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Abstract—Human-robot collaboration is becoming increasingly
popular in the manufacturing industry, opening the door to a
large range of applications by combining the complementary
skills of the human worker and the robot. Collaborative robots
are also a solution to decrease the operator workload and
indirectly reduce the risk of occupational injuries such as mus-
culoskeletal disorders (MSDs). The latter represents one of the
major causes of absenteeism at work. Thanks to the development
of human tracking devices, it is possible to monitor the operator,
analyze the postures, and assess the associated MSD risk. In this
paper, we present a novel ergonomics optimization framework
that performs postural optimization based on the virtual element
method. A feedback interface is developed whereby the user is
informed about non-ergonomic postures and an improved body
pose is proposed. The workpiece position controller module acts
on the cobot end-effector and indirectly on the co-manipulated
part in such a way that the operator’s posture is improved. The
framework was validated by a user study performed on a human-
robot collaboration task whereby the subject polishes a part hold
by the robot. The conducted study of the user’s perception and
REBA scores showed promising results.

Keywords—ergonomics, human-robot collaboration, optimiza-
tion, posture, framework

Note to Practitioners—This paper is motivated by the problem
of non-ergonomic posture of workers in hybrid workcells. The
proposed approach makes use of virtual elements (springs and
dampers) to build a mechanical model of the human body posture
and perform postural optimization. The obtained body joint an-
gles are fed into two modules of the framework. First, a graphical
interface displays the current pose of the user and proposes
to him the improved posture. Second, a controller adapts the
pose of the workpiece hold by the collaborative robot. This is
realized by computing a displacement vector between the wrist
current and optimized positions. The use of such a framework
was demonstrated on a collaborative polishing task whereby
the robot adjusts the position of the workpiece. After a user
study test with 10 participants, joint data were collected and the
REBA scores of different subtasks were measured and compared.
The results from these preliminary experiments showed that
the proposed approach improves the human body postures and
offers a promising solution to enhance ergonomics by the robot
assistance in case of robotic workcells. The conducted survey also
shows an overall positive subject’s perception of the system.

I. INTRODUCTION

Human-robot collaboration, as part of the industry 4.0 [1],
is increasingly adopted in the manufacturing industry where
it shows all its potential when moving from mass production

to customized part fabrication [2]. This is mainly due to
the high flexibility that the human-robot provide through,
amongst others, a more intuitive programming approach
compared to traditional industrial robots using for instance
programming by demonstration (PbD) and user-friendly
interfaces. Examples of PbD tasks where the human skills
are learned and reproduced by the robot include complex
operations such as welding [3] [4] or painting [5]. The
involvement of the human during the collaborative process
also allows performing new types of applications thanks to
the combination of the complementary capabilities of the
robot and the human worker. Collaborative robots can also
improve the working conditions of humans by decreasing
the workload of human workers and by reducing the risk of
workplace injuries [6].

Integrating a robot on the work-floor in close proximity
of the operator raises safety concerns [7]. Recently, many
efforts have been made to achieve a safer human-robot
interaction. This includes, on one hand, control strategies
[8] to avoid dangerous collisions and, on the other hand,
compliance control methods [9][10]. However, implementing
robot safety measures does not prevent harmful effects of
non-ergonomic postures on the human body during task
execution. Musculoskeletal disorders (MSDs) represent one
of the major causes of absenteeism at work, leading to an
important productivity loss in the manufacturing industry
[11]. They are mainly due to a repetition of improper postures
during a long period of time and high physical effort such
as pulling, pushing, and lifting [12]. It is estimated that 40
million workers are affected by MSDs in Europe, leading to
an associated yearly cost of 240 billion euros [11][13].

Improving ergonomics and decreasing the workload of the
operator at his workstation has been investigated through
different methods. In [14], a generic approach is proposed for
the design of a workplace whereby the workstation layout is
determined using the anthropometry of the user population.
Immersive virtual reality is used in [15] to study and enhance
the industrial workspace. Feyen et al. [16] developed a
PC-based software that assesses the biomechanical risk of
injuries in an environment of automotive assembly. In [17],
a systematic design procedure is proposed for human-robot
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shared workspaces. The workstation layout is determined by
assessing the ergonomics of the assembly tasks by deriving
the subtasks requirements from the CAD models, the product
and assembly sequence constraints.

Among the approaches to decrease the human physical
workload, one can cite task allocation methods that alleviate
the human worker’s job by assigning tasks to the robot in case
of high user effort, such as in [18], [19] and [20]. In order to
improve the posture, human body measurement techniques are
necessary. Observational methods are well-known ergonomic
tools that apply to a wide range of applications [21]. They
are systematic processes that consist in analyzing the body
postures of the operator and encoding manually the estimated
joint angles from a video recording of the task. However,
since they are paper-based, they suffer from limited precision
and are time-consuming. Vision-based human tracking devices
such as time-of-flight cameras allow performing automatic
postural assessment [22]. These provide a cost-effective
solution to analyze the operator ergonomics on the work-
floor. Aside from the human kinematics sensing, various
models have been proposed to evaluate the human body
dynamics [23][24]. Nevertheless, the on-line implementation
of such models is often an issue due to their high complexity
and is, therefore, limited to an off-line utilization. In [25],
a method is proposed to estimate on-line the overloading
joint torques using the human dynamic model. Peternel
et al. [26], developed an approach for the estimation of
the human effort model using muscle fatigue. In [27], the
human manipulability is assessed for general and task-specific
applications. Other methods to assist the worker include the
development of co-manipulation controllers [28], wearable
exoskeletons [29][30] and supernumerary robotic limbs [31].

Collaborative robots can help improving the ergonomics of
the task executed by the human through the monitoring of
the user state and appropriate control of the robot. In [32], a
framework is developed where the robot motions minimize the
overloading joint torques of an estimated dynamic state model
of the human. Busch et al. [33] proposed an optimization
method based on a personalized human kinematic model
that adapts the robot behaviour to bring the worker pose to
the improved posture. A similar multi-objective optimization
method is used in [34] that determines the optimal trajectory
that leads to the ergonomics posture. In [35], the robot is
moved in such a way that the muscular fatigue of the human
operator is minimized. In this paper, a novel framework is
proposed for postural optimization that improve the worker
comfort and avoid unsafe postures during human-robot
collaborative tasks. The first contribution, compared to
existing methods, is the use of a virtual spring model to
determine the most ergonomic human joint angles. Unlike
common optimization problems, this provides a simple and
intuitive solution to the optimal posture computation. The
second contribution, complementary to the positional robot
adaptation of the co-manipulated part, is the display of the
optimal pose to the user. This allows to lower the risk of
MSD even during human-only capable tasks. Dynamics is

not considered in the development of the method in this
paper. The goal of the ergonomics optimization algorithm is
to improve the user’s posture during co-manipulation tasks
such as during object handing-over, painting or polishing.

The ergonomics framework is composed of three modules.
First, the 3D skeleton tracker determines the joint angles of
the human body and transmits the data to the visualization
and workpiece position controller modules of the ergonomics
optimizer. The former informs online the user about his
posture and proposes an optimal pose. Feedback is provided
to the operator in case of a high-risk posture. The workpiece
position controller adapts the robot’s behavior to bring the
user to an improved pose during co-manipulation/hand-over
tasks. The method is validated on the assembly of a crusher
unit from the smoothie machine manufactured by Alberts.

The paper is organized as follows. First, Section II states
the problem and the main addressed aspects. Section III
presents the virtual element-based method that is used in the
framework to determine the optimal posture as well as the
theoretical background. Simulation results were run to validate
the optimization method before the real implementation. The
ergonomics optimization framework and its main modules
are then described in Section IV. Section V presents the
experimental validation on two different use cases. The first
task consisted in a collaborative assembly whereby the user
and the robot jointly assembled the manufacturing part. In the
second task (collaborative polishing), a user study is performed
where the participants are asked to polish a cylinder held by
the robot. Finally, in Section VI, the results of the framework
are discussed and future perspectives are presented.

II. PROBLEM STATEMENT

During human-robot collaboration tasks, the cobot can phys-
ically assist the user. For instance, the manipulation of objects
might lead to non-ergonomic postures such as in the case of a
part placed on a low-height table. The operator would need to
lean forward to pick up the desired piece. This might create
(especially if repeated throughout the day) excessive load on
the user’s back. In this context, the robot can help the human
by appropriately position and/or orient the object/tool such that
the ergonomics is improved during the task. This is depicted
in Figure 1. In case the object/tool’s pose is constrained or
the robot’s intervention is not possible, feedback should be
provided to the user if an improper posture is detected and
an improved pose should be computed and displayed to the
operator.

For this purpose, a mathematical method needs to be devel-
oped to determine the set of body joint angles that leads to an
ergonomically optimal posture.

III. VIRTUAL ELEMENT-BASED POSTURAL OPTIMIZATION

In this section, the postural optimization method using
virtual elements is detailed. First, the developed human model
is presented, whereby the left and right kinematic chains of
the body are separately considered. Second, the Rapid Entire
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Fig. 1: Workpiece position control by the collaborative robot
during a polishing process to improve the user’s posture.

Body Assessment (REBA) method that is used to assess the
ergonomics of the user posture is briefly described. Finally,
simulations tests are performed to validate the proposed er-
gonomics optimization approach and assess the performance
of the algorithm.

A. Human model

The human skeleton is modeled by kinematics chains with
virtual mechanical elements namely springs and dampers,
creating corresponding joint torques. Solving the Ordinary
Differential Equations (ODE) of the model results in the
body joint angles of the optimal static body pose. Torsional
springs are attached to the body joints as depicted in Figure 2.
Virtual dampers are also included along with the springs (not
shown in the images). These allow to stabilize the system.
Linear springs are attached to the wrist to bring the hand
to the desired x, y, z position as shown in Figure 2.(a), (b),
and (c) for respectively the 3D, 2D, and 1D constraint cases.
Orientation’s constraints of the hand are set using torsional
springs (not shown in the Figure for clarity). In the case of
situations where both position and orientation constraints
need to be specified, both torsional and linear springs are
used. The developed model considers the upper body part of
the human where a serial chain is created from the trunk base
to the right or left hand depending on the user handedness.
Other models can be generated in the same fashion. A full
body model would use serial chains that connect the feet
to the hands with constraints specified at the extremities.
A similar model for the two-arms case can be determined
where two serial chains are used connecting respectively the
left and right hands to the trunk base. The joint torsional
springs free position is set to the joint angle that leads to
the most ergonomic posture. In this case, these values have
been selected based on the Rapid Entire Body Assessment
method (REBA) [36]. The latter is an analysis of the human
posture where scores are determined for every body part
and coupled together with other considerations related to the
activity and forces exerted to obtain the REBA score. Section
III-B describes the main steps of the method. It should be
noted that the REBA method was selected as it provides a
general approach to the optimization of the body posture and

is still applicable in the case of tasks where the lower body
part is moving such as during the lifting of a load from the
ground (legs are bent).

The equations of motion of the right/left human kinematic
chain read as follows:

ChΘ̇h +Kh(Θh −Θ∗h) = Th (1)

where h denotes the handedness (right/left), Ch is the
damping matrix, Kh is the stiffness matrix, and Th, the
joint torques generated from the external forces on the wrist.
Note that, the acceleration properties such as the masses and
inertias of the links are neglected since a quasi-static system
is considered.

Θh, Θ̇h and Θ∗h represents respectively the vector of the
joint angles, velocity, and free positions:

Θh =



θ1
θ2
θ3
θ4
θ5
θ6
θ7


, Θ̇h =



θ̇1
θ̇2
θ̇3
θ̇4
θ̇5
θ̇6
θ̇7


, Θ∗h =



θ∗1
θ∗2
θ∗3
θ∗4
θ∗5
θ∗6
θ∗7


(2)

with the following indexing: 1 = trunk bending, 2 = trunk
side bending, 3 = trunk twist, 4 = upper arm flexion, 5 = upper
arm abduction, 6 = upper arm rotation, 7 = lower arm flexion.

The damping and stiffness matrices read as follows:

Ch = diag(c1, c2, c3, c4, c5, c6, c7) (3)

Kh = diag(k1, k2, k3, k4, k5, k6, k7) (4)

where ci and ki are the damping coefficient and stiffness at
joint i.

The applied torques on the joints are expressed by:

Th = JTh Fh (5)

where the applied external force on the wrist, due to the
virtual spring is:

Fh =


−kx(x− xd)− kI,x

∫
(x− xd)dt

−ky(y − yd)− kI,y
∫

(y − yd)dt
−kz(z − zd)− kI,z

∫
(z − zd)dt

−kθ(θ − θd)− kI,θ
∫

(θ − θd)dt
−kβ(β − βd)− kI,β

∫
(β − βd)dt

−kδ(δ − δd)− kI,δ
∫

(δ − δd)dt

 (6)

kx, ky, kz are the stiffness values of the virtual springs in
the x, y and z directions and kθ, kβ , kδ the x, y, z rotational
spring stiffness. xd, yd, zd, θd, βd and δd are the coordinates
of the desired 6DOF pose.

Additional integral gains are added in translation’s and
rotation’s directions in order to cancel the end-effector steady-
state error.

Joint limits are integrated during the resolution of the ODE
equations as follows:
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θ̇i = 0 if

{
θi ≥ θi,max, θ̇i > 0

θi ≤ θi,min, θ̇i < 0
(7)

Cartesian limitation is converted into joint constraints using
the pseudo-inverse jacobian J†, as shown below for the
translation’s degrees of freedom:

ẋ = 0 if

{
x ≥ xmax, ẋ > 0
x ≤ xmin, ẋ < 0

ẏ = 0 if

{
y ≥ ymax, ẏ > 0
y ≤ ymin, ẏ < 0

ż = 0 if

{
z ≥ zmax, ż > 0
z ≤ zmin, ż < 0

⇒ Θ̇ = J†



ẋ
ẏ
ż

θ̇

β̇

δ̇

 (8)

B. Rapid Entire Body Assessment (REBA)

The REBA method is a postural analysis tool to evalu-
ate whole body Musculoskeletal disorders (MSDs). Figure 3
shows the main steps of the method. The analysis of the human
body posture is split into the neck-trunk-legs and the arm-
wrist studies. Scores are determined for every body of the
part and coupled together with other considerations related to
the activity and forces exerted to obtain the REBA score. A
REBA score between 1 and 3 represents a low risk of MSD
(ergonomic posture). Values ranging from 4 and 7 indicate a
medium risk (non-ergonomic posture). Further investigations
should be performed and adequate changes should be applied
soon to the task. A score of 8 or more represents a high risk
case where immediate changes are required.

C. Simulations

The set of ODE presented in the previous section is coded
in Matlab using the ODE45 solver. MEX files are generated
for the different functions of the algorithm in order to maxi-
mize the online speed performance. Computing the optimized
posture is achieved within ∼5 ms on a Ryzen 9 3900x 12 core
processor.

Fig. 3: Main steps of the REBA postural assessment technique.
The analysis is split into the neck, trunk and legs part (Score
A) and the arm and wrist part (Score B). Tables are used to
determine the different scores [36].

The simulation tests have been performed for the trans-
lation’s constraint case whereby 1, 2, or 3 of the position
coordinates of the wrist are locked and the optimal joint angles
in terms of ergonomics load are found. Indeed, some tasks lead
to a constrained location of the user’s hand. This occurs, for
instance, during the manipulation of a tool on an object. For
example, polishing a plate implies that the sander remains in
a normal contact which indirectly constrains 1 translational
direction of the hand.

In order to find the optimal body posture, the forward
kinematics is first applied to determine the current wrist pose
from the joint angles. In case the error between the later
and the desired position is higher than a given tolerance,

(a) Wrist’s position locked (b) Wrists’ y and z positions locked (c) Wrist’s z position locked

Fig. 2: Human body models using virtual torsional springs on the joints. The hand’s position is locked by linear springs attached
to the wrist along the desired direction. kx, ky and kz represent respectively the stiffness of the springs along the x, y and z
directions. k1, k2, k3, k4 and k5 are the joint’s spring stiffness.
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(a) 3D lock - wrist’s x position (b) 3D lock - wrist’s y position (c) 3D lock - wrist’s z position

(d) 1D lock - wrist’s x position (e) 1D lock - wrist’s y position (f) 1D lock - wrist’s z position

Fig. 4: Simulation test results of the right wrist’s position during the postural optimization for a fully constrained case (x, y
and z wrist’s position fixed) and a 1D constrained situation (wrist’s y position locked). The corresponding joint angles are
θ1 = 16.36◦, θ2 = 6.39◦, θ3 = 14.79◦, θ4 = 43.65◦, θ5 = 34.19◦, θ6 = −17.53◦, θ7 = 65.83◦ and θ1 = 16.39◦, θ2 = 9.08◦,
θ3 = 14.74◦, θ4 = 40.62◦, θ5 = 21.81◦, θ6 = −7.62◦, θ7 = 32.46◦. The associated REBA values are 2 and 1. The desired x,
y and z positions are displayed by the red lines.

the algorithm resolves the set of ODE equations taking into
account the joint and cartesian limitations as long as the
desired accuracy is not reached. Figure 4 shows the results
obtained in the fully constrained case (x, y, and z coordinates
are fixed) as well as the wrist’s position in the 1D constraint
situation. The reduction of constraints leads, as expected, to
an improved posture, i.e. lower REBA score. The stiffness of
the virtual trunk springs are set to a higher value (k1 = 2000,
k2 = 2000, k3 = 2000) compared to the arm (k4 = 100,
k5 = 100, k6 = 100, k7 = 100) since the motion of this
body part is more critical in terms of ergonomics, i.e. leads
to a higher MSD risk. Also, this allows to favour the arm
motions over the trunk movement during the task to enable
a more natural posture. The stiffness values (and damping)
have been determined in the same fashion as in the tuning of
a PID system where the gains are adjusted to obtain a stable
solution that converges fast to the reference.

The postural optimization using the virtual element method
is the core of the ergonomics framework. The determined
posture is used by the feedback interface that displays the
optimal pose to the user as well as the robot controller that
brings the part/workpiece to a position with a lower REBA
score.

IV. ERGONOMICS OPTIMIZATION

Figure 5 shows the proposed ergonomics optimization
framework to solve the improper postures of the operator dur-
ing collaborative tasks. First, the 3D skeleton tracking module
performs a user’s spatial joint detection. This information is
then fed into the feedback interface to animate online a 3D
character and determine the associated REBA score. Second,

the body joint angles are sent to the postural optimization
module of the workpiece-position controller. The latter com-
putes the optimal ergonomics body pose by taking into account
the task constraints (e.g. orientation of the workpiece) and
returns it back to the feedback interface. Finally, in case the
co-manipulated part is free to move in one or more of the 6
DOFs, the end-effector control module adjusts the workpiece
position in such a way that the user’s posture is brought to the
optimal pose.

Fig. 5: Ergonomics controller scheme. Based on the er-
gonomics analysis and the task data (workpiece constraints)
optimal postures are suggested to the user or the cobot
configuration is adapted.

A. 3D Skeleton Tracking

In order to monitor the user posture, a tracking system
composed of a depth sensor was selected as it provides a
non-intrusive low-cost solution and an easy deployment in
real manufacturing settings. Other tracking solutions such
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as marker-based optical systems and motion tracking using
inertial sensors can also be integrated.

The skeleton tracking is performed by a Kinect v1 cam-
era. The middleware Nuitrack is used to process the Kinect
data. The latter utilizes the depth and color information of
the camera to perform hand locating and tracking, accurate
and robust 3D localization of the human body joints, face
detection, and various gesture recognition. Skeletal tracking is
used to determine the user’s upper body joint angles as shown
in Figure 6. The provided skeleton joint positions include the
head, neck, trunk, shoulders, and arms.

Fig. 6: Full-body skeletal tracking with the Nuitrack middle-
ware and the Kinect v1 camera.

B. Feedback Interface

The graphical feedback interface is implemented in the
Unity 3D game engine. Figure 7.a shows the main com-
ponents. The current human body pose is updated from
the Kinect data and visualized online through an animated
character. The detailed ergonomic REBA scores are displayed
through a text box. The feedback module also includes the
visualization of the optimal body pose that is determined by
the postural optimizer. Control buttons are implemented to
interact with the graphical user interface and access functions
such as the selection of the male or female character. The
human models were obtained from the Mixamo website with
no licensing or limitations. In Figure 7.b, a screenshot of the
interface shows the visual feedback in case of a non-ergonomic
posture. The background light as well as the REBA score are
displayed in red and a beep alarm sound is activated.

C. Workpiece position controller

The workpiece position controller module performs the
postural optimization using the body joint angles from the
feedback interface and adapts accordingly the position of the
co-manipulated part through the control of the robot end-
effector. The implementation of the functions of this module
includes a Matlab script that performs postural optimization
and C++ codes that control the robot using the libfranka
library.

The main steps of the method are detailed in Algorithm
1. This shows the pseudo-code for the translational case, i.e.

optimization of the user posture by moving the wrist in the x,
y, and z directions. First, depending on the handedness of the
user, the left or right body joint angles are considered as well
as the associated variables, namely the free position vector
Θ∗, the stiffness and damping matrices K and C. Then, the
wrist’s position of the current posture (x̄i) is found using the
getTransform function (time complexity: 0.2ms) that applies
the forward kinematics from the joint angular values. The
postural optimization function (PostureOptimizer) determines
the optimal joint angles based on the body state and the
human model by solving the ODE equations of Section III-A.
This is achieved in less than 5ms on a Intel-i7 processor.
A tolerance tol is also fed into the function to stop the
optimization once the error between the wrist’s position and
the desired task positional constraint is sufficiently small.
A displacement vector ∆x̄ is computed from the wrist’s
position of the optimized posture and the one from the initial
body configuration. The endEffectorControl function (time
complexity: 1-5s) implements an inverse kinematics solver that
applies joint motions to the robot to move the end-effector
with a displacement of ∆x̄. The motion of the robot stops
when the displacement falls below the error tolerance tol. The
corresponding codes can be found on github1.

Algorithm 1: Workpiece position controller
Input: Vector of booleans enabling the optimization in
the x, y and z directions Ō = [Ox, Oy, Oz], the
handedness h of the user, the current left and right
body joint angles pl and pr, the stiffness vector of
the wrist’s virtual linear springs k̄ = [kx, ky, kz], the
end-effector integral gain vector k̄I = [kIx , kIy , kIz ]
and the error tolerance tol.

Output: The end-effector displacement ∆x̄ that
optimizes the user posture.

if h == left then
p = pl;

else
p = pr;

end
while optimizing do
// Find the wrist’s position of the

current body joint angles p
x̄i = getTransform(p);
// New body joint angles p∗ found

after the optimization of the
user posture

p∗ = PostureOptimizer(p,Ō,k̄,k̄I ,tol);
x̄opt = getTransform(p∗);
∆x̄ = x̄opt - x̄i;
while ∆x̄ > tol do

endEffectorControl(∆x̄);
∆x̄ = x̄opt - getTransform(p);

end
end

1https://github.com/rmm-VUB/ErgoVirtualControl

https://github.com/rmm-VUB/ErgoVirtualControl
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(a) Feedback interface’s overview (b) Notification of non-ergonomic posture

Fig. 7: Graphical interface in Unity. (a) Overview of the feedback module displaying online the body pose of the user, the
associated detailed REBA scores, the optimized posture and control buttons. (b) Bad posture detected. The user is notified
through a red light feedback and a beep alarm sound.

V. EXPERIMENTAL VALIDATION

This section presents the implementation of the postural
optimization framework on two use cases. The first human-
robot collaborative task consists in assembling the crusher
unit from the smoothie machine manufactured by the Alberts
company, as shown in Figure 8. The second application
presents a collaborative task where the user polishes a cylinder
that is hold by the franka robot at an optimised position. The
latter experiment is applied on real users and also evaluate
subject’s perception. During these tests, the feedback interface
was not shown to the users in order to avoid any influence from
the displayed optimal posture on the task execution.

A. Collaborative assembly

Fig. 8: The smoothie vending machine developed by Alberts
(A) is composed of several cartridges containing the smoothie
ingredients (B). The crusher unit is located in the bottom of
the cartridges (C).

1) Experimental setup: The assembly task is realized with
the collaborative robot Franka as shown in Figure 9. A screen
placed close to the user displays the feedback interface. The
dismounted parts of the assembly are laid down on a table
along with the screws and the screwdrivers. The human and
the robot jointly assemble the crusher unit. The subtasks are

assigned to one of the agents by taking into account their capa-
bility and availability. Since the robot is not equipped, in this
case, with a screwdriver, the screwing task is performed by the
human. The tasks, in order, and their respective assignments
are:

1) Pick up rod (Robot)
2) Pick up blades and spacers (Human)
3) Stack blades and spacers (Human)
4) Place rod (Human)
5) Pick up left and right plates (Robot)
6) Place left and right plates (Robot)
7) Screw left and right plates (Human)
8) Pick up motor hub (Robot)
9) Place motor hub (Human)

10) Slide motor (Robot)
11) Screw motor shaft (Human)

The robot is position-controlled at a frequency of 1 kHz.
Interactions with the user are implemented using force sensing
on the end-effector. The operator, for instance, informs the
robot that his/her task is completed by touching Franka’s
hand. This method is also used to detect when an external
force is applied to the co-manipulated object and activates the
workpiece position controller.

The master node runs on Matlab and performs postural
optimization. The latter receives the online joint angles from
the feedback interface and returns the optimized posture. When
a request is received from the workpiece position controller
module, the optimal angles are also transferred to the robot’s
computer. The interfacing between the different modules is
realized using UDP sockets (in order to maximize the trans-
mission time for an online use).

2) Results: The developed framework is validated by com-
paring two cases. The first case corresponds to the collabora-
tive assembly of the crusher unit with the ergonomics feedback
and the workpiece position control. In the second case, the two
modules are disabled. Certain tasks that can only be performed
by the human lead to a notification (beep sound and light)
from the graphical interface when a non-ergonomic posture is
detected. For instance, picking up the blades of the crusher
or screwing the side plates. The user corrects then his posture
according to the displayed body pose. During co-manipulation
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Fig. 9: The experimental setup of the collaborative assembly
use case consists of the collaborative Franka robot (A). The
dismounted parts of the assembly (B) are placed on the table
along with the screws and the screwdrivers. The robot and
the operator collaboratively assemble the crusher unit (C). A
screen displays the feedback interface to the user. The skeleton
tracking is achieved using a Kinect v1 camera.

of objects by the robot and the human, for instance, when
stacking of the blades and spacers onto the rod hold by the
robot, the workpiece position controller can act on the end-
effector position to adjust the latter in such a way that the user
posture is improved. It should be noted that the end-effector
final position will vary depending on the detected initial human
pose. This can sometimes generate large displacement of the
robot, beyond its workspace, to correct the posture. Example
of body poses include a fully stretched arm. In order to
deal with the aforementioned situations, cartesian limits have
been implemented in the robot controller. The assembly setup
has also been designed to limit as much as possible large
movements from the human. During the validation tests, we
consider that the user reacts to the received feedback and
modifies his posture. In this example, a right-handed person
is interacting with the robot.

The pictures of the collaborative assembly with the Franka
robot are shown in Figure 10. Two tasks are represented. The
first task is the picking up of blades on the table. A non-
ergonomic posture is detected (Figure 10.a). The associated
REBA score is 3. The user receives a notification as shown in
Figure 10.c and corrects his posture (Figure 10.b). The REBA
score of the improved body pose is 2. The second task is
the stacking of the crusher’s blades onto the rod. The latter
is held by the robot. The insertion of blades by the user is
detected using force sensing on the end-effector. Once the
interaction force exceeds the desired threshold, the workpiece
position controller is triggered. Figure 10.d and Figure 10.e
show the user during the co-manipulation process in the fixed
robot position and adjusted workpiece position cases.

Figure 11 shows the REBA scores for 4 different tasks of the
assembly, namely picking up the blades, screwing the plates,
stacking the blades and the hub handover to the user by the
robot. These were performed by a user repetitively for 10
iterations. The data presents the scores related to the different
parts of the body, i.e. the trunk, the lower arm, and upper arm.
The tasks shown in Figure 11.a and Figure 11.b are performed
by the human. The posture is improved through the feedback
interface. It can be observed from Figure 11.a that the total
REBA value is improved from 3 to 2 for the picking up of

blades. The main posture change consists in a straighter trunk
pose. In the plate screwing task, the REBA score is decreased
from 4 to 1 as shown in Figure 11.b. The scores of the various
body parts are also improved. The postural optimization data
using the workpiece position controller are depicted in Figure
11.c and Figure 11.d for respectively the blade stacking and the
hub handover. In the first case, no change in the total REBA
value is observed. However, the lower arm angle (elbow) is
enhanced in the new body pose. The handover position is also
adjusted as shown in Figure 11.d during the exchange of the
hub from the robot to the user. It can be noted that a lower
REBA score is achieved, by improving mainly the upper arm
angles.

B. Collaborative polishing

1) Experimental setup: The experimental validation in-
volved a human-robot collaboration task whereby the robot
held a metallic cylinder that is polished by the user using a
hand-held drill as shown in Figure 12. The Kinect camera
was placed in a location where occlusion with the robot is
reduced as much as possible. The task of the robot consisted
in bringing the cylinder to the human in a position that leads
to the optimal ergonomic posture.

We have conducted a user study with 10 participants (8
males, 2 females, 2 left-handed, aged 26 ± 3.36). Three robot
behaviours have been implemented (fixed, relative and opti-
mal) During the experiment, two behaviours, chosen randomly,
are presented to the participant. More information about the
behaviors are detailed in the following.

• Fixed: The robot presents the object at a fixed pose. The
user posture is not take into account.

• Relative: Ergonomic studies from the literature suggest
to hand over the object at torso height at two-third of
user’s arm maximum elongation [37]. During the task,
the user’s torso is tracked using the Kinect camera and
the cylinder is positioned accordingly.

• Optimal: The robot end-effector is controlled by the
workpiece position controller to move the object to an
optimal position that leads to a better ergonomics posture.

2) Results: After the interaction with the robot, the subjects
were asked to fill in a survey, for every behaviour, composed
of 12 Likert scale items ranked from 1 to 5 based on the
System Usability Scale methodology [38]. Subjects were also
asked to order the behaviours according to their preferences.
The questions represented three categories: task constraints,
acceptability and safety. The subjects were not aware of this
subdivision. The 12 affirmations were presented in a random
order. The results of the survey can be found in Figure 13.
The negative affirmations are displayed in a range from -5 to
-1.

All users having experienced the optimal mode ranked it
as their preferred behaviour. The second preferred behaviour
is the relative mode. From the affirmations of Figure 13, the
optimal behaviour shows the most positive results for the three
categories. The Mann-Whitney U test has been performed on
the optimal condition affirmations with a significant preference
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(a) Picking up blade (non-ergonomic posture) (b) Picking up blade (ergonomic posture) (c) Feedback interface’s view

(d) Stacking blade (fixed robot position) (e) Stacking blade (adjusted workpiece position)

Fig. 10: Pictures of the collaborative assembly of the crusher unit for two different tasks, namely picking up blades (a, b, c)
and stacking them by sliding the pieces onto the rod hold by the robot (d, e). In the first task, a non-ergonomic posture (REBA
= 3) of the user is detected. The operator receives a notification from the feedback interface (c) and adapts his posture (REBA
= 2). In the second task, the workpiece position controller module adjusts the rod position to improve the human pose. Link:
https://youtu.be/o-Mf wpKiEQ

(p < 0.05). Due to the low number of left-handed people, no
conclusion can be withdrawn regarding laterality.

During the collaborative polishing, the user’s postures have
been recorded and evaluated using the REBA method. The
body pose used for comparison is the one captured when the
robot motion is over in the case of the optimal condition.
The results depicted in Figure 14 show that the REBA scores
of the trunk, upper arm and lower arm are lower in the
optimal behaviour condition. The total optimal behaviour score
is about 0.6 below the fixed condition score. The relative and
fixed modes present similar results.

VI. DISCUSSION

From the results of the experimental tests, we can observe
in the collaborative assembly case, an overall decrease of the
REBA scores using either the feedback interface or the work-
piece position controller module of the developed postural
optimization framework. Even though the total value is not
always decreased, the optimizer allows enhancing some body
part’s poses. The average REBA score of the four assembly
subtasks presented in the last section without and with postural
optimization are respectively 2 and 1, i.e. a decrease of
42%. The posture correction by the feedback system during
human-only capable tasks had a relatively low impact on the
performances of the assembly process. Corrections are made
2 to 3 times during the crusher unit assembly and take about
2 seconds. This represents in the worst case 1.8% of the total
assembly time.

From the user study in the collaborative polishing case, the
optimal condition significantly reduce the body posture score.
Even though the improvement is not spectacular, the method
can show better results for tasks where more constraints is
put on all the body parts, e.g. that requires trunk bending. The
survey conducted with the subjects showed an overall positive
user’s perception of the developed method.

It should be noted that different parameters of the frame-
work should be adjusted in function of the industrial case.
This includes, for instance, the REBA threshold value. Some
tasks require a higher body load thus an increase of the latter
parameter might be needed. The cartesian limits of the robot
controller should also be adapted to the application. Indeed,
some tasks lead to high motion ranges such as during the
painting of large parts.

The main advantage of the proposed framework lies in its
simplicity, making it suitable for real-time purposes. The pos-
sibility to select the locked directions allows a fast adaptation
of the robot behavior to the new task constraints. The use of
non-intrusive motion capture devices, such as the Microsoft
Kinect camera, enables easy deployment in real manufacturing
settings. The developed software is modular. Therefore, the
feedback interface could also be utilized as a standalone
module to analyze the body posture of the user in ”human-
only” workstations and assess the ergonomics of the performed
tasks. The developed framework is also not dependent on
tracking device and other sensory systems could be interfaced.

Different improvements could be integrated into the current

https://youtu.be/o-Mf_wpKiEQ
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Fig. 11: Averaged total REBA values and individual body part’s scores for 4 different tasks over ten runs with standard errors
(collaborative assembly use case). A better posture is achieved during human-only capable tasks (picking up the blades and
plate screwing) through the feedback interface. During co-manipulation tasks (blade stacking and hub handover), the workpiece
position controller is used to improve the human body pose.

Fig. 12: The experimental setup of the collaborative polishing
use case consisted of a cylinder hold by the Franka robot and
polished by the user using a drilling machine equipped with
a polishing wheel. A Kinect camera was placed in proximity
to track the body postures.

postural optimization. First, manipulability considerations can
be taken into account. This would allow exploiting the human
arm joint angles to maximize the kinematic/dynamic charac-
teristics of the co-manipulation task. The visibility aspect can

also be considered in the framework. Indeed, it is important
that the object hold by the cobot remains visible to the user
when moved to avoid situations where he/she would be startled
by the robot. This behavior also enhances the cobot social
acceptability. It should also be noted that the robot’s reach was
limited in the presented use cases but this can be overcome
using a mobile platform to increase the reachable workspace.

Another limitation concerns the use of a depth camera.
This tracking solution leads to occlusions. Therefore other
human tracking devices such as suits incorporated with Inertial
Measurement Units (IMUs) could be investigated to achieve a
better ergonomics monitoring.

The impact of the posture corrections on task performances
was relatively low in the industrial cases presented in this
paper. However, it is interesting to perform an in-depth study
of the feedback interface to assess its efficiency in terms of
postural improvement.
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the REBA scores for the different body parts (collaborative
polishing use case). The optimal behaviour present a lower
REBA score. The relative and fixed conditions show similar
results.
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