlike other regression methods
such as artificial neural networks, locally weighted regression,
and locally weighted projection regression, the GMR derives
the regression function from the joint probability density func-
tion of the data rather than modeling the regression directly
[27], [57]. The model training is then carried out offline,
linearly related to the number of data points. The calculation
of GMR is faster than other regression algorithms. Besides,
GMR can handle multi-dimensional input and output variables
under the same model architecture.

For the merge task at highway on-ramps, a critical variable
that can reflect the driver intent is the ego vehicle’s lateral
speed, vegoy : A high (low) lateral speed indicates a strong
(weak) intent to merge. Therefore, we treated the variable vegoy
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Fig. 4. Illustration of the frameworks of (a) HMM-GMR and (b) GMM-GMR.

as the output of GMR and the other variables as the inputs
of GMR. In what follows, the superscripts I and O, which
represent the exponents for matrices or vectors, are used to
distinguish between input and output. In what follows, we use
the block decomposition of data x as

x =

[
xI

xO

]
(11)

where xI and xO represent the inputs and output defined in
Section III-B, respectively.

The representation of each observation in HMM depends
on the previous choices and is jointly determined by the
different components and their probabilities. Thus, HMM can
be interpreted as an extended mixture model and its parameters
can also be applied in GMR. More specifically, the distribution
of any observation x falling in the k-th state of HMM can
thus be expressed as a multivariate Gaussian with mean and
covariance

µk =

[
µI

k

µO
k

]
,Σk =

[
ΣII

k ΣIO
k

ΣOI
k ΣOO

k

]
(12)

We decompose the mean vector and covariance matrix corre-
sponding to the block decomposition in (11). Equation (12)
implies that the joint distribution of the inputs and output is
a Gaussian distribution. According to [58], for any new input
x̃I
t , the associated output x̃O

t is also a multimodal distribution
conditional on the estimated model parameters by

x̃O
t |x̃I

t ,θ ∼
K∑

k=1

hk(x̃I
t )N (µ̂O

k , Σ̂
O|I
k ) (13)

with the weights hk(x̃I
t ) and

µ̂O
k (x̃I

t ) = µO
k + ΣOI

k

(
ΣII

k

)−1
(x̃I

t − µI
k)

Σ̂
O|I
k = ΣOO

k −ΣOI
k

(
ΣII

k

)−1
ΣIO

k

(14)

The conditional probability distribution function of the obser-
vations is the weighted summation of different components in
the mixture Gaussian at each time step t.

Fig. 4(b) illustrates that the traditional development of GMR
relies on a parameterized GMM, and the weights ωk corre-
sponding to each Gaussian component represent the associated
influence on the input data but independent of time and
sequence [56]. In our case, we need to first transfer the well-
trained HMM with Gaussian-based emissions as an extended
Gaussian mixture model. Unlike in the traditional GMM, we
need to consider the influence of previous observation one
step ahead on the current observation when estimating hk(xt),
as shown in Fig. 4(a). The likelihood of current observation
xt belongs to component k (i.e., hk(xt)) is estimated as the
expectation of the likelihood of the previous observation xt−1
belong to all components j = 1, . . . ,K with a transition
probability Aj,k. Therefore, to make the extended GMR like
HMM leveraging the spatial and sequential information, the
likelihood function hk(x̃t) is estimated recursively with the
HMM representation. Thus, the weights hk(x̃I

t ) in (13) are
derived as

hk(x̃I
t ) =

(∑K
m=1 hm(x̃I

t−1)Amk

)
N
(
x̃I
t |µI

k,Σ
II
k

)
∑K

n=1

(∑K
m=1 hm(x̃I

t−1)Amn

)
N
(
x̃I
t |µI

n,Σ
II
n

)
(15)

corresponds to the probability of observing the partial se-
quence x̃1:t and of being in state k at time t, where hk(x̃I

t ) is
the forward variable of HMM. When t = 1, the initial value
is set by

hk(x̃I
1) =

πkN
(
x̃I
1|µI

k,Σ
II
k

)∑K
n=1 πnN (x̃I

1|µI
n,Σ

II
n )

Equation (13) provides the full predictive probability density
of the HMM-GMR approach and can predict the distribution of
outputs given any input. Equation (15) is a probability measure
and represents the likelihood of the current observation belong
to the k-th Gaussian component, which can be interpreted
as the human’s internal beliefs to how likely the current
observation falling into the given states.

The defined internal states’ reproductive capability can eval-
uate their correctness. According to the definition of internal
states, the expectation with the probability of the well-learned
internal states should be as close as possible to the actual
measurement. Therefore, we provide a point prediction result
by evaluating the expectations of the estimated conditional
centers µ̂O(x̃I

t )

µ̂O(x̃I
t ) =

K∑
k=1

hk(x̃I
t )µ̂O

k (x̃I
t ) (16)

A small deviation to (16) indicates a good performance.

V. RESULT ANALYSIS AND DISCUSSION

This section first introduces the structure learning for HMM
and then defines two evaluation metrics to assess the variable
selection and the HMM-GMR performance. Afterward, the
analysis of learned internal states and related potential appli-
cations are provided.
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Fig. 5. The BIC scores of GMM with different components K.

A. Model Selection

The Baum–Welch algorithm (introduced in Section IV) is a
variant of the EM algorithms, which requires determining the
number of components K for GMM in advance. The optimal
model parameter K is determined by gradually increasing the
number of components and selecting the optimum based on
off-the-shelf criteria called Bayesian information criteria (BIC)
[59], [60], balancing the model’s likelihood and the minimum
parameter number. The computation of the BIC score is given
by

SBIC = −
T∑

t=1

log(p(xt)) +
np
2

log(T ) (17)

where the first term represents the log-likelihood and deter-
mines the fitting level of the model to the data. The second
penalty factor realizes the number minimization of parameters
with np the number of parameters that can be calculated by
polynomials about K. {xt} is the set of training data point,
and T represents the number of data.

For the model selection, we calculate the BIC scores with
different components from 1 to 20, as shown in Fig. 5. It
indicates that the BIC score first decreases and goes up with
increasing K. This suggests that the mixture model with
K = 3 (marked with ∗) is the optimal selection to achieve
the best performance while minimizing the parameter number.
Therefore, considering the states/clusters in the framework are
multivariate normal distributions with a full covariance matrix,
the mixture model with 3 Gaussian components is optimal for
describing real-world driving data.

B. Performance Evaluation

The model performance is evaluated using the mean-square
error (MSE) and root-mean-square error (RMSE). The MSE
describes the unbiased estimation of the error variance, com-
puted by

εMSE =
1

T

T∑
t=1

(x̂Ot − xOt )2 (18)

where x̂Ot = µ̂O(x̃I
t ) is the estimation of output variable at

time t and computed via (16). xOt is the real reference value
collected from sensor. Therefore, the associated evaluation
score of MSE is computed as [61]

SMSE =
εMSE − εrefMSE

0− εrefMSE

(19)

with εrefMSE = 1
T

∑T
t=1(x̄ − xOt )2. Taking the MSE of x̄ as

the reference, the overall performance can be evaluated by the
score of SMSE which is positive (negative) if the predictive
outputs is better (worser) than εrefMSE while the absolute value
of the score is proportional to the amplitude.

In addition, we use RMSE as another evaluation metric,
computed by

εRMSE =
√
εMSE (20)

Thus, the mean values of two evaluation metrics (SMSE

and εRMSE) are used to evaluate the prediction stability and
accuracy of the HMM-GMR performance. A high value of
SMSE (or a low value of εRMSE) indicates a good model
performance.

C. Evaluation of Variable Selection

The selection of appropriate input variables can eliminate
the interference of redundant variables and maximize the
performance of the HMM-GMR framework. Our previous
research in [26] reveals that the most critical variables of
making decisions when merging into the highway are ranked
as vegoy , vegox , ∆vleadx , ∆xlag, ∆vlagx , and ∆xlead (TTC is
not considered because the correlation between it and task
execution is weak and unstable). vegoy represents the lateral
control of the ego vehicle (i.e., the predictive outputs of HMM-
GMR); thus, we only selected the other five variables as the
model input candidates.

With well-defined evaluation metrics, we compute the eval-
uation scores of models with different variable inputs. Here,
we mainly consider the univariate input of the top-three
significant variables (i.e., ∆vleadx , ∆xlag and vegox ). For those
variables with low significance, we only discuss the influence
of different combinations of them with the optimal input
on model performance. Table I summarizes the associated
results by combining different variables. It shows that the input
variables as the combination of {∆vleadx ,∆xlag, vegox } is the
best choice with the highest value of SMSE and the lowest
value of εRMSE.

Besides, we also investigated the other combinations, pro-
vided as follows:
• Combining univariate inputs: Table I indicates that

∆vleadx reaches a much higher value of SMSE than the
other two combinations. However, ∆vleadx obtains a close
value of εRMSE to ∆xlag, which are both far worse than
vegox .

• Combining bivariate inputs: The combination of ∆xlag

and vegox obtains the best performance with the highest
value of SMSE and the lowest value of εRMSE. ∆vleadx

is excluded in this case because the the bivariate inputs’
coupling effect is different from the univariate inputs.

The evaluation scores of the univariate and bivariate inputs re-
veal that insufficient inputs can undermine model performance.

To further confirm the reliability of the optimal combination
of the three variables as inputs, we also analyzed the effects of
the optimal combination (i.e., ∆vleadx ,∆xlag, vegox ) with other
low-significant variables (i.e., ∆vlagx ,∆xlead). The associated
results in Table I show that the introduction of low-significant
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TABLE I
PERFORMANCE EVALUATION OF DIFFERENT VARIABLES WITH SAME
APPROACH (HMM-GMR (K-BINS)) AND OUTPUT VARIABLE (vegoy )

Input variables SMSE εRMSE

∆vleadx 0.346 0.608

∆xlag -1.665 0.685

vegox -0.261 0.124

∆vleadx , ∆xlag -0.067 0.148

∆vleadx , vegox 0.525 0.075

∆xlag, vegox 0.631 0.062

∆vleadx , ∆xlag, vegox 0.686 0.059

∆vleadx , ∆xlag, vegox , ∆vlagx 0.591 0.065

∆vleadx , ∆xlag, vegox , ∆xlead 0.458 0.065

∆vleadx , ∆xlag, vegox , ∆vlagx , ∆xlead 0.344 0.070

TABLE II
PERFORMANCE EVALUATION OF DIFFERENT APPROACHES WITH SAME

INPUT VARIABLES (∆vleadx , ∆xlag , vegox ) AND OUTPUT VARIABLE vegoy

Approach (Initialization method) SMSE εRMSE

HMM-GMR (K-bins) 0.686 0.059

HMM-GMR (K-means) 0.604 0.061

GMM-GMR (K-bins) 0.485 0.065

GMM-GMR (K-means) 0.329 0.066

variables would undermine the model performance gradually
since SMSE gets a reduced value, and εRMSE gets an increased
value. Especially for the last case in Table I, the value of SMSE

declines when considering the two low-significant variables
mentioned above. This phenomenon supports the conclusion
of variable significance analysis in [26], implying that consid-
ering low-significant variables will impair model performance.
Therefore, it is necessary to filter redundant variables in the
environment to improve the model performance.

D. Evaluation of Prediction Results

The analysis of variable selection in the previous section
shows that the combination of {∆vleadx ,∆xlag, vegox } is opti-
mal and then used to eliminate the interference of redundant
variables on decision-making performance. To evaluate the
proposed HMM-GMR performance, we compare it with its
counterpart of GMM-GMR defined in Fig. 4(b). Unlike the
HMM-GMR, the weight coefficients ω of different Gaussian
models in GMM-GMR in the iteration procedure are indepen-
dent of time and sequence. Corresponding to (15) in HMM-
GMR, the activation in GMM-GMR for state k at time step t
is defined as follows

hk(xI
t ) =

ωkN (xI
t |µI

k,Σ
II
k )∑K

n=1 ωnN (xI
t |µI

n,Σ
II
n )

(21)

The model parameters should be initialized by proper ini-
tialization to avoid being trapped in poor local minima. In
the training and testing processes, we introduced two different
initialization methods:
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h
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Fig. 6. The activation weights hk (internal state) derived by GMM-GMR
and HMM-GMR for one case.

• K-means: initialize the model parameters by using K-
means clustering algorithm; and

• K-bins: initialize the model parameters by clustering an
ordered dataset into equal bins.

Table II displays the evaluation results and indicates that
HMM-GMR outperforms GMM-GMR, reaching a higher
value of SMSE and a lower value of εRMSE than GMM-
GMR. Moreover, both HMM-GMR and GMM-GMR with
initialization of K-bins always obtain a better performance
than using K-means. Besides, Fig. 6 displays that the update
of internal states based on GMM-GMR is more oscillating
than HMM-GMR because GMM-GMR does not leverage the
influence of time and sequence in the learning and testing
phases. As a result, it leads to a large prediction error, making
the internal states obtained by the activation function of GMM-
GMR is not as stable as HMM-GMR. By considering the fac-
tors mentioned above comprehensively, we can conclude that
the HMM-GMR framework initializing with K-bins obtains
the best performance. This evidence proves that the internal
state obtained via HMM-GMR is close to the actual situation.

The above analysis allows treating {∆vleadx ,∆xlag, vegox }
as the inputs of HMM-GMR with K-bins initialization. Figs.
7 and 8 display the training (based on all the training
cases) and testing (one randomly selected test case) results,
respectively. Each figure shows the results from two views:
two-dimensional view (bottom) and three-dimensional view
(top). The two-dimensional view is a plane diagram of the
relationship between the input variable vegox and the output
variable vegoy . The training results (as shown in Fig. 7) display
the relationships between the three Gaussian components and
all the training data, while the testing results in Fig. 8 indicate
that the HMM-GMR model can obtain a good prediction
performance.

Figs. 7 and 8 display that the red Gaussian component (i.e.,
the first internal state) covers the most wider range over the
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Fig. 7. Training results of HMM-GMR.

three independent variables, while the blue Gaussian com-
ponent (i.e., the second internal state) obtains the narrowest
one. The randomness of the relative relationship between the
ego vehicle and the surrounding agents is strong, while the
relative relationship is more regular and concentrated in the
second internal state. Besides, with the increase of vegox , the
regularity of training data gradually weakens; that is, the test
error increases with the increase of vegox . The reasons for this
phenomenon are analyzed in Section V-F2.

E. Interpretability of Internal State

This section will interpret the learned internal states of the
merging behavior at highway on-ramps semantically. Accord-
ing to the update of the activation coefficient in Fig. 6b, Fig.
9 displays how the internal states correspond to the merging
procedure over time.

To interpret the interaction behavior during the merging task
with the three learned internal states, we listed the range of
each internal state for each input variable in Table III. All
collected vehicle speed is non-positive because all vehicles in
the dataset drive toward the left direction, as shown in Fig.
2. Table III indicates that the ego vehicle’s absolute speed
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(b)

Fig. 8. Example of the testing result for a randomly selected test case.

Fig. 9. An example of the internal state changes during the merging process.

first decreases and then gradually increases. However, the
speed difference between the lead vehicle and the ego vehicle
decreases and finally remains non-positive from the second
state. From the second state, the ego vehicle moves slower
than the lead vehicle. Although the ego vehicle gradually
accelerates, it always moves slower than the lead vehicle
to keep a safe distance from the lead vehicle. Besides, the
distance between the lag vehicles and the ego vehicles first
decreases and then increases, indicating that after the second
state, the rear vehicle would actively increase the safety
distance to the ego vehicle. The dynamic interactions reflected
by the corresponding relationship between the internal states
and the selected variables are consistent with the highway on-
ramp merge behavior in reality. Therefore, the three learned
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TABLE III
THE RANGES OF INPUT VARIABLES IN DIFFERENT INTERNAL STATES

1st State 2nd State 3rd State

∆vleadx [m/s] [-0.7, 1.2] [-1.1, 0.0] [-1.7, -0.2]

vegox [m/s] [-4.7, -2.0] [-2.8, -1.4] [-4.7, -2.9]

∆xlag [m] [-0.4, 11.6] [4.8, 8.2] [5.4, 9.1]

internal states can fully and concretely explain the interactive
merge behavior.

F. Further Discussions

1) Potential Applications: Model-based RL and POMDP
receive increasing attention in recent years [16]–[18] in light
of their interpretability and generalizability [14]. POMDP
usually treats the unobservable environmental uncertainty as
internal states or considers the complete historical information
encoded by recalling past features and inferring to determine
the distribution over possible internal states [21]. Although the
belief state’s rationality in POMDP has found some evidence
in recent experimental studies [62], the update of this belief
state requires the state transition and observation function.
The HMM-GMR framework developed in this paper can
provide the basic parameter update procedures for model-
based approaches to improve learning efficiency and decision
performance.

2) Limitations: Most highway on-ramp merging scenarios
in the INTERACTION dataset are in a congested, highly
interactive condition. The developed HMM-GMR framework
obtains an expected prediction performance and infers the
internal states during the decision process. However, the model
trained with this kind of data may not be suitable for the free-
flow traffic conditions, which could be future work.

VI. CONCLUSION

This paper developed a probabilistic learning approach,
HMM-GMR, to extract the interpretable internal states for
the dynamic interaction procedure of merging at highway
on-ramps. Related parameter estimation algorithms for the
HMM-GMR model are provided. Experiments on the real-
world data demonstrate its efficiency and reveal that the
interaction procedure for merge behavior at highway on-ramps
can be semantically described via three internal states. We
also evaluated the HMM-GMR model with different variables
as inputs. We demonstrated that the optimal model inputs
are {∆vleadx ,∆xlag, vegox } to make an appropriate decision.
Moreover, the developed HMM-GMR model, to some extent,
provides reliable and experimental support to the conclusions
in our previous work [26].

APPENDIX

A. Derivation of Forward Variable αt(k)

For the forward variable αt(k), its estimation is based on
the old parameter θold, i.e., αt(k) = p(x1:t, zt = k|θold). To

simplify the proof representation, we omitted the parameter
θold and default p(x1:t, zt = k|θold) = p(x1:t, zt = k).

αt(k) =p(x1:t, zt = k)

=p(xt|zt = k)p(x1:t−1|zt = k)p(zt = k)

=p(xt|zt = k)p(x1:t−1, zt = k)

=p(xt|zt = k)

K∑
m=1

p(x1:t−1, zt−1 = m, zt = k)

=p(xt|zt = k)

K∑
m=1

[p(x1:t−1, zt = k|zt−1 = m)·

p(zt−1 = m)]

=p(xt|zt = k)

K∑
m=1

[p(x1:t−1, zt−1 = m)·

p(zt = k|zt−1 = m)]

=p(xt|zt = k,µk,Σk)
K∑

m=1

αt−1(m)Amk

=N (xt|µk,Σk)

K∑
m=1

αt−1(m)Amk

B. Derivation of Backward Variable βt(k)

The estimation of backward variable βt(k) is based on the
old parameter θold, i.e., βt(k) = p(xt+1:T |zt = k,θold). To
simplify the proof representation, we omitted the parameter
θold and default p(xt+1:T |zt = k,θold) = p(xt+1:T |zt = k).

βt(k) =p(xt+1:T |zt = k)

=

K∑
m=1

p(xt+1:T , zt+1 = m|zt = k)

=

K∑
m=1

[p(zt+1 = m|zt = k)·

p(xt+1:T |zt = k, zt+1 = m)]

=

K∑
m=1

[p(zt+1 = m|zt = k)p(xt+1:T |zt+1 = m)]

=

K∑
m=1

[p(zt+1 = m|zt = k)p(xt+1|zt+1 = m)·

p(xt+2:T |zt+1 = m)]

=

K∑
m=1

Akmp(xt+1|zt+1 = m,µm,Σm)βt+1(m)

=

K∑
m=1

AkmN (xt+1|µm,Σm)βt+1(m)
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