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Joint Rigid Registration of Multiple Generalized
Point Sets With Anisotropic Positional
Uncertainties in Image-Guided Surgery

Zhe Min

Abstract—1In medical image analysis (MIA) and computer-
assisted surgery (CAS), aligning two multiple point sets (PSs)
together is an essential but also a challenging problem. For
example, rigidly aligning multiple point sets into one common
coordinate frame is a prerequisite for statistical shape modelling
(SSM). Accurately aligning the pre-operative space with the intra-
operative space in CAS is very crucial to successful interventions.
In this article, we formally formulate the multiple generalized
point set registration problem (MGPSR) in a probabilistic
manner, where both the positional and the normal vectors are
used. The six-dimensional vectors consisting of both positional
and normal vectors are called as generalized points. In the
formulated model, all the generalized PSs to be registered are
considered to be the realizations of underlying unknown hybrid
mixture models (HMMs). By assuming the independence of the
positional and orientational vectors (i.e., the normal vectors), the
probability density function (PDF) of an observed generalized
point is computed as the product of Gaussian and Fisher
distributions. Furthermore, to consider the anisotropic noise in
surgical navigation, the positional error is assumed to obey a
multi-variate Gaussian distribution. Finally, registering PSs is
formulated as a maximum likelihood (ML) problem, and solved
under the expectation maximization (EM) technique. By using
more enriched information (i.e., the normal vectors), our algo-
rithm is more robust to outliers. By treating all PSs equally,
our algorithm does not bias towards any PS. To validate the
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proposed approach, extensive experiments have been conducted
on surface points extracted from CT images of (i) a human femur
bone model; (ii) a human pelvis bone model. Results demonstrate
our algorithm’s high accuracy, robustness to noise and outliers.

Note to Practitioners—This paper was motivated by solving the
problem of registering two or more PSs. Most existing registra-
tion approaches use only the positional information associated
with each point, and thus lacks robustness to noise and outliers.
Three significant improvements are brought by our proposed
approach. First, the normal vectors that can be extracted from
the point sets are utilized in the registration. Second, the posi-
tional error distribution is assumed to be anisotropic and inho-
mogeneous. Third, all the PSs to be registered are treated equally
that means no PS is considered as the model one. The registration
problem is cast into a maximum likelihood (ML) problem and
solved under the expectation maximization (EM) framework.
We have demonstrated through extensive experiments that the
proposed registration approach achieves significantly improved
accuracy, robustness to noise and outliers. The algorithm is
particularly suitable for biomedical applications involving the
registration procedures, such as image-guided surgery.

Index Terms— Healthcare and life sciences, image-guided
surgery, surgical navigation, biomedical engineering.

I. INTRODUCTION

OINT set registration (PSR) is a fundamental and chal-
lenging problem in the fields of medical robotics, med-
ical image analysis (MIA) and computer-assisted surgery
(CAS) [1]-[15]. The aim of the rigid PSR problem is to
accurately compute the rigid transformation matrix between
point sets (PSs) [2]. In CAS, both fiducial-based registration
and surface registration (or generally speaking PSR) can
be used to align the pre-operative volumetric image space
to the intra-operative patient space [16]-[18]. In fiducial-
based registration, a few fiducials (anatomical landmarks or
artificial markers) with known correspondences in two spaces
are used [19], [20]. In surface registration, surface points
without correspondences in two spaces are used. For example,
in computer-assisted total hip replacement (THR) surgery,
the intra-operative points acquired with a tracked pointer are
registered to the surface points extracted from the CT model
of the patient’s bone, where a surface can be represented by
either a PS or a mesh [21], [22].
The possible clinical applications of the registration prob-
lem to be dealt with in this article are summarized as fol-
lows. (1) Pre-operative to intra-operative space alignment in
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CAS [2], [17], [23], [24]. (2) Statistical shape modelling
(SSM). Statistical shape models (SSMs) are important and
powerful tools for various medical image analysis applications
such as automatic segmentation of important organs [25]. Gen-
erally speaking, SSMs describe the variation in the shape of an
object about a mean shape representation of the population.
As summarized in [26], shapes can be represented by point
set, mesh, implicit functions (signed distance maps), spheri-
cal harmonics (SPHARM) based parametrization and medial
shape representation. Rigidly aligning PSs into one common
coordinate frame is the first and a very important step of accu-
rately constructing the SSM [27]. The first important step in
constructing the SSMs from population data is to exclude the
global pose differences of the training samples, which include
the rotation matrix, translation vector and scaling factor [26].
Basically speaking, two general frameworks are utilized in
building SSMs. (i) The pair-wise registration strategy where
a reference is non-rigidly registered to each training sample;
(ii) the group-wise registration strategy where multiple point
sets are jointly registered and point correspondences are also
estimated. The registration biased towards the reference point
set when the first strategy is used.

This article is motivated by the following three aspects.
(1) In order to significantly improve the registration accu-
racy and robustness, we utilize the orientation-al information
(i.e., the normal vectors) that can be extracted from the raw
PS with various methods [2], [28], [29]. (2) The second
motivation is to consider the anisotropic characteristic in the
position localization error, which is common in many CAS
applications [29]-[32]. (3) The third motivation is to remove
the bias towards one specific PS in the PSR algorithm. In both
Iterative Closest Point (ICP)-based and Gaussian Mixture
Model (GMM)-based registration methods, there is a bias
towards one PS [33], [34].

Our contributions of this article are summarized as
follows.

1) The anisotropic position localization error (PLE) is
considered in the joint rigid registration of multiple gen-
eralized point sets. Thus, the JRMPC framework is gen-
eralized to the six-dimensional case where anisotropic
PLE is considered.

2) In the case of registering multiple point sets, we refor-
mulate the constrained optimization problem of updating
the rotation matrix, in the maximization step, to an
unconstrained one by using the Rodrigues Formula to
represent the rotation. The gradients of the objective
function with respect to the desired parameters are
computed and provided, in order to speed up the com-
putational process.

The remainder of this article is organized as follows.
Section. II reviews the related registration methods. Section. III
formally formulates the multiple generalized point set regis-
tration (MGPSR) problem. Section. IV describes our algo-
rithm in details. Section. V gives a summary of the two
expriments. Section. VI presents the first experiment and its
results. Section. VII presents the second experiment and its
results. Section. VIII presents the discussion of this paper.
Finally, Section IX concludes the article.
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II. RELATED WORK

We review the probabilistic registration methods in the
following. Some recent deep learning based methods are also
briefly covered.

A. Probabilistic Registration Methods

There exists a large amount of work that tries to solve the
PSR problem [3]. Many probabilistic methods have been pro-
posed to overcome the drawbacks of the ICP-like method [3].
The strategy of assigning soft-correspondence between one
point in one PS to several points in the other PS is often
used in this category. Registration is formulated as a Maxi-
mum Likelihood Estimation (MLE) problem and solved using
the Expectation Maximization (EM) technique [3]. In an
EM-based registration algorithm, each iteration consists of
two steps [33]. That is (i) E-step, the posteriors indicating
the correspondence confidence between points in two PSs are
computed; (ii) M-step, the best rigid transformation matrix is
estimated given the current posteriors. The above two steps
will iterate until some termination conditions are satisfied.
Finally, the ‘best’ rigid transformation matrix relating two PSs
is calculated after conducting the above two steps for a while.

As a typical representation of the probabilistic methods,
in the coherent point drift (CPD) method [33], one PS (repre-
senting the data shape) is considered to be the sampled trans-
formed/misaligned GMMSs whose means are the points in the
other PS (representing the model shape). The readers should
note that there is a bias assuming that one PS(i.e., the model
PS) is perfect without error. In the GMMReg method [35],
both PSs to be registered are represented as GMMs and the
L2 distance between the two mixtures is minimized in order
to compute the rigid transformation matrix. Expectation con-
ditional maximization point registration (ECMPR) method uti-
lizes a general covariance matrix for the mixture model under a
similar statistical framework as that is used in CPD [36]. They
re-formulate the nonlinear problem of computing the rotation
matrix into a constrained quadratic optimization problem and
used the semidefinite positive relaxation (SEM) technique to
solve it [36]. In all the above three methods [33], [35], [36],
the bias towards one PS in the registration process
exists [34].

We now review the methods for multi-view or multiple PSR
problem. Three categories of registration methods are pre-
sented as follows. (i) With the strategy of sequential pairwise
registration, register-then-integrate processes are repeated until
all the PSs are utilized [37]-[39]. In other words, whenever an
additional PS is available, the model PS is updated repeatedly.
The main drawback of methods in this category is that the
registration error will accumulate [34]. (ii)) Motion averag-
ing technique [40] and the rotation averaging method [41]
have also been used to register multiple PSs. In the Motion
Averaging Iterative Closest Point (MA-ICP) algorithm, the
Lie-algebraic averaging of relative motions is used to compute
the global motions for each view [40]. Two drawbacks exist
in the MA-ICP algorithm [34]: a) The topology needs to
be known or estimated; b) The closed-loop constraint is
required. (iii) Similar to [35], in [42] each PS is represented
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as a respective GMM and the non-rigid transformation is
applied to the multiple mixture centers rather than the points
directly. The mixture model’s parameters are estimated by
minimizing the Jensen-Shannon divergence. A probabilistic
mean shape is computed as the convex combination of the
already aligned PSs. The main disadvantage of this method is
that it requires the PSs to be well structured [42]. Recently,
to tackle the shortcomings of the GMM-based statistical regis-
tration algorithm including slow speed and lack of generality,
Eckart et al. constructs a top-down multi-scale representation
of PS data by recursively running many small-scale data like-
lihood segmentations in parallel on a GPU [43]. To enhance
the registration performance particularly in cases of large-pose
displacements and non-overlapping geometry, the overlapping
regions are estimated through a expectation maximization
procedure [44]. The estimated non-overlapping regions can
be further down-weighted or ignored in the data association
process [44]. Gao et al. formulates the E step as a filtering
problem and solve it using advances in efficient Gaussian
filters, which can help the registration achieve good robustness
and efficiency [45].

More recently, the joint registration of multiple point
clouds (JRMPC) method is proposed to remove the bias
towards one specific PS in the registration process [34]. In the
JRMPC method [34], all PSs to be registered are regarded as
the transformed realizations of underlying unknown GMMs.
In this way, there is no bias towards any specific PS in JRMPC.
JRMPC outperforms or is comparable to the state-of-the-art
algorithms such as CPD [33], GMMReg [35], ECMPR [36]
and SimReg [46] under various levels of isotropic noise and
different outliers conditions. We should note that one main
drawback of the JRMPC method is that the positional error
obeys the isotropic Gaussian distribution.

The non-rigid registration with the hybrid mixture mod-
els (HMMs) have been proposed by researchers [47]-[49].
The Student t distribution models are used to model the
positional error while the uncertainties with the normal vectors
are modelled with Fisher mixture models (FMMs) [47], [48].
In [47], Ravikumar ef al. have formulated and solved the
group-wise registration problem with normal vectors for both
rigid and non-rigid registration problems. The pair-wise regis-
tration method similar to [47] was used in the vascular-based
registration framework, where the normal vectors’ uncertain-
ties are modelled with the Watson distributions. In [49],
the deformable registration problem is formulated and used
for the endoscopic navigation. More specifically, the patient
to be treated does not need to undergo the CT scanning
and thus lacks the pre-operative CT data. Statistical shape
models (SSMs) are first constructed from other patients’ CT
scan data. The intra-operative 3D surface data is non-rigidly
registered with the SSMs. Basically speaking, the registration
method in [49] is a pair-wise one where the bias towards
one specific PS exists. Additionally, the ICP framework is
used in [49] and thus the robustness to outliers can be
further improved. One potential limitation of the method
in [47] is that the positional uncertainty is assumed to be
isotropic.

B. Deep Learning-Based Registration Methods

There are some deep learning-based registration methods
developed for PSR. Most of those work focuses on developing
novel methods to first learn compact local descriptors of the
PSs [50]-[53]. Deng et al. present the PPFNet framework
that can fast learns the local patch descriptor, which is highly
aware of the global context and has increased tolerance to
rotations [54]. Zan et al. use a smoothed density value (SDV)
voxelization as the input data representation to the standard
deep-learning libraries [55]. They also present a novel network
architecture that learns a very compact, rotation invariant 3D
local feature descriptor, which is low dimensional and has been
demonstrated to speed up the correspondence search and thus
allows real-time applications.

Current deep-learning based registration methods are not
robust to outliers, which usually exist in the applications
of image-guided surgery (IGS) [56]. Deep-learning methods
neither guarantee the registration accuracy nor provide the
threshold of the registration error. In contrast, the target
registration error (TRE) model can estimate the registration
error’s magnitudes and covariance matrix given the fiducial
localization error (FLE) [16], [31]. In addition, there are also
models that estimate the upper bounds of the registration
error. The above-mentioned error estimation/prediction models
are only valid for methods such as ICP or the probabilistic
methods(i.e., ECMPR and JRMPC methods).

C. Differences/Improvements Compared With Our Previous
Work

The main/significant differences or improvements of our
presented work with our previous work [57] include the
follows. Scientifically (i) The positional error distribution is
assumed to be anisotropic while the normal vectors extracted
from the raw point sets are utilized in the simultaneous regis-
tration of multiple point sets, whereas the isotropic positional
error is assumed in our previous work; Technically (ii) Both
cases where the isotropic and anisotropic positional error
vectors are injected into the point sets have been tested,
whereas only the case of isotropic positional error is con-
sidered in our previous work; (iii) We have explored the
influences of the hyperparameters including the weight of
the outlier distribution in the hybrid mixture models(HMMs)
and the number of central models’ components on the regis-
tration performance; (iv) We have evaluated the registration
performances under different magnitudes of noise injected
into normal vectors(i.e., different values of the concentration
parameter «).

I11. PROBLEM FORMULATION

Let D; = [d;;...dj;...d;y,] € R®N be the set con-
taining N; observed generalized points in the j-th PS, and
N be the number of all PSs (or views) to be registered.
More specifically, we denote the generalized point d;; =
(x;i;Xji), where x;; € R¥>! and X;; € R**!(is a unit vector)
respectively represent the positional and normal vectors of the
i-th generalized point in the j-th PS D;. For clarity, we denote
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D={D j}?’:l as the union of all PSs to be registered. In our
method, all the observed PSs D are considered to be the
transformed realizations (samples) from the underlying hybrid
mixture models (HMMs), whose centroids are actually the
underlying central generalized PS. The aim of the multiple
generalized point set registration (MGPSR) problem is to
find the ‘best’ rotation matrix set {Rj}?':1 and translation
vector set {t j}yzl that align the unknown central model PS
{d, € R6X1}nﬁf=1 d, = (Ym;/y\m)) with {Dj}j'\;p where M is
the number of points in the underlying model PS.

Two assumptions are adopted in this work: (i) the positional
and normal vectors are independent; (ii) the localization error
of the positional and the normal vectors respectively obey
the multi-variate Gaussian distribution and the von-Mises-
Fisher [58] distribution respectively. A brief introduction of
von-Mises Fisher distribution is provided in Appendix. B.
The adopted multi-variate Gaussian distribution generalizes
the isotropic positional error distribution in our previous
work [57]. The model parameters ® in our algorithm are
summarized as

®:({Rj,tj,Kj,zj}?]:p{dm}x]:]) (1)

where we note that every D;(j =1, ..., N) owns its specific
positional covariance matrix £; € S*** and concentration
parameter x; € R3. We provide a brief introduction of JRMPC
method in Appendix. C.

Let Z = {z;;|j € [1...N],i € [1...N,]} denote the
hidden/latent variables set, where z;; = m indicates that
the m-th component of HMMs generates the point dj;. The
marginal distribution p(d;;|®) of an observed generalized
point d;; under O is

M1
p@;i1®) = D" P(m)p(djilzji =m, ©jy,) )
m=1
where 0, = (R}, t;,x;, X;,d,}, and the probability density
function (PDF) describing the probability that d;; corresponds
to the m-th HMMs component (m =1, ..., M) is

pdjilzji =m, 0jy)

— %e%}z}—im z:j_lzji”’ #ekj (Rjy\m )Ti\ji
(27)z|%;|2 27 (e*i — e™")
Gaussian Fisher
— Kj eK,f (R?m)Tiji - % (Zjim))T E‘,'_l (Zjim) (3)

Q2r)3 |7 (e" — e )

where z;;,, = X;; — Ry, — t; denotes the distance

vector between X;; and transformed model point y,,, and

| | = det(e) is the determinant of a square matrix. The
| 3 lxi—Ry,—t|?

—e o

(2wol)2

in (14) or (3) in [57] is replaced with - L i Z] L

—_— le_szim J

2m)2 1502

The rationale of (3) is summarized as follows. The transformed
m-th position vector in the central PS into the coordinate
frame associated with D;, R;y,, 4 t;, is assumed to be the
Gaussian Mixture Models’s one centroid. More specifically,
given z;; = m, the data point x; is assumed to be one random
sample from the Gaussian distribution centred at Ry, + t;,

readers should note that the term
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ie, N(R;yn +t;, ;). At the same time, the transformed
m-th normal vector in the central PS into the coordinate
frame associated with D;, Rj/y\m, is assumed to be the Fisher
Mixture Model’s one central direction. More specifically, given
zji = m, the data normal vector /y\j,' is assumed to be one
random sample from the Fisher distribution centred at R ﬁm,
i.e. F(R;yu, k). With the independence between the positional
vectors and normal vectors, the probability of a data point d;
being generated by the m-th central point d,, is the product of
the Gaussian and Fisher probability densities. To account for
noise and outliers, one uniform distribution p(d;;|z;; = M +
1) = NL, is included in the model in (2). Equal (symmetrical)
membership probabilities P(m) = % are assumed for all the
remaining HMMs’ components (i.e. m = 1, --- , M). Then we
can expand p(d;;|®;,) in (2) as

M
1 1

pd;i|®;,) =w—+ (1 —w) E —p(djilzji =m, Qjy,),
N M

m=1
(4)

where 0 < w < 1 is the weight of the additional uniform
distribution. With the assumption that each d;; are indepen-
dent with each other, the PDF of the D given the model
parameters O is in fact the product of individual probabilities
pD, Z2|0) = [];; p(@ilzji, ©m), where p(d;ilzji, ©m) is
presented in (4).

A. Derivation of the Objective Function

The multiple generalized point set registration task is now
performed by estimating the parameters ® from the data
PS D. To find the optimal estimation of ® is to minimize
the expected negative log-likelihood term with respect to the
latent variables Z,

0(0|D, 2) = Ez[logp(D, Z|0]

= > P(ZID,0)log(p(D, Z; ©)),  (5)
zZ

Expectation Maximization (EM) technique is used to esti-
mate the parameters ® in (1) in the case of hidden parameters.
As indicated in [33], the idea of the EM technique is to
guess the parameters’ values and use the Bayes’ theorem to
compute the posteriors i, = P(zj; = m|dj;, ®) of HMMs
components, which is the expectation or E-step. The model
parameters © values are then updated through minimizing
the conditional expectation of the complete-data negative log-
likelihood function [59]:

N Nj M+1
QOD, 2) ==> > ajimlogp(djilzji = m; O ),
j=1i=1 m=1

(6)

with respect to the “new” parameters, which is the maxi-
mization or M-step of our algorithm. The objective function
Q0(0|D, 2) in (6) is the upper bound of the negative log-
likelihood function in (5) [59].
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Ignoring the constants with respect to @, Q(®|D, Z) in (6)
is expanded as follows,

1
F£©) = X ajin (5 @) T} i) = 16, (R,5)"R,1))

jim
1 N N
+ 3 ZNPj log || + ZNPj log (eKj — e*Kj)
j=1 j=1
N
— D Nejlogk;, )
j=1

WmE%m—H@—m@m®)My—le 1 %jim-
The objective function f(®) in (7) has to be minimized
to find the model parameters ®. We notice that the
sum of the ‘weighted distance’ between positional vec-
torS &t jim 3 (2 j,-m)TZ;I(z 7im) and ‘weighted distance’ between
orientation-al vectors —ajimk; ((R j?m)Tiji) has to be mini-
mized when we update the rigid transformation parameters
{Rj,tj}j\':l. The registration accuracy can thus be further
improved since we utilize both positional and orientation-
al information. Our algorithm’s great robustness to outliers
benefits from the following two aspects. (i) If aj;, will be
computed to be small for m = 1, ..., M, then one observed
point d;j; is considered more likely to be an outlier. Thus,
the contribution of one probable outlier will be smaller than
probable inliers when we minimize f(®) in (7). (ii) The
updated aj;,, is subject to both positional and orientation-al
information.

IV. EXPECTATION MAXIMIZATION FOR MULTIPLE
GENERALIZED POINT SET REGISTRATION

The posteriors are first found in the E-step in our algorithm.
The model parameters ® are updated in the three M-steps
given the current posteriors {a sz} (i) The M-rigid step
minimizes f(®) in (7) with respect to the rigid transformation
parameters {R;, t;}Y j—1» given the current HMM parameters

{x;] ! Eq ! N ;- (ii) The M-cov step minimizes f (@) in (7)
with respect to the HMM parameters {x;, = ;} j=1» given the
new values of the rigid transformation matrix {R?,t‘j}?’zl
(iii) The M-model step minimizes f(®) in (7) with respect

to {d,,})_;, given the current parameters (R, t7, 7, Z9}Y_.

m=1> j° ]’

A. E-Step

In this step, the posteriors that associate one observed
generalized point d;; with an underlying HMMs’ component
centroid d,,;, o are updated by using the Bayes’ theorem:
P(zji=m)p(d;;|z;i=m, ®j”, )

p(d;;]©471) ’
where p(dji|z;; = m, % ~1) and p(d;;|©4") are defined
in (3) and (4), respectlvely

jlm’

al. = P(Zj,' = m|dj,',®‘1*1)

jim

B. M-Rigid Step

In this step, the rigid transformation matrix set {R%, t7}Y_|
is updated. In our previous work in [57] where the positional
error is isotropic, R‘j, t‘j have closed-form solutions. In con-
trast, there is no closed-form solution of the rigid transforma-
tion matrix when the positional error is generalized to the

anisotropic case. This is because that two hard non-linear
constraints of the rotation matrices to be satisfied in solving
the optimization problem. Two proposed steps are involved
to solve this problem: (1) formulate the optimization problem
with respect to [R}, t;] into another problem with respect to
[dR;, dt;]; (2) based on the Rodrigues formula, the optimiza-
tion problem with respect to [dR;, dt;] reduces to another
optimization problem with respect to a six-dimensional vector.
The details are introduced as follows.

The rigid transformation matrix set {R? s 7 N_| is updated
by minimizing f(®) in (7), given the current values for

q q—1 g—1 . . e . .
@i 6 and 7. f(O) in (7) is minimized with respect
to {R;,t j} 1 whlle considering two sets of non-linear con-

straints, namely (i) RJT.RJ = Izx3 and (ii) det(R;) =

Let [dR?, dt?] denote the incremental transformation matrix
between two successive M-rigid steps (i.e. ¢ and g — 1 steps)
associated with D; in the g-th step. The optimization problem
with respect to [R;,t;] is reformulated to one optimization
problem with respect to [dR}, dt;] for D; as the following

M

[dRq dtq] =arg mi z (2 im(z‘jlm)TE_l(zﬂm
- Cp,jim
—at, k7 (@RRITY, i,,) (8)
Cy,jim
where zﬂm =X — a’Rj(R‘Jk1 a1y tq 1) — dt;. We utilize

the Rodrigues parametrization to represent the incremental
rotation matrix dR; associated with D; between two adjacent
steps. More specifically, the rotation matrix is represented
as a three-element vector (i.e. 8 = [6;,6,,605]7), whose
direction and magnitude represent the axis and angular extent
of rotation, respectively. The expression of the Rodrigues
formula is presented in Appendix. E.

Let b; € R (j = 1,...,N) be defined as b; =
[d6],dt!]T, where df; e R**! and dt; € R**!. With the
Rodrigues formula in (28), we can re-parametrize [dR;, dt;]
as a function of b;:

dtj = bj(4 : 6),
where b;(1 : 3) € R**! and b;(4 : 6) € R**! represents
the first three and last three elements of b;. After substituting
the expression of [dR;,dt;] in (9) into (8), computing the
rigid transformation matrix [R‘j, t?] in the g-th step turns to
solving an unconstrained optimization problem with respect to
the vector b;:

N, M

b = argnll)in Z Z (Cp,jim + CN,jim) .

=1 m=1

(10)

G

To solve the optimization problem in (10), the “fminunc”
function in MATLAB with “trust-region” method is utilized.
In order to speed up the computing process, we compute the

Authorized licensed use limited to: University College London. Downloaded on March 02,2022 at 18:32:54 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Posteriors «a;
JiM Translation vectors {t; }] 1 Concentration parameter {K; }} 1

Fig. 1.

Rotation Matrices {R }} 1&  Covariance Matrices {Z; }] 1& Central point set

{dn)m=1

The summarized procedure of our proposed point set registration algorithm. Each iteration in the proposed framework consists of four steps:

(1) Expectation step (E-step) that the posterior correspondence probabilities are updated; (2) Maximization rigid (M-Rigid Step) that the rigid transformation
matrix is updated; (3) Maximization covariance (M-Cov Step) that the positional covariance matrix is updated; (4) Maximization model (M-Model step) that

the central unknown point set is updated.

gradients of C; in (10) with respect to b;, VC; € R**!:
VC; = 25\21 SM (VCpjim + VCy_jim), Where

.
VCp jim = ICp jimdt;s JCp jimaat;]

11
VCN,jim ( )

= [Jcy ;> 01317,
where J,, denotes the Jacobian of an expression a with
respect to some variable b, and the three Jacobians in (11) are
R!*3. After that b‘; has been calculated, then [d R‘j , dt‘;] can be
easily restored using the Rodrigues formula in (9) again. With
[de, dtj], the updated rotation matrice R;( € SO(3) and the
updated translation vector t? € R? in the current ¢ step are
computed as that in [2]: R? = dR?R?_l, t;’ = dR?t?_l —i—dt?,
where R?il € SO(3) and t € R3*! are the rotation matrix
and translation vector associated with D; in the (¢ —1)-th step.

C. M-Cov Step
In this step, we update X; and x; for j = 1,...N.
By solvmg ”f(®) = 03,3 (Where 03,3 € R3*3 is a zero matrix),

we can get the formula of the updated covariance matrix Z"
as:

Eq Zl IZm 1 jlm jlm( Jjim
i Np;

12)

, where z};, = x;; — Ry, — t]. Basically, we can see that
2? is the weighted covariance matrix associated with all the
points in the j-th PS and those points in the underlying PS.

Similarly, by solving 5’;}({@) = 0 for j = 1,...N,
J
e]+e *j

we have the equation about x; as: —— + =
e/ —e Kj

Np 2171 Zm ' aﬂm (Rj S X;;. This non- hnear equation of
x; has no analytical solution, and the fixed-point iteration
method is used to solve the problem [60].

D. M-Model Step

In this
FMMs’

step, we update the GMMs’ means and

central directions, given the current computed
values of a?im,EJq.,x;?,R‘j,t?. The GMMSs’ means are
updated by solving 9f(®)/dy, = 0,Vm € [1...M],

which yields the following y,, = (( ij a?im(x}-i -
T
aT\ yay-1pdT a\T 1)
¢HEH R (X, 0k, ROTEDTRYT) )
FMMs’ central directions set {y,,}Y_, are then updated by
minimizing f(®) with respect to ¥, subject to the constraints
o~ Z, 12, 1 j 71mR;iTx]l
(¥l I,Vvm € [1...M] o
HZ, 12, 1% , ]lij X!'H
The above is achieved by constructing and minimizing the
Langrangian form of f(®) as f(®) — A, (1 — (¥,,)"y.) with
respect to y,, form=1,..., M.

The

<4
s Y =

E. Implementation Details

The settings of some parameters involved in the proposed
registration algorithm are summarized as follows. The pro-
posed algorithm includes free parameters w, which is set to be
0.5 because in general do not know the prior of the outliers.
The initial value of the positional covariance matrix, in our
proposed algorithm, is set as £° = diag([100, 100, 100]). The
maximum number of iterations for all test registration method
is set to be 100. The initial rotations associated with all point
sets, {RO} _, are all set to be the identity matrices I3. At the
same tlme the initial translations, {tO}N , are computed as
t? =X; — R0 O for j =1,...,N, where X; is the mean
positlon Vector of D; and y® is the mean position vector
of the initialized central point set {y%}¥_ . The number of
components in the central hybrid mixture models, M, is set to
be 450.

V. EXPERIMENTS

To validate the proposed algorithm, two sets of experiments
were conducted. In the first experiment, the surface points
extracted from a human femur bone model are used. The
background of registering multiple point sets together in
IGS is the statistical shape modelling (SSM). Fig. 2 shows
the four generalized point sets with normal vectors which
are represented by arrows. In the second experiment, the
surface points extracted from a human pelvis bone model
are used. Fig. 6 shows the human pelvis model. The aim of
the two experiments is to demonstrate the high registration
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(a) View 1

(b) View 2

(c) View 3 (d) View 4

Fig. 2. The generalized femur bone point sets with normal vectors, which are
represented with arrows. The four views of the same human femur bone are
(a) view 1 where 1000 inlier points exist. (b) view 2 where 100 inlier points
exist. (c) view 3 where 200 inlier points exist. (d) view 4 where 300 inlier
points exist. The points in view 2,3 and 4 are plotted before they are disturbed
and misaligned.

accuracy, great robustness to noise and outliers of our pro-
posed algorithm by comparing to the state-of-the-art ones.
For each case with one specific type of positional noise and
one specific percentage of outliers, N,.;,; = 30 registration
trials have been repeated using the registration algorithms
(i.e., ECMPR [36], JRMPC [34], HMM(so) [57] and our
proposed algorithm). On one hand, we validate the advantage
of considering anisotropic positional uncertainty by comparing
our method with respect to JRMPC [34] and HMM(Iso) [57]
where the assumption of isotropic positional localization error
is adopted. On the other hand, we validate the advantage of
incorporating the normal vectors by comparing our method
with ECMPR [36] and JRMPC [34] where only positional
vectors are used in the registration.

To produce corresponding disturbed isotropic normal error
vectors, the concentration parameter x; = 3200 (j =
1,..., N in the von-Mises Fisher distribution is used in all
the following experiments [58]. The value x; = 3200 actually
represents 1° standard deviation in terms of the localization
error of the normal vectors. In the first experiment, the number
of components in the underlying mixture models, M, is set to
be 450 in JRMPC [34], HMM(Iso) [57] and our method. In the
second experiment, M = 600. On the other hand, the value
of the weighting factor w of the outlier distribution in (4) is
set to be 0.5 in the two experiments since that we have found
that the values of w do not have a significant influence on the
registration performances.

VI. EXPERIMENTS I ON MULTIPLE POINT
SET REGISTRATION

In this experiment, four data PSs are jointly registered
together. The original model generalized PS Dy has Ny =
1568 points. Four data generalized PSs {D j}N | (N =4) are
first randomly sampled from Dy. Each PS, D i, has different
numbers of generalized points, namely, i.e. Ny = 1000, N, =
100, N3 = 200 and N4 = 300. Thus, it can be concluded
that no exact one-to-one correspondences exist for most of
the points in each two PSs. The three observed PSs {D j}‘}zz
are further misaligned to own inherent transformation matrices
{Rm,e,j,t,,.ue,j}‘}z2 with respect to the first PS D;. For sim-
plicity, we sometimes refer to one PS as one ‘view’ hereafter.
The ‘true’ misalignments {R;,ye, ;, tirue, j}j‘zz are randomly and

'N represents the number of PSs to be registered. In the first experiment,
N = 4. In the second experiment, N = 2.

uniformly sampled in [0, 10]° and [0, 0] mm. Moreover,
position-al noise, orientation-al noise and outliers are further
injected to produce the four misaligned observed PSs. Nine
cases with different percentages of outliers are adopted: 10%
to 90% with 10% interval. Our aim is to register all the four
misaligned observed PSs {D j}‘j‘-:l together (i.e., to find the
rigid transformations between each two PSs). The rotational
error value (in degree) denoted as 6!,‘,, associated with the

Jj-th PS in the k-th registration trial is formally defined as the
following:

tr(Rzrue j(RLal j)T -
2

err,j

ok = arccos[ 1):| x 180/x , (13)

With the ECMPR method [36], {RL al J}4:2 is calculated by
registering the disturbed misaligned observed PSs {D; }4_2 to
D, respectively. With JRMPC [34], HMM(Iso) [57] and our
method, the estimated rotation matrix R ; associated with
the j-th PS (i.e. D;) is computed as (RII‘)TR’?, where {l/i’;}‘}:z
are the computed rotation matrices that align {D j}jzz with
the underlying model PS in the k-th registration trial. In the
registration process using JRMPC [34], HMM(Iso) [57] and
our algorithm, all the PSs are registered together and no PS
is considered as the referenced one. In the evaluation process,
we should note that it makes no difference which PS serves
as the reference one. For convienience, we use the first PS
as the reference one when we evaluate the three registration
algorithms.

A. Isotropic/Anisotropic Positional Noise

In the case of isotropic positional noise, the noise vectors
generated with covariance matrices E'"’“tmz = 113 (where
j =1,...4)is injected into {D J} In the case of anisotropic
positional noise, noise vectors generated from the covariance
matrices X; = diag([1/11, 1/11,9/11])(wherej = 1,...4)
are injected into {D j}‘]‘-:l. The larger value along the z-axis in
X ; is realistic since that in a stereo-camera, the localization
error’s variance in the viewing direction of the camera is
3-5 times of those in the other two directions.

We plot the mean rotational error values® associated with the
view 2, 3, and 4 in Fig. (3) in cases of isotropic and anisotropic
positional noise. Fig. 3 (a) shows that (1) in the case of
isotropic positional noise, the proposed method outperforms
ECMPR [36] and JRMPC [34] methods with a large margin,
which demonstrates the advantage of incorporating the normal
vectors into the registration process. (2) HMM(Iso) and the

2Note that £77¢"“? is in the coordinate system of D;, where j = 1,..., N.
Let R,,W/ be the ground-truth rotation matrix that align the model PS
{dm} —1 to D;. Then a noise vector v randomly sampled from a zero-mean
Gaussian dlSIrlbuUOl’l with the covariance matrix being X' ceted s added
to the noise-free model point Ry,e, jyn. That disturbed positional vector is
denoted as Rye, jym +V, which can also be written as Ry, j (Y +Rtme jv)
In other words, the injected noise to y,, is draw from a zero-mean Gaussian
distribution with the covariance matrix being R} o Z'/’” m“"R,me, ;. whose
non-diagonal elments are not-zero.

3For example, in one specific test case, the mean rotational error value (in
3 el ok,

where
3Nirial i

degree) associated views 2,3 and 4 is computed as:
0k . is computed using (13).

err,j
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Fig. 3. The mean rotational error value in degree of N, registration
trials associated with the view 2, view 3 and view 4 using ECMPR [36],
JRMPC [34], HMM (Iso) [34] and our proposed method in all test cases.
A specific percentage of outliers is used in each test case. The results are of
the cases (a) isotropic positional noise is injected into four PSs; (b) anisotropic
noise is injected into four PSs.

proposed method’s performances are close. Fig. 3 (b) shows
that (1) in the case of anisotropic positional noise, the proposed
method also outperforms ECMPR [36] and JRMPC [34] meth-
ods with a large margin. (2) the proposed method outperforms
HMM(Iso) in cases of 10%-60% outliers.

B. Influence of the Weighting Factor w on the Registration
Accuracy

The weighting factor of the outlier distribution w in (4)
is one user-specified hyper-parameter in our algorithm. The
influence of w on the registration’s performance (i.e. accuracy)
is explored in this section. We vary the values of w in (4) in
the range [0.1, 0.9] with the interval being 0.1, where 30%
outliers and anisotropic noise are injected into {D j}‘j‘-zl. In this
series of experiments, M is set to be 450. For each test case

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE I

THE P-VALUES OF THE STATISTICAL TESTS COMPARING THE Nyjq1
ROTATIONAL ERROR VALUES (IN DEGREE) WHEN w = 0.1
WITH THOSE WHEN w = 0.2, ..., 0.9 FOR THE LATER THREE
VIEWS, RESPECTIVELY. IN THIS SERIES OF EXPERIMENTS,
ANISOTROPIC POSITIONAL NOISE AND 30% OUTLIERS
ARE INJECTED IN THE FOUR POINT SETS (I.E. VIEWS).

THE VALUE OF M Is SET TO BE 450

w 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
View 2 0.4822 0.7948 0.5288 0.7893 0.9744 0.9830 0.7015 0.1765
View 3 0.1412 0.7547 0.1260 0.3512 0.6578 0.5172 0.0486 0.8566
View 4 0.0254 0.2291 0.0093 0.3654 0.2656 0.5211 0.0752 0.3863

with a specific w, N, = 10 registration trials are repeated.
Fig. 4 (a) shows the mean of the N, rotational error values (in
degree) associated with the three views with different values
of w. As can be seen from Fig. 4 (a), the mean rotational
error values are stable with different w.

Paired-sampled t-tests (o = 0.05) are conducted comparing
the N, rotational error values associated with the three views
when w = 0.1 and the N, rotational error values when w =
0.2,...,0.9, respectively. In all, we get 3 x 8 = 24 p-values
that are summarized in Table I. To summarize, 21 out of 24
(87.5%) cases do not pass the statistical tests. In other words,
the choice of w does not influence the final rotational error
values significantly in most cases.

C. Influence of the Number of Central Model’s Components
M on the Registration Accuracy

The number of components M in HMMs (or equally the
number of points in the model point set) is another important
user-specified hyperparameter that may influence the algo-
ritth’s performancesﬂ./ In this section, we vary M from 200
(#) to 600 (#) with the interval being 50, where
at the same time the anisotropic positional noise and 30%
outliers are injected into {D; }‘}:1. The parameter w is set to
be 0.5. For each test case with a specific value of M, N, = 10
registration trials are repeated. Fig. 4 (b) shows the mean of
the N, rotational error values (in degree) associated with
the three views with different M. In Fig. 4 (b), we denote the
cases with M = 200, ..., 600 as case 1 to case 9 respectively.
As can be seen from Fig. 4 (b), the mean rotational error
values slightly decreases with larger M.

To formally see if there are statistically significant dif-
ferences between results with different M, we conduct the
paired-sampled t-test (a« = 0.05 level) using the recorded error
values associated with the three views (between those with
M = 200 and those with M # 200), respectively. In all, we get
3 x 8 = 24 p-values that are summarized in Table. II. The
p-values that are smaller than 0.05 are emphasized using black
bold, which indicates that the error differences are statistically
meaningful for those cases. As shown in Table. II, (1) seven
out of 24 cases (i.e., 29.17%) demonstrates statistically signif-
icant differences. (2) most of the test cases (70.83%) shows
no significant differences between different M. As discussed
in [34], the value of M can be safely chosen from the range

[Z;'V:l N; 3 Z;-Vzl Nj]
2N 2N '
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TABLE II

THE P-VALUES OF THE 24 PAIRED-T TESTS COMPARING THE RECORDED ROTATIONAL ERROR VALUES WHEN M = 200 WITH THOSE WHEN
M =250, ...,600 FOR THE LATER THREE VIEWS, RESPECTIVELY. IN THIS SERIES OF EXPERIMENTS, ANISOTROPIC NOISE AND
30% OUTLIERS ARE INJECTED IN THE FOUR POINT SETS (I.E. VIEWS). THE WEIGHTING VARIABLE w IS SET TO BE 0.5

M 250 300 350 400 450 500 550 600
View 2 | 0.3712 0.8702 0.6092 0.8047 0.6638 0.4134 0.2599 0.1720
View 3 | 0.1508 0.9069 0.9579 0.3507 0.3664 0.4608 0.3055 0.1538
View 4 | 0.4674 | 0.0069 | 0.0136 | 0.0114 | 3.1077 x 10~ * | 0.0013 | 2.6539 x 10~ * | 3.4373 x 10~ *
2 e View 2
1.8 |=@=View 3 J
a View 4
O 16+ 8
Z
o 1.4 (a) JRMPC, 10% (b) JRMPC, 30% (c) JRMPC, 60% (d) JRMPC, 90%
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0.2 1 Fig. 5. The integrated model point set recovered using (a-d) JRMPC method,
0 . . . . . . . (e-h) our method with different percentages of outliers injected into the point
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 sets.
The weighting factor w in (4)
(a) Effect of the weight w
2 e View 2| | ‘
18 === VView 3 |
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O 04r 1
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(2)00 250 300 350 400 450 500 550 600 Fig. 6. The pelvis (hip) point set used in the Experiment II in Section. VIIL.
. The black dots represent the model point set while the red dots denote the
The Number Of M In (4) sampled points from the model point set (before they are futher disturbed and
(b) Effect of M misaligned).
Fig. 4. (a) The effect of the weighting factor w in (4) on the rotational error

in degree, when anisotropic positional noise and 30% outliers are injected into
the four PSs. (b) The effect of the number of components M in (4) on the
rotational error in degree, when anisotropic positional noise and 30% outliers
are injected into the four PSs.

D. Integrated Model

Both JRMPC method and our algorithm can recover the
underlying ‘noise-free’ model PS. We compare the recov-
ery abilities using both algorithms. Fig. 5 (a-d) and (e-f)
show the recovered integrated PS using the JRMPC method
and our algorithm with i) different percentages of outliers;

ii) anisotropic noise injected into all observed PSs. As can be
seen from Fig. 5, in all test cases, our algorithm is able to
recover the model PS with (i) a much smoother boundary and
(ii) fewer outliers than the JRMPC method is. By comparing
Fig. 5 (a-d) with (e-f), we can also see that the integrated
model with our algorithm is more robust to outliers.

VII. EXPERIMENTS II ON PAIR-WISE
POINT SET REGISTRATION

In computer-assisted orthopedic surgery (CAOS), the pre-
operative surgical plan is tailored in the volumetric medical
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Fig. 7. Summarized statistics include the mean and standard deviation of
the Nyiq rotational error values in degree in each test case where a specific
percentage of outliers is used. The results are (a) isotropic positional noise;
(b) anisotropic positional noise.

images (e.g., CT images) while the actual surgical operation
is conducted in the patient coordinate frame. To utilize the
pre-operative planning information, the pre-operative space
has to be registered with the intra-operative space in order to
provide accurate surgical guidance to the surgeon or medical
robot during surgery. Compared to the PSs segmented from
the pre-operative images, the intra-operative PSs usually have
much fewer points. As shown in Fig. 6, the intra-operative
points (in red) are sampled from the pre-operative PSs (in
black). In this experiment, we conduct the experiments on the
PS representing the human pelvis bone. We are registering
two PSs in this experiment. The model pelvis PS Dy has
No = 1568 generalized points. In each registration trial, the
‘true’ misalignment [R;, e, t4.] 1S randomly sampled from
[10,20]° and [10,20] mm, and applied to the model PS
Dy. Dy is then misaligned to create the mis-aligned Dy. The
N; = 100 points in the data point set (i.e., D) are randomly

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

-

=== Anisotropic Noise
=== |sotropic Noise

o
®
:

.

<
[}

o
~
Py

<
N o

Mean Rotational Error(in deg)

1000 1200 1400

kappa

0
400 600 800 1600

Fig. 8. The mean rotational error values in degree with respect to the different
values of kappa. The readers should note that smaller values of x correspond
to larger orientational error values.

sampled from D and disturbed with Gaussian positional noise
and orientation-al noise, respectively. As is in the case of
registering multiple PSs: (i) The isotropic covariance matrix
Xis X = %13, (i) The anisotropic covariance matrix X
is ¥ = diag([1/11,1/11,9/11]). In addition, nine cases of
different percentages of outliers are injected into the D;: 10%
to 90%. More specifically, for example, 10 outlier generalized
points exist in D; when 10% outliers are injected. In this
experiment, we are registering the misaligned Dy with D;. The
rotational error value (in degree) is defined as the following:

ko pk \T_ —~
gk — arccos[w] x 180/ ,, where R’ is the

estimated rotation matrix in the k-th registration trial using
the ECMPR [36], JRMPC [34], HMM(Iso) [57] and our
proposed algorithm. The computation procedures of ﬁ’c‘a , using
the above four registration algorithms are similar to those
described in the first experiment. The number of points in
the underlying model PS (i.e. M) is set to be 600 in this
experiment. The weighting factor w of the outlier distribution
in (4) is set to be 0.5.

Fig. 7 shows the mean and standard deviation of the
Niriai = 30 rotational error values for each test case, under
both isotropic and anisotropic positional noise. As shown in
Fig. 7, our proposed algorithm outperforms ECMPR [36],
JRMPC [34], and HMM(Iso) [57] in all test groups and is
very robust to additional injected outliers.

A. Influence of k

In this section, we explore the influence of x (i.e., the
localization error magnitudes associated with the normal vec-
tors) on the performances of our proposed method. As it
can be seen from Fig. 8, there is no evident increase of the
rotational error values with larger injected orientational error
(i.e. smaller values of «x) in both cases of anisotropic (in blue)
and isotropic (in red) positional noise. We further conduct
statistical analysis to verify if there is a statistical difference
between the rotational error values with respect to different
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TABLE III

THE REGISTRATION ERROR VALUES WITH THE
ALGORITHM’S ITERATIONS

Iteration 0 Iteration 1 ITteration 5 | Iteration 10 | Iteration 12
13.7265° 6.9963° 0.5747° 0.4751° 0.1313 °
24.4170mm | 2.1177mm | 1.1293mm | 0.2751 mm | 0.0787 mm
Before Registration Iteration 1 Iteration 5 Iteration 10

‘ * Inatraoperative Inliers * Intraoperative Outliers - Preoperative Model‘

Fig. 9. The qualitative results of the registration process on the human pelvis
model point sets. The red, yellow and blue dots denote the intra-operative
inlier, intra-operative outliers, and the pre-operative model points, respectively.
As can be seen from left to right, the red and blue points will become closer
and closer in the 3D space, which indicates the two point sets are registered
aggressively.

values of x. We compare the results where x = 1600 with
those where x = 400, x = 600, « = 800, « = 1000,
1200 and « = 1400 respectively, in both cases of
anisotropic and isotropic positional noise. We found that most
x values are larger than 0.05, which means that the results
are not statistically different at the significant level a = 0.05.
Only one case that the p-value is smaller than 0.05. We thus
conclude that our proposed approach is thus very robust to the
increasing error values associated with the normal vectors.

K =

B. Qualitative Results in the Registration Process

In this section, we include the registration processes with
both quantitative and qualitative results. Fig. 9 shows the
qualitative results. By looking carefully into this plot, the
readers can see that the red points (intra-operative points) can
well align with the blue points (pre-operative points) after the
iteration 10. Table. III includes the corresponding quantitative
results, which include the rotational and translational error
values. As can be seen from Table. III, both the rotational
and translational error values decrease to a very low level(i.e.
0.5747° and 1.1293mm respectively) after five iterations.

VIII. DISCUSSION

Accurately aligning multiple PSs into one common coordi-
nate frame is the first and also essential step in statistical shape
modelling (SSM). In this paper, we have proposed a novel
probabilistic approach to jointly register multiple generalized
PSs. The core idea is to consider that the generalized PSs are
generated by an underlying unknown hybrid mixture model
(HMM). The unknown model PS can be recovered at the end
of our approach. We have demonstrated through experiments
that in cases of both isotropic and anisotropic positional noise,
our algorithm (i) achieves lower registration error; (ii) is more

robust to outliers. We have also found that the weight of the
additional uniform distribution in our model will not affect the
algorithm’s performance in a statistically significant manner.

Varying percentages of outliers commonly exist in shapes
extracted from volumetric medical images [26]. Experimental
results show that our algorithm owns great robustness to large
injected outliers. Compared with other registration methods,
our algorithm shows significant improvement when the PS
is sparse (i.e., the *View 2’ in our case). The robustness to
outliers of our algorithm partially benefits from the utilization
of normal vectors.

Our algorithm treats all PSs equally and thus there is no bias
towards one specific PS. Our algorithm significantly improves
the JRMPC method in the following two aspects. First, the
normal vectors associated with each point are used. Second,
the position localization error is assumed to obey multi-variate
Gaussian distributions to accommodate anisotropic noise in
the scenario of surgical navigation. With the assumption of
anisotropic positional noise, computing the rigid transforma-
tion parameters does not have a closed-form solution, which
led us to reformulate the associated non-convex optimization
problems of updating the rigid transformation matrices into
unconstrained convex ones. To speed up the optimization
process, we compute and present the gradients of the objective
function to be minimized.

Another advantage/byproduct of jointly registering multiple
point sets is that the central model PS can be acquired
after the registration procedure. To note, both JRMPC and
our algorithm can recover the unknown central model PS.
Compared to the JRMPC method, our algorithm is able to
recover a model PS in a more accurate way and is also
more robust to outliers. Our work has several limitations.
First, all the theoretical derivations of this article are based
on the assumption that the positional and normal vectors are
independent, which is a very strong assumption and maynot
be correct in all practical situations. Second, the proposed
algorithm has some user-specified parameters including (i) the
weight of the uniform distribution w in the overall PDF; (ii) the
number of points M in the underlying model PS. Although we
have experimentally verified that the above two parameters
do not influence much the final registration accuracy, the
verifications are only done on limited data sets. Third, the
proposed algorithm may not very suitable to large scale point
sets, which can consume a lot of computational time and may
make the optimization problem intractable. Fourth, we only
test our algorithm on the bone data sets which are convex.
The interested readers can further apply the algorithm on other
medical data sets that are more complex. Fifth, the PSs used
in both experiments are from one same human subject. Future
work includes extending/modifying the proposed algorithm to
registering the models from multiple subjects.

IX. CONCLUSION

In this article, we have presented a novel probabilistic
method to jointly register multiple generalized PSs consid-
ering anisotropic positional uncertainties. The core idea is
to regard all the generalized PSs as the transformed realiza-
tions of underlying unknown hybrid mixture models (HMMs).
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We have demonstrated through extensive experiments that
our algorithm; (i) achieves significant lower registration error
values; (ii) is more robust to outliers (iii) converges much
faster than the state-of-the-art registration methods. The results
show both theoretical and clinical value of our proposed
method.

APPENDIX A
NOMENCLATURE

This article has the following notation conventions:

o N € R - the number of observed generalized point sets
to be registered,

o j € R - the index of one observed generalized point set,

o D; - the j-th observed generalized point set,

o D - the union set of all the observed generalized point
set,

o i € R - the index of one generalized point in D;,

e N; € R - the number of generalized points in D},

e M € R - the number of generalized points in the
underlying model point set,

e g € R - the index of the registration algorithm’s iteration,

o N - the number of trials conducted in each test case,

o dj; € R®! - the i-th generalized point in D},

« m € R - the index of one generalized point in the
underlying model point set,

o d,, € R®%! the m-th generalized point in the underlying
model point set,

« R; € SO(3) - the rotation matrix that aligns the under-
lying model point set with D;,

o t; € R¥™! - the translational vector that aligns the
underlying model point set with D;

o k; € R - the concentration parameter of the von-Mises-
Fisher (VMF) distribution for orientation-al uncertainty
associated with D,

« X; € S¥3 - the positional covariance matrix associated
with Dj,

o AT - the transpose of a vector or a matrix A,

e O, - the model parameters used in the joint registra-
tion of multiple point clouds (JRMPC) method © ., =
R 61 (Y o)A )

o O - the model parameters in our proposed algorithm ® =
(IR, ty, 75, 1 (dn )y,

e ®7 - the model parameters in
({R;]’ tj’ Kj, Z:j}ivzl P {dm}nA;[:I)

e P(zji = m) - the prior correspondence probability,

e O, - model parameters of positional data {R, t, a2},

o 0O, - model parameters of orientational data {R, x},

e Zji € {zji € Z,1 < zj; < M + 1} - the correspondence
variable,

o 1 - a vector with all elements being one,

o I3.3 - the identity matrix of dimension 3,

o Tr(e) - trace of a matrix,

o diag(e) - diagonal matrix of a vector,

o det(e) - determinant of a matrix,

o || ®||F - Frobenius norm of a matrix,

e ajin € R - the posterior probability that assigns d;; to
the m-th point in the underlying model point set,

o w € R - the weight of the inliers in the mixture models,

the g-th step
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« GMM - Gaussian mixture model,
o FMM - Fisher mixture model,
« HMM - Hybrid mixture model.

APPENDIX B
VON-MISES FISHER DISTRIBUTION

In this section, we briefly introduce the basics of von-
Mises-Fisher (vMF) distribution that is used to model the
orientation-al error [58]. The probability density function of
the vMF distribution for the random d-dimensional unit vector
X (i.e.X € R? and |[X]| = 1, or equivalently X € S?~!) is given
by pX|, k) = cd(K)e"’A‘Ti, where ||| = 1,x > 0and d > 2.
The normalizing constant c¢;(x) is cy(k) = m,
where I, (o) denotes the modified Bessel function of the first
kind and order r. The above density function p(X|fL, k) is
parameterized by the mean direction & and the concentration
parameter k. We remark that larger values of x indicate
stronger concentration about the mean direction. More specif-
ically, in our case (where d = 3), the normalizing constant
cq(c) is the following: ¢ (k) = m

APPENDIX C
A BRIEF INTRODUCTION OF THE JRMPC ALGORITHM

In this section, we give a brief discussion of the joint regis-
tration of multiple point clouds (JRMPC) algorithm. The idea
of the JRMPC method is to regard all the PSs to be registered
as the samples of the transformed central PSs. In JRMPC, each
point in the central PS owns a specific standard deviation o,.
Then we could have the probability density function of an

observed point x;;, given the correspondence z;; = m and
the model parameters © ., = {{Rj,tj}yzl,{ym,am},’,‘le)}
as follows
1 — 34 IIx;i—Ry, —t|1?
PXjilzji =m, ©jpmpe) = ——e i (14)
Qray)

Given the independence between the observed points,
we can have the complete PDF of an observed point as follows

M
PXil O jrmpe) = z PP (Xjilzji=m, O jrmpc) + pus1Ud(h)
m=1

15)

where p, and pp; are the mixing coefficients of the
Gaussian mixtures and the additional uniform distribution
U (h) which is used to account for the outliers, where 7 € R
represents the volume. The joint probability density function
is

PX, 210 jmpe) = [ [ P&ji12ji> © jrmpe) »

Ji

(16)

To find the optimal estimation of ® is to minimize the
expected negative log-likelihood term with respect to the latent
variables Z,

Q(®j’mPC|X’ Z) = EZ [Ing(X, Z|®jrmpc]
= D P(Z[X, 0 jrmp)log(p(X, Z: © jrmpe))
zZ

a7)
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Although in their derivations, the covariance matrix %, is
used, we find that in both the expectation and maximization
steps the isotropic assumption is still used. Assuming that the
observed data are independent and identical distributed, the
objective function is written as the following:

Q(®jrmpc)

1
= _E Zajim(llxji -R

jim

+logpui z O ji(M+1)
ji

3
i¥m — tj||2 + Eloga,ﬁ - 210gp,,,)

(18)

In order to acquire © j,pe by minimizing Q(O jrmpc), the
expectation maximization technique is used. In the expecta-
tion step, the posteriors o, are computed given the cur-
rent rigid transformation matrices. In the maximization steps,
given the current posteriors, the rigid transformation matri-
ces {Rj,tj} j=1,> the central PSs {ym}_ 1 together with their
associated standard deviation values {s2}"_, are updated in
a sequential manner. The expectation and max1mlzat10n steps
will iterate until convergence.

The main differences and improvements of our proposed
algorithm with respect to the original JRMPC method are
summarized as follows. First, we have generalized the original
JRMPC algorithm to the six-dimensional PSs. Normal vectors
that are used can be thought of as first-order features, which
can be extracted from the PSs. With more enrich information
used, we would like to enhance the registration’s robustness
and accuracy. Second, we have generalized the assumption of
isotropic Gaussian distribution associated with the positional
error to anisotropic one. Third, each mixture model component
owns its distinctive parameters o, in the JRMPC method.
On the other hand, as will introduced in our method, each
point set owns its specific parameters X ; and «;. The insight of
formulating the mixture models in this way is that the multiple
PSs may come from different modalities, and thus may own
different measurement uncertainties. We have compared the
registration performances using the above two formulations
and found that the current formulation works better.

APPENDIX D
WHEN X; Is A DIAGONAL MATRIX

A. The Simplified Probability Density Function (PDF)

Let Xj be a diagonal covariance matrix denoted as

s} 0 0
=10 03 0 (19)
0O 0 03

Then we can easily get the determinant of the |X;]

020 O' , 12 |2 = 0,0,0; and
: 0 0
o2
N
T 1 . _ . weighted
Zjim 2 Zjim = Zjip, 0 o2 Zjim = ZjimZjim
y
0 _

With the above expression, we can get the simplied version
of PDF in (3) as follows,

p(djilzji =m, 0Oj,)
1 T weighted Kj

= —F 2 ZiimZjim e
(27)z|%;|: 27 (eI — e™*7)
Fisher

1 Ty -1
5 (2jim)) E‘,'

eri R;3.) "R

Gaussian

— Kj er (RY,)"R;i—

B 2w %axa o,(e’i —e "
( VO

(Zjim)

(20)
The simplified version of (4) can be derived from the above

expression.

B. The Simplified Objective Function Cp jiy in (8)

The Cp jin in (8) is rewritten as follows,

Ty-—-1,49
2 jlﬂl( jim J zjim
! 0
ol
= 5@ 0 5 0 e, 1)
y
o o
o}
Let the definition of d be the follows,
(Zjlm)x
z;]‘im = (Zjlm)V (22)
(Z‘j]lm

(zqu Ty~-l,4

Gim 7 Zjim 18 reduced to

; 1.9
The expression of ja Gim

1

CP,jim = 2 jzm

( (2,0 + —( 2,00 + —(z,,m 2) @3
C. The Simplified Z? in M-Cov Step

Given the simplified version of Cp j;,,, in the maximization
step, the terms that are related with X; is as follows,

NiM .
z Cp jim + ENPj log | %]

i,m=1
N;j,.M

1
= > Cpjim+ 5 Nej logolo}a?

i,m=1

f(Z) =

N;.M
= D Cp jin + Npjlogo.o,0; (24)
i,m=1
The derivative of f(X;) with respect to g, is
N;.M
f(Z)) S Np
0.—] = Z a;]tmo-x (z jlﬂl) +—
* i,m=1 X
= 2 Z ajlm(z_]lm J (25)

i,m=1
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Let @ = 0, we can get the expression of the updated o
as

(26)

Z aﬂm (zﬂm )

i,m=1

ol = (
X NPJ

Similarly, we can easily get the updated o and o7 as
=G )
azq = (

Z ajlﬂl( jim )
l m=1
D. The Simplified y, in M-Model Step
The simplified version of yj, can be acquired by substituting
the expression of oy, oy and o into the expression of yj,

in (12).

Q
=

APPENDIX E
THE RODRIGUES FORMULA

More explicitly, as that in [60], a random rotation matrix
R(0) is expressed as:

in(6) ~ cos(h)
sk(@ _
o0+ e

where || e || denotes the norm of a vector or a matrix, and
sk(0) € R¥3 is a skew-symmetric matrix:

R(O) =Lys+ o’ sk(0)*, (28)

0 —0; O
sk(@) = | 65 0 —0, (29)
-6, 6, 0
APPENDIX F

DETAILED RESULTS OF EXPERIMENT I

In this section, we show all the detailed results of registering
multiple point sets in both cases of isotropic and anisotropic
positional noise. Fig. 10 (a) (b) (c) respectively show the reg-
istration error values associated with view 2, 3, 4 in the case of
isotropic positional noise. Fig. 10 (d) (e) (f) respectively show
the registration error values associated with view 2, 3, 4 in
the case of anisotropic positional noise. In the case of
isotropic positional noise, as shown in Fig. 10 (a) (b) (c¢), both
HMM(Iso) and our proposed method outperform the other two
registration approaches significantly for all three views. Our
proposed method achieves comparable performances against
HMM(Iso) in most test cases of different outlier percentages.
These results are reasonable and indicate that our method actu-
ally reduces to HMM(Iso) in the case of isotropic positional
noise. In the case of anisotropic positional noise, as shown
in Fig. 10 (d) (e) (f), both HMM(Iso) and our proposed
method outperform the other two approaches significantly for
all three views. In terms of registration error values associated
with view2, our proposed method outperforms HMM(Iso)
significantly. In terms of registration error values associated
with view3 and view4, our method is slightly better than
HMM(Iso) in most test cases of different outlier percentages.
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Fig. 10. The mean registration error values associated with three views
in the case of registering multiple point sets where isotropic positional
noise and anisotropic positional noise are injected respectively. The results
in all sub-figures are of the cases (a) isotropic positional noise, view 2;
(b) isotropic positional noise, view 3; (c) isotropic positional noise, view 4;
(d) anisotropic positional noise, view 2; (e) anisotropic positional noise,
view 3; (f) anisotropic positional noise, view 4.

These results demonstrate the evident advantage of considering
the anisotropic positional noise in registering multiple point
sets simultaneously.
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