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Abstract— Electrical resistance tomography (ERT) can be
used to create large-scale soft tactile sensors that are flexible
and robust. Good performance requires a fast and accurate
mapping from the sensor’s sequential voltage measurements to
the distribution of force across its surface. However, particularly
with multiple contacts, this task is challenging for both previously
developed approaches: physics-based modeling and end-to-end
data-driven learning. Some promising results were recently
achieved using sim-to-real transfer learning, but estimating
multiple contact locations and accurate contact forces remains
difficult because simulations tend to be less accurate with a
high number of contact locations and/or high force. This paper
introduces a modular hybrid method that combines simulation
data synthesized from an electromechanical finite element model
with real measurements collected from a new ERT-based tactile
sensor. We use about 290 000 simulated and 90 000 real measure-
ments to train two deep neural networks: the first (Transfer-
Net) captures the inevitable gap between simulation and reality,
and the second (Recon-Net) reconstructs contact forces from
voltage measurements. The number of contacts, contact locations,
force magnitudes, and contact diameters are evaluated for a
manually collected multi-contact dataset of 150 measurements.
Our modular pipeline’s results outperform predictions by both
a physics-based model and end-to-end learning.

Note to Practitioners–ERT-based tactile sensors use high-
speed voltage measurements from electrodes distributed over
a piezoresistive area to output a force map that shows where
contact is occurring, and how strong each contact is. Such sensors
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hold promise for giving robots and other devices a sense of touch
over large surfaces with low hardware complexity. However,
the software problem of converting voltages to an accurate
force map has not previously been solved well, requiring either
extensive model calibration or extensive contact data collection.
This paper suggests a hybrid approach where a straightforward
physics model simulates multi-contact experiments that are too
costly to acquire in reality and a practical automatic indentation
setup acquires real but geometrically limited multi-contact data.
Although the number of real measurements required to learn the
discrepancy between the sensor and the model is still large due
to the inherent inverse nature of ERT-based tactile sensors, our
combination of simulation and deep networks achieves better
performance than either physical modeling or learning alone.
This approach can advance practical large-area tactile sensing
for industrial automation systems where multiple contacts occur,
such as in manufacturing and assistive robotics. It could also
likely be adapted to other nonlinear inverse problems.

Index Terms— Multi-point tactile sensing, electrical impedance
tomography, electromechanical modeling, sim-to-real transfer,
machine learning.

I. INTRODUCTION

TACTILE sensing is an important modality for
autonomous robots to experience physical interactions.

The development of suitable sensors for large surfaces has
lately gained increasing research attention. Robotic tactile
skin should not only be able to sense multiple simultaneous
contacts but also scale to cover sensing areas that are large and
often curved. This requirement has prompted most large-scale
tactile sensing studies to utilize many small sensing elements
in the form of arrays [1] or modules connected by digital
communication [2]–[4]. These approaches can provide high
spatial resolution and sensitivity if the sensing elements are
located in a compact region. However, implementing such a
system on a large and curved three-dimensional surface is
challenging in terms of cost-efficiency, robustness, and data
communication complexity [5].

Reconstruction approaches have emerged as a promising
alternative means to create large-area tactile sensors. These
methods use computation to estimate physical contact infor-
mation over the sensor from a small number of indirect
measurements. The measurements can be taken by various
sensors such as optical cameras with markers [6], photo-
diodes and emitters [7], [8], pressure sensors covered with
an elastic layer [9], [10], sparsely located strain gauges [11],
[12], and resistance measurements [13]–[18]. Among these
methods, resistance measurement is particularly favorable for
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whole-body tactile sensing because piezoresistive skins can be
soft, thin, and fabricated in a wide variety of shapes.

As a well-established resistance reconstruction technique,
electrical resistance tomography (ERT) [19] is widely adopted
in large-area tactile sensing to estimate physical contact
information using a small number of spatially distributed elec-
trodes [13]–[18]. The electrodes are used to inject current into
the piezoresistive sensing surface and measure the correspond-
ing voltages formed around the current pathway. Physical
models derived from Maxwell’s equation are conventionally
used to reconstruct the resistance distribution, which is usually
considered to be equivalent to a pressure distribution. Since the
number of electrodes required for contact sensing is relatively
small, ERT-based tactile sensors have shown many design
advantages such as material compatibility [20], [21], fabri-
cation simplicity [16], [18], and resilience to breakage [22].

Despite these benefits, ERT-based tactile sensors can suffer
from poor spatial resolution and force estimation accuracy
since the reconstruction of the pressure map from voltage mea-
surements is an ill-posed and nonlinear inverse problem [19].
The solution is thus prone to measurement noise and modeling
errors, especially related to the electrode contact impedance,
electrode misplacement, physical nonlinearity, and inaccurate
geometric parameters [14].

To achieve better reconstruction performance compared
to the standard physics-based approach, researchers have
tried combining electrical simulations of ERT-based sensors
with neural networks (NNs). Martin and Choi [23] used
an electrical conductivity model to synthesize voltage data
from randomized conductivity distributions. Then, they uti-
lized the simulated data to train an artificial neural net-
work (ANN) that effectively learns the nonlinear inverse
mapping between the voltage measurements and conductivity
distributions. Park et al. [24] proposed the EIT-NN framework
that adopts a convolutional neural network (CNN) architec-
ture and a specially designed loss function; this framework
showed good generalizability for reconstruction by account-
ing for the spatially varying sensitivity of the ERT sensor.
Duan et al. [25] used a reconstruction model obtained from an
electrical conductivity model combined with spatio-temporal
regularization. Randomizing the noise applied to the electrodes
improved the spatial resolution of their ERT-based tactile
sensor. Although these results are encouraging, it is important
to note that these studies all assumed proportionality between
the electrical conductivity distribution and the pressure map,
which is not generally appropriate.

In order for ERT-based tactile sensors to be useful in
real applications, such as robot control and mechanical prop-
erty characterization, the reconstructed distribution should
be expressed in mechanical units, such as force or contact
pressure, rather than electrical units, such as resistance or
conductivity. This electromechanical calibration process is
not trivial because of the nonlinearity of the soft piezore-
sistive materials that are widely used in ERT-based tactile
sensors. Recently, data-driven approaches have been investi-
gated to handle this calibration problem. One straightforward
approach is constructing an end-to-end mapping using real-
world training data. For instance, Zhang et al. [26] trained

a touch-location sensing model with the measurements from
experiments wherein human participants touched 16 prede-
fined sensor locations. Similarly, Russo et al. [27] classified
discrete contact locations using data from single-contact inden-
tation experiments. Although these data-driven approaches can
localize a single contact point, their multi-contact localization
and contact force estimation have been unsatisfactory. Good
performance would require collection of sufficient real data
with multiple simultaneous contacts, which is both time
consuming and technically challenging.

To overcome the need for copious experimental data in
ERT tactile sensors, some researchers have recently begun
exploring a sim-to-real transfer approach that combines a
physics-based simulation model with data from a small num-
ber of experiments so that the mapping can be learned from
both simulated and real data. An electromechanical model
capable of simulating voltage measurements caused by tactile
stimuli can provide observations of a large number of multi-
contact cases with lower cost and complexity than physical
multi-contact experiments. We previously introduced such a
multiphysics model of a standard 20-cm-by-20-cm ERT tactile
sensor and applied it to single-contact and double-contact
force prediction using transfer learning [28]; the sim-to-real
transfer network was trained using only single-contact cases.
That approach estimated contact location well on a limited set
of 36 possible contact points, but it had poor force prediction
accuracy and could not predict more than two simultaneous
contacts. These preliminary results showed both the promise
and limitations of a simple sim-to-real approach for learning
the highly nonlinear and non-localized mapping of an ERT
tactile sensor.

This article investigates multi-contact force estimation using
a significantly improved modular pipeline that involves two
stages of mapping: real-to-sim voltage transfer trained with a
moderate number of matched real and simulated multi-contact
experiments, and voltage-to-force inverse mapping trained
using the simulated voltages calculated from the force data of
the real experiments plus a larger amount of more diverse sim-
ulation data synthesized from the multiphysics model. For this
study, we design a new ERT-based sensor aiming for large-area
tactile sensing with simplified manufacturing and electronics
compared to our previous designs [16], [18], [28]. Since the
multiphysics modeling plays an important role in this frame-
work, we introduce a model consisting of three approximate
but sufficiently accurate physics-based models. We thoroughly
evaluate our modular pipeline’s ability to identify contacts and
contact forces using a previously unseen dataset containing
both single-contact and multi-contact experiments with the real
sensor. Its performance is also quantitatively compared to a
pure physics-based mapping approach and a pure end-to-end
learning approach to highlight the benefits of combining these
two previously developed methods.

II. EXPERIMENTAL SETUP

Three hardware setups were created for this study: a new
ERT-based tactile sensor, an automatic multi-point indenter,
and manual indenters. As the implementation details of the
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Fig. 1. (A) An overview of the newly developed ERT tactile sensor and
(B) its working principle.

tactile sensor are outside the scope of this study, we explain
only the essential properties relevant to the multiphysics model
of the sensor. Implementation details such as the fabrication
process and circuitry can be found in Lee et al. [18].

A. Tactile Sensor

Our new ERT-based tactile sensor is made of two conductive
textile layers surrounding a conductive foam layer (Fig. 1A).
It has a rectangular shape and measures 540 mm by 560 mm,
which is much larger than previously developed ERT tactile
sensors (200 mm by 200 mm in [16], [18], [28]). The sensor’s
top functional layer is a low-resistance fabric (Medtex P70,
Statex, Germany) that has a surface resistivity of 2�/sq
and functions as a large electrode. The thickness of this
fabric is 0.42 mm. The next layer is a conductive open-cell
foam (ESD foam, Wolfgang Warmbier, Germany) that has
a resistivity of nearly 1011 �/sq when undeformed and a
corresponding undeformed thickness of 4 mm; compression
closes the air gaps in the foam, bringing its conductive
elements into contact and locally reducing the material’s
resistivity. Under the conductive foam is a sheet of 0.38-mm-
thick high-resistance fabric (LTT-SLPA-20K, Eeonyx, USA)
with 28 sparsely distributed electrodes arranged in a hexagonal
pattern. The distributed electrodes are sewn with conductive
thread and have a thickness of nearly 1 mm including the
fabric. The resistivity of the high-resistance fabric is 104 �/sq,
which is much higher than the low-resistance fabric and much
lower than the undeformed foam.

Since the conductive foam has a porous structure, the
contact resistance between it and the high-resistance fabric is
very large when the sensor is not compressed. When pressure
is locally applied to the sensor, the conductive foam is com-
pressed in that region and the local contact resistance at the
two interfaces greatly decreases, resulting in a reduction of the
resistance between the bottom layer of high-resistance fabric
and the top layer of low-resistance fabric (see Fig. 1B). The
piezoresistive characteristics of conductive foam structures like

this have been widely investigated due to their low hysteresis
and high sensitivity [29].

To perform electrical resistance tomography on the sensor,
we inject an electrical current from the top electrode to each
of the distributed electrodes in the bottom layer in succession.
This current injection scheme always uses the top electrode
as a voltage source, similar to the designs of Bera and
Nagaraju [30] and Yoshimoto et al. [31]. We made the piezore-
sistive structure using conductive foam to achieve a broader
contact-force sensing range, and we placed internal electrodes
in addition to boundary electrodes to achieve more uniform
sensing performance across the sensor [16]. Compared to our
prior ERT-based tactile sensors [16], [18], [28], this new design
requires fewer multiplexer circuits and achieves nearly two
times higher signal-to-noise ratio in decibels (a factor of ten
in magnitude) at the full-scale output (see Suppl. S-I).

The injected current mainly flows through compressed
regions of the sensor, if there are any, and forms an electrical
potential across the high-resistance fabric; the voltages of all of
the distributed electrodes are measured using the adjacent pair
protocol [19]. This current injection and voltage measurement
process repeats until every distributed electrode has been
used once for current injection, which results in a vector
of 784 voltage measurements (28 distributed electrodes ×
28 voltage measurements per injection). For this study, we set
the sensor’s voltage measurement system to run at 24 kHz,
yielding an overall update rate of about 30 frames per second.
The configuration details of the electronics for this new ERT
tactile sensor are provided in Suppl. S-II.

B. Multi-Point Indenter

We designed and fabricated a multi-point indenter to con-
duct indentation experiments and acquire indentation forces
along with the corresponding voltage measurements from the
sensor. Multi-contact indentation can span an infinite variety
of contact location and contact force combinations, so it is
physically impossible to cover every combination; instead,
we aim to record a reasonable variety of multi-point contact
interactions and supplement that real dataset with even more
widely varied data from simulation. Since the number of
simultaneous contacts tends to be less than four for whole-
body humanoids [32], we limited the indenter’s maximum
number of contact locations to six.

Figure 2A shows the experimental setup containing the ERT
tactile sensor, a three-dimensional (3D) stage for Cartesian
position control of the indenter, and the multi-point indenter
itself. The linear stage precisely controls the position of the
center of the multi-point indenter across the surface of the
sensor and in the normal direction to cause contact. The multi-
point indenter can hold up to six indenter tips that are each
instrumented with a load cell (FC22, Measurement Specialties
Inc., USA). To vary the relative placement of the contacts, the
load cells can move in the radial direction along linear sliders
(see Fig. 2B). The radial displacements of the six load cells
are controlled together by a single rotary actuator that is linked
to a disk with six helical slots. Each load cell has a cylindrical
indenter tip with a diameter of 20 mm, which is slightly larger
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Fig. 2. (A) Experimental setup and (B) schematics of the multi-point indenter.

than the contact area of a human fingerpad. The indenter tips
can be manually attached and detached to set the number of
simultaneous indentations between one and six contacts.

The multi-point indenter was precisely controlled in a
quasi-static manner to avoid dynamic effects. Only normal
force was applied, with zero tangential motion after contact
initiation. For each indentation case, the contact locations,
indentation depth, corresponding contact forces, and sensor
voltage measurements were stored together as the data for
a single real indentation trial. The average time to conduct
each indentation trial was about 3 seconds with the planar
motion, radial adjustment, normal indentation, measurement,
and retraction.

C. Manual Indentation System

We additionally prepared manual indenters for conducting
multi-contact experiments in random locations, as shown in
Fig. 3. An overlay of printed paper marks a hexagonal grid
of possible contact locations. This setup allows us to collect a
test dataset that is markedly different from the dataset obtained
from the multi-point indenter. Every manual indenter has a
cylindrical tip with a diameter of 20 mm, identical to the
automatic indenter. One 0.230-kg weight and up to three
0.250-kg weights can be loaded over the 0.020-kg tip to
make three different weights: 0.500 kg, 0.750 kg, and 1.000 kg,
which apply normal forces of 4.905 N, 7.358 N, and 9.810 N,
respectively.

III. MULTIPHYSICS MODEL

The precise description of the mechanical and electrical
behavior of a piezoresistive laminate requires complex and
computationally demanding models. Building such tools is
challenging in terms of modeling and parameter identification,

Fig. 3. The experimental setup for the manual multi-contact experiment; the
inset photograph shows one manual indenter with its indenter tip and weights.

but they can then be used to generate simulated data that
complement the real data collected from the physical sensor.

Accordingly, we introduce and evaluate an electromechan-
ical multiphysics model of our new ERT-based tactile sensor.
Since the sensor has a laminated structure that is subjected
to only surface normal pressure, we relate the piezoresistive
behavior to the displacement in the normal direction. We also
assume that all of the laminate layers are perfectly bonded
together. Under these assumptions, the behavior of the sensor
can be modeled with three consecutive physics models that
connect contact pressure to voltage measurements. The model
parameters are either obtained from the literature or calibrated
via simple experiments. This multiphysics modeling aims to
provide a versatile framework instead of a material-specific
one.

A. Deformation Model

We built a customized finite element (FE) model to calculate
the mechanical deformation of the sensor under indentation
loads. This methodology allows accurate prediction of the
deformations by realistically simulating the propagation and
interaction of the internal stresses. Our model is designed
to contain an optimal level of detail such that the essential
mechanics are captured with only moderate computational
cost. Such an approach significantly improves the efficiency
with which useful simulated data can be generated.

The FE model of the sensor includes all three material
layers shown in Fig. 1. For the computations, we adopted
linear elastic solid element formulations and developed in-
house FE analysis software in MATLAB (Mathworks, USA)
based on the version used in our prior work [28]. Each
layer is discretized with 8-node isoparametric brick elements
that are assigned isotropic material properties; this treatment
is reasonable because the compressive deformation mainly
results from the foam. The details of the employed FE
formulation can be found in [33].

Instead of generating a typical orthogonal mesh, we con-
struct a tailored mesh with a hexagonal pattern that matches
the hexagonal geometry of our multi-point indenter, as shown
in Fig. 4A. We predetermined a set of 804 points where the
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Fig. 4. (A) The hexagonal mesh pattern of 804 predetermined locations
where the center of the multi-point indenter and the indenter tips can be
located, along with two exemplary indentation configurations involving six
and four contacts. (B) A sample indentation experiment involving six contacts
on the real sensor and (C) the corresponding finite element deformation model
utilized to simulate this experiment.

center of the multi-point indenter and the indenter tips can be
located during contact experiments, essentially discretizing the
indenter’s planar motion and radial expansion. Pre-selecting
these indentation points allows us to approximate the contact
conditions using point forces and a constant mesh, avoiding the
computationally costly and non-robust approach of standard
contact analysis involving multiple discretized bodies. The
number of indentation points was chosen to obtain sufficiently
dense indentation configurations while avoiding high compu-
tation time. If these 804 points were arranged in a rectangular
grid, it would be approximately 28 by 28, which is far larger
than the six-by-six grid of contact points tested in our prior
work [28].

Figure 4B shows the experimental setup applying a particu-
lar set of six contacts, and Figure 4C shows the corresponding
FE simulation. The nodes at the bottom of the sensor are
fixed in accordance with the rigid workbench that supports the
real setup. The indentation force exerted by an indenter tip in
the experimental setup is applied to the model as six point
forces at the vertices of the hexagonal mesh at the location
of the indenter tip; the measured force is distributed equally
to the six selected nodes, as shown in Fig. 4C. This approach
accounts for the cylindrical geometry of the indenter tip since
the longest diagonal of the hexagons is equal to the indenter
diameter.

The material properties used in the FE model are cal-
ibrated with two sets of experimentally measured data
(see Suppl. S-III). For single-point indentation experiments,
the FE model estimates the indented displacement with
a normalized root-mean-square error (RMSE) of 24.1%
in spite of the nonlinear behavior of the real material
(see Suppl. S-IV).

B. Piezoresistive Layer Model

As illustrated in Fig. 1B, the piezoresistive behavior of the
sensor is mainly caused by the compression of the conductive
foam (which locally reduces its resistivity) and the local
reduction of the contact resistance between the conductive
fabric layers and the conductive foam [29]. The contact
resistance change is mainly related to interfacial contact area

Fig. 5. Experimental results of the compression test and the corresponding
regression curve (Eq. 1). Note the log scale on the y axis. A photograph of
the specimen and a schematic of the compression experiment appear in the
box.

Fig. 6. (A) A photograph of the sensor’s high-resistance fabric layer with
the 28 distributed electrodes alongside a diagram of the equivalent resistor
network model. (B) A schematic of the conductivity model including variable
resistors that model the piezoresistive structure of the conductive foam.

and current flow [34]. Since precise physical modeling of
the contact resistance change of the elastic foam is nonlinear
and highly complex, an approximate empirical model is used
instead.

When the conductive foam is not compressed, the contact
resistance between the layers is nearly infinite. As the foam
is compressed, the resistance rapidly drops and then begins to
level off. This behavior can be described as follows:

f (x) = a

(ebx − 1)
+ c (1)

where x is the displacement, with x > 0 mm for compression,
and f (x) is the corresponding contact resistance in �.

The three coefficients are obtained via regression using
experimental data. We prepared a small specimen (20 mm by
20 mm) that represents the working principle of the sensor
(see Fig. 5). The specimen was placed between copper
electrodes and compressed gradually while we measured its
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Fig. 7. (A) An example of the 784 real and 784 simulated voltage measurements for a single contact condition. (B) The RMSE between all of the real and
simulated voltage measurements as a function of indentation force and the number of contacts. (C) Boxplots of the same RMSE data grouped by contact
number. (D) A heat map showing the mean fraction of variance unexplained (FVU) for a rectangular region of the sensor’s surface when contacted with only
one indenter tip. (E) FVU values as a function of indentation force and the number of contacts. (F) Boxplots of the same FVU data without measurements
from the sensor’s deadband, organized by contact number.

through-thickness resistance; this experiment thus captures
how compression changes both the foam’s own resistivity and
the contact resistance on its upper and lower surfaces. Figure 5
shows the captured experimental data and the curve fit to the
data from Eq. 1 with a = 2.2 × 108 �, b = 1.4 mm−1, and
c = 6.5 × 105 �. The curve captures the behavior of the
data well; the contact resistance rapidly decreases after initial
contact and then begins to level off at higher displacements.

The empirical model converts compressed displacement
calculated from the deformation model into the local resistance
between the top electrode and the high-resistance fabric; this
model element operates as a variable resistor that depends on
local deformation. To model piezoresistive behavior across the
entire ERT tactile sensor, we assumed an array of parallel
variable resistors with these same properties. The top ends
of all of these resistors are connected together to represent
the low-resistance top electrode, and each bottom end is
connected in the appropriate location to a two-dimensional
resistor network model of the high-resistance fabric.

C. Conductivity Model

A conductivity model calculates the electrical potentials
that occur across the high-resistance fabric when electrical
current is injected from the top electrode layer to one of
the distributed electrodes. As shown in Fig. 6A, we first
model the high-resistance fabric as a FE mesh including the
locations of the distributed electrodes and the array of variable
resistors. Then the FE mesh is converted to an equivalent
two-dimensional resistor network to simplify inclusion of the

variable resistors [35], [36]. The nodes of the resistor network
are the predefined locations of the array of variable resistors.

To simulate the ERT method, a voltage source is connected
between the top electrode layer and one of the distributed
electrodes (see Fig. 6B). When the sensor is not com-
pressed, the resistances of the variable resistors are extremely
high, which results in a nearly constant voltage at all of
the distributed electrodes. Once the sensor is compressed, the
resistances of the variable resistors rapidly decrease in the
region of compression, and a measurable voltage distribution
is formed. The voltage of every node is computed from the
modified nodal analysis, which is a well-established circuit
simulation method [37]. The vector of voltage measurements
for this current injection location is saved from the electrode
node voltages. For single-point indentation experiments, the
conductivity model estimated the voltage distribution of the
real sensor with a normalized RMSE of 28.3%, as shown in
Suppl. S-IV.

D. Simulation Accuracy of the Multiphysics Model

The simulation accuracy of the developed multiphysics
model is evaluated by comparing real voltage measurements
VR to simulated voltage measurements VS . The real voltages
are acquired using the multi-point indenter. The simulated volt-
ages stem from the contact locations and forces measured in
those real experiments. An example of the real and simulated
voltage measurements is shown in Fig. 7A.

As the first quantitative measure, the RMSE is calculated
between the real and simulated voltages from matching contact
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TABLE I

OVERVIEW OF THE EXPERIMENTS FOR COLLECTING DATA, WITH THE NUMBER OF TRIALS FOR EACH CONTACT NUMBER RANGING FROM ONE TO SIX,
AS WELL AS THE TOTAL NUMBER OF TRIALS. WHETHER REAL OR SIMULATED, EACH EXPERIMENTAL TRIAL YIELDS A LIST OF ONE

TO SIX CONTACT LOCATIONS, THE CORRESPONDING LIST OF ONE TO SIX CONTACT FORCES, AND A VECTOR OF 784 VOLTAGES

OUTPUT BY THE SENSOR

conditions. Figure 7B shows the average RMSE as a function
of the indentation forces (maximum of all contact points); the
data is grouped by the number of contacts. The graph shows
that the simulation error increases as the indentation force
increases from 0 N to 50 N, which makes sense because the
voltage signals being predicted generally grow with applied
force. Figure 7C shows box plots of the RMSE depending on
the contact number. The RMSE increases with the number of
contacts up to five contacts.

As the second quantitative measure, the fraction of variance
unexplained (FVU) is evaluated between VR and VS :

FVU =

K∑

i=1
(VR(i) − VS(i))2

K∑

i=1

(
VR(i) − V R

)2
(2)

where K = 784 and VR is the mean of all of the real voltages
measured in a particular experiment. First, the FVU across
a portion of the sensor’s surface is analyzed from a single-
contact experiment to determine how much the behavior of
the sensor varies spatially. Figure 7D shows a heatmap of the
mean FVU depending on the contact location, annotated with
the locations of the distributed electrodes. The FVU tends
to be higher near the electrodes than at all other sensing
locations, indicating that mechanical contact near some of the
electrodes may be modifying the sensor’s electrical behavior
in that region. Rather than attempting to eliminate this source
of spatial variation (which might not be possible), we allow
it to persist and expect that our deep neural networks should
be able to learn this pattern from the real data on which it is
trained.

Figure 7E shows the mean of FVU as a function of the
maximum indentation force measured across the six indenter
tips. This plot makes it apparent that the ERT tactile sensor has
an insensitive range below about 5 N indentation force, so that
the FVU is nearly unity in this region; we call this insensitivity
to low forces the sensor’s deadband. Above 5 N indentation
force, the FVU rapidly decreases to about 0.1 and then
gradually rises as the indentation force increases. Figure 7F
shows box plots of the FVU depending on the contact number,
omitting the data from the deadband. The median values of the
FVU are about 0.1 regardless of the contact number. Although
there are outliers where the simulation fails to predict the real
behavior, the model’s overall predictive capability is good.
Note that this result is evaluated from randomly selected
contact locations that include the electrode locations, which

are known to be problematic, and the boundaries of the sensor,
which may deviate from the model due to mechanical edge
effects.

IV. CONTACT DATA ACQUISITION

In this study, we collected data by running two real exper-
iment with the physical setup and two simulated experiments
with the multiphysics model, as listed in Table I. Each trial in
either experiment type consists of a pressing interaction with
the real or simulated sensor, and it yields the 1 ≤ N ≤ 6 two-
dimensional locations of contact, the N forces of contact,
and the K = 784 corresponding voltage measurements.
As explained in Sec. III-A, only the 804 predetermined contact
locations are used in the experiments.

The real data is acquired from the ERT tactile sensor
using either the automatic multi-point indenter or the manual
indenters. The contact locations of the multi-point indenter are
naturally constrained by the indenter’s hexagonal design, and
the contact forces tend to correlate with one another because
all of the indenter tips move together. Consequently, even a
very large real dataset collected with the hexagonal indenter
would be insufficient to generalize to unconstrained multi-
contact situations. The manual indenters are used to collect
random multi-contact scenarios only for evaluation.

In contrast to the real dataset, multiphysics simulation can
explore diverse contact cases. We conducted two experiments
with the model: the first calculates the voltage measurements
under all of the contact conditions that occurred in the real
experiment. It thus has the same size but took approximately
one sixth of the time to acquire, since a contact trial can
be simulated faster than it can be physically conducted.
The second simulated experiment randomizes both contact
locations and forces to create a large volume of data that
is more varied than the experimental data collected from the
physical setup.

We reconfigure the data collected in these four experiments
into the four datasets presented in Table II. The first three
(Real, R2S-Transfer, and S2S-Recon) are each designed for
a particular learning task. The first is used to train and
evaluate the system from end to end on real data. The
second captures the gap between the real sensor’s voltages
and the simulated sensor’s voltages. The third dataset targets
the mapping between simulated voltages and the associated
force map. An additional dataset (Real-Unseen) is created from
the Real-Random experiment to test whether sim-to-real trans-
fer provides a true advantage for unseen contact situations.
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The following two subsections explain the details of our
procedures for acquiring real and simulated data.

A. Real Data Acquisition From the Experimental Setup

The multi-point indenter collected real experiment data from
3 000 random configurations, each of which included a random
location for the center of the indenter and a random radius for
the spacing of the indenter tips. The indenter was moved to be
just above the sensor surface in each location, and then 5 mm
of vertical displacement was applied in increments of 0.5 mm,
giving eleven measurements per configuration. In this scheme,
33 000 contact trials were obtained with a single indenter tip
setting over the course of approximately 25 hours. The number
of attached indenter tips was then manually changed to a new
value from one to six, and the same procedure was repeated,
giving a total real data collection time of about 150 hours.

Although the indenter tips are identical, their measured
indentation forces differ somewhat due to the slightly irregular
flatness of the sensor and the indenter. Given the deadband
results of Fig. 7B, we removed all contacts for which the
indentation force was below 5 N. After this post-processing
step, the number of contacts was re-labeled to yield the results
of the Real-Hex experiment (Table I), including 93 674 trials.

In addition, 150 trials were conducted using the manual
indenters, including 50 double-contact, 50 triple-contact, and
50 quadruple-contact trials. During each contact case, the
weights of the manual indenters were randomly changed,
and the locations of the manual indenters were randomly
chosen from the 804 predefined locations. Figure 3 presents
an example of the triple-contact case. We call this experiment
Real-Random.

B. Simulation Data Synthesis From the Multiphysics Model

To provide a simulated counterpart to the Real-Hex data,
we simulated the exact same experimental conditions in
the Sim-Hex experiment. Specifically, the simulated sensor’s
output voltages were computed from the contact locations
and contact forces of each of the 93 674 trials in the real
dataset. This experiment aids our efforts at real-to-sim transfer
learning by providing observations of the constrained real
contact scenario in the simulation environment.

Unlike with the real setup, the multiphysics model allows
us to apply any set of forces in any locations across the
surface of the simulated sensor. Widely varying indentation
experiments were thus also simulated by virtually pressing
different combinations of the 804 predefined contact points in
the Sim-Random experiment. The number of contact points
was randomly selected from one to six, the points were
selected randomly, and the force magnitude at each point was
randomly chosen from the range of 5 N to 40 N. As a result,
200 000 trials were simulated; this process took approximately
23 hours when running in two parallel threads on a CPU (Intel
Core i7-8700K@3.7 GHz) with 32 GB RAM (DDR4-2401).

V. MAPPING FROM VOLTAGE MEASUREMENTS TO

MULTI-CONTACT FORCES

We propose a machine-learning pipeline to infer a force
map describing multiple contact locations and forces from the

raw sensor voltage measurements in a data-driven manner.
For reference, the data automatically collected in the Real-
Hex experiment can be used directly to train an end-to-end
model that takes real voltages as its input and provides a
force map as its output. We define this learning task and the
associated dataset Real as listed in Table II. However, the
indenter design imposes a particular hexagonal pattern on
the contact locations, and it causes all of the applied contact
forces to increase together. These physical constraints exclude
a vast number of other possible multiple-contact patterns.
In our experience, the end-to-end trained model would not
generalize to other contact patterns; we test this hypothesis in
Sec. V-D.

To tackle the problem of data insufficiency, we construct
the machine-learning pipeline in a modular two-stage format,
as shown in Fig. 8. First, we address the gap between our real
experimental setup and our multiphysics model by training
a machine-learning model named Transfer-Net; it transfers
real voltages (VR) to more closely match the simulated
voltages (VS) of the multiphysics model for the same contact
conditions, essentially learning to undo the non-idealities of
our physical setup. The dataset we created to train this
real-to-sim network is called R2S-Transfer and consists of
only the voltages from Real-Hex and Sim-Hex (Table II).
Of course, we could also have learned the inverse mapping,
from simulation to reality; we chose to learn from real to
simulation because this division segments the entire mapping
into two pieces we believed would be simpler to learn, and
because generating more simulated data is significantly easier
than acquiring more real data.

The second step of our pipeline is called Recon-Net, which
stands for reconstruction network. It learns to convert a set of
784 simulated voltage measurements into the corresponding
force map, which is the output of our entire processing
pipeline. Each pixel in the force map contains a value repre-
senting the total normal force being applied in that region of
the sensor. As listed in Table II, the dataset created for this sim-
to-sim learning task is called S2S-Recon, and it includes the
simulated voltages and simulated force maps from both Sim-
Hex and Sim-Random. To prepare the pipeline for actual usage
with real sensor voltages, we perturb the simulated voltages
during training with noise mimicking the errors made by the
Transfer-Net.

The following subsections detail the two stages of our
architecture, describe the combined mapping, evaluate the
whole pipeline, and then compare our proposed method to
the two common alternative approaches of end-to-end learning
and reconstruction using only a physical model.

A. Transfer-Net

1) Network Structure: The purpose of the Transfer-Net is
to model the differences between our real sensor and the
simulation model; this inevitable misalignment is sometimes
called the sim-to-real gap. The network has a simple structure
of multiple fully connected layers that map the 784 real sensor
voltages from a single trial to the 784 simulated voltages for
the same contact condition. There are five hidden layers that
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TABLE II

OVERVIEW OF THE DATASETS, WHICH EACH INCLUDE INPUT DATA AND OUTPUT DATA THAT DEFINE THE ASSOCIATED LEARNING TASK. THESE
DATASETS ARE CONSTRUCTED BY COMBINING PORTIONS OF THE EXPERIMENTAL DATA LISTED IN TABLE I. VR AND VS STAND

FOR VOLTAGES FROM THE REAL AND SIMULATED SENSORS, WHILE MR AND MS INDICATE FORCE MAPS CREATED FROM LISTS

OF REAL OR SIMULATED CONTACTS

Fig. 8. Two-stage pipeline for mapping real voltages to a force map showing where contact is being made on the surface of the sensor. The first step of this
modular pipeline transforms real data measured from our experimental setup so that it closely matches the corresponding data generated by our simulation.
The second step operates on the transformed voltages to output the final force map. Four actual sample contact scenarios are shown in blue, yellow, green,
and red, to illustrate how the 784 real voltages become 784 voltages similar to the simulation and then yield a force map showing the locations and forces
of contact.

each have 784 rectified linear unit (ReLU) neurons. To train
the Transfer-Net network, we split the R2S-Transfer dataset
into training, validation, and test subsets with a ratio of
3:1:1. The Transfer-Net is then trained with the least squares
loss function using the training dataset with a batch size of
64 in 1024 epochs. The loss is optimized using Adam with a
momentum of 0.7 and a learning rate of 0.001.

2) Evaluation: We use RMSE and FVU (Eq. 2) to evaluate
the inference performance of the Transfer-Net. As described
before, ERT-based sensors have a small number of distrib-
uted electrodes and estimate the contacts being applied by
measuring the voltage distribution across the piezoresistive
sensing surface when current is injected to different locations.
Given the mechanical and electrical design of such sensors,
the system’s voltage measurements during multiple contacts
cannot simply be estimated by adding together the voltages
measured during the individual contacts; in other words, it is
difficult to predict a multi-contact output from only single-
contact data.

We validate this challenge of generalization in ERT-based
tactile sensors by first training the Transfer-Net using only
single-contact data and testing on all multiple contact cases.
We then incrementally increase the number of contacts used in
the training set and compare the generalization performance of
the inference. Table III summarizes these results. As predicted,
a network trained on only single-contact data cannot predict

the variance in the voltages that occur with two or more
contacts. The prediction performance for unseen multiple-
contact cases is greatly improved when trials with that number
of contacts are included in the training set. The overall
performance is high (less than 6% variance unexplained) for
all contact numbers when the training set is representative of
the test set. This performance is nearly twice as good as the
average FVU values obtained when the Transfer-Net is not
applied (Fig. 7E).

B. Recon-Net

1) Network Structure: The Recon-Net is designed to map
784 voltage measurements (output of the Transfer-Net) to
the corresponding normal force distribution map. It is trained
on simulated data perturbed with naturalistic noise described
below. Recon-Net has a deconvolutional network structure that
maps from the 784 voltage channels to an image-like force
distribution map with 160 × 160 pixels. Each pixel in the
map corresponds to a 4 mm × 4 mm area of the real sensor
describing the distributed force magnitude (in newtons) in the
normal direction. Depending on the needed resolution, the size
of the force map can be adapted to 64 × 64 or 32 × 32 with
increased pixel sizes of 10 mm and 20 mm, respectively.

We train the Recon-Net with the S2S-Recon dataset, which
contains the data from Sim-Hex (simulated voltages matching
the real experiments) and Sim-Random (synthesized force and
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TABLE III

RESULTS FOR THE TRANSFER LEARNING TASK (R2S-Transfer DATASET). I, II, III, IV, V, AND VI STAND FOR THE PORTIONS OF THE DATASETS
WITH THE NAMED NUMBER OF SIMULTANEOUS CONTACTS. GRAY TEXT INDICATES EXTRAPOLATION TO AN UNSEEN NUMBER

OF CONTACT POINTS. THE NUMBERS ARE RMSE / FVU ON THE TRAINING SET AND THE DIFFERENT TEST SETS,
WITH MEAN RMSE IN VOLTS AND MEAN FVU IN PERCENTAGE

TABLE IV

RECON-NET EVALUATION ON THE FORCE MAP’S SPATIAL RESOLUTION (PIXEL SIZE) AND FORCE DISTRIBUTION DIAMETER. WE REPORT THE MEAN ±
STANDARD DEVIATION OF THE SIGNED VALUES FOR FOUR METRICS. NUMBER ERROR IS THE PERCENTAGE BY WHICH THE CONTACT NUMBER

IS ESTIMATED INCORRECTLY. LOCATION ERROR IS THE MEAN DISTANCE BETWEEN EACH TRUE CONTACT LOCATION AND THE CLOSEST

ESTIMATED CONTACT, WHILE THE FORCE ERROR IS THE MEAN PERCENTAGE BY WHICH THE ESTIMATED FORCE DEVIATES FROM

THE GROUND-TRUTH FORCE MEASUREMENT. DIAMETER ERROR IS THE MEAN PERCENTAGE DIFFERENCE BETWEEN THE

ESTIMATED CONTACT DIAMETER AND THE GROUND-TRUTH INDENTER DIAMETER

voltage pairs). As the contact force information is measured
only at the center of each of the N contact points, we first need
to transform these labels to image-like force maps representing
the force applied to each small region of the sensor. Two
parameters define the transformation: the first is the pixel size,
which sets the resolution of the force map, and the second
is the diameter of the circular area over which each real
indentation force is distributed, to account for the fact that
the indenter tips are large relative to the default pixel size.
Details about the network structure are provided in Suppl S-V.
The training procedure uses the same hyperparameters as the
Transfer-Net.

2) Evaluation: We evaluate the influence of training data
on the performance of the Recon-Net; specifically, we vary
the two parameters of the force map (pixel size and force
distribution diameter) in twelve different combinations.

The resulting Recon-Nets are evaluated using their pre-
diction errors on four criteria: number of contacts, contact
location, contact force, and contact diameter. The input to this
evaluation is the produced force map. The number of contacts
is counted by finding each pixel whose force magnitude
is the highest within its circular neighborhood of 64 mm
diameter with a 5 N threshold. After extracting the peaks of
the estimated contacts in this way, we use the Hungarian
matching method to align the predicted contact locations
with the ground-truth locations. The force estimation accuracy
is evaluated between the matched pairs by comparing the
measured contact force with the sum of all of the contact
forces predicted in the peak’s neighborhood. The contact
diameter is calculated from the force map based on the force
estimates in the region of each contact using the full width at
half maximum (FWHM) criterion, which is similar to RES50,

Fig. 9. Visualization of the mean metrics from Table IV to show how pixel
size and force distribution diameter affect the performance of the twelve tested
Recon-Nets. The gray boxes represent parameter combinations that were not
tested.

a widely used metric for ERT tactile sensors [38]; this value
is compared to the real indenter tip diameter (20 mm).

Table IV shows the performance of the twelve Recon-Nets,
and the same results are visualized in Fig. 9. Comparing Map
1 to Map 12, where the pixel size and force distribution size are
larger, we see the contact number inference improves slightly,
while the contact location and diameter inferences perform
worse. Comparing from Map 1 to Map 6, the increase in force
distribution size tends to improve the force error by reducing
the standard deviations. These two parameters thus allow
one to tailor the overall system’s performance to emphasize
either force measurement (contact number and force) or spatial
measurement (contact location and diameter).
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Fig. 10. (A) The mean and standard deviation of the transfer error and
(B) force map predictions across the entire surface of the sensor with three
different levels of added noise.

C. Whole-Pipeline Mapping

The whole pipeline combines the Transfer-Net and the
Recon-Net in series. If the Recon-Net is trained only on
simulated voltages without considering measurement noise,
the trained Recon-Net can easily overfit to the simulation data
and fail to generalize. Although the Transfer-Net has a low
average test error of about 4% FVU on previously unseen
real voltage data when it is trained on all contact numbers
(Table III), these unpredicted voltage deviations are enough to
create highly incorrect force maps because the reconstruction
mapping is highly nonlinear and sensitive to small voltage
variations.

1) Reconstruction Robustness for Real-to-Sim Voltage
Transfer Error: To make the reconstruction process robust
against the real-to-sim voltage transfer error, we add Gaussian
noise to the simulated voltages while the Recon-Net is trained.
The standard deviation of each element in the Gaussian noise
vector is determined from the residual error of the Transfer-
Net, as shown Figure 10A. The mean is close to zero for every
one of the 784 measurements, indicating that the training did
indeed converge well. However, the standard deviation varies
from about 0.05 V for well predicted measurements up to about
0.5 V for a small number of voltage measurements.

The noise magnitude is scaled to control the amount of
Gaussian noise added to the simulated voltage measurements
in the S2S-Recon dataset. Figure 10B showcases a triple-
contact situation and its force map predictions trained from
three different noise levels. The tested noise levels were 0%,
10%, and 50% of the standard deviations of the transfer error.
For this sample, the no-noise scenario predicts a false contact,
while the force map of the 10% noise condition is more
accurate. The 50% noise prediction is blurred and dilated
relative to the 10%. In general, the higher the noise level
used during training, the smoother the reconstruction tends
to be. The following section evaluates the effect of noise
augmentation in detail.

Fig. 11. Force-map inference performance of the whole pipeline for
four Recon-Net configurations (4 mm and 20 mm pixel size, 20 mm and
60 mm force distribution diameter) with three different noise levels (0%,
10% and 50%).

2) Evaluation: The whole pipeline is evaluated using the
same four criteria used in the Recon-Net evaluation. The
effects of three parameters (force-map pixel size, force-map
force distribution diameter, and noise augmentation level) are
evaluated with three-factor analysis of variance (ANOVA).
Two pixel sizes (4 mm and 20 mm) and two force distribution
diameters (20 mm and 60 mm) are chosen from the twelve
Recon-Nets for a fully factorial design. The chosen maps are
Map 1, Map 6, Map 11, and Map 12. The noise augmentation
levels are selected as 0%, 10%, and 50% of the standard
deviations of the transfer error. This parameter selection forms
a 2 × 2 × 3 factorial design. For the twelve resulting
conditions, we calculate the four performance metrics for the
portion of the Real dataset that was not used to train the
network. Each contact point of a multiple contact case is taken
to be an independent sample; thus, the number of samples for
each metric is nearly 40 000.

The ANOVA evaluated the main effects of the three factors
as well as their interactions. Figure 11 shows the estimated
means and standard deviations of the four metrics from the
ANOVA. For the number error, the main effects of pixel size
and force distribution diameter were particularly significant
(p < 0.0001). Averaged across the three noise levels, the
estimated mean of the number error was the smallest for the
20 mm pixel size with 60 mm force distribution diameter
(−11.9%); 4 mm pixel size with 20 mm force distribution
diameter had the highest average number error (−29.2%).
The 10% noise level showed smaller average number error
(−14.9%) than the other noise levels (−19.8% and −19.4%
for 0% and 50% noise, respectively).

The main effects of pixel size and force distribution diam-
eter were also particularly significant (p < 0.0001) for the
remaining three metrics: location error, force error, and diame-
ter error. The estimated mean of the location error was smaller
for the 4 mm pixel size (18.2 mm) than for the 20 mm pixel size
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(20.3 mm). The 10% noise level showed the largest average
location error (20.3 mm compared to 19.0 mm and 18.3 mm
for 0% and 50% noise, respectively). The estimated mean
of the force error was larger for the 20 mm pixel size with
60 mm force distribution diameter (−13.5%) than the 4 mm
pixel size with 60 mm force distribution diameter (−1.9%).
The estimated mean of the diameter error was smaller for
the 20 mm force distribution diameter (12.1%) than for the
60 mm force distribution diameter (132.3%). The 10% noise
level showed the largest diameter error (77.1% compared to
64.2% and 75.6% for 0% and 50% noise levels, respectively).

The noise level showed only a weak effect on the four
criteria when the force distribution diameter is 60 mm. 10%
noise shows better performance in contact number estimation
but worst performance in estimation of contact location and
diameter. The estimation of contact force gets worse with the
strength of the noise. This performance trend is similar to what
happens when the pixel size increases (Table IV).

D. Force-Map Prediction for Unseen Multi-Contact
Scenarios

We chose to use multiphysics simulation in tandem with
deep learning to try to overcome the data-deficiency problem
for random multi-contact cases that are impractical to acquire
in the real world. The Real-Unseen dataset is used to evaluate
the whole pipeline’s performance for unseen contact situations.
For this evaluation, we also prepared two comparison models
that are widely used for force prediction: direct end-to-end
learning from the Real dataset and physics-based reconstruc-
tion (see Suppl. S-VI for further details on both comparison
methods).

Figure 12A shows two example cases of the force-map
predictions obtained from our hybrid approach, end-to-end
learning, and physics-based reconstruction. Our real-to-sim
method predicts the stronger contacts seen in the ground-
truth labels. In contrast, the end-to-end learning approach
shows a complete mismatch between predictions and ground
truth, although it used the same Recon-Net structure and is
trained on the same real data as our approach. The physics-
based approach tends to show a blurry force map with blobs
roughly centered around the ground-truth contacts with very
low predictions for contact force magnitude; its qualitative
performance is marginally coherent with the ground truth.

Figure 12B shows the performance of our real-to-sim
approach and end-to-end learning evaluated with three of
our four metrics: contact location error, contact force error,
and contact diameter error. The contact number error is not
plotted because the location error of the end-to-end approach
is high. The physics-based reconstruction is not included in
this comparison because its blurry outputs result in erratic
evaluation metrics and high errors. Note that the results shown
for both our approach and end-to-end learning were obtained
from the twelve different Recon-Net configurations introduced
in Sec. V-B; we show all three noise levels for real-to-sim.

The results demonstrate that the force-map prediction per-
formance of our pipeline is highly superior to that of both
baseline approaches; the only metric on which end-to-end

Fig. 12. (A) Two example cases of the force-map prediction performance
using three different approaches (real-to-sim, end-to-end, and physics-based
model). (B) Performance comparison between the real-to-sim obtained from
the 36 Recon-Nets (Map 1 to Map 12 with three noise levels) and the end-
to-end approaches obtained from the twelve Recon-Nets (Map 1 to Map 12).
The physics-based reconstruction is excluded from this comparison due to its
inaccurate results.

learning marginally beats our method is the contact diameter
prediction error. Among the different tested variations of our
transfer-learning approach, we define the best performance
to be the minimum average location error and close to zero
average force and diameter error. According to this standard,
the Recon-Net with Map 1 and 50% noise augmentation
showed the best performance: it achieves average errors of
−58.3% in contact number, 74.4 mm in contact location (about
13.5% of the 560 mm sensor width), 17.2% in contact force,
and −9.3% in contact diameter.

VI. DISCUSSION

ERT tactile sensors are a promising technology for realizing
a practical tactile skin; however, estimating the force map from
such a sensor’s voltage measurements has been a challenging
problem due to its nonlinear and ill-posed characteristics. This
study introduces an ERT tactile sensor and investigates a way
to obtain an accurate multi-contact force-mapping network by
combining multiphysics simulation and real experiments.

A. ERT Tactile Sensor Design

Common ERT tactile sensors switch both the current source
electrode and the current sink electrode [14], [16]. The ERT
tactile sensor presented in this study includes one large
electrode that is always used as a current source. This current
injection strategy was chosen to gain practical advantages,
such as simplifying manufacturing and reducing measurement
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electronics. The resulting tactile sensor was shown to function
well, achieving a signal-to-noise ratio almost double that of
the common design. Future studies should compare these
two designs more thoroughly, including the mathematical
properties of each one’s inverse voltage-to-force mapping.

A sensor design that provides strong superposition with
locality in the voltage-to-force map would simplify transfer
learning because a multi-contact case could then be gener-
alized as a combination of single contacts. Unfortunately,
existing ERT tactile sensors do not have this property, such that
patterns learned from single contacts do not generalize well to
more contacts, as listed in Table III. Nevertheless, addition of
the multi-contact dataset seems to enable some extrapolation to
cases with more contacts. This result indicates that a sufficient
number of real measurements are necessary for an ERT tactile
sensor to achieve satisfactory transfer performance even when
the contacts are constrained to follow a given spatial pattern.
This limitation may be resolved by adding more electrodes to
the ERT sensor or optimizing its measurement pattern [17].

B. Multiphysics Model

Among the three physics-based components of the multi-
physics model, the piezoresistive model is the most important
for capturing the nonlinear behavior of the sensor. The defor-
mation model and the conductivity model are relatively easy
to calibrate because they are linear. Although the experimental
result in Fig. 5 presented the piezoresistive characteristics
of the sensor, its exact characteristics can depend on the
sensing location due to the stochastic nature of the contact
between the conductive foam and the high-resistance fabric;
we expect Transfer-Net learns to reduce these variations in the
real voltages.

In terms of efficiency, the real data acquisition took 2.73 sec-
onds per trial, while the current multiphysics model took
0.41 seconds per trial, which is nearly six times faster.
It should be noted that this relatively fast computation time was
possible only because we assumed the sensor experienced only
normal indentation, without shear. This assumption enabled us
to simplify the complex piezoresistive behavior of the multi-
layer, multi-material sensor structure. To extend this concept to
complex deformation cases, a more sophisticated multiphysics
model may be required, which could greatly increase the
computation time. In that case, reduced models could be
considered for deformation and conductivity [39].

C. Training Data Acquisition

Regarding the experimental setup, the six indenter tips on
the multi-point indenter are controlled in three-dimensional
space by only four actuators. This design imposes strong
geometrical constraints on the data collected in the Real-
Hex experiment. This situation is similar to a case where
an autonomous robot learns the tactile perception capabilities
of its own skin through sensitive fingertips. The role of the
real-to-sim transfer module is to overcome the geometrical
constraints of the real experimental setup, so that the final
system can correctly perceive widely varying contact pat-
terns. A limitation of the end-to-end learning approach is

clearly seen in Fig. 12; since the ERT tactile sensor has
low generalization capabilities from single-contact to multi-
contact scenarios, end-to-end direct learning trained on the
geometrically constrained Real dataset fails to predict unseen
random multi-contacts.

D. Machine-Learning Pipeline

Compared to the previous approaches that used conductivity
simulation with machine-learning techniques [23]–[25], the
proposed pipeline transfers real voltages to be similar to
simulated voltages and then produces a reconstructed force
map as its output. The relationship between conductivity and
force is nonlinear, as shown in Fig. 5; therefore, conductivity
simulation approaches cannot output force information without
additional non-linear processing by neural networks. Our
method produces a force map that can represent multiple
contacts of different sizes and shapes; this approach is more
sophisticated and potentially more useful than previous efforts
that localized only a single contact point using classifiers [27].

We introduced three parameters of the whole-pipeline struc-
ture that can influence the multi-contact force map inference
performance: force-map pixel size, force distribution diameter,
and noise augmentation level. These parameters seem to
regularize the ill-posed Recon-Net. The results shown in
Fig. 9 indicate that increasing the pixel size and the force
distribution diameter increases the error of contact location
and contact diameter estimates. However, force estimation
error and contact number prediction error showed the opposite
relationship. Increasing the pixel size reduces the resolution of
the force map. For instance, the 4 mm pixel size discretizes
the sensor into a force map of 160 × 160, so Recon-
Net has an output size of 25 600. Training a mapping from
784 voltage measurements to 25 600 pixels of the force map is
an under-determined problem. Increasing the pixel size helps
mitigate this problem of under-determination. Regarding the
force distribution diameter, this parameter should be selected
to be sufficiently large such that every pixel of the force
map experiences non-zero force values during the training.
Increasing the force distribution diameter can relieve the
sparsity problem, although predictions of contact position and
diameter become worse.

As seen in Fig. 11, adding a small amount of noise (10%)
to the simulated voltages generally helped the force-map
prediction performance, while a large amount of noise (50%)
was less helpful; in contrast, adding noise generally increased
the force estimation error. It is known that augmenting the
training data with noise is equivalent to a regularization
process [40]. In our approach, the real-to-sim voltage transfer
error is modeled as Gaussian noise. If the characteristics of the
transfer error were more carefully investigated, another noise
model might be able to improve the overall performance.

E. Prediction for Unseen Multi-Contact Scenarios

The results of the unseen random multi-contact test clearly
demonstrate that the proposed real-to-sim transfer-learning
approach achieves substantially better force-map prediction
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performance on unseen multi-contact cases than both base-
lines. The physics-model-based baseline was obtained by
linearizing the physics model, and the end-to-end learning
baseline was trained only on real data. Although iterative
approaches are known to produce better performance for
nonlinear mappings [19], we did not consider such approaches
due to their heavy computation time, which is not suitable for
ERT tactile sensors with high bandwidth. We expect the results
of our approach would be even better if the final performance
evaluation had spanned the sensor’s entire range from 5 N to
40 N rather than only low forces between 4.905 N and 9.810 N.
Omitting the paper sheets that were used to locate the manual
indenters might also improve the predictions.

VII. CONCLUSION

Estimating a multi-contact force map from voltage measure-
ments is a challenging problem in ERT-based tactile sensors
whether one uses data-driven approaches or physics-based
models; the mapping is nonlinear, and the reconstruction
process is ill-posed. This paper introduced a hybrid approach
that learns a data-driven mapping from real voltages of a new
soft ERT tactile sensor and simulated voltages synthesized
from a multiphysics model. The low-cost multiphysics model
simulates voltage measurements caused by tactile stimuli with
only a 10% fraction of variance unexplained (FVU), even
for multi-contact cases. The data-driven mapping pipeline is
made of two stages: a real-to-sim voltage transfer network
trained with a moderate number of real multi-contact exper-
iments subject to geometric constraints plus a voltage-to-
force reconstruction network trained using a larger amount
of randomly simulated voltages augmented with noise. For
validation, the pipeline is evaluated using a previously unseen
dataset containing multi-contact experiments conducted with
the real sensor. When tested with these 150 unseen multi-
contact cases, the proposed pipeline showed an average error
of 74.4 mm in contact position (which is about 13% of the
sensor width), 17.2% force estimation error, and 9.3% contact
diameter prediction error. This result outperforms both a
conventional physics-based mapping approach and direct end-
to-end learning. The approach presented in this study has the
potential to greatly ease the development process for many
robotic tactile skins by simulating a broad range of tactile
inputs that are not subject to the constraints or costs of real
experiments.
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