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Abstract—Some response surface functions in complex engi-
neering systems are usually highly nonlinear, unformed, and
expensive-to-evaluate. To tackle this challenge, Bayesian opti-
mization, which conducts sequential design via a posterior dis-
tribution over the objective function, is a critical method used to
find the global optimum of black-box functions. Kernel functions
play an important role in shaping the posterior distribution of
the estimated function. The widely used kernel function, e.g.,
radial basis function (RBF), is very vulnerable and susceptible
to outliers; the existence of outliers is causing its Gaussian process
surrogate model to be sporadic. In this paper, we propose a robust
kernel function, Asymmetric Elastic Net Radial Basis Function
(AEN-RBF). Its validity as a kernel function and computational
complexity are evaluated. When compared to the baseline RBF
kernel, we prove theoretically that AEN-RBF can realize smaller
mean squared prediction error under mild conditions. The
proposed AEN-RBF kernel function can also realize faster con-
vergence to the global optimum. We also show that the AEN-RBF
kernel function is less sensitive to outliers, and hence improves
the robustness of the corresponding Bayesian optimization with
Gaussian processes. Through extensive evaluations carried out
on synthetic and real-world optimization problems, we show that
AEN-RBF outperforms existing benchmark kernel functions.

Note to Practitioners—Some industrial systems cannot be
accurately represented by physical models. In this situation,
data-driven black-box optimization is necessary for advancing
the system automation and intelligence. Bayesian optimization
is one widely used strategy for learning the global optimum
of black-box functions. Bayesian optimization has been applied
to robotics, anomaly detection, automatic learning algorithm
configuration, reinforcement learning, and deep learning. This
paper proposes one new kernel function, named after AEN-RBF.
The new kernel function will make Bayesian optimization with
Gaussian processes more robust to outliers and lower the data
quality barrier of model training. This paper was motivated by
the hyperparameters tuning problem of deep learning models
for image defect detection in advanced manufacturing, but the
method can be easily extended to other applications where
kernel functions are needed. Our proposed method is verified
by synthetic and real-world optimization problems.

Index Terms—Advanced Manufacturing, Bayesian Optimiza-
tion, Defect Detection, Gaussian Process, Process Optimization.
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I. INTRODUCTION

BLACK-BOX optimization is a class of global optimiza-
tion where the objective function is expensive to evaluate,

has an unknown analytical form, and is in most cases non-
convex [1]. In many engineering systems, physics-driven mod-
els cannot represent the system accurately or even do not exist
due to the highly nonlinear complex structures and uncertainty
of system knowledge. To optimize these systems, data-driven
black-box optimization can estimate the objective function and
find the global optimum in a minimum number of function
evaluations. Bayesian optimization (BO) is a sequential model-
based optimization algorithm used to find the global minimum
of a black-box function [2]. As shown in Fig. 1, Bayesian
optimization models are defined by a surrogate model and
an acquisition function. Surrogate models are probabilistic
models that define and estimate unknown functions. The most
widely used surrogate model is the Gaussian process (GP).
Gaussian processes are used to define probability distributions
over functions where each distribution is specified by a mean
function m(x) and a positive semi-definite kernel function
k(x, x′) [3]. Bayes’ rule is used to derive the posterior
distribution of the GP given the prior and the observations.
Acquisition functions are mathematical equations used to trade
off exploration and exploitation to iteratively determine the
next-step query point over a bounded domain x ∈ DX [4]. The
acquisition functions are closely associated with sequential
optimal designs in statistics [5] or active learning functions
in machine learning [6]. More discussion related to surrogate
models and acquisition functions can be found in Section II.

Bayesian optimization has been extensively used in a wide
range of areas including integrated system design [7], in-
dustrial control systems [8], robotics [9] and autonomous
systems [10]. In particular, Bayesian optimization is super
advantageous for hyperparameter tuning and optimization of
automated machine learning models [11], [12]. Hyperparam-
eters are parameters that are not automatically optimized or
directly derived during training machine learning models.
These hyperparameters are usually manually adjusted to re-
alize the optimal performance of machine learning models,
which has been very efficient in regimes where only limited
number of trials are possible. Popular hyperparameter tuning
methods include grid search, random search, and Bayesian
optimization [11], [13]. Grid search is a method that tests
and evaluates every single combination of hyperparameters,
although reaching the best combination of the hyperparameters
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Fig. 1. General approach to Bayesian optimization. The unknown black-
box function (i.e., objective function) goes through a sequential Bayesian
optimization model where it is analyzed and estimated. A surrogate model is
built to capture the probabilistic distribution over the objective function (i.e.,
prior distribution) which is specified by a mean function and a covariance
(i.e., kernel) function. An acquisition function is used to determine the
next engineering design to update the prior distribution into the posterior
distribution. Finally the predictive posterior distribution will be used to
calculate the optimum of the objective function.

is assured, it is very time consuming and not efficient for
high-dimensional hyperparameters. Random search [12] on
the other hand is a method that selects and tries random
combinations of hyperparameters. Random search is compu-
tationally inexpensive, however finding the best combination
of hyperparameters is not guaranteed. Bayesian optimization
is a probabilistic approach that implements Bayes’ theorem to
find and select the optimal combination of hyperparameters
in a minimum number of function evaluations. More recently,
Bayesian hyperparameter optimization has been used in opti-
mizing different engineering processes. For instance, transfer
Bayesian optimization has been applied in optimizing design
parameters of manufacturing processes [14]. In production
processes on the other hand, Bayesian optimization has been
applied in optimizing the multi-component predictive systems
tasks [15].

In the presence of outliers (i.e., unusual data located far
from the mean value), Bayesian optimization methods tend to
be inefficient in optimizing the black-box function and finding
its global optimum. In particular, Gaussian processes are non-
robust probabilistic models and are known to be prone to noise
(i.e. outliers). Furthermore, outliers are ubiquitous or even
inevitable in advanced manufacturing systems. For example,
actuator uncertainty, part uncertainty, modeling uncertainty,
and unquantified errors co-exist in the composite aircraft
assembly process [16]; signal-dependent noise and spikes are
embedded with the Raman spectroscopy and other photon-
generated spectroscopy in nanomanufacturing processes [17],
[18]. In these systems, Bayesian inference with Gaussian pro-
cesses produces sporadic predictive models that inaccurately
infer the global optimum of the objective function. Therefore,
building robust surrogate models for Bayesian optimization
is of great importance. With the critical effect of covariance
functions on the performance of surrogate models for Bayesian
optimization, the robustness of such functions is strongly
needed.

Kernels, also known as covariance functions, are functions
that measure the similarity between two data points over
a given space. There are two types of kernels, stationary
and non-stationary [19]. Stationary kernels are functions of

distances (i.e. invariant to translations), examples of stationary
kernels include Radial Basis Function (RBF) and Matern.
Examples of non-stationary kernels include Linear and Poly-
nomial kernels.

Non-stationary kernel functions allow Gaussian process
models to adapt to variability changes with location and time
domains. However, they have limitations such as occasional
creation of nearly singular covariance matrices and inflexibility
in modelling high-order input interactions as in the case with
Polynomial kernels [20], and complex numerical Monte-
Carlo integration as in the case with convolutional and spectral
kernel functions [21], [22]. Stationary kernel functions on the
other hand, are highly differentiable and simpler to evaluate
than non-stationary kernels. Kernel functions have a significant
impact on the accuracy and shape of the GP surrogate models.
In this paper, we focus on stationary kernel functions and
tackle their challenges and limitations.

Radial Basis Functions (RBFs) are kernel functions that
are widely used in optimizing black-box functions [3], [23].
Despite being infinitely differentiable, RBF kernels are very
smooth and tend to be very sensitive to outliers thus con-
structing sporadic models. Sporadic models produce inaccurate
estimated functions, which will then create imprecise and
unreliable predictive models. Although Matern kernel func-
tion solves the smoothness problem of the RBF kernel, its
sensitivity to outliers is still a major challenge. Therefore, de-
veloping a robust kernel function is critical to the accuracy and
performance of the Bayesian optimization with GP surrogates.

In the area of robust kernel functions, there exists some
research concerning asymmetrical kernels in other domains
such as [24] which introduces the use of a Gamma density
function instead of the Gaussian (i.e., RBF) kernel function
to improve boundary errors. Another research concerning the
use of asymmetric kernels in Gaussian Processes is the use
of multiple Gaussian kernel functions with center averages as
inputs instead of single data points and a different lengthscale
hyperparameter per kernel [25]. However, such kernel func-
tions are tailored for specific applications and are not suited
for Bayesian optimization and a major limitation of stationary
kernel functions used in Bayesian optimization when outliers
are present still exists.

In this paper, we propose a novel Asymmetric Elastic Net
Radial Basis Function (AEN-RBF) kernel function to produce
robust Gaussian process surrogate models for Bayesian opti-
mization. We introduce two parameters, the weight parameter
λ and the skewness parameter α to improve the similarity
measure in kernel definition. We propose a skewed weighted
sum of squared Euclidean and Manhattan distances to reduce
the GP surrogate model’s sensitivity to outliers and thus
enhance its robustness.

Our contributions are summarized as follows.
1. We propose AEN-RBF, an Asymmetric Elastic Net Radial

Basis Function and prove its validity as a positive semi-
definite kernel function.

2. We provide theoretical investigations that show the con-
vergence and computational properties of the Bayesian
optimization model when AEN-RBF kernel function is
used. We also prove that AEN-RBF kernel function
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provides a lower mean prediction error in comparison
with the RBF.

3. The proposed AEN-RBF kernel is evaluated in optimizing
four synthetic functions and in hyperparameter tuning of
deep learning models on real-world datasets. We show
that AEN-RBF outperforms benchmark kernel functions.

The remainder of this paper is organized as follows: Section
II illustrates the background of Bayesian optimization from
three perspectives (e.g., surrogate models, kernels, and acqui-
sition functions). Section III describes the proposed AEN-RBF
kernel and computational algorithm for parameter estimation,
as well as proves the theoretical comparison between AEN-
RBF and RBF kernels. Section IV discusses the properties
of the AEN-RBF kernel function, such as convergence, com-
putational complexity, and extendability to other applications.
Section ?? conducts the numerical study and compares the
proposed AEN-RBF kernel against the benchmark kernels.
Section VI presents the case study of image defect detection in
advance manufacturing. Finally, a brief summary is provided
in Section VII.

II. BACKGROUND AND RELATED WORK

Bayesian optimization, a statistical model based on Bayes
rule [26], can find the global optimum of a black-box function
while using a minimum number of function evaluations. The
process of Bayesian optimization starts by building a prob-
abilistic data-driven approximation of the objective function
called the surrogate model. It then uses an acquisition function
to search for the next best point to be evaluated and update the
surrogate model. The acquisition function is cheap to evaluate
and trades off exploitation (i.e., sampling at points where the
surrogate model predicts a high value of the objective function)
and exploration (i.e., sampling at points where the surrogate
model predicts a high value of the model’s uncertainty).
In the following subsections, we summarize the important
components of Bayesian optimization.

A. Surrogate models

Surrogate models, also called metamodels or emulators, are
data-driven approximations of the objective function. Surro-
gate models are used to model prior beliefs about the objective
function which are then updated into posterior predictive distri-
butions. One surrogate model used in Bayesian optimization is
random forests [4]. Random forests are ensembles of decision
tree predictors where each tree represents a randomly sampled
vector of the data. Another example of a Bayesian optimization
surrogate model is to integrate the tree-structured Parzen
estimator (TPE) with the Gaussian process [12], where it is
used to generate surrogate models of the objective function via
Bayesian reasoning. Other surrogate models include physics
based surrogates [27], hierarchical linear model [28], etc. The
most widely used surrogate model and the one that uses Bayes
rule is the Gaussian process (GP) [3], [19], [29], [12], [5],
also called Kriging [5], [30]. GP surrogate models are random
probabilistic processes for which the random variables are
modelled as a multivariate normal distribution. A GP starts
with a prior distribution that is defined by a mean function and

a kernel (i.e., a covariance function). The prior distribution is
then updated into the posterior distribution by the end of the
optimization process. In this paper, we focus on the Gaussian
process as the surrogate model due to its flexibility, tractability,
and nice theoretical properties [3].

B. Kernels of Gaussian processes

Kernels (i.e., covariance functions) are critical components
of the GP surrogates in Bayesian optimization. Stationary
kernels are distance based functions that calculate the dif-
ference between two kernel inputs. A radial basis function
(RBF) [23], is one of the most commonly used kernels
in Bayesian optimization and function estimation. RBF is a
function of a squared Euclidean distance and is parameterized
by a lengthscale that governs its smoothness. Another well
known stationary kernel function is Matern. Matern is a gen-
eralization of RBF with an additional smoothness parameter.
Matern is equivalent to RBF when that extra smoothness
parameter goes to infinity [19], [4]. Common non-stationary
kernels include but are not limited to Linear and Polynomial
kernel functions. In this paper, we focus on developing one
new kernel to make the surrogate model more robust to
outliers and obtain the resilient Bayesian optimization. More
specifically, we focus on RBFs since they are widely used and
have few hyperparameters to tune as opposed to Matern kernel
functions.

C. Acquisition functions

Acquisition functions are inexpensive to evaluate and are
used to find the next best point to be evaluated. Acquisi-
tion functions are used to update the prior distribution of
the Gaussian process model into the posterior distribution.
One acquisition function is the probability of improvement
(PI) [31]. PI works by finding the probability that a point
will lead to the improvement of the objective function. The
expected improvement (EI) is one of the most widely used ac-
quisition functions [32]. The main idea is to identify the input-
output relationships, and subsequently select design points to
maximize the expected improvement on the objective function.
The upper confidence bound (UCB) can trade off exploitation
and exploration through cumulative regret bounds to improve
acquisition performance. [33]. It is worth noting that the
acquisition function in Bayesian optimization shares the same
idea with active learning and sequential optimal design [6].
In machine learning domain, active learning iteratively selects
the next data point for maximizing information acquisition
to improve model performance. Sequential optimal design,
which is the term in statistics domain, can explore the most
informative new experimental samples according to the current
existing data. More detailed literature review on active learning
and sequential design refers to [6].

III. ASYMMETRIC ELASTIC NET RADIAL BASIS
FUNCTION

In this section, we propose the new kernel, Asymmetric
Elastic Net Radial Basis Function (AEN-RBF), and derive
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the computational algorithms for hyperparameter learning. We
also prove that the proposed AEN-RBF kernel can realize
smaller mean squared prediction error than the RBF kernel
under mild conditions.

A. Bayesian Optimization with RBF Gaussian Processes

A sequential model-based optimization (SMBO) algorithm
is used to minimize unknown and expensive to evaluate
functions (i.e., black-box functions). A typical Bayesian opti-
mization algorithm with a Gaussian process surrogate model
is shown in Fig. 1. It consists of two components. The first
component is the prior distribution over the objective function,
which is defined by a mean function and a kernel function.
The second component is the acquisition function which is
used to select the next point to be evaluated and update the
GP’s prior distribution into the posterior.

Let f(x), m(x), and k(x,x′) be the black-box function
to be optimized, the mean function, and the kernel function,
respectively. We model f(x) as a Gaussian process as shown
in Equation 1, with the mean function in Equation 2 and the
kernel function in Equation 3.

f(x) ∼ GP (m(x), k(x,x′)), (1)
m(x) = E{f(x)}, (2)

k(x,x′) = E[{f(x)−m(x)}{f(x′)−m(x′)}]. (3)

The ultimate goal of Bayesian optimization is to find x∗

such that f(x) is minimized over its domain (DX ),

x∗ = argminf(x) for x ∈ DX .

The expected improvement acquisition function, u(x), is
defined as u(x) = E[max(0, f∗ − f(x)], where f∗ is the
optimal function value so far. The expected improvement
works by selecting the next best point to be evaluated xnext =
argmax u(x) for x ∈ DX . The expected improvement is
used to update the prior distribution of the GP model into the
posterior distribution and hence produce a predictive model of
the objective function. The posterior predictive model is then
used to obtain the global optimum of the objective function.

The Radial Basis Function (RBF), also known as the
squared exponential kernel function, is the most widely used
covariance function in Gaussian process regression and ma-
chine learning [3]. Equation 4 represents the mathematical
formula of the RBF, where DE is the squared Euclidean
distance shown in Equation 5. The hyperparameters l and σ2

0

represent the lengthscale and the variance, respectively. Hyper-
parameters are parameters of the mean and kernel functions
and are optimized using maximum likelihood estimate (MLE)
approach.

kRBF (x, x′) = σ2
0 × e

−DE(x,x′)
2l2 (4)

DE(x,x′) =

(√√√√ p∑
j=1

(xja − x′jb)
2

)2

(5)

The RBF is an infinitely differentiable kernel function. How-
ever, a major drawback of using RBF as a kernel function is

that it is very smooth and sensitive to outliers. The sensitivity
to outliers produces irregular and sporadic surrogate models
that inaccurately infer a function. Therefore, we propose the
new AEN-RBF kernel function.

B. The Asymmetric Elastic Net Radial Basis Function (AEN-
RBF) Kernel Function

In order to have a surrogate model for Bayesian optimization
that is robust and less sensitive to outliers, we investigate
a couple of state-of-the-art regression models. The sparsity
encouragement in regression may help us formulate the idea
and propose a new kernel to enhance the robustness. More
specifically, we look at Lasso [34] and Elastic Net [35].
Lasso regression model uses L1 regularization method. The L1
regularization method adds an absolute value of the magnitude
of the regression coefficients to the cost function as a penalty.
The addition of this penalty is found to make the model less
sensitive to outliers, and therefore generates sparse regression
models [34]. On the contrary, L2 regularization, also known as
Ridge regularization, can better handle the correlation between
different variables especially when the number of variables is
not very large [36]. L2 regularization is also found to be more
stable numerically than its counterpart, the L1 regularization.
The Elastic Net regression model uses a weighted sum of L1
and L2 regularization methods to take the advantages of both
regularization methods [35].

Inspired by the idea of Elastic Net, we introduce AEN-RBF,
an Asymmetric Elastic Net Radial Basis Function. AEN-RBF
is a skewed kernel function with a weighted summation of
squared Manhattan and Euclidean distances. The Manhattan
distance, also known as the absolute value distance, results in
a robust kernel function and a sparser surrogate model espe-
cially when dealing with high dimensional data. Equation 6
represents the mathematical formula of the squared Manhattan
distance DM . Equation 7 represents the elastic net distance
D, which is the weighted summation of squared Manhattan
distance DM and squared Euclidean distance DE .

DM (x,x′) =
( p∑
j=1

|xja − x′jb|
)2

(6)

D(x,x′) = λ ·DM (x,x′) + (1− λ) ·DE(x,x′) (7)

The elastic net distance can realize the trade off between
Manhattan distance and the Euclidean distance, which corre-
sponds to exploitation and exploration, respectively. We make
full use of it when we propose the AEN-RBF kernel function.
Equation 8 represents the mathematical formula of AEN-RBF
kernel function.

kAEN -RBF (x,x′) = σ2
0 ×

e−(1−α)·
D(x,x′)
l2 for xja < x′jb

e−α·
D(x,x′)
l2 for xja ≥ x′jb

(8)
In order to improve the robustness of the RBF kernel

function to outliers, we introduce two new parameters, the
weight parameter, lambda (λ), and the skewness parameter,
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Fig. 2. Gaussian process surrogate in the presence of outliers. (a-b)
represent Gaussian process surrogates when RBF kernel function is used,
while (c-d) represent Gaussian process surrogates when AEN-RBF kernel
function is used. (a,c) belong to outlier scenario one and (b,d) belong to
outlier scenario two. The green circles represent the induced outliers, whereas
the purple dashed circles represent the excluded outliers in the posterior
distribution of the GP when AEN-RBF kernel function is used.

alpha (α). The weight parameter, λ, is between 0 and 1 and
is used to scale squared Euclidean and Manhattan distances.
The skewness parameter, α, is a measure of the asymmetry of
the kernel function and is also between 0 and 1 in such a way
that when α = 0.5 the resulting kernel function is symmetric,
whereas when α > 0.5 or when α < 0.5 the resulting kernel
function is skewed to the left and right, respectively.

Fig. 2 represents the posterior distribution of the Gaussian
process regression model when RBF and AEN-RBF kernel
functions are used. From Fig. 2, we demonstrate the robustness
of our AEN-RBF kernel function in comparison with the RBF
when using the two experiment scenarios. We can find that
AEN-RBF kernel function can reduce the impact of outliers
on the posterior distribution of the GP. More specifically,
when using RBF as a kernel function, the confidence bounds
are enlarged due to the presence of outliers, whereas when
AEN-RBF kernel function is used, the confidence bounds
are not sensitive to outliers resulting in a number of outliers
excluded from the posterior distribution, thus yielding smaller
confidence bounds. The excluded outliers are shown in purple
dashed circles. These figures show how flexible and robust
our AEN-RBF kernel in approximating the objective function
when outliers exist.

Proposition 1. The AEN-RBF kernel denoted as
kAEN−RBF is a valid kernel function and its corresponding
Gram matrix, KAEN−RBF , is positive semi-definite.
Proof. Let kDE and kDM be the RBF and the squared
Manhattan distance based kernel functions, respectively. We
decompose the AEN-RBF kernel function as follows:

kAEN−RBF (x, x′) = σ2
0 × e[−(1−α)(λDM+(1−λ)DE)]1(x<x′)

×e[−α(λDM+(1−λ)DE)]1(x≥x′).

Since the indicator function is a constant kernel function

and the linear combination and multiplication of two kernel
functions are also a kernel function, then the AEN-RBF kernel
is a valid kernel function. It then follows that the Gram matrix
KAEN−RBF is positive semi-definite by the property of kernel
functions.

C. Computational Algorithm for Parameter Estimation

In our AEN-RBF kernel function, the hyperparameters are
estimated using the maximum likelihood estimation approach
(MLE) [3]. MLE is a special case of the maximum a posteriori
(MAP) estimate approach. By denoting θ as the set of hyper-
parameters to be optimized, we can express the log marginal
likelihood of the GP model as log p(y|X, θ). We estimate θ by
maximizing the log marginal likelihood (i.e., using its gradient
with respect to the hyperparameters θ) of the GP model as
follows:

∂

∂θ
log p(y|X, θ)

=
1

2
tr[{(K−1(y −m(x)))(K−1(y −m(x)))T −K−1}∂K

∂θ
],

where θ represents σ2
0 , l, λ, α, and σ2

ε hyperparameters.
In the case where the mean function m(x) = 0, the

predictive function value f∗ corresponding to the test input
x∗ can be sampled from the normal probability distribution
N(f̄∗, cov(f∗)), where f̄∗ and cov(f∗) are the posterior pre-
dictive mean and covariance, respectively. The mathematical
formulations of f̄∗ and cov(f∗) are shown in Equation 9.

f̄∗ = k(x∗,x)[K + σ2
ε In]−1y,

cov(f∗) = k(x∗,x∗)− k(x∗,x)[K + σ2
ε In]−1k(x,x∗). (9)

After finding the optimal set of hyperparameters, θ, and
the respective posterior predictive mean and covariance of
the GP over the objective function, the estimated global
minimum value x∗ can be found and its corresponding y(x∗).
The detailed Bayesian optimization procedure with AEN-RBF
Gaussian process kernel function is shown in Algorithm 1.

The AEN-RBF kernel function has four hyperparameters to
tune namely the lengthscale parameter denoted as l, the vari-
ance parameter denoted as σ2

0 , the weight parameter denoted
as λ, and the skewness parameter denoted as α. The AEN-
RBF kernel function’s hyperparameters are optimized during
Bayesian optimization in order to get the posterior predictive
distribution of the GP model. The hyperparameters are op-
timized using the maximum likelihood estimation approach
(MLE). According to prior work, we use λ values ranging
between 0.1 and 0.9 and α values ranging between 0.25 and
0.75.

D. Theoretical Comparison Between AEN-RBF and RBF Ker-
nels

Proposition 2. Let o and o′ be the p dimensional random
noise variables following po(o) and po′(o′), respectively, and
let px be the probability density function of x. We can then
show the following:
(i) if po(o) ∼ po′(o′), px ∼ po(o+c), and px′ ∼ po′(o′+c)
where c = c1p is a constant vector in Rp, then the
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Algorithm 1 Bayesian Optimization with AEN-RBF Gaussian
Process Kernel Function
Input: A vector of z initial points Xz = [x1, ..,xz], the prior
mean m(x) and kernel k(x,x′) functions of the GP model,
the acquisition function u(x), and the maximum number of
iterations (n).

1: Find the initial function values f(x1), .., f(xz)
2: Estimate the hyperparameters set θ by maximizing the log

marginal likelihood
3: Update the mean and covariance of the GP model using

Equation 9
4: for i = z + 1, .., n do
5: Select the next point to be evaluated, xi, such that

xi = argmax u(x) for x ∈ DX
6: Evaluate f(xi) at xi
7: Update the hyperparameters set θ by maximizing

the log marginal likelihood
8: Find yi = f(xi) + εi
9: Update the mean and covariance of the GP model

using Equation 9
10: Update the so far optimal input point x∗ and the

corresponding y∗

11: end for
12: Return the Gaussian process posterior predictive mean

and covariance, and the global optimum y∗ at x∗

estimated function f(·) using GP with the kernel function
kAEN−RBF (x,x′) and the estimated function using GP with
the kernel function kRBF (x,x′) have the same mean squared
prediction error.
(ii) if po(o) � po′(o′), px ∼ po(o+c), px′ ∼ po′(o′+c), and
||o−o′|| = Op(1), then the estimated function f(·) using GP
with kAEN−RBF (x,x′) has a smaller mean squared predic-
tion error than the estimated function f(·) using kRBF (x,x′).
Proof.

(i) We can re-express x = o + c and x′ = o′ + c without
any loss of generality. Then, x−x′ = o−o′. We can see that
AEN-RBF and RBF kernels do not depend on the constant c
since they only depend on distances. In this case, AEN-RBF
is a symmetric kernel function and is equivalent to the RBF
kernel.

(ii) Let x∗ be a test point in DX . Let f̂A and f̂R be the
estimated function using GP with AEN-RBF kernel function
and RBF kernel function, respectively. We let KAEN−RBF
and KRBF be the Gram matrices associated with AEN-RBF
and RBF kernel functions, respectively. For convenience, we
further denote

KA = [KAEN−RBF + σ2
ε In],

KR = [KRBF + σ2
ε In],

kA∗ = kAEN−RBF (x∗,x∗),

kR∗ = kRBF (x∗,x∗),

where σ2
ε is assumed to be known and f̂A = kA∗K

−1
A y and

f̂R = kR∗K
−1
R y are known as the least square kernel machine

estimators.

Then, the mean squared prediction error difference
(MSPE) between f̂R and f̂A is calculated as follows:

MSPE = E[||f(x∗)− f̂R(x∗)||22 − ||f(x∗)− f̂A(x∗)||22]
= E[||f(x∗)− kR∗K

−1
R y||22 − ||f(x∗)− kA∗K

−1
A y||22]

= −2 kA∗K−1
R kR∗ + kR∗K

−1
R KAK

−1
R kR∗

+ 2 kA∗K
−1
A kA∗ − kA∗K−1

A KAK
−1
A kA∗

= kR∗K
−1
R KAK

−1
R kR∗ − 2kA∗K

−1
R kR∗ + kA∗K

−1
A kA∗

= {kR∗(K
−1
R KAK

−1
R )

1
2 − kA∗(K

−1
R KAK

−1
R )−

1
2 }T

× {kR∗(K
−1
R KAK

−1
R )

1
2 − kA∗(K

−1
R KAK

−1
R )−

1
2 },

which is a quadratic form.
Since MSPE ≥ 0 and

kR∗(K
−1
R KAK

−1
R )

1
2 − kA∗(K

−1
R KAK

−1
R )−

1
2 6= 0,

we conclude that f̂A has a smaller mean squared prediction error
than f̂R.

IV. PROPERTIES OF THE AEN-RBF KERNEL

In this section, we will investigate several properties of the
proposed AEN-RBF kernel, including convergence, computational
complexity, and extendability to other applications.

A. Convergence to the Optimum
We implement one computational investigation of the convergence.

The convergence rates of Bayesian optimization when RBF and AEN-
RBF kernel functions are used are shown in Fig. 3. As one example,
we use a 2D synthetic optimization function, Branin, to demon-
strate the faster convergence to the global minimum of Bayesian
optimization with AEN-RBF kernel function in comparison with
Bayesian optimization with RBF kernel function. The two Bayesian
optimization models are run one time for a maximum of 750 iterations
where after each iteration the best function value thus far (i.e., y∗) is
recorded. Fig. 3 shows how fast Bayesian optimization approaches the
global minimum when the AEN-RBF and RBF kernel functions are
used. We start from the 17th iteration for a better visualization of the
convergence rates. After 750 optimization iterations, the difference
between the estimated minimum and the global minimum of Branin
is 0.0272 when RBF kernel function is used and 0.0071 when AEN-
RBF kernel function is used. Although Bayesian optimization with
AEN-RBF does not reach the global minimum after the 750 iterations,
it shows a faster convergence to the global minimum as opposed to
Bayesian optimization with the RBF kernel function.

B. Computational Complexity
The computational complexity of an algorithm can be measured

using the number of arithmetic operations applied to a given matrix.
In Bayesian optimization with Gaussian processes, the posterior mean
and covariance of the Gaussian process model can be found by
inverting the kernel matrix K + σ2

ε In, where K is the Gram Matrix
corresponding to the kernel function k. To invert an n × n matrix,
a total number of n3 operations is needed (i.e., we need n3

2
total

operations for multiplication and addition operations, respectively).
The computational complexity associated with n3 operations is found
to be O(n3). If the kernel matrix is symmetric, which is the case with
most kernel matrices, the total number of operations is reduced to n3

2

however, the computational complexity is still O(n3). In the case of
an asymmetric kernel matrix, such as the AEN-RBF kernel matrix,
the total number of arithmetic operations needed would be n3 and
thus the computational complexity would be the same as with the
symmetric matrix, that is the computational complexity is O(n3).

To show the computational performance, we also investigate
the computational complexity via numerical study. We validate the
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model with AEN-RBF is similar to that of the RBF.

theoretical computational complexities of using AEN-RBF and RBF
kernel functions in Bayesian optimization by calculating the total
time needed to perform 350 optimization iterations. The experiment
was performed on Branin. The two Bayesian optimization models
are run 10 number of times where in each run we fix the maximum
number of iterations at 350. The time per iteration is recorded and
averaged across the 10 runs. The average time in seconds per iteration
is plotted against the number of iterations. The computational time of
Bayesian optimization with AEN-RBF kernel function in comparison
to Bayesian optimization with RBF kernel function is shown in Fig. 4.
Fig. 4 shows similar computational time per iteration of Bayesian
optimization with AEN-RBF and Bayesian optimization with RBF
kernel functions, which is consistent with the computational com-
plexity analysis.

C. Generalized Application of AEN-RBF in Other Domains
The use of our proposed AEN-RBF kernel function could be gener-

alized and further extended to other applications in machine learning.

Beside the use of kernel functions in Bayesian optimization and
hyperparameter tuning of machine learning models, kernel functions
could also be used as kernel tricks (e.g., in Support Vector Machine,
Kernel PCA, Kernel Ridge Regression) or as activation functions in
deep learning models.

1) Kernel Tricks: There exists many machine learning algo-
rithms (e.g., Support Vector Machine, Kernel PCA, Kernel Ridge
Regression, etc.) where kernel tricks are used to improve the model
and capture the nonlinear patterns in data. We take Support Vector
Machine (SVM) as one example. When using the kernel trick [37],
a kernel function will be used as a replacement of the dot product of
two vectors in high dimensional feature spaces. The most commonly
used kernel functions in SVM include the Linear, Polynomial, and the
RBF kernel functions. Our proposed AEN-RBF kernel function could
be generalized and used as a kernel trick in SVM to aid in capturing
the nonlinear patterns and improving the flexibility and robustness
of such models. The mathematical formula of the AEN-RBF kernel
function used as a kernel trick in SVM is shown in Equation 10.

kAEN−RBF−SVM (x,x′) =

e−(1−α)·D(x,x′)
σ2 for xja < x′jb

e
−α·D(x,x′)

σ2 for xja ≥ x′jb,
(10)

where DE(x,x
′), D(x,x′), and α represent the squared Eu-

clidean distance shown previously in Equation 5, the weighted sum
of squared Euclidean and Manhattan distances shown previously in
Equation 7, and the skewness parameter, respectively. The parameter
σ does not represent the variance here but rather it is a free parameter.

2) Activation Functions: Beside the use of AEN-RBF kernel
function as a kernel trick in SVM, AEN-RBF could be used as
an activation function in deep learning models. The mathematical
formula of the AEN-RBF activation function is shown in Equation 11.

kAEN−RBF−AF (x, hr) =

e
−(1−α)·D(x,hr)

σ2r for xja < hr

e
−α·D(x,hr)

σ2r for xja ≥ hr,
(11)

where DE(x, hr), D(x, hr), and α represent the squared Eu-
clidean distance shown previously in Equation 5, the weighted sum
of squared Euclidean and Manhattan distances shown previously in
Equation 7, and the skewness parameter, respectively. Whereas, hr
and σ2

r represent the center and the width of the hidden neuron r of
the hidden layer, respectively.

V. NUMERICAL EXPERIMENTS

Our sequential model-based optimization algorithm is defined by
a Gaussian process (GP) as a surrogate model and an expected
improvement (EI) as an acquisition function with L-BFGS as the
optimizer. The Gaussian process model is defined by a constant as
the prior mean function and our proposed AEN-RBF as the prior
kernel function. We evaluate our AEN-RBF kernel function against
four benchmarks, RBF, Matern 5/2, Linear, and Polynomial kernel
functions. We apply Bayesian optimization on synthetic and real-
world optimization functions and include the details of the setup and
results of each experiment in the following subsections. When we
run the Bayesian optimization, we model the Gaussian process using
GPy and GPyOpt Python packages [38], [39].

A. Optimization of Synthetic Functions
Bayesian optimization is used to find the global optimum of

four synthetic optimization functions. More specifically, we use four
two-dimensional test functions to evaluate the five kernel functions,
RBF, Matern 5/2, Linear, Polynomial, and our proposed AEN-RBF.
The four synthetic functions include McCormick, Six-Hump Camel,
Rosenbrock, and Branin. These synthetic functions are visualized
in Fig. 5. The full description of the benchmarks along with their
equations are shown in Table I.
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TABLE I
EQUATIONS, GLOBAL MINIMUMS AND DOMAINS OF FOUR

2-DIMENSIONAL BENCHMARK FUNCTIONS.

Benchmark Function Equation Global Minimum Domain
McCormick sin(x+ x′) + (x− x′)2 − 1.5x+ 2.5x′ + 1 −1.9133 x ∈ (−1.5, 4)

x′ ∈ (−3, 4)
Six-Hump Camel (4− 2.1x2 + x4

3
) x2 + xx′ + (4x′2 − 4) x′2 −1.0316 x ∈ (−2, 2)

x′ ∈ (−1, 1)
Rosenbrock 100 (x′ − x2)2 + (x− 1)2 0.0 x ∈ (−0.5, 3)

x′ ∈ (−1.5, 2)
Branin (x′ − 5.1

4π2 x2 + 5
π
x− 6)2 + 10(1− 1

8π
) cos(x) + 10 0.3979 x ∈ (−5, 10)

x′ ∈ (1, 15)

McCormick Six-Hump Camel

Rosenbrock Branin

Fig. 5. Visualization of the four synthetic optimization functions.

1) Experimental setup: To perform our experiments, we make
the following design choices: (a) we fix the number of maximum
optimization runs (i.e., the number of objective function evaluations)
at 20, (b) we fix the number of Bayesian optimization model
repetitions (i.e., the number of times the sequential model-based
optimization algorithm is run) at 30, (c) we fix the initial points of
the optimization model for all kernels for fair comparison, and (d) we
perform three experiment scenarios, primarily, Bayesian optimization
without any induced outliers, Bayesian optimization with 5% induced
outliers, and Bayesian optimization with 10% induced outliers.

Metrics. We use the root mean squared error (RMSE) as a metric
to evaluate AEN-RBF against the three benchmark kernel functions.
Equation 12 represents the mathematical formula of RMSE, where
y∗r is the best estimated function value of the rth repetition and R
represents the total number of Bayesian optimization model repeti-
tions. A lower RMSE value implies that the Bayesian optimization
model predicts an estimated global minimum closer to the true
global minimum of the synthetic optimization function, and hence
produces a reliable predictive distribution over the objective function.
Therefore, a lower RMSE value is better.

RMSE =

√√√√ R∑
r=1

(y∗r − yglobal min)2 (12)

2) Input Space Domain in the Presence of Outliers: We
validate the robustness of our proposed kernel function, AEN-RBF,
using two outlier scenarios. We perform Bayesian optimization with

TABLE II
THE DOMAINS OF x AND x′ IN THE TWO CONSIDERED OUTLIER CASES,
5% AND 10% INDUCED OUTLIERS, IN THE OPTIMIZATION OF THE FOUR

SYNTHETIC FUNCTIONS.

Benchmark Function Domain with 5% induced outliers Domain with 10% induced outliers
McCormick x ∈ (1.59, 4.2), x′ ∈ (3.17, 4.2) x ∈ (1.8, 4.31), x′ ∈ (3.39, 4.39)

Six-Hump Camel x ∈ (2.1, 2.11), x′ ∈ (1.05, 1.06) x ∈ (2.22, 2.22), x′ ∈ (1.11, 1.11)

Rosenbrock x ∈ (0.59, 3.1), x′ ∈ (1.59, 2.11) x ∈ (0.69, 3.2), x′ ∈ (1.69, 2.2)

Branin x ∈ (5.39, 10.4), x′ ∈ (0.63, 15.37) x ∈ (5.67, 11), x′ ∈ (0.44, 16)

TABLE III
RESULTS FOR THE ROOT MEAN SQUARED ERROR (RMSE) VALUES OF

EACH KERNEL FUNCTION EVALUATED ON FOUR SYNTHETIC
OPTIMIZATION FUNCTIONS. THE MINIMUM RMSE VALUE OBTAINED IN

EACH EXPERIMENT IS SHOWN IN BOLD.

Kernel Function McCormick Six-Hump Camel Rosenbrock Branin
RBF 0.0140 0.0115 0.5524 0.2996

Matern 0.0501 0.0115 0.4579 0.4154

Linear 0.0655 0.0173 0.4968 0.4436

Polynomial 0.0117 0.0156 0.6381 0.6845

AEN-RBF 0.0100 0.0083 0.3526 0.2124

TABLE IV
RESULTS FOR THE ROOT MEAN SQUARED ERROR (RMSE) VALUES OF

EACH KERNEL FUNCTION EVALUATED ON FOUR SYNTHETIC
OPTIMIZATION FUNCTIONS. 5% AND 10% REPRESENT FIVE PERCENT AND
TEN PERCENT INDUCED OUTLIERS, RESPECTIVELY. THE MINIMUM RMSE

VALUE OBTAINED IN EACH EXPERIMENT IS SHOWN IN BOLD.

Kernel Functions McCormick Six-Hump Camel Rosenbrock Branin
5% 10% 5% 10% 5% 10% 5% 10%

RBF 0.0183 0.0159 0.0185 0.0605 0.5508 0.6712 1.0614 0.7166

Matern 0.1599 0.0213 0.0225 0.0622 0.6128 0.7225 0.4837 0.8930

Linear 0.0164 0.0157 0.0261 0.0345 0.6492 0.6728 0.8157 0.5658

Polynomial 0.0139 0.0244 0.0351 0.0339 0.6148 0.7067 0.6272 0.6120

AEN-RBF 0.0113 0.0110 0.0124 0.0166 0.4216 0.5597 0.3684 0.5049

5% and 10% induced outliers. In the case of 5% induced outliers,
both x and x′ domain intervals are widened by 2.5% on both sides
of each interval whereas in the 10% induced outliers, both x and x′

domain intervals are widened by 5% on both sides of each interval.
Table II shows the input domains (i.e., interval domains of x and

x′) of each synthetic function in the 5% and 10% induced outlier
scenarios.

3) Results: We evaluate our kernel function AEN-RBF against
the three benchmarks on three experiment scenarios. Table III shows
the RMSE values of each kernel function tested on the four synthetic
optimization functions without any induced outliers. From Table III,
we see that the AEN-RBF kernel function outperforms RBF, Matern,
, and Polynomial kernel functions in all the four test functions (i.e.,
McCormick, Six-Hump Camel, Rosenbrock, and Branin). Matern
refers to Matern 5/2 kernel function. We also report the RMSE values
of the two remaining experiments with the 5% and 10% induced
outliers in Table IV.

The reduction in RMSE values is due to the combination of
Manhattan and Euclidean distances as well as the use of the skewness
parameter α. The combination brings together the advantages of Man-
hattan and Euclidean distances which can balance the exploitation and
exploration better. Meanwhile the skewness parameter adds flexibility
to the model thus yields reliable robust Bayesian optimization.

B. Hyperparameter Tuning of Deep Learning Models
We use Bayesian optimization to tune hyperparameters of deep

learning models. The hyperparameters of such models are not tuned
automatically when deep learning models are trained, on the con-
trary, they have to be configured manually and optimized using
hyperparameter tuning algorithms. In this paper, we use Bayesian
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Fig. 6. Feed Forward Neural Network (FFNN). (a) Represents the FFNN
architecture and (b) represents the parameters and hyperparameters of the
FFNN

optimization with Gaussian processes to tune those hyperparameters.
We explain the tuned deep learning model in details as well as the
experimental setup in the next subsections. We report the accuracy
of the deep learning model when each of the four kernel functions is
used. Since our goal is to obtain a higher accuracy, we minimize the
negative of the objective function that is, we minimize the negative
of deep learning models accuracy.

Feed Forward Neural Network. We use a feed-forward neural
network (FFNN) to evaluate AEN-RBF kernel function against RBF,
Matern, Linear, and Polynomial benchmark kernels. The FFNN
architecture is shown in Fig. 6. The FFNN is used to classify input
images to their respective classes. The experimental setup along with
the image dataset details are included in the following subsections.

1) Experimental setup: We use Bayesian optimization with GPs
to optimize the FFNN. The FFNN deep learning model is used for
classification purposes, more specifically, we use images as inputs
and classify them into their respective classes. We use convolutional
layers followed by maximum pooling layers as shown in subfigure
(a) in Fig. 6. We fix the FFNN parameters for all the associated
FFNN models of the four kernels. FFNN parameters are included
in subfigure (b) in Fig. 6. We use ReLU activation functions after
each convolutional layer and a dropout layer before the final dense
layer. We use Adam optimizer and a softmax activation function for
the final dense layer. We optimize two hyperparameters, the dropout
rate of the dropout layer and the learning rate of Adam optimizer.
We include the domain of each hyperparameter in subfigure (b) in
Fig. 6. For the Bayesian optimization model, we make the following
design choices: (a) we train the FFNN deep learning model for 10
epochs, (b) we run the Bayesian optimization model 20 times, (c)
we use 10 maximum function evaluations per Bayesian optimization
run, and (d) we fix the batch size at 128. We perform two experiment
scenarios to evaluate our AEN-RBF kernel function against the three

TABLE V
RESULTS FOR THE AVERAGE CLASSIFICATION ACCURACY OF EACH

BENCHMARK KERNEL FUNCTION EVALUATED ON THE FEED-FORWARD
NEURAL NETWORK WITH THE MNIST DATASET. THE MAXIMUM
AVERAGE ACCURACY IN EACH EXPERIMENT IS SHOWN IN BOLD.

Kernel Function Without Induced Outliers With Induced Outliers
RBF 98.63% 89.91%

Matern 98.68% 97.94%

Linear 98.93% 98.20%

Polynomial 98.71% 97.91%

AEN-RBF 98.95% 98.38%

benchmarks. More specifically, we apply Bayesian optimization to
optimize the FFNN without and with induced outliers.

Dataset. We use the MNIST dataset to demonstrate the effec-
tiveness of our kernel function in optimizing the FFNN in the two
experiment scenarios. The MNIST dataset consists of a training set
of 60,000 images and a test set of 10,000 images. The images are
gray scale and have a size of 28*28 pixels.

2) Input Space Domain in the Presence of Outliers: We
validate the robustness of our proposed kernel function, AEN-RBF,
using one outlier scenario besides the case without any induced
outliers. We perform Bayesian optimization to the Feed-Forward
Neural Network with an enlarged learning rate domain (i.e., learning
rate ∈ (0, 1)) which is considered very wide in comparison with the
standard learning rate domain.

3) Results: We evaluate our AEN-RBF kernel function against
RBF, Matern, Linear, and Polynomial benchmark kernels in two
experiment scenarios. We use the average classification accuracy
of the FFNN as a metric for evaluating AEN-RBF kernel against
the three benchmark kernels. We report the average accuracy for
each kernel function in Table V. From Table V, we see that our
AEN-RBF kernel function has the highest average accuracy in
hyperparameter tuning of the FFNN in both experiments (i.e., without
and with induced outliers), and thus AEN-RBF outperforms the three
benchmark kernels.

VI. CASE STUDY: IMAGE DEFECT DETECTION IN
ADVANCED MANUFACTURING

Early defect detection in advanced manufacturing systems is
crucial for maintaining safe operations of machines and improving
the quality of the manufactured products. Steel manufacturing in
particular is one of the most important industrial processes with
steel being the building block of many industries including but not
limited to construction, machinery, automotive, oil, and gas industries.
Surface defect detection and prediction in steel help improve and
upgrade the quality of the final product. While deep learning models
have been widely used in the detection, localization, and prediction
of steel defects, the uniqueness of different manufacturing datasets
ensure that hyperparameters of deep learning models need to be
adjusted before training and testing, hence the strong need for
hyperparameter tuning through Bayesian optimization which takes
into consideration the different characteristics of steel defects.

A. Experimental setup
We use Bayesian optimization with Gaussian processes to optimize

the feed-forward neural network (FFNN) deep learning model shown
in subfigure (a) in Fig 6. We perform two experiment scenarios,
without and with induced outliers, to evaluate AEN-RBF kernel
function against the three benchmark kernels. We seek to optimize
two hyperparameters, the learning rate of Adam optimizer and the
dropout rate as shown in subfigure (b) in Fig 6. In the second
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Fig. 7. The six types of steel surface defects of the NEU dataset.

TABLE VI
RESULTS OF THE AVERAGE CLASSIFICATION ACCURACY OF EACH

BENCHMARK KERNEL FUNCTION EVALUATED ON THE FEED-FORWARD
NEURAL NETWORK WITH THE STEEL DEFECT DATASET. THE MAXIMUM

AVERAGE ACCURACY IN EACH EXPERIMENT IS SHOWN IN BOLD.

Kernel Fucntion Without Induced Outliers With Induced Outliers
RBF 74.74% 79.53%

Matern 75.56% 79.39%

Linear 67.65% 74.54%

Polynomial 69.15% 76.36%

AEN-RBF 81.28% 88.18%

experiment (i.e., FFNN with induced outliers), we use a very large
learning rate domain while the dropout rate domain remains the same.

For the Bayesian optimization model setup: (a) we use 20 epochs
to train the FFNN deep learning model, (b) we use 10 Bayesian max-
imum iterations (i.e., function evaluations), (c) we run the Bayesian
optimization model 20 times, and for fair comparison, (d) we fix
the initial points of the Bayesian optimization model for all kernel
functions.

Dataset. The dataset consists of 1800 images, each of which is
a gray scale with a size of 200*200 pixels. The number of images
of the dataset is divided equally on six types of steel surface defects
(i.e., 300 images per defect type). The six types of steel surface
defects are rolled-in scale, patches, crazing, pitted surface, inclusion,
and scratches. A sample of the six types of steel surface defects is
shown in Fig. 7.

B. Results

We evaluate our AEN-RBF kernel function against the four
benchmark kernels, RBF, Matern, Linear, and Polynomial. We use
the average classification accuracy as a metric to evaluate the five
benchmarks. The goal is to classify the six types of steel surface
defects correctly and achieve a high accuracy. Table VI represents the
average accuracy of each kernel function when optimizing the FFNN
on the steel defects dataset. From Table VI, our AEN-RBF achieves
the highest average accuracy in the two experiment scenarios. We
conclude that the AEN-RBF kernel function outperforms the RBF,
Matern, Linear, and Polynomial kernel functions.

Fig. 8. The convergence of optimizing the learning rate of the FFNN with
Bayesian optimization.

Fig. 9. The convergence of optimizing the dropout rate of the FFNN with
Bayesian optimization.

C. Stability of the hyperparameter tuning
We also evaluate the stability and convergence of estimating the

hyperparameters (learning rate and dropout rate) of the FFNN when
the five kernel functions, namely, RBF, Matern, Linear, Polynomial,
and AEN-RBF are used. We run the Bayesian optimization model one
time for a maximum of 100 optimization iterations and record the
optimal values of the hyperparameters in each iteration. Fig. 8 and
Fig. 9 show the stability of estimating the FFNN hyperparameters
after 100 iterations. We can find that both the learning rate and
dropout rate converge to a stable value after some iterations. The
convergence speed of learning rate is higher than the convergence
speed of dropout rate.

VII. CONCLUSION

Bayesian optimization is a probabilistic approach used to optimize
black-box functions. It is critical for complex engineering systems
where the objective function is expensive to evaluate, has an unknown
analytical form, and is highly nonlinear and non-convex. When
optimizing unknown black-box functions with Gaussian processes,
the choice of the kernel function has a direct impact on the per-
formance of Bayesian optimization. Existing kernels are sensitive
and susceptible to outliers, which may cause the surrogate model to
be inaccurate, thus yielding unreliable function approximations and
system optimization. We proposed AEN-RBF, a novel asymmetric
robust kernel function for Bayesian optimization with Gaussian
processes. We proved its validity as a kernel function and showed
its effectiveness in reducing the predictive mean squared error the-
oretically. We analyzed the convergence to global optimum of the
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AEN-RBF kernel function as well as its computational efficiency in
comparison with the RBF kernel function.

The proposed AEN-RBF kernel function can improve the robust-
ness and flexibility of Bayesian optimization. We generalized the use
of AEN-RBF kernel function to other machine learning domains such
as the use of AEN-RBF as a kernel trick and as an activation function
in feed forward neural networks. Extensive evaluations on four
synthetic functions and a deep learning model revealed that, compared
to RBF, Matern, Linear, and Polynomial kernels, our AEN-RBF
kernel function achieves lower RMSE values and higher classification
accuracy, respectively. As a case study of hyperparameter tuning in
the manufacturing domain, we applied Bayesian optimization with
Gaussian processes to tune a feed-forward neural network on a steel
surface defect dataset. We evaluated our kernel function against the
four benchmarks and showed that AEN-RBF outperforms existing
approaches.
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