
PREPRINTS AT ARXIV, SUBMITTED TO A JOURNAL FOR REVIEW, 2020 1

A Dual-arm Robot that Autonomously Lifts Up and
Tumbles Heavy Plates Using Crane Pulley Blocks

Shogo Hayakawa1, Weiwei Wan1∗, Keisuke Koyama1 and Kensuke Harada1,2

Abstract—This paper develops a planner that plans the action
sequences and motion for a dual-arm robot to lift up and flip
heavy plates using crane pulley blocks. The problem is motivated
by the low payload of modern collaborative robots. Instead
of directly manipulating heavy plates that collaborative robots
cannot afford, the paper develops a planner for collaborative
robots to operate crane pulley blocks. The planner assumes a
target plate is pre-attached to the crane hook. It optimizes dual-
arm action sequences and plans the robot’s dual-arm motion
that pulls the rope of the crane pulley blocks to lift up the
plate. The crane pulley blocks reduce the payload that each
robotic arm needs to bear. When the plate is lifted up to a
satisfying pose, the planner plans a pushing motion for one of
the robot arms to tumble over the plate while considering force
and moment constraints. The article presents the technical details
of the planner and several experiments and analysis carried out
using a dual-arm robot made by two Universal Robots UR3 arms.
The influence of various parameters and optimization goals are
investigated and compared in depth. The results show that the
proposed planner is flexible and efficient.

Index Terms—Manipulation Planning, Grasping, Grippers and
Other End-Effectors

I. INTRODUCTION

ALTHOUGH modern industrial robots can lift as much
as 1000kg payload. They tend to be expensive, bulky,

dangerous, and have to be fenced in a work cell to keep
human workers safe. They are not suitable for human-intensive
manufacturing sites. On the other hand, collaborative robots
are developed to work together with humans, they have a
smaller size and are considered safe. However, they tend to
have small payloads to ensure a good response to collisions.
The heavy load and collaboration form a trade-off that leads to
an interesting and unsolved problem – how to use collaborative
robots to manipulate heavy objects.

Previously, researchers in robot manipulation suggested
working on heavy objects using non-prehensile manipulation,
which leverages external supports to afford a part of the total
workload [1][2][3]. Despite the cleverness, the masses of the
target objects to be manipulated remain limited. They must
meet the force requirements from external supports. Also,
carrying out complicated manipulation tasks like turning over
the object is difficult and deserves sophisticated optimization,
and planning [4][5]. Under this background, we explore new
manipulation methods to work on heavy objects using collab-
orative robots.

1Graduate School of Engineering Science, Osaka University, Japan.
2National Inst. of AIST, Japan.
Contact: Weiwei Wan, wan@hlab.sys.es.osaka-u.ac.jp

Fig. 1: Human workers in a sewage press machine factory flip
press boards with the help of a gantry crane. (a) Attaching the
board to the crane hook using bearing belts. (b) Activating
the crane to lift up the board. (c) The board is lifted up to a
satisfying pose. (d) The board is flipped and is returned to the
workbench.

The conception we have in mind is to take robots as humans
and plan them to manipulate various objects using humans’
tools. Especially for heavy objects, we propose to use crane
pulley blocks as the tool. The policy is inspired by a production
process seen in a factory that produces sewage press machines.
Sewage press machines are used to dehydrating coals. The
pressboard of sewage press machines could be as heavy as
1000kg. In a factory that produces sewage press machines,
as is shown in Fig.1, human workers need to flip and clean
both sides of the board before installing them to the cylinder
axis. The factory developed a production procedure where
human workers perform the flipping task using a gantry crane.
They attach the board to the crane hook using bearing belts,
activate the crane to lift up the board. When the board is
raised to a satisfying pose, as is shown in Fig.1(c), the human
workers turn the board over by pushing it. Motivated by human
workers’ actions in the sewage machine factory, we in this
research expect to perform a similar task using collaborative
robots that operate crane pulley blocks.

We develop a planner that optimizes the action sequences
and plans the motion for a collaborative dual-arm robot to
operate crane pulley blocks and lift up and tumble heavy plate-
shaped objects with the crane pulley blocks’ help. We assume
target plates are pre-attached to the crane cook. Depth vision
is used to recognize the position and orientation of the crane
rope and the plates. Based on the recognized rope and plate

ar
X

iv
:2

10
1.

09
52

6v
1

 [
cs

.R
O

]
 2

3
Ja

n
20

21

2 PREPRINTS AT ARXIV, SUBMITTED TO A JOURNAL FOR REVIEW, 2020

poses, we optimize the initial and goal pulling poses for the
rope and plan the robot’s dual-arm motion that pulls the crane
rope to lift up the plates. When the plates are lifted up to
a satisfying pose, we compute the relations between contact
wrenches and gravitational forces, and plan a pushing motion
for one of the robot arms to tumble over the plates.

Our main contribution is twofold. First, we initially develop
a dual-arm robot that manipulates a plate much heavier than
the maximum end-effector load by operating crane pulley
blocks. Second, we formulated the constraints in using the
crane pulley blocks and performed multiple optimizations to
let the robot autonomously determine the pulling arms, pulling
actions, and the tumbling trajectories. We present the technical
details of the planner and several experiments and analysis
carried out using the dual-arm robot and different plates. The
influence of various parameters and optimization goals are
investigated and compared in depth. The results show that the
proposed planner is flexible and efficient.

In the remaining part of this article, we first review related
work in Section II. Then, we present an overview of the
method in Section III. After that, we show the technical details
in Section IV, with experiments and analysis carried out using
a dual-arm robot made by two Universal Robots UR3 arms and
plates with different parameters in Section V. Conclusions and
future work are presented in the last section.

II. RELATED WORK

We review the related work in the manipulation planning
of heavy objects. They are divided into two categories. The
first category concentrates on firmly grasped or firmly at-
tached objects. The goal is to keep balance or avoid breaking
weak joints. For example, Harada et al. [6] used the Zero
Moment Point (ZMP) of the humanoid robot-object system
to compensate a humanoid robot’s motion, and thus enable
the humanoid robot to lift up an carry a heavy object stably.
Urakubo et al. [7] studied lifting up a heavy object with small
joint torques. They take advantage of singular configurations
to avoid breaking the joints of a two-link robot. Berenson et al.
[8] formulated the manipulation planning of heavy objects as a
probabilistic sampling problem while considering constrained
manifolds. Yang et al. [9] developed a tele-operating system
considering mixed force and motion commands to avoid
unexpected excessive force caused by massive payload. Zhu et
al. [10] presented a planner for a wall climbing manipulator.
The influence of self-weight was considered in determining
the footholds for the suction modules. These studies assume
that a robot firmly grasps the heavy object, which could be
undesirable as heavy objects are generally large. A robotic
gripper may not be able to grasp them with force or form
closure. Also, even if a robot can grasp a part of a large,
heavy object, it may remain challenging for the robot to pick
up the object due to the fragile fingertip or fingerpad contacts.
For this reason, non-prehensile manipulation is widely used to
plan to manipulate heavy objects. It is the second category of
studies we would like to review.

Non-prehensile manipulation means manipulating an object
without firmly grasping it. The representative non-prehensile

manipulation primitives include pushing, sliding, tumbling,
pivoting, lifting, caging, etc. Pushing was extensively studied
by Mason [11], and is currently widely used to manipulate the
object. When a robot pushes an object, one needs to consider
both the trajectories of the object and robot itself. Lynch and
Mason [12], and more recently Zhou and Mason [13] analyzed
this control and planning problem and implemented stable
pushing. Recent progress in pushing include Zhou et al. [14]
and Yu et al. [15], which use probabilistic models to infer
object states. Song et al. [16] proposed a nested approach
to manipulate multiple objects together using pushing and
learning. With the help of pushing, a robot can manipulate
objects that cannot be directly grasped and lifted. For example,
Murooka et al. [2] presented a humanoid robot that pushed
heavy objects by using whole-body contacts. Topping et al.
[17] modeled and planned a small quadruped robot’s motion
to open large doors.

Sliding is similar to pushing, but instead of exerting force
sideways, sliding assumes pressing against the frictional sur-
face. It also enables a small robot to manipulate large and
heavy objects. Zhang et al. [18] presented a dynamic model
to plan the motion for a legged robot perform various sliding
tasks like driving, inch worming, scooting, etc. Hang et al.
[19] developed a pregrasp policy than slides thin objects to
the corner of a table for easier pick-up.

Tumbling means rotating an object while pressing it against
a surface. Bai et al.[20] analyzed tumbling an object using a
multi-fingered robotic hand. The motion is induced by a tilted
palm and gravity. Fingers were used to protect the tumbling
from overshooting. Cabezas et al. [21] presented a tumbling
planner that accepts a given trajectory of rotation and computes
the quasi-dynamic contacts. Correa et al. [22] and Cheng et
al. [23] respectively developed new usage of suction cups by
considering using them as a tip for tumbling.

Rolling is a variation of tumbling, where the manipulated
object is rotated continuously along a surface [24][25].

Pivoting is a method that moves an object by leaving the
object alternatively supported by corner points as if the object
is walking on them. It is an extended version of tumbling.
Aiyama et al. [26] seminally suggested the idea of robotic
pivoting. Yoshida et al.[1] used a humanoid robot to pivot and
move a heavy box.

Besides the primitives, researchers also employed high-level
graph search to plan composite non-prehensile manipulation.
For example, Maeda et al.[27] proposed using a manipulation-
feasibility graph to host the contact states [28] of an object
and plan multi-finger graspless manipulation by searching the
graph. Lee et al. [29] proposed a hierarchical method that
used a contact-state graph in lower layers to identify object-
environment contacts, and determined robot contact sequences
and maneuverings in a higher layer.

Compared with the above non-prehensile manipulation, our
difference is as follows. Firstly, we do not stick to a robot
itself. Our non-prehensile manipulation is performed by using
crane pulley blocks to increase the duty of robots. Similar
ideas could be found in a most up-to-date publication that
use a collaborative robot to operate a manual pallet jack [30].
We plan both the dual-arm robot action sequences and motion

HAYAKAWA et al.: A DUAL-ARM ROBOT THAT AUTONOMOUSLY LIFTS UP AND TUMBLES HEAVY PLATES USING CRANE PULLEY BLOCKS 3

details to pull and return the crane pulley blocks’ rope and
ease non-prehensile flipping. Second, we plan a robot pushing
motion to turn over heavy plates. We study a quasi-static
prediction of a single contact, and use it to generate the
trajectory to tumble plates.

III. OVERVIEW OF THE PROPOSED METHOD

This section presents an overview of our proposed method.
We base our discussion on the hardware set up shown in Fig.2.
The proposed method is not limited to this hardware setup,
but we use it as an example to let our readers have a solid
conception of the working scenario.

Fig. 2: An exemplary hardware setup. The goal is to optimize
the robot action sequences and plan the robot motion that pulls
up the heavy plate using the crane pulley blocks, and tumbles
over the plate at a satisfying pose.

The proposed method is divided into two phases. The first
phase is a rope pulling phase. In the beginning this phase,
the method detects a rope’s position using point clouds ob-
tained from a depth sensor. Many well-developed algorithms,
for example, RANSAC [31] and ICP [32], can be used to
perform the detection. The detected rope, together with the
pre-annotated grasp poses that grasp a section of the rope,
is used to examine which robot arm to use and optimize the
initial and goal rope-pulling poses. The two arms are examined
sequentially, but they do not necessarily move one by one. The
actuation of arms is determined by a quality function designed
to maximize the pulling distance, minimize the pulling force,
and enlarge grasping flexibility so that the plate object can be
quickly and safely lifted up. An arm motion will be planned
and executed to pull the crane rope if an optimal goal is
found. After pulling the rope, the method performs a second
visual detection to find the plate’s pose. It determines if a
plate is at a satisfying pose for tumbling. If the pose is not
satisfying, the routine returns to the rope detection and pulling
optimization to pull down the rope continuously. Or else,
the method switches to a tumbling phase that optimize the
trajectory of a robot arm that flips the plate using sliding-push.

The tumbling is also monitored by vision to determine if the
plate is well flipped or not. Once the plate’s pose is considered
to be reversed, the robot uses its two arms to return the crane
rope and lower the plate down to the table.

The detailed algorithms related to the two phases will be
presented in detail in Section IV and V, respectively. Their
performance will be examined and analyzed in Section V.

IV. PULLING THE ROPE USING OPTIMIZED POSES

In this section, we present the optimal rope-pulling planning
algorithms used in the rope pulling phase. The robot lifts
up a plate by repeatedly carrying out the planned rope-
pulling motion. As shown in Fig.3, the planning is performed
repeatedly in closed loops. Inside each loop, the robot uses a
quality function to determine the best initial and goal pulling
poses, and plans and executes the planned pulling actions until
the plate is lifted up to a satisfying angle. If the planning or
execution in a loop fails, the planner will invalidate the failed
grasping point or pulling pose and try another candidate. The
robot autonomously switches between single-arm or dual-arm
actions following the determined goals.

Fig. 3: Workflow of the optimal rope-pulling planning algo-
rithms. The planning is performed repeatedly in closed loops,
as denoted by the red arrows and green arrows. Inside each
loop, the robot uses a quality function to determine the best
initial and goal pulling poses, and plans and executes the
planned actions until a plate is lifted over a threshold angle.

The components of Fig.3 will be presented in detail in the
remaining part of this section. Frame box 1) will be presented
in subsection A. Frame box 2) will be presented in subsection
B. Frame boxes 3)-5) will be presented in subsection C.
The closed-loop arrows (the red arrows and the green arrows
respectively form closed loops) and the switches of arms will
be presented in subsections D. Frame box 6) will be presented
in subsection E.

4 PREPRINTS AT ARXIV, SUBMITTED TO A JOURNAL FOR REVIEW, 2020

Fig. 4: (a) Searching for the initial grasp point and pulling poses considering cylinder elements and pre-annotated grasp poses.
The lower part of the figure shows the cylindrical modeling of the rope and the pre-annotated grasps for a cylinder element.
(b, c, d) Sampling and determining an optimal init-goal pair considering the pulling distance computed using li, the pulling
load computed using θi, and the chance of successful motion planning computed by reasoning shared grasps. The random
green dots are the sampled goals. The two clusters of hands in (d) show the grasping poses at the initial and goal points. The
red and green ones are the shared grasping poses at both the initial and goal points. The blue ones in the upper cluster are not
accessible at the goal. In the shared grasping poses, the red ones are IK-infeasible or collided. The green ones are the finally
determined candidate grasping poses. Their related arm pulling poses are also rendered in green color.

A. Searching for the Initial Grasping Point and Pulling Poses

The initial grasping point and initial pulling poses for the
rope-pulling motion are determined considering the rope’s
point cloud obtained inside each loop. We use a series of
connected cylinders to model a detected rope point cloud,
as shown in Fig.4(a). The cylinder elements have the same
size. Grasp poses are pre-annotated for a cylinder element. To
determine initial pulling poses, we scan the cylinder elements
of a detected rope from its top-most position and select the
first one that is not invalidated by previous loops as the initial
grasping point. Then, the pose of an arm is computed by
solving Inverse Kinematics (IK) considering the pre-annotated
grasp poses at the selected point. After that, the collision-
free ones of the solved arm poses are saved as the initial
pulling poses. The green rendering in the upper part of
Fig.4(a) exemplifies a determined initial pulling pose. The red
rendering shows an obsoleted grasping pose as the arm elbow
at this configuration collides with the robot body.

B. Determine the Optimal Init-Goal Pair

After the initial grasping point and pulling poses are de-
cided, the planner continues to decide goal points and the
pulling poses at them to form init-goal pairs. The goal points
are selected from a set of probabilistically sampled points
in a robot arm’s workspace, as shown in Fig.4(b-d). Since
the two arms have different workspaces, their goal points are
sampled differently. The most effective point in the sampled
set is selected to form the initial-goal pair, where effectiveness
is evaluated considering three aspects: The motion distance
between the init-goal pair; The load that a pulling arm bears
when moving between the init-goal pair; The number of shared
grasp poses between the init-goal pair. The three aspects are re-
spectively quantified as quality parameters flength, fload, and
fgrasps. The values of these quality parameters are normalized
to (0, 1). Their details are as follows.

1) flength: The flength quality assesses the motion distance
between the init-goal pair. Its goal is to enlarge the length of
each pulling motion. flength is computed using equation (1).

flength = (li − lmin)/(lmax − lmin). (1)

Here, li is the length between the upper pin point of the pulley
blocks and a sampled goal point. It is graphically explained
in Fig.4(b). lmax and lmin are respectively the shortest and
largest of all li. The denominator (lmax − lmin) normalizes
the values. flength reaches to 1 when the furthest goal sample
is selected.

2) fload: The fload quality assesses the load that a pulling
arm bears when moving between the init-goal pair. Its goal
is to reduce the load of a pulling arm. The fload value is
computed using the tilting angle of the stretched rope. A Free
Body Diagram (FBD) analysis shows that a larger tilting angle
requires a robot arm to afford larger forces. Thus we use the
cosine value of the angle to approximate fload:

fload = cos θi (2)

Fig.4(d) graphically explains θi. fload reaches 1 when the rope
is pulled vertically. The robot arm bears the smallest resistant
force at this extreme.

3) fgrasps: The fgrasps quality aims to improve the
chances of successful motion planning. It is computed using
the number shared grasp poses at the initial grasping point and
goal point as follows:

fgrasps = ngoal/ninit. (3)

A shared grasp pose is defined as the grasp poses identical
in a cylinder element’s local coordinate frame at both the
initial grasping point and the goal point. Shared grasps are
computed by reasoning the intersection of all available (IK-
feasible and collision-free) grasp poses at the init-goal pair.
ninit in the equation indicates the number of available grasp
poses at the initial grasping point. ngoal indicates the number
of grasp poses at the goal point that shares the same local
transformation as those in ninit. A large fgrasps means
more candidate initial and goal pulling poses for following
configuration-space motion planning, which implies a higher
chance of getting a feasible motion trajectory.

The most effective goal point is determined considering the
three quality parameters using the following quality function.

Q = ωTf (4)

HAYAKAWA et al.: A DUAL-ARM ROBOT THAT AUTONOMOUSLY LIFTS UP AND TUMBLES HEAVY PLATES USING CRANE PULLEY BLOCKS 5

Here, ω=[ωlength, ωload, ωgrasps] is the weighting coefficient.
f=[flength, fload, fgrasps] indicates the three quality parame-
ters. The quality function helps to find a goal point that leads
to large pulling distances, smaller pulling forces, and high
chance of finding successful pulling motion. The weighting
coefficient can be tuned following application requirements.
Their influences on final performance will be analyzed in the
experimental section.

For all sampled goal points, we compute their Q and
choose the one with the largest Q value as the optimal
goal. The initial grasping point and the optimal goal point
together form an init-goal point pair. The goal arm pulling
poses are determined by considering the collision-free Inverse
Kinematics (IK) solutions of the shared grasp poses at the
init-goal pair. The two clusters of hands in Fig.4(d) show the
grasping poses at the initial and goal points. The blue ones in
the upper cluster indicate the unshared grasping poses. They
are inaccessible at the goal. The ones with the other colors
indicate the shared grasping poses. In the shared grasping
poses, the red ones are IK-infeasible or collided. The green
ones are the finally determined candidates. Their related arm
pulling poses are rendered for better observation.

C. Planning the Rope-Pulling Motion

After the initial and goal pulling poses are determined, the
robot generates a motion to pull a rope from the initial pose to
the goal pose. The motion includes two sections. In the first
section, the pulling arm moves from its current pose to the
initial pulling pose. The section is planned using Bi-directional
Rapidly-exploring Random Trees (Bi-RRT) [8]. In the second
section, the pulling arm pulls the rope by moving from the
initial pulling pose to the goal pulling pose. The section is
planned as a linear trajectory using Quadratic Programming
(QP) [33][34]. If the planning succeeds, the robot will execute
the successfully planned motion to pull up the plate. Or else,
the planner will continue to try another init-goal pair. The
planning and execution routine is performed repeatedly until
the plate’s tilting angle exceeds a threshold. We use a threshold
because we need to ensure that the plate is not lifted too
much and separated from the table. The plate continuously
contacts with the table until the end of the rope-pulling phase,
so that a robot arm could start tumbling manipulation. Before
the execution in each loop, the plate’s post-execution tilting
angle is predicted to prevent it from exceeding the threshold.
The post-execution angle prediction is performed using the
following equation.

α̃i+1 = αi + (αi − αi−1)×
di
di−1

, (i ≥ 1) (5)

Here, αi−1 and di are respectively the previous plate’s tilting
angle and the length of the previous rope-pulling motion. αi

and di are the current plate’s tilting angle and the length of
the current rope-pulling motion. The plate’s tilting angle after
executing the current rope-pulling motion is estimated as α̃i+1.
The various symbols are graphically explained in Fig.5. The
prediction is based on the proportional relationship between
the length of the pulled rope and the change of the angle
in a previous execution. It is decoupled from a specific plate

and provides an upper-bound estimation for the post-execution
angle.

Fig. 5: Predicting
a plate’s next tilt-
ing angle α̃i+1 us-
ing the current ti-
tling angle αi and
previous tilting an-
gle αi−1.

If the predicted angle exceeds the threshold, the length of the
next pulling motion will be adjusted to avoid over-lifting. The
following equation shows the adjustment. The plate’s tilting
angle after finishing the rope-pulling phase approximates to
the threshold angle αthld.

d̂i = di−1 ×
αthld − αi

αi − αi−1
(6)

D. Determining the Action Arms and Sequences

As mentioned in C, the planning and execution loop is
performed repeatedly until the plate’s tilting angle exceeds
a threshold. The two arms share the repetition sequentially –
The planner optimizes init-goal pairs and plans and executes
a pulling-motion for the two arms one by one. It switches
to a second arm either after pulling the cable or without any
pulling action. Particularly, if no init-goal pair is found or no
successful motion is planned, the planner switches to the next
arm without pulling, exhibiting autonomy in determining the
action arms and sequences.

The arrows in Fig.3 show the mentioned switches. The green
arrows indicate the flow with pulling executions. The current
arm along the flow is actuated to pull the cable. It will switch
to the other arm after execution. The red arrows indicate the
flow without pulling. During the planning, a failure may be
caused by different reasons like no available initial pose, no
available init-goal pair, failed to find a motion for an init-goal
pair, etc. If the reason is a collision between the lifted plate and
the other arm, the planner will try moving the other arm away
and continue the currently planned results (as shown by “Yes2”
in Fig.3). Or else, the planner will jump over the current
init-goal pair and perform replanning by iterating to other
candidates (as shown by the “No” condition after “Succ.”
and the “Yes1” condition after “PlateColl.” in the figure).
If none of the sampled goals form a feasible init-goal pair,
the current arm will not perform the pulling action. Instead,
it simply re-grips by opening the gripper, moving to the init
pulling pose, and closing the gripper. The planner switches
to plan for the other arm after the re-gripping. A final failure
is reported when all cylinder elements on a detected rope are
traversed, and none of them lead to a feasible initial pulling
pose.

Following the green and red workflows, the action arms
and sequences are determined autonomously. In an extreme
case, a robot may use a single arm to pull while never find
feasible goals for the other arm. The robot may also use the
two arms one by one in another extreme case where both arms

6 PREPRINTS AT ARXIV, SUBMITTED TO A JOURNAL FOR REVIEW, 2020

find feasible init-goal pairs. More moderate cases are that the
robot sometimes uses a left arm and sometimes uses a right
arm, depending on the amount of feasible init-goal pairs found
during the repeated planning.

Fig.6 shows two examples. In Fig.6(a), the robot is pulling
up a small plate. The robot finished a right-arm execution
in (a.1) and is checking the collisions of the shared left-
arm grasping poses. The top-most cylinder element on the
detected rope is chosen as the init point. The rendered left
arms are the shared IK-feasible poses. There are both collided
and collision-free ones. The collided poses are shown in red,
and the collision-free poses are shown in green. In (a.2), the
robot plans a linear motion to move the left arm from an initial
pulling pose to a goal pulling pose. Fig.6(b) shows the case
of larger plate. All shared IK-feasible grasp poses of the left
arm collide with the plate in (b.1). The planner reaches to a
final failure and switches to the right arm without triggering
execution. In (b.2), the right arm finds a new init-goal pair and
plans a linear motion to move the right arm from an initial
pulling pose to a goal pulling pose.

Fig. 6: Two examples of switching the action arms. The goal
is to lift the board from the yellow pose to the green pose.
(a) The robot successfully finds an init-goal pair for its left
arm and plans a pulling motion. (b) The robot fails to find a
goal for its left arm because of the bulky plate’s obstruction.
It switches to the right arm without execution.

E. Include Re-Recognition in the Loop

The plate pose is re-recognized using a depth camera
after each execution to acquire its real tilting angle. Like
recognizing a rope, RANSAC and ICP are used to extract the
plate’s largest planar surface. The real tilting angle of the plate
is computed considering the normal of the extracted planar
surface. It is then used to update the αi in equation (5) as well
as to predict the α̃i of the next rope-pulling action. Fig.7 shows
an example. The point cloud of the scene in (a) is acquired
and shown in (b). The estimated planar surface normal and real
tilting angle are illustrated together with the point cloud. The
optimization, planning, execution, and recognition workflows
mentioned in this section’s subsections are repeated for the
two arms sequentially until the plate is lifted up to a given
threshold angle.

Fig. 7: A plate’s real tilting angle is re-recognized using a
depth camera after each execution. The algorithm extracts
the largest planar surface and computes the real tilting angle
considering the normal of the extracted surface.

V. TUMBLING THE PLATE USING SLIDING-PUSH

After lifting the plate to the threshold angle, one robot
arm will tumble it over by pushing. Here, we assume that
a plate always has edge contacts with the table. It will be
tumbled by rotating around the edge contacts. The rotation
trajectory of a plate is modeled as a time-variant function, and
the robot arm follows the trajectory by using sliding-push. We
define a sliding-push as a pushing policy that allows sliding on
the contact surface of a plate. Like the rope-pulling actions,
the sliding-push motion is performed continuously until the
plate is rotated beyond a threshold pose where the force and
moment reach equilibrium when the robot moves away from
the pushing point.

Besides the edge contacts, we also assume the following
conditions and constraints in planning the sliding-push: (1)
All forces appear inside a vertical plane perpendicular to the
contact edges; (2) The plate and the environment are rigid;
(3) The push between two nearby time instants is quasi-static;
(4) The friction at the contact point follows the Coulomb
friction model; (5) Plate-slipping on the table surface is not
considered, but finger-sliding on the contact surface is allowed.
Especially the fifth assumption is a strong constraint and
leads to fewer solutions, but we keep it there to narrow
down the search space. A plate has three contacts during
pushing – Rope connection, robot fingertip contact, and table
contact. The force at the connecting point with the rope is
difficult to control. The contact between the fingertip and the
plate is assumed to be a point contact. During pushing, the
plate may both slide on the table surface and rotate around
the contact edge, making it extremely difficult to perform
optimization. To avoid these problems, we develop the fifth
assumption to constrain a robot arm rotating a plate without
allowing it to slide on the table surface. Pushing actions will
be carefully optimized considering the constraint about table-
slipping. Meanwhile, we allow a pushing finger to slide on the
plate’s contact surface to maintain high success rate.

Based on these assumed constraints, a plate’s motion tra-
jectory is determined once the contact edge is known. The
tumbling action is implemented by optimizing a robot arm’s
pushing trajectory while considering the plate’s motion trajec-
tory. As the pushing arm tumbles a plate, the remaining robot
arm holds or loosens the crane rope alternatively to avoid jerks.
Take the plate pose at a time instant ti shown in Fig.8 for
example. We divide the pushing at this time instant into two

HAYAKAWA et al.: A DUAL-ARM ROBOT THAT AUTONOMOUSLY LIFTS UP AND TUMBLES HEAVY PLATES USING CRANE PULLEY BLOCKS 7

states si and s′i. The plate is pushed from a previous pose at
ti−1 to the current pose in the first state. The crane rope is
straightened, and a tension force T appears along the rope. In
the second state, the rope is loosened by the other robot arm,
and the rope tension T disappears. The tumbling is performed
across a sequence of these states at different time instants in
the following way.

s0
lsn−−→ s′0︸ ︷︷ ︸
t0

hld−−→ s1
lsn−−→ s′1︸ ︷︷ ︸
t1

hld−−→ . . . sn−1
lsn−−→ s′n−1︸ ︷︷ ︸
tn−1

hld−−→ sn︸︷︷︸
tn

Between each s′i−1 and si, the other arm holds (hld for
abbreviation) the crane rope. Between each si and s′i, the crane
rope is loosened (lsn for abbreviation). We analyze the forces
at each time instant and determine the pushing points at each
of them by minimizing the balancing forces and reducing the
rope tension. The formal expressions for the minimization is
as follows.

min
r1

k1(F
T
0 F0) + k2(F

T
1 F1) + k3(T

TT)

(7a)

s.t. T +G+
∑
j=0

Fj = 0 (7b)

rt × T + rg ×G+
∑
j=0

rj × Fj = 0 (7c)

FT
1 F1 ∈ (0, 30) (7d)
f0x
f0y
∈ (0, µ0) (7e)

acos(
F1 · r1
||F1||||r1||

) ∈ (atan
1

µ1
, π − atan

1

µ1
) (7f)

r1(ti)
Tr1(ti) ∈ (0, l) (7g)

|r1(ti)− r1(ti−1)| ≤ |vmax|(ti − ti−1) (7h)

acos(
(r(ti+1)− r(ti)) · (r(ti)− r(ti−1))

||r(ti+1)− r(ti)||||r(ti)− r(ti−1)||
) ≤ γ (7i)

The meanings of the various variables are listed below.
They are also graphically illustrated in Fig.8 for readers’
convenience.
F0 Force at the table contact point p0 in an si state. An edge

contact is simplified into a point contact. F0 = [f0x, f0y].
F1 Force at the robot finger tip contact point p1 (pushing

point) in an si state. F1 = [f1x, f1y].
G Gravity.
T Tension caused by a stretched crane rope. Only exist at

an si state.
rt The vector pointing from the rotation center to the rope

connecting point.
rg The vector pointing from the rotation center to the plate’s

center of mass.
rj The vector pointing from the rotation center to pi.
µ0 The Coulomb friction coefficient at p0.
µ1 The Coulomb friction coefficient at p1.

vmax The maximum speed of a pushing arm.
(ti) If a symbol does not have this postscript, it always

denotes a value at time instant ti. Or else, the symbol

denotes a value from the time instant shown in the
parenthesis.

γ The maximum allowable angle between current and pre-
vious pushing directions.

Fig. 8: The rotational trajectory of a plate is modeled as a
time-variant function across t0, t1, ..., tn. A pushing at a time
instant ti is divided into two states si and s′i. The goal of
optimization is to simultaneously minimize F0, F1, and T ,
while considering a changing r1 = −−→p0p1 (sliding-push).

The optimization goal show in equation (7a) is to minimize
the balancing force needed in the entire system. The idea
behind this optimization is that by minimizing the force
applied to the entire system, the robot can push the plate
with a minimum force and reduce the external forces from
the rope and the desk. The smaller forces will also decrease
the risk of rotating in an unexpected direction (caused by non-
vertical rope tension) or slipping on the table. The constraints
(7b), (7c) balance the forces and torques at an si state. The
constraints (7d), (7e), (7f) add bounds to the force exerted
by a robot and the friction cone at the contact points at the
si state. The constraint (7g) limits r1 to be on a contact
surface. The constraint (7h) ensures the contact points at two
consecutive time instants are reachable. The last constraint
(7i) smooths the change in the pushing direction. It prevents
the pushing direction at a time instant from getting largely
diverted from its precedence. Both constraints (7g) and (7i)
are important to finding a practical pushing trajectory. Their
roles and difference are illustrated in Fig.9. Essentially, the
constraint (7g) limits the pushing distance between adjacent
pushing points. The constraint (7i) limits the changes in
pushing directions.

Fig. 9: (a) Equation (7h) constrains the maximum distance
between adjacent pushing positions. It makes the blue arrows
in the figure short. (b) Equation (7i) constrains the deviation
of a subsequent pushing direction with its precedence. It helps
to avoid oscillation and make the trajectory smooth.

8 PREPRINTS AT ARXIV, SUBMITTED TO A JOURNAL FOR REVIEW, 2020

Fig. 10: (a.1-2) The optimized trajectories experience slight
changes as the plate rotates onto a second contact edge.
The change gets significant as the plate becomes thick. (b)
Returning the rope using both arms to completely lower down
a plate onto the table.

The minimization is performed across all s0, s′0, s1, s′1, ...
states to determine a sequence of optimal r1, say an optimal
sliding-pushing trajectory. Note that during the optimization
the robot kinematic constraint is not considered. Instead of in-
cluding it integrally as a constraint, we examine the kinematic
constraint lazily after a sequence is found. If the robot IK is
not solvable, we switch to the next best r1 until success or a
failure is reported. With the IK constraints, the optimization
will find both a sequence of pushing points and a sequence of
robot joint trajectories that produce the pushing motion along
with the pushing points. The joint trajectories will be executed
by the target arm. The other arm plays the role of holding
and loosening the crane rope following the changes of states.
As mentioned at the beginning of this section, the resulted
motion is a sliding-push. The contact points at different ti are
not necessarily the same in a plate’s local coordinate system.
The pushing finger may slide on the contact surface over
consecutive ti during the tumbling.

In addition, the contact edge between a plate and a table
surface may change during the tumbling as a plate always
has a thickness. Our tumbling planner takes into account
the changes of the contact edge and optimizes the pushing
trajectory considering the changing rotating axes. Fig.10(a.1-
2) show the found pushing trajectories for two plates with
different thickness. The trajectories experience slight changes
as the plate rotates onto a second contact edge.

Finally, after the pushing robot arm finishes the whole
planned trajectory, it works together with the other arm to
return the rope and to further lower down the plate on the
table. Fig.10(b) illustrates the returning actions. They are also
planned online with visual rope detection. The plate’s real
tilting angle is monitored during returning to make sure it
is completely lowered onto the table. The difference is there
is no optimization, and the robot moves along a straight line
pointing to the upper pulley block. The full task is reported to
have been completed after the plate reaches the table surface.

VI. EXPERIMENTS AND ANALYSIS

The proposed method is implemented and examined using
the robot system shown in Fig.2. The system includes two
UR3e robots with two Robotiq F85 two-finger grippers at each
robot end flange. A Kinect V2 (Microsoft) sensor is used to

acquire 3D point clouds. The computer used for planning and
optimization is a PC with Intel Core i9-9900K CPU, 32.0GB
memory, and GeForce GTX 1080Ti GPU. The programming
language for implementing the algorithms is Python.

A. Influence of the Goal Quality Function for Pulling

First, we analyze the influence of the quality function
presented in equation (4), and examine the changes of the
selected pulling goals under different weights. We perform the
analysis by setting one of the three weights to a higher value
while keeping the other two to zero and observe the planned
results. Specifically, we compare ω = [ωlength, ωload, ωgrasps]
= [1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T and show the distribution
of the selected goals for the left and right arms respectively.

1) ω = [1, 0, 0]T : In this case, only flength influences the
rope-pulling motion. It drives the robot to select goal points
that lead to a large pulling distance. Fig.11(a) and (b) show an
example of a selected init-goal pose pair and a distribution of
the selected goal points under the weight setting, respectively.
The robot selects faraway points for both the left and right
arms to pull the rope with long distances.

Fig. 11: Results when ω = [1, 0, 0]T : (a) An example of a
selected init-goal pose pair. (b) A distribution of the selected
goals under 15 times of simulation.

2) ω = [0, 1, 0]T : In this case, only fload affects the pulling
motion. Fig.12 exemplifies an init-goal pair and a statistical
distribution of the selected goal points. The robot tends to
select goals that make the stretched rope to have small tilting
angles to reduce the forces that an arm needs to bear.

Fig. 12: Results when ω = [0, 1, 0]T : (a) An example of a
selected init-goal pose pair. (b) Distribution of the selected
goals after 15 times of simulation.

3) ω = [0, 0, 1]T : In this case, only fgrasps affects the
rope-pulling motion. This parameter is calculated based on
the number of grasping poses simultaneously available to the
initial and goal points of a pulling motion. Since the two

HAYAKAWA et al.: A DUAL-ARM ROBOT THAT AUTONOMOUSLY LIFTS UP AND TUMBLES HEAVY PLATES USING CRANE PULLEY BLOCKS 9

arms have higher manipulability near the body center, the
robot has more feasible grasp poses when a goal point is
near the central line. The expectation is validated by Fig.13.
In the upper two examples of this figure, the left and right
hands pull the rope to points near the center. In the lower two
examples, we intentionally included an obstacle at the center
for comprehension. When there are obstacles, the number of
grasp poses near the center is reduced. As a result, points away
from the center are selected as goals. The fgrasps parameter
allows the robot to select goals considering both kinematic
and geometric constraints.

Fig. 13: Results when ω = [0, 0, 1]T : (a.1) An example
of a selected init-goal pose pair. (a.2) Distribution of the
selected goals under 15 after times of simulation. (b.1-2) The
exemplary selected pair and sample distributions when an
obstacle (the purple block) is intentionally placed in the robot
workspace.

B. Influence of the Constraints and Parameters for Tumbling
Optimization

Second, we study the influence of different constraints and
parameter settings on the optimized tumbling motion. We
are especially interested in: (1) Necessity of the trajectory
constraints (7h), (7i); (2) Different values of vmax and γ; (3)
Different friction coefficients, center of mass (com) positions,
and hooking positions. For each of the different constraints and
values, we run our algorithms using plates of different sizes
(40mm×300mm, 150mm×300mm, 44mm×500mm) and
compare the optimized results. The magnitudes of the sizes
are coherent with the ones used in the real-world experiments
(Table I).

1) Necessity of the trajectory constraints (7h) and (7i):
We study the change of the trajectories under constraints (7h)
and (7i) and examine their necessity. The results are shown in
Fig.14. Each column of the figure uses a plate of a different
size. The four rows are respectively: (a.1-a.3) Both (7h) and
(7i) are considered; (b.1-b.3) Only (7h) is considered; (c.1-
c.3) Only (7i) is considered; (d.4-d.3) Neither (7h) nor (7i)
is considered. The results imply that both (7h) and (7i) are
necessary for obtaining a smooth and stable pushing trajectory.

When constraint (7i) is removed, the trajectory gets oscillated.
The oscillation can be observed by comparing the trajectories
in sub-figure (b.2) with that of (a.2). When constraint (7h)
is removed, the distance between adjacent pushing points
becomes large. The large distance can be easily observed by
comparing the second half of the trajectory in (c.2) with that
of (a.2). When both (7h) and (7i) are omitted, the optimized
trajectories involve jitters and jerks and become unsuitable for
robotic execution. Note that in getting these results, we set the
parameters vmax = 30mm/s, and γ = 20◦ when they are used.

Fig. 14: Necessity of the trajectory constraints (7h) and (7i).
Each column of the figure uses a plate with a different size
(40mm×300mm, 150mm×300mm, 44mm×500mm). The
four rows are respectively: (a.1-a.3) Both (7h) and (7i) are
considered; (b.1-b.3) Only (7h) is considered; (c.1-c.3) Only
(7i) is considered; (d.4-d.3) Neither (7h) nor (7i) is considered.

2) Different values of vmax and γ: In this part, we in-
vestigate the influence of the parameters vmax and γ in
the trajectory constraints on the optimization. The resulted
trajectories using different vmax and γ values are shown in
Fig.15. Like Fig.14, each column of the figure uses a plate
with a different size. For the results in the upper two rows,
the γ parameter in constraint (7i) is changed, while vmax is
fixed. For the results in the lower two rows, the value of vmax

in constraint (7h) is changed, and (7i) is fixed.
For Fig.15(a.1) and (b.1), we set vmax = 45mm/s and

60mm/s respectively, and fixed γ = 20◦. No significant

10 PREPRINTS AT ARXIV, SUBMITTED TO A JOURNAL FOR REVIEW, 2020

Fig. 15: Influence of vmax and γ values on the optimized tra-
jectories. (a.1-a.3) and (b.1-b.3): The γ parameter in constraint
(7i) is changed, while vmax is fixed; (c.1-c.3) and (d.1-d.3):
The value of vmax in constraint (7h) is changed and (7i) is
fixed.

change is observed in this case as the constraint (7i) plays
a master role. Likewise, for (a.3) and (b.3), we set vmax

= 60mm/s and 75mm/s, and fixed γ = 20◦. There is no
significant change observed. For (a.2) and (b.2), we set vmax

= 50mm/s and 70mm/s, and fixed γ=20◦. In this case, the
distances between adjacent pushing points become larger. The
observation shows that the constraint (7h) is effective.

Specifically, for Fig.15(c.1) and (d.1), we set γ = 40◦ and
60◦ respectively, and fixed vmax = 30mm/s. By comparing
them, we can observe that as the value of γ increases, the
trajectory biased downward. For Fig.15(c.2) and (d.2), we set
γ = 30◦ and 50◦ respectively, and fixed vmax = 30mm/s.
By comparing them, we can observe that as the value of
γ increases, the degree of oscillation became stronger. For
Fig.15(c.3) and (d.3), we set γ = 40◦ and 60◦ respectively,
and fixed vmax = 45mm/s. The results show that the down-
ward bias becomes slightly larger in the second half of the
trajectory (although no significant difference is observable).
The observation indicates that the constraint (7i) is effective.

3) Different friction coefficients, center of mass (com) po-
sitions, and hooking positions: In this section, we investigate
the changes in trajectory when the friction coefficient at the

Fig. 16: Influence of different friction coefficient (µ1), center
of mass (com) position (rg), and hooking position (rh) on the
optimized trajectories. (a.1-a.3) µ1 = 0.05; (b.1-b.3) µ1 = 0.6;
(c.1-c.3) rg is changed to the rg2 shown in Fig.17; (d.1-d.3)
rh is changed to the rh1

shown in Fig.17.

pushing point (µ1), center of mass (com) position (rg), or
hooking position (rh) vary. The results are shown in Fig.16.
Each column of the figure uses a plate of a different size.
For Fig.16(a.1), (a.2), and (a.3), µ1 is set to 0.05. When
the plates are thin, such as (a.1) and (a.3), the optimized
trajectories bias downward in the second half. In contrast,
when plates are thick, like the one shown in (a.2), the
optimized trajectory biases upward. For Figs.16 (b.1), (b.2),
and (b.3), µ1 is changed to 0.6. Compared with the results
of 0.05, the optimized trajectories kept neutral in (b.1) and
(b.3) but biased downward in (b.2). The results show that µ1

significantly influences the choices of pushing points in the
second half of the trajectory.

Next, we investigate the influences of rg and rh. We
especially consider two choices for them, as shown by rg1 ,
rg2 , rh1

, and rh2
in Fig.17. rg1 and rg2 are the geometric

center and 1/4th of the geometric center of the plate rectangle.
rh1 and rh2 are the top-left and top-right corners of the plate
rectangle. All previous trajectories were obtained considering
rg1 and rh1

. In this part, we change them to the other
positions for comparison. Fig.16(c.1), (c.2), and (c.3) show
the trajectories with respect to rg2 and rh1

. The results show

HAYAKAWA et al.: A DUAL-ARM ROBOT THAT AUTONOMOUSLY LIFTS UP AND TUMBLES HEAVY PLATES USING CRANE PULLEY BLOCKS 11

Fig. 17: We study the influence of
the center of mass (com) position
(rg) and hooking position (rh)
on the optimized trajectories by
varying each of them to two dif-
ferent positions. These positions
are denoted by rg1 , rg2 , rh1

, and
rh2 in the figure.

that when the com is shifted to the bottom of the plate, the
maximum duty of a robot hand gets smaller and the hand
adjusts itself in wider range. Fig.16(d.,1), (d.2), and (d.3) show
the trajectories with respect to rg1 and rh2

. For all of them,
the starting positions get lower. This may be because the robot
hand bears a smaller force when pushing starts from a point
far from hooking position.

C. Results of Various Plates

Third, we examine the performance of the proposed method
using three plates shown in Fig.18 – An acrylic board, a
stainless box, and a plywood board. The parameters of these
plates are shown in Table I. We assume a plate initially lies
on the table in front of the robot and the crane hook is pre-
connected.

Fig. 18: Three different plates used in the experiments. (a)
An Acrylic Board. (b) A Stainless Box. (c) A Plywood Plate.
Their various parameters are shown in Table I.

TABLE I: Parameters of the Plates Used in Experiments

Plate Name h, l, w (mm) m (kg) rg µ0 µ1

Acrylic Board 300, 300, 40 4.0 Geom.Cent. 0.5 0.4
Stainless Box 300, 400, 150 6.0 Geom.Cent. 0.4 0.1
Plywood Board 500, 400, 44 6.4 Geom.Cent. 0.6 0.3
* l - length; w - width; h - height; m - mass.

Fig.19 shows some snapshots of both the planning environ-
ment and real-world execution results for the three plates. In
these cases, the weight of the goal quality function is chosen
as ω = [1, 1, 1]T . The robot managed to pull up the plates with
satisfying performance. Readers are encouraged to watch the
supplementary video submitted together with this manuscript
to better observe the optimized lifting up actions and tumbling
trajectories for the different plates.

The most important points we are interested in for the real-
world execution are the number of pulling actions, the pulling
distances, and the forces born by the pulling hands. We show
them in detail in Tables II-IV.

First, in Table II, we compare the execution results of ω =
[1, 1, 1]T with other three extreme candidates ω = [1, 0, 0]T , ω
= [0, 1, 0]T , and ω = [0, 0, 1]T . The results indicate that when
the weight is chosen as ω = [1, 1, 1]T , the robot works with a
smaller number of actions and relatively large average pulling
distances. Meanwhile, the hands bear moderate pulling forces.
When the weight is chosen to be ω = [1, 0, 0]T , the rope’s
pulling length becomes dominantly large, and the robot hands
bear more forces. When the weight is chosen as ω = [0, 1, 0]T ,
the forces born by the hands are highly suppressed, but the
number of actions increase. When the weight is chosen as
ω = [0, 0, 1]T , there is no significant influence on the length
and force values. However, without the parameter fmanip, the
robot and obstacles’ collisions cannot be taken into account.

Table III further shows the details of pulling lengths and
forces for each pulling action when w is chosen as [1,1,1]T .
The robot alternatively used its left and right arms to pull up
the acrylic board and the stainless box. For the plywood board,
the robot alternatively used the two arms in the beginning but
switched to right-alone actions after step 6. The reason is the
plywood board is a large plate. It blocked the right arm action
after being to lifted to a high pose.

Table IV shows the detailed average time costs for the
executions of lifting and tumbling each plate using ω =
[1, 1, 1]T . The most time-consuming part of the proposed
planner is optimizing the init-goal pair, including sampling
goal points, evaluating goal grasps, and reasoning shared initial
and goal grasp poses. They have to be performed on all
sampled points to get the defined qualities. The QP solver
and RRT planner used to generate the movement and pulling
actions also take some time to search and optimize.

VII. CONCLUSIONS

This paper proposed an optimization and planning method
for a dual-arm robot to lift up and tumble heavy plates using
crane pulley blocks. The optimal pulling actions for the pulley
bocks were achieved by maximizing or minimizing the length
of a pulling motion, the load born by the pulling hand, and
the chances of finding a success motion. Visual detection was
included in each optimization and execution loop to update the
states of the plate. The optimal tumbling was implemented by
considering the force and moment applied to the plate. An
optimal sliding-push trajectory was planned by minimizing
the forces needed to maintain equilibrium. After tumbling,
the plate was lowered down onto the table to completely
finish a task. The action sequences and motion details of both
pulling and tumbling were autonomously decided following
respective optimizations. Experiments and analysis showed
that the optimizations responded well to changing plate sizes,
weights, materials, etc. The robot was able to flexibly and
efficiently adapt its action sequences and motion details to
different scenarios.

The focus of this manuscript is the optimization and plan-
ning aspect. We did not consider the rope and assumed it to

12 PREPRINTS AT ARXIV, SUBMITTED TO A JOURNAL FOR REVIEW, 2020

Fig. 19: Snapshots of the robotic executions for the three plates (ω = [1, 1, 1]T ; Watch our supplementary video for details).

TABLE II: Comparison of the Real-World Pulling Actions Under Different Weights

w = [1,1,1]T w = [1,0,0]T

Plate Name # Actn. Avg.Dist. (L, R) (mm) Forces (L, R) (N) # Actn. Avg.Dist. (L, R) (mm) Forces (L, R) (N)

Acrylic Board L2, R3 (367.68, 430.06) (3.98, 6.42) L2, R3 (448.50, 456.41) (6.64, 7.48)
Stainless Box L2, R3 (294.99, 429.37) (5.70, 6.51) L2, R3 (350.41, 422.39) (5.83, 7.17)
Polywood Board L3, R6 (332.65, 388.62) (6.07, 8.12) L3, R6 (411.65, 437.13) (8.21, 8.12)

Total Average 3.17 373.90 6.13 3.17 421.08 7.24

w=[0,1,0]T w=[0,0,1]T

Plate Name # Actn. Avg.Dist. (L, R) (mm) Forces (L, R) (N) # Actn. Avg.Dist. (L, R) (mm) Forces (L, R) (N)

Acrylic Board L3, R3 (348.71, 340.69) (4.93, 3.86) L4, R5 (283.86, 257.14) (5.59, 5.96)
Stainless Box L3, R3 (236.63, 350.60) (5.64, 5.94) L4, R4 (288.68, 297.82) (7.17, 5.92)
Polywood Board L3, R7 (334.52, 327.46) (5.99, 5.86) L4, R9 (297.88, 296.20) (6.62, 7.45)

Total Average 3.67 323.10 5.37 5.00 286.93 6.45

TABLE III: Detailed Pulling Length and Forces of Each Pulling Action Using w=[1,1,1]T

Plate Name Item 1 2 3 4 5 6 7 8 9

Acrylic Board Actn. Arm Rgt Lft Rgt Lft Rgt - - - -
Distance (mm) 443.64 377.75 471.32 357.61 375.23 - - - -
Force (N) 8.48 4.3 5.58 3.65 5.72 - - - -
Time (s) 7.57 6.09 4.02 5.94 4.36 - - - -

Stainless Box Actn. Arm Rgt Lft Rgt Lft Rgt - - - -
Distance (mm) 449.99 328.19 475.72 261.78 362.41 - - - -
Force (N) 7.80 5.45 5.71 5.95 6.01 - - - -
Time (s) 6.41 8.45 4.08 5.87 3.96 - - - -

Polywood Board Actn. Arm Rgt Lft Rgt Lft Rgt Lft Rgt Rgt Rgt
Distance (mm) 455.69 367.77 449.4 343.95 425.74 286.24 394.68 394.94 211.28
Force (N) 10.79 6.08 8.6 5.88 5.49 6.26 8.21 7.22 9.41
Time (s) 8.55 5.39 4.00 5.99 4.47 6.36 3.99 4.15 3.85

TABLE IV: Time Costs for Each Part of A Pulling Action

Acrylic Stainless Polywood

Items Rgt Lft Rgt Lft Rgt Lft

Initial Grasps (s) 0.16 0.59 0.15 0.58 0.18 0.55
Init-Goal Pairs (s) 3.02 4.31 3.13 4.28 3.13 4.38
QP + RRT (s) 1.41 1.76 1.43 1.78 1.48 1.69

be pre-attached to the plates. Autonomously manipulating and
attaching a crane rope using the robots and peripherals will
be our future work.

REFERENCES

[1] E. Yoshida, P. Blazevic, and V. Hugel, “Pivoting manipulation of a
large object: A study of application using humanoid platform,” in IEEE
International Conference on Robotics and Automation (ICRA), 2005, pp.
1040–1045.

HAYAKAWA et al.: A DUAL-ARM ROBOT THAT AUTONOMOUSLY LIFTS UP AND TUMBLES HEAVY PLATES USING CRANE PULLEY BLOCKS 13

[2] M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, “Whole-
body pushing manipulation with contact posture planning of large and
heavy object for humanoid robot,” in IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 5682–5689.

[3] F. Ohashi, K. Kaminishi, J. D. F. Heredia, H. Kato, T. Ogata, T. Hara,
and J. Ota, “Realization of heavy object transportation by mobile robots
using handcarts and outrigger,” Robomech Journal, vol. 3, no. 1, p. 27,
2016.

[4] Y. Hou, Z. Jia, and M. T. Mason, “Fast planning for 3d any-
pose-reorienting using pivoting,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[5] J. A. Haustein, S. Cruciani, R. Asif, K. Hang, and D. Kragic, “Placing
objects with prior in-hand manipulation using dexterous manipulation
graphs,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2019, pp. 453–460.

[6] K. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fujiwara,
K. Kaneko, and H. Hirukawa, “A humanoid robot carrying a heavy
object,” in IEEE International Conference on Robotics and Automation
(ICRA), 2005, pp. 1712–1717.

[7] T. Urakubo, H. Yoshioka, T. Mashimo, and X. Wan, “Experimental study
on efficient use of singular configuration in pulling heavy objects with
two-link robot arm,” in IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 4582–4587.

[8] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Ma-
nipulation planning on constraint manifolds,” in IEEE International
Conference on Robotics and Automation (ICRA), 2009, pp. 625–632.

[9] J. Yang, A. Konno, S. Abiko, and M. Uchiyama, “Hardware-in-the-
loop simulation of massive-payload manipulation on orbit,” Robomech
Journal, vol. 5, no. 1, p. 19, 2018.

[10] H. Zhu, J. Lu, S. Gu, S. Wei, and Y. Guan, “Planning 3d collision-free
optimized climbing path for biped wall-climbing robots,” IEEE/ASME
Transactions on Mechatronics, pp. 1–1, 2020.

[11] M. T. Mason, “Mechanics and planning of manipulator pushing oper-
ations,” The International Journal of Robotics Research, vol. 5, no. 3,
pp. 53–71, 1986.

[12] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controlla-
bility, and planning,” The International Journal of Robotics Research,
vol. 15, no. 6, pp. 533–556, 1996.

[13] J. Zhou, Y. Hou, and M. T. Mason, “Pushing revisited: Differential flat-
ness, trajectory planning, and stabilization,” The International Journal
of Robotics Research, vol. 38, no. 12-13, pp. 1477–1489, 2019.

[14] J. Zhou, J. A. Bagnell, and M. T. Mason, “A fast stochastic contact model
for planar pushing and grasping: Theory and experimental validation,”
in Robotics: Science and Systems (RSS), 2017.

[15] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a
million ways to be pushed. a high-fidelity experimental dataset of planar
pushing,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016, pp. 30–37.

[16] C. Song and A. Boularias, “Object rearrangement with nested nonpre-
hensile manipulation actions,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 6578–6585.

[17] T. T. Topping, G. Kenneally, and D. E. Koditschek, “Quasi-static and
dynamic mismatch for door opening and stair climbing with a legged
robot,” in IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 1080–1087.

[18] G. Zhang, S. Ma, Y. Shen, and Y. Li, “A motion planning approach for
nonprehensile manipulation and locomotion tasks of a legged robot,”
IEEE Transactions on Robotics, vol. 36, no. 3, pp. 855–874, 2020.

[19] K. Hang, A. S. Morgan, and A. M. Dollar, “Pre-grasp sliding manipula-
tion of thin objects using soft, compliant, or underactuated hands,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 662–669, 2019.

[20] Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and
fingers,” in IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 1560–1565.

[21] B. Aceituno-Cabezas and A. Rodriguez, “A global quasi-dynamic model
for contact-trajectory optimization in manipulation,” in Robotics: Sci-
ence and Systems (RSS), 2020.

[22] C. Correa, J. Mahler, M. Danielczuk, and K. Goldberg, “Robust toppling
for vacuum suction grasping,” in IEEE International Conference on
Automation Science and Engineering (CASE), 2019, pp. 1421–1428.

[23] X. Cheng, Y. Hou, and M. T. Mason, “Manipulation with suction
cups using external contacts,” in International Symposium on Robotics
Research (ISRR), 2019.

[24] Y. F. Golubev and V. Koryanov, “Insectomorphic robot maneuvering
on freely rolling balls,” Journal of Computer and Systems Sciences
International, vol. 55, no. 1, pp. 125–137, 2016.

[25] A. Specian, C. Mucchiani, M. Yim, and J. Seo, “Robotic edge-rolling
manipulation: A grasp planning approach,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 4, pp. 3137–3144, 2018.

[26] Y. Aiyama, M. Inaba, and H. Inoue, “Pivoting: A new method of grasp-
less manipulation of object by robot fingers,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 1, 1993, pp.
136–143.

[27] Y. Maeda and T. Arai, “Planning of graspless manipulation by a
multifingered robot hand,” Advanced Robotics, vol. 19, no. 5, pp. 501–
521, 2005.

[28] J. Xiao and X. Ji, “Automatic generation of high-level contact state
space,” The International Journal of Robotics Research, vol. 20, no. 7,
pp. 584–606, 2001.

[29] G. Lee, T. Lozano-Pérez, and L. P. Kaelbling, “Hierarchical planning for
multi-contact non-prehensile manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 264–
271.

[30] P. Balatti, F. Fusaro, N. Villa, E. Lamon, and A. Ajoudani, “A collab-
orative robotic approach to autonomous pallet jack transportation and
positioning,” IEEE Access, vol. 8, no. 142, pp. 191–204, 2020.

[31] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm,
“Usac: a universal framework for random sample consensus,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 8, pp. 2022–2038, 2012.

[32] Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” International Journal of Computer Vision, vol. 13, no. 2,
pp. 119–152, 1994.

[33] J. E. Bobrow, B. Martin, G. Sohl, E. Wang, F. C. Park, and J. Kim, “Op-
timal robot motions for physical criteria,” Journal of Robotic Systems,
vol. 18, no. 12, pp. 785–795, 2001.

[34] K. Harada, K. Hauser, T. Bretl, and J.-C. Latombe, “Natural motion
generation for humanoid robots,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2006, pp. 833–839.

	I Introduction
	II Related Work
	III Overview of the Proposed Method
	IV Pulling the Rope Using Optimized Poses
	IV-A Searching for the Initial Grasping Point and Pulling Poses
	IV-B Determine the Optimal Init-Goal Pair
	IV-B1 flength
	IV-B2 fload
	IV-B3 fgrasps

	IV-C Planning the Rope-Pulling Motion
	IV-D Determining the Action Arms and Sequences
	IV-E Include Re-Recognition in the Loop

	V Tumbling the Plate Using Sliding-Push
	VI Experiments and Analysis
	VI-A Influence of the Goal Quality Function for Pulling
	VI-A1 = [1,0,0]T
	VI-A2 = [0,1,0]T
	VI-A3 = [0,0,1]T

	VI-B Influence of the Constraints and Parameters for Tumbling Optimization
	VI-B1 Necessity of the trajectory constraints (7h) and (7i)
	VI-B2 Different values of bold0mu mumu vvvvvvmax and
	VI-B3 Different friction coefficients, center of mass (com) positions, and hooking positions

	VI-C Results of Various Plates

	VII Conclusions
	References

