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Abstract— In this paper, we address the problem of automating
the definition of feasible pallets configurations. This issue is
crucial for the competitiveness of logistic companies and is still
one of the most difficult problems in internal logistics. In fact,
it requires the fast solution of a three-dimensional Bin Packing
Problem (3D-BPP) with additional logistic specifications that
are fundamental in real applications. To this aim, we propose
a matheuristics that, given a set of items, provides feasible
pallets configurations that satisfy the practical requirements of
items’ grouping by logistic features, load bearing, stability, height
homogeneity, overhang as well as weight limits, and robotized
layer picking. The proposed matheuristics combines a mixed
integer linear programming (MILP) formulation of the 3D-Single
Bin-Size BPP (3D-SBSBPP) and a layer building heuristics.
In particular, the feasible pallets configurations are obtained by
sequentially solving two MILP sub-problems: the first, given the
set of items to be packed, aims at minimizing the unused space
in each layer and thus the number of layers; the latter aims at
minimizing the number of shipping bins given the set of layers
obtained from the first problem. The approach is extensively
tested and compared with existing approaches. For its validation
we use both realistic data-sets drawn from the literature and real
data-sets, obtained from an Italian logistics leader. The resulting
outcomes show the effectiveness of the method in providing
high-quality bin configurations in short computational times.

Note to Practitioners—This work is motivated by the intention
of facilitating the transition from Logistics 3.0 to Logistics 4.0 by
providing an effective tool to automate bin packing, suitable
for automated warehouses. On the one hand, the proposed
technique provides stable and compact bin configurations in
less than half a minute per bin on average, despite the high
computational complexity of the 3D-SBSBPP. On the other hand,
the approach allows to consider compatibility constraints for the
items (e.g., final customer and category of the items), and the
use of robotized layer picking in automated warehouses. In effect,
layers composed by only one type of items (i.e., monoitem layers)
can be directly picked and placed on the pallet by a robotic
arm without the intervention of any operator. Consequently,
the adoption of this approach in warehouses could drastically
improve the efficiency of the packing process.
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I. INTRODUCTION

THE industrial sector is experiencing the so-called fourth
industrial revolution, based on the pervasive use of the

enabling technologies of Industry 4.0 [1] to increase pro-
ductivity and quality standards of production processes [2].
In this context, the novel concept of Logistics 4.0 has been
introduced, aiming at adapting the general Industry 4.0 pillars
to logistics (e.g., automated warehouse, digitization of freight
and information flows, and transport tracing) [3]–[8].

Among the various internal logistic activities, the packing
of items on pallets is one of the most complex and resource
consuming. It requires the resolution of the three-dimensional
Bin Packing Problem (3D-BPP) with additional logistic spec-
ifications that ensure the stability and safety of the cargo. Its
automatic solution can allow the warehouse manager to rapidly
obtain feasible configurations of pallets with respect to specific
cost functions and packing constraints, to reduce the number
of composed pallets and the time required for their packing,
and to increase the throughput of the company. Although
commercial Warehouse Management Systems (WMSs) offer a
large variety of functionalities for the management of internal
logistics, effective algorithms that automate the definition of
feasible pallets configurations are still lacking. In particular,
the available commercial solutions mainly offer 3D graphical
tools that allow simulating the manual composition of items
into bins from a visual perspective only. In addition, in the
related literature, as will be detailed in Section II, contributions
to the definition and resolution of the 3D-BPP for internal
logistic applications are limited, especially when compared
with their two-dimensional counterparts, and they only include
a restricted set of constraints that partially represent the
business rules adopted in real logistic systems. Furthermore,
the few existing literature contributions mainly address the
3D-BPP for simplified simulation scenarios and a recent
survey highlights the lack of realistic benchmark data-sets [9].

With the aim of facilitating the transition from Logistics
3.0 to Logistics 4.0, in this paper we propose a matheuristic
algorithm [10] that can be integrated in the WMS to automat-
ically and efficiently provide feasible pallets configurations.
The proposed matheuristics allows defining feasible pallets
configurations while taking into account the practical require-
ments of items’ grouping by logistic features, load bearing,
stability, height homogeneity, overhang as well as weight
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limits, and robotized layer picking. The method consists in
a layer building heuristics that is based on the sequential
solution of two Mixed Integer Linear Programming (MILP)
sub-problems: the former, given the set of items to be packed,
aims at minimizing the unused space in each layer and thus
the number of layers; the latter aims at minimizing the number
of shipping bins given the set of layers obtained from the first
problem resolution.

We highlight that the proposed matheuristics allows packing
homogeneous and heterogeneous items into multiple single
sized bins and properly including particular logistic business
rules, such as the robotized layer picking (i.e., the picking
of entire layers composed by only one type of item by
robotic manipulators) and the grouping of items by specific
logistic features (i.e., delivery number, identification number,
and category of product). The matheuristics is extensively
tested to evaluate its performance in terms of quality of
results and computational efficiency. Specifically, the first set
of tests compares the outcomes and computational time of
the 3D-Single Bin-Size BPP (3D-SBSBPP) with the ones
of the proposed algorithm including only geometric, weight,
and overhang constraints. The second set of tests provides a
comparison between our layer-building matheuristics and the
literature algorithm proposed in [11], which is one of the most
recent and most complete matheuristics in terms of logistic
requirements. The third regards the performance analysis of
the layer-building algorithm with a real data-set obtained by
an Italian industry leader of the logistic sector. The obtained
outcomes show the ability of the method to provide high
quality results in short computational times.

The remainder of this paper is organized as follows.
Section II discusses the literature related to the 3D-BPP in
logistics and positions the proposed approach in the related
context. Section III describes the basic concepts and assump-
tions relevant to the 3D-SBSBPP. Section IV introduces the
MILP-based layer building formulation of the 3D-SBSBPP.
Section V describes the proposed matheuristics to efficiently
solve the 3D-SBSBPP with logistic requirements. Section VI
shows and discusses the experimental results obtained with the
proposed method. Finally, Section VII provides conclusions
and future research perspectives. Appendix A details a basic
exact formulation of the 3D-BPP based on MILP.

II. LITERATURE REVIEW AND PAPER POSITIONING

A. Related Works on 3D-BPP

The bin packing problem definition relies on the
Cutting-Stock problem firstly proposed in [12] and in [13].
In particular, the authors discussed the problem of cutting
standard pieces of stock material into pieces of specified
sizes while minimizing material waste and the related costs.
This problem was then extended to various applications and
redefined leading to the broad category of Cutting and Packing
(C&P) problems. According to the widely accepted typol-
ogy for C&P problems presented in [14], the classic or
one-dimensional BPP belongs to the class of one-dimensional
Single Bin-Size BPP (1D-SBSBPP) and consists in packing
a set of strongly heterogeneous items of given weights to a

minimal number of bins of identical capacity (i.e., only one
bin type) such that for each bin the total capacity of the small
items does not exceed the bins’ capacity. Further types of
BPP identified by [14] are the two- and the three-dimensional
Single Bin-Size BPP (2D- and 3D-SBSBPP), the Multiple Bin-
Size BPP (MBSBPP) if the bins are weakly heterogeneous,
and the Residual BPP (RBPP) if the assortment of bins is
strongly heterogeneous.

In this paper we focus on the 3D-SBSBPP for inter-
nal logistic applications, for which several formulations are
presented in the literature. The classic ones consider only
geometric conditions, i.e., items must not overlap and must
lie inside the bins; while more recent formulations include
additional conditions of practical utility, such as the stability
of the configuration and the family or category of items
(i.e., items of the same family/category have common fun-
damental characteristics and can be grouped in the same
bin; for example, chemical products should not be combined
with food). In Table I, similarly to the early classification
presented in [15], we specify for each article discussed in this
section the implemented logistic requirements (i.e., rotation
of the items, stability, load bearing, weight, family/category,
shape, overhang, robotized layer picking). As it emerges from
the following review of the state of the art, the problem
is typically formulated by employing linear programming
(LP), integer linear programming, and MILP (see, e.g., the
reviews [16]–[18]). Nevertheless, the contributions on real
logistic applications of the 3D-SBSBPP mainly consider the
MILP formulation since it properly allows to represent geo-
metric and safety constraints, see e.g., [19]–[21]. As for the
resolution of the problem, due to its NP-hard nature, the
majority of contributions consider heuristic or matheuristic
approaches that allow to obtain good quality solutions.

The first attempts to define and solve the 3D-SBSBPP as
an optimization problem were proposed in [16] and [27],
both aiming at minimizing the number of filled bins given
a set of items. Since both these preliminary approaches are
impractical for companies, due to long computational times
and the presented geometric constraints, several studies have
proposed extended formulations and advanced heuristics or
adaptive approaches to produce sub-optimal feasible solutions
in a reasonable computational time. In this perspective, the
authors of [22] propose a greedy randomized adaptive search
procedure, based on the wall building algorithm (firstly pro-
posed in [28]) without formulating the 3D-SBSBPP as a pro-
gramming problem, but only providing a list of instructions to
be executed by operators. The algorithm allows to decompose
the 3D-SBSBPP into two sub-problems. The first aims at
composing the items into vertical walls, while the second aims
at composing the obtained walls into bins; both minimize the
free space in the bin. The authors focus on the resolution
of the problem for only one container type and multiple
heterogeneous items, and consider geometric, stability, and
rotation constraints. Differently from [22], the authors of [29]
assume the 3D-SBSBPP to be similar to the parallel-machine
scheduling problem. The problem is modeled as a MILP prob-
lem including only geometric constraints. The authors consider
a heuristic procedure to define a new lower bound based on
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TABLE I

LOGISTIC REQUIREMENTS CONSIDERED IN PUBLICATIONS ON PACKING PROBLEMS

an LP-relaxation of the MILP problem, which is improved by
including valid inequalities based on some similarities with the
parallel-machine scheduling problems. Three further impor-
tant literature contributions about the 3D-BPP are [30], [31],
and [32]. The first two present a two-level tabu search where
the first-level aims at reducing the number of bins, while the
second one optimizes the packing of bins following a proce-
dure based on the interval graph representation of the packing,
which reduces the size of the search space. The last contribu-
tion aims at solving large BPPs in two and three dimensions.
The authors propose a straightforward heuristics based on the
container loading problem method following a wall building
approach and on a one-dimensional BPP approach applied
then for 2D and 3D-BPP taking into account several logistic
constraints such as stability, load bearing, and weight.

Subsequently, [19] considers items as physical boxes and
therefore pays particular attention to their physical characteris-
tics, including the weight and material of the considered items.
Similarly to [22], the authors do not provide a mathematical
formulation of the 3D-BPP, but they present an algorithm for
the composition of the bins that aims at minimizing the free
space in the bins and the total number of composed bins. The
approach first builds horizontal layers of identical items and,
then, generates packing schemes by greedily loading layers
according to a selection criterion. Further, [20] considers the
problem of 3D bin packing including both geometric and load
bearing constraints. The goal is to find the minimum number
of bins ensuring that the loaded items’ average mass center
falls as close as possible to an ideal point, for example the
center of the bin. The authors propose a MILP formulation
of the problem and a multi-level local search heuristics for its
resolution. The method leads to good results in terms of bin
balancing and computational time on literature examples tests.

In two recent works [21] and [23] the authors succeed
in providing a complete formulation of the problem and
efficient resolution methods for industrial applications. More
in detail, [23] defines a mixed integer programming problem
able to find a solution to the three-dimensional Multiple Bin
Size Bin Packing Problem with bins of different shapes to fit
inside an aircraft. For the resolution of this specific problem,
three heuristics are adopted, i.e., Relax-and-Fix, Insert-and-
Fix and Fractional Relax-and-Fix. Some tests are performed
on test cases specifically designed for this type of problem,
showing good results of the heuristics. Nevertheless, this paper
disregards some important aspects such as the compatibility
among the different families/categories of items to be packed
and the possibility to create configurations with only one

type of items both for layers and bins. Such precautions
are fundamental in a real company environment and can
further reduce the computational time and simplify the picking
process of the items from the warehouse.

Further recent contributions [25], [33] and [26] introduce
the adoption of new resolution approaches derived from the
Internet technology field. The first one uses a hybrid genetic
approach for the resolution of the heterogeneous BPP trans-
portation and distribution to various locations by satisfying
practical constraints, such as box rotation, fragility, container
stability, weight, overlapping, and shipment placement. The
second one uses a constrained deep reinforcement learning
method for the resolution of an online 3D-BPP formulated as a
constrained Markov decision process which includes physical
stability and rotation constraints, while the last one exploits
multimodal deep reinforcement learning in order to reduce the
computational complexity of the classical version of the BPP
(i.e., without the logistic constraints) and solve medium-scale
instances of 100 items while most existing methods are only
able to handle up to 50 boxes in short computational times.

Further particularly recent approaches are presented in [24]
and [11], which address the mixed-case pallettization problem,
i.e., an extension of the classic 3D-BPP that incorporates
practical logistic features, such as bin stability, item support,
family/category groupings, isle friendliness, and load bear-
ing. To solve such a problem, a column-generation solution
approach is proposed, where the pricing sub-problem is a two-
dimensional layer-generation problem.

B. Paper Contributions

As it emerges from the discussion of the literature review,
only a few contributions address the 3D-SBSBPP from the
general perspective of the real logistic sector and present
applications to real case studies.

In this paper we propose a matheuristics of practical
applicability for the automatic and efficient resolution of the
3D-SBSBPP. In particular, we define a novel MILP-based
layer building algorithm that efficiently determines feasible
pallet configurations, minimizing the unused space and ful-
filling a set of geometric and logistic specifications, i.e.,
items’ grouping by logistic features, load bearing, stability,
height homogeneity, overhang and weight limits, and robotized
layer picking. In contrast with the contributions analyzed
in Section II-A, we propose an algorithm that allows the
automatic management of the packing process, starting from
the analysis of the shipment list and allowing the definition
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of the most suitable configuration of bins to be delivered to
the final customers in a short computational time. A syn-
thetic comparison of our approach with the related literature
is reported in Table I. In particular, differently from [22]
and [29], the proposed algorithm allows the definition of
multiple bins of homogeneous and heterogeneous items. With
respect to [23] and [25], our algorithm takes into account also
compatibility constraints among items, e.g., food is not packed
with chemical products, and fragility constraints. Moreover,
similarly to [24], our work considers the decomposition of
the problem into the two Layer Building and Bin Building
phases, but we additionally provide a detailed mathematical
formulation of the practical constraints such as item support,
bin stability, and load bearing for the application of the method
in the logistic field. The contributions of this paper can be then
summarized as follows:

• we formulate the 3D-SBSBPP as a MILP-based layer
building BPP that first optimizes the layers composition
and then the bin configuration. The formulation includes
not only geometric constraints, but also logistic require-
ments, i.e., load bearing, stability, height homogeneity,
overhang and weight limits (see Table I);

• we define a three-phase matheuristics based on the layer
building formulation of the 3D-SBSBPP that allows,
in a short computational time, the proper and automatic
management of the packing process from the analysis of
the shipment list to the definition of the most suitable
configuration of bins to be delivered to the final customer.
The method allows fulfilling further logistic constraints
that are not included in the mathematical formulation
of the problem, i.e, the grouping of items by logistic
features, such as, delivery number, identification number,
and category of product, and the robotized layer picking
function (see Table I);

• we carry out extensive computational tests to compare
the performance of the proposed algorithm with respect
to a reference method using both realistic data-sets drawn
from the literature and real data-sets. In particular, differ-
ently from related works that consider testing instances
with geometrical features only, we show the effectiveness
of the proposed methodology on industry-size scenarios
including practical constraints required by logistic com-
panies.

III. PROBLEM STATEMENT AND ASSUMPTIONS

Before introducing the mathematical formulation of the
logistic 3D-SBSBPP and the matheuristics for its resolution,
we describe some basic concepts and assumptions. In general,
the logistic 3D-SBSBPP consists in properly packing a set of
items to be delivered to customers inside the minimum number
of identical shipping bins while fulfilling geometric and safety
requirements.

We assume that items are goods to be delivered and packed
in basic rectangular unit loads, i.e., packages. Differently, bins
or shipping bins are a set of items packed in second level unit
loads, i.e., pallet loads. The bin can be composed manually
by expert operators, or automatically by anthropomorphic

TABLE II

NOMENCLATURE OF THE LOGISTIC 3D-SBSBPP

robots that can handle single items or homogeneous sets of
items organized in layers (i.e., the so-called robotized layer
picking), or both automatically and manually. With the aim of
facilitating the bin assembly procedure by both operators and
robots and reducing economical losses for the company, here
we assume that a bin is composed by stacked layers, which can
be either homogeneous (i.e., containing only one type of items)
or heterogeneous (i.e., containing different types of items).
Homogeneous layers are further distinguished into monoitem
layers, i.e., composed by items with the same identification
number (ID), and monocategory layers, i.e., composed by the
same category of goods. Conversely, heterogeneous layers are
defined as mixed layers that can include items with different ID
and category, given that the categories are compatible. At each
item a stability index is associated that ranges from 1 to 100:
the higher the value, the more stable the item (note that the
value is computed based on the geometrical features of the
item). In order to have a stable and compact configuration of
the pallet we impose that items are stacked by a decreasing
value of the stability index starting from the bottom layer up
to the top one.

The dimensions of the base of bins depend on the pallet
dimensions plus a tolerance excess band both in width and
length called overhang, while the bins’ maximum height
depends on the height of the unit load used to transport
the bins, namely the transport unit. A bin generally contains
multiple items, here assumed related to a single delivery, while
one or multiple deliveries compose a shipment order.

The algorithm proposed in this work for solving the logistic
3D-SBSBPP takes as input a shipment list and the type of
pallet to be used as base for the bin, while it returns as
output the most efficient configurations of the input items
in bins. We assume that input items are associated to a
single shipment order but they may actually be associated to
different delivery orders. Actually, depending on the type of
shipment, this can include one or more customer deliveries,
while each delivery is associated only to a single customer.
Consequently, the algorithm efficiently groups the items by
delivery, ID, and category. The nomenclature of the problem
and the corresponding meanings are summarized in Table II.
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TABLE III

LIST OF PARAMETERS FOR THE LAYER BUILDING AND BIN
BUILDING SUB-PROBLEMS

IV. THE 3D-SBSBPP FORMULATION

In this section we present the mathematical models on
which the proposed matheuristics relies, which is detailed in
Section V. In particular, the logistic 3D-SBSBPP is formulated
with two sub-problems based on [34], namely:

• Layer building sub-problem: given the set of items to be
packed, this sub-problem aims at minimizing the unused
space in each layer and thus the number of items’ layers,
while fulfilling geometric constraints.

• Bin building sub-problem: given the set of layers obtained
from the Layer Building sub-problem, this sub-problem
aims at minimizing the number of shipping bins, while
fulfilling geometric and safety constraints.

Table III shows all the parameters used in the proposed
formulation, while the variables are presented in Table IV.

A. Layer Building Sub-Problem

In this sub-problem the goal is to arrange the given items
into a minimum number V of layers having the highest fill
ratio and including items with similar heights. The layers are
composed in accordance with an iterative procedure. Initially,
the first layer is composed extracting the optimal subset from
all the N items, which maximizes the fill ratio while fulfilling
geometric constraints, overhang limits and height homogeneity
requirements, i.e., ensuring that the height difference between
the selected items is lower than a given threshold. For the
second layer, the optimal selection procedure is applied to

the remaining available items. The optimization steps are
then iterated until all items are paired with a layer. For the
composition of a generic layer j , given the set N j ⊆ N of
N j available items, the layer building model is formulated as
follows:

min

⎛⎝(θ+O)(λ+Q)−
∑
i∈N j

piθiλi

⎞⎠ (1)

subject to:

xi +θ ilxi +λi(1 − lxi ) ≤ θ+O+(1 − pi)L, ∀i (2)

yi +λi(1 − lyi )+θilyi ≤ λ+Q+(1 − pi)L, ∀i (3)

le(i,i ′)+r(i,i ′)+b(i,i ′)+ f(i,i ′) ≥ pi + pi ′ − 1, ∀i, i ′, i ′< i (4)

xi +θilxi +λi (1 − lxi ) ≤ xi ′ +(1 − le(i,i ′))L, ∀i, i ′, i ′< i (5)

xi ′ +θi ′lxi ′ +λi ′(1 − lxi ′) ≤ xi +(1 − r(i,i ′))L, ∀i, i ′, i ′< i (6)

yi +λi(1 − lyi )+θilyi ≤ yi ′ +(1 − b(i,i ′))L, ∀i ′, i ′< i (7)

yi ′ +λi ′(1 − lyi ′)+θi ′lyi ′ ≤ yi +(1 − f(i,i ′))L, ∀i, i ′, i ′< i (8)

(ψi − ψi ′)
(
le(i,i ′)+r(i,i ′)+ f(i,i ′)+b(i,i ′)

) ≤ G, ∀i, i ′, i ′< i (9)

(ψi − ψi ′)
(
le(i,i ′)+r(i,i ′)+ f(i,i ′)+b(i,i ′)

)≥ -G, ∀i, i ′, i ′< i (10)

lxi +lyi = 1, ∀i (11)

0 ≤ xi ≤ θ, ∀i (12)

0 ≤ yi ≤ λ, ∀i (13)

le(i,i ′), r(i,i ′), b(i,i ′), f(i,i ′) ∈ {0, 1}, ∀i, i ′, i ′< i (14)

pi ∈ {0, 1}, ∀i (15)

lxi , lyi ∈ {0, 1}, ∀i. (16)

The objective in (1) is to maximize the fill ratio of the
layer (i.e., to minimize the horizontal area of the pallet that is
not occupied by selected items). Constraints (2)-(3) guarantee
that each item is contained in the dimensions of the layer
allowing a overhang tolerance for the x and y axis; moreover,
they allow the rotation of the item by 90 degrees along the
vertical axis. Constraints (4)-(8) ensure the assignment of the
relative position of two items without overlapping, allowing
the combination of the positions front, back, left, and right.
Constraints (9)-(10) ensure that the maximum gap between the
items height inside one layer is lower than a threshold, thus
keeping layers as homogeneous as possible and contributing
to the stability of the overall configuration. Constraints (11)
guarantee the unique assignment of the orientation of each
item i . Finally, constraints (12)-(13) and (14)-(16) specify the
bounding and the integrality conditions on the defined real and
binary decision variables, respectively.

Summing up, the resulting MILP problem (1)-(16) consists
in determining the 2N j real and N j (2N j + 1) binary variables
characterizing the layers and listed in the first part of Table IV,
which minimize the objective function in (1) and meet the
N j equality constraints (11), the 7

2 N j(N j + 3) inequality
constraints (2)-(10), the 4N j bounding constraints (12)-(13),
and the N j (2N j + 1) integrality constraints in (14)-(16).

The iterative resolution of (1)-(16) allows determining the
composition of layers (the items allocated to each layer and
their location in terms of coordinates and vertical rotation)
and, after executing the above MILP problem, the parameters
representing the physical features of layers are then determined
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TABLE IV

LIST OF VARIABLES FOR THE LAYER BUILDING AN BIN BUILDING SUB-PROBLEMS

as follows:
H j = max

i∈N j

ψi , ∀ j (17)

A j =
∑
i∈N j

λiθi , ∀ j (18)

Sj = γS

∑
i∈N j

si , ∀ j (19)

C j = γC

∑
i∈N j

ci , ∀ j (20)

W j =
∑
i∈N j

ωi , ∀ j. (21)

In particular, the height of a given layer is set equal to the
height of the highest selected item; the layer occupied area is
the sum of the areas occupied by all the selected items; the
layer stability is defined as the sum (scaled by factor γS) of
the values associated to the selected items; the maximum load
supported by the given layer is estimated as the sum (scaled
by factor γC) of the values associated to the selected items;
the weight of the layer is given by the sum of the weights of
all the items contained in it.

B. Bin Building Sub-Problem

In this sub-problem, given the set of the V layers obtained
by solving the optimization problem (1)-(16) and the corre-
sponding parameters computed by (17)-(21), the aim is to
minimize the number of bins composed by the given layers,
while fulfilling geometric and safety requirements.

The bin building problem is formulated as follows:

min
Mmax∑
k=1

nk (22)

subject to:
V∑

j=1

v j,k ≤ V nk, ∀k (23)

Mmax∑
k=1

v j,k = 1, ∀ j (24)

z j + H j ≤ ψ + (1 − v j,k)L, ∀k, j (25)

o( j, j ′)+ u( j, j ′) ≥ v j,k + v j ′,k − 1, ∀k, j, j ′, j ′< j (26)

z j + ψ j ≤ z j ′ + (1 − o( j, j ′))L, ∀ j, j ′, j ′< j (27)

z j ′ + ψ j ′ ≤ z j + (1 − u( j, j ′))L, ∀ j, j ′, j ′< j (28)
V∑

j ′=1

W j ′ o( j ′, j) ≤ C j , ∀ j (29)

V∑
j=1

v j,k W j ≤ F, ∀k (30)

Sj o( j, j ′) ≤ Sj ′u( j ′, j), ∀ j, j ′, j ′< j (31)

Sj u( j, j ′) ≥ Sj ′o( j ′, j), ∀ j, j ′, j ′< j (32)

(A j − A j ′)o( j, j ′) ≤ B, ∀ j, j ′, j ′< j (33)

(A j − A j ′)u( j, j ′) ≤ B, ∀ j, j ′, j ′< j (34)

0 ≤ z j ≤ ψ, ∀ j (35)

nk ≥ nk+1, ∀k ∈ {1, . . . ,Mmax − 1} (36)

o( j, j ′), u( j, j ′) ∈ {0, 1}, ∀ j, j ′, j ′ < j (37)

v j,k ∈ {0, 1}, ∀k, j (38)

nk ∈ {0, 1}, ∀k. (39)

The objective in (22) is to minimize the number of bins to
be composed, given the set of layers. Constraints (23) ensure
the consistency between binary variables v j,k (∀ j ) and nk

for each bin k, i.e., if any layer is assigned to a bin, the
bin is considered not empty. Constraints (24) make sure that
each layer can be part at most of one bin. Constraints (25)
guarantee that the placement of each layer does not exceed
the maximum height of the bin. Constraints (26) concern the
relative position that two consecutive layers can assume inside
the bin (i.e., on top or below). Constraints (27) - (28) are
related to the non-overlapping of two layers placed in the
same bin. Constraints (29) limit the maximum load that a
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single layer can withstand. Constraints (30) limit the maximum
weight that a single pallet can withstand. The safety constraints
(31) and (32) ensure that the stability index of each layer is
higher than or equal to the stability index of the respective
above layers, while (33) and (34) impose that the gap of area
between two consecutive layers must not be greater than the
given threshold B. Finally, constraints (35), (36) and (37)-(39)
specify the bounding, the validity, and integrality conditions
on the defined real and binary decision variables, respectively.

Summing up, the resulting MILP problem (22)-(39) consists
in determining the V real and 2Mmax(1+V)+V(V−1) binary
variables characterizing the bins and listed in the second part
of Table IV, which minimize the objective function in (22) and
meet the V equality constraints (24), the Mmax(2 + 1

2 V(V +
1))+V(2+3(V−1)) inequality constraints (23) and (26)-(39),
the 2V bounding constraints (35), the 1

2 (Mmax(Mmax − 1))
validity constraints (36), and the Mmax(1 + V) + V(V − 1)
integrality constraints (37)-(39).

V. THE MATHEURISTICS FOR THE AUTOMATED

3D-SBSBPP

In this section we describe the proposed matheuristics for
the logistic 3D-SBSBPP, which is based on the mathematical
models described in section IV. We highlight that, as described
in Section III, the algorithm takes as input a shipment list
that includes items with different IDs and different categories,
to be delivered to different clients. Thus, the algorithm is in
charge of creating monoitem, monocategory, and mixed layers.
As shown in Fig. 1, the proposed matheuristics is composed
by 3 different phases, namely, Grouping, Layer Building, and
Bin Building, which are represented in the flowchart by dashed
boxes and are executed sequentially.

A. Grouping

this is a pre-processing phase aimed mainly at grouping
items by delivery and ID. This procedure receives as input
the data related to a shipment including the list of deliveries
associated to various customers. First, this phase initializes all
the parameters of the problem, i.e., the parameters related to
items (N, θi , λi , ψi , si , ai , ωi ), the class of parameters related
to pallets (V, θ , λ, ψ , O, Q), and the parameters related to
the creation of layers (G, B, U, T, FRmono, FRmulti), where
U and T are the maximum allowable layer picking weight
and height, and FRmono and FRmulti are the minimum admitted
values of the fill ratio of monoitem layers and of monocategory
and mixed layers. The fill ratio indicates the percentage of
the layers’ area occupied by the respective items. We also
highlight that parameters O and Q are set according to the
dimensions of the input items, ensuring that at least the half
base of the smallest item is placed inside the bin. They are
calculated as follows:

O = Q <
mini {θi , λi }

2
. (40)

Moreover, with the aim of facilitating the delivery and the
loading/unloading of bins from transport units to customers,
we impose that items belonging to a specific delivery are
grouped, so that such items can be packed together inside

Fig. 1. High-level flow chart of the proposed matheuristics.

the bins. Subsequently, given a delivery, the algorithm further
groups the items by ID.

B. Layer Building

the main purpose of this phase is to obtain feasible config-
urations of monoitem layers, monocategory layers, and mixed
layers. In particular, monoitem layers are created starting from
each monoitem set by means of a heuristic procedure that
creates strips of items inside of the layer by starting from its
left bottom corner. A monoitem layer is created if the area of
the items fully covers the area of the layer (i.e., the fill ratio
of the j -th layer is FR j ≥FRmono) and also both the length
and width of the items fit the length and width of the layer.
In particular, the items are sequentially positioned in the layer
by iteratively assigning the coordinates of the left bottom cor-
ner of each item. For the monoitem layers, the robotized layer
picking is enabled only if the total weight and the height of the
layer are lower than or equal to the maximum allowable layer
picking weight (U) and maximum allowable layer picking
height (T). If all the items of the shipment are inserted in
monoitem layers, the algorithm executes the subsequent Bin
Building phase, otherwise the remaining items are processed
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for creating monocategory and mixed layers. Specifically, the
items are first grouped by category. For each category, the
items are grouped in subsets N j for which the summation
of the items’ base area satisfies the relation FR j ≥FRmulti.
The optimization problem (1)-(16) is then iteratively solved
over the subsets N j , until all items are assigned to a layer.
Note that at each step a MILP solver iterates until a solution
is found or the computational time is greater than a given
threshold �t (i.e., an approximate solution is found). At each
iteration, the obtained layer configuration is saved if it satisfies
the requirement on the fill ratio, i.e., FR j ≥FRmulti, otherwise
the corresponding items are recombined with the remaining
items and novel subsets N j , containing all the items that are
still not assigned to any bin, are defined. The eventual residual
items of different but compatible categories are combined in
mixed layers following the same steps described for monocat-
egory layers. In the eventuality of residual compatible items,
further mixed layers will be composed by relaxing the height
homogeneity and fill ratio requirements.

The algorithm then moves to the Bin Building phase in the
following cases: (1) all the items included in the monocategory
sets are assigned to layers (both monocategory and mixed lay-
ers); (2) not all items are assigned to a layer, but these residual
items belong to incompatible categories (i.e., categories that
cannot be combined in the same layer, e.g., food and chemical
products).

C. Bin Building

this phase aims at properly combining the layers computed
in the previous phases (i.e., monoitem, monocategory, and
mixed layers) into a minimum number of bins. In particular,
this procedure is executed on a delivery basis, i.e., all the
layers related to a given delivery are grouped by compatible
categories and used to solve the bin building problem (22)-(39)
presented in Section IV-B.

We highlight that the proposed matheuristic algorithm pro-
vides fesible solutions in a short computational time. The
quality of the results and the scalability of the method is
obtained empirically. In the experimental results section we
discuss both aspects and compare the results of the pre-
sented algorithm with those of the exact resolution. Moreover,
we evaluate the computational time required by both the
exact and proposed methods, proving the advantages of our
matheuristic algorithm.

VI. EXPERIMENTAL RESULTS

This section is devoted to the validation of the performance
of the proposed matheuristics. All tests are performed on
a laptop equipped with a 2.20 GHz Intel Core i7-8750H
CPU and 32 GB RAM using C# language [35], combined
with the Glop linear solver [36]. In particular, due to the
nature of the elements characterizing the 3D-SBSBPP, object-
oriented programming has been employed, in order to properly
represent the structure and relations of the problem data.

In the following sub-sections the proposed matheuristics
is tested first on a small data-set where the results and
performance of the algorithm are compared with the ones of

the 3D-SBSBPP basic formulation presented in Appendix A.
Then the method is compared with a reference method using
both realistic data-sets drawn from the literature and realistic
industrial data-sets [11]. Finally, the algorithm is tested on
real data provided by the Italian logistic company Elettric80
Ltd [37] to further investigate its performance.

The following performance indicators are considered to
analyse the performance of the algorithm.
Number of created layers and bins:

• M: total number of obtained bins;
• V: total number of obtained layers;

Fill ratio [%]:
• AvgFRV: layers’ average fill ratio;

AvgFRV = 100

V

V∑
j=1

(1 − (θ + O)(λ+ Q)− ∑N j

i=1 ai

(θ + O)(λ+ Q)
)

where ai is the base area of the i−th item obtained as θiλi .
• AvgFRM: bins’ average fill ratio;

AvgFRM = 100

M

M∑
k=1

(1 − (θ + O)(λ+ Q)ψ−∑Vk
j=1

∑N j,k

i=1 di

(θ + O)(λ+ Q)ψ
)

where di is the volume of the i−th item obtained as θiλiψi .
Computational time [s]:

• Tex: total computational time of the algorithm;
Stability indices S1k and S2k , firstly qualitatively described
by [38] and used also by [22], are formalized as follows:

• S1k : average number of items positioned below each item,
in case this is not positioned directly on the pallet, i.e.,
not considering the lowest layer, formulated as follows:

S1k = 1

Vk − 1

Vk−1∑
j=1

(∑N j+1,k

i ′=1

∑N j,k

i=1 μ(i,i ′)

N j+1,k

)
where μ(i,i ′) is equal to 1 if item i is under item i ′
otherwise is equal to 0

• S2k : average percentage of items which are not sur-
rounded by other items in at least 3 sides inside of bin
k, formulated as follows:

S2k = 100

Nk

Vk∑
j=1

N j,k∑
i=1

min

{
1,max

{
0, 3

−
(

min
{

1,
N j,k∑
i ′=1

b(i,i ′), j

}
+ min

{
1,

N j,k∑
i ′=1

f(i,i ′), j

}

+min
{

1,
N j,k∑
i ′=1

le(i,i ′), j

}
+ min

{
1,

N j,k∑
i ′=1

r(i,i ′), j

})}}
where b(i,i ′), j is equal to 1 if item i is behind item i ′ in
layer j otherwise is 0, f(i,i ′), j is equal to 1 if item i is in
front of item i ′ in layer j otherwise is 0, le(i,i ′), j is equal
to 1 if item i is on the left of item i ′ in layer j otherwise
is 0, and r(i,i ′), j is equal to 1 if item i is on the right of
item i ′ in layer j otherwise is 0. As for the parameters,
N j is the number of items in layer j , Vk is the number of
layers of bin k, and Nk is the number of items of bin k.
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The overhang index is formulated as:
• S3k : average value of the overhanging ratios over all

the layers assigned to the k−th bin. For each layer the
overhanging ratio is computed dividing the actual layer
overhanging area by the maximum pallet overhanging
area (i.e., (θ + O)(λ+ Q)− θλ).

In the set-up of each implemented scenario the parameters
for the 3D-SBSBPP are set as follows:

• satisfactory monoitem layer fill ratio FRmono = 99%;
• satisfactory monocategory or mixed layer fill ratio

FRmulti = 90%;
• maximum height gap among items of the same layer

G = 20 mm;
• maximum area gap among two consecutive layers

B = 10000 mm2;
• maximum load supported by the layer picking

U=1000 Kg;
• maximum height supported by the layer picking

T = 1000 mm.
Finally, the only remaining set-up parameter for the pro-

posed algorithm is the maximum execution time in which
the solver of Layer Building Phase has to find the best
configuration for the creation of each layer, that we set
�t = 90 seconds.

A. Comparison With an Exact Method

In this subsection the proposed matheuristic algorithm is
compared with the exact solution of the logistic 3D-SBSBPP.
Note that, as highlighted in the comparative review in [9],
only a few contributions are available in the literature that
apply exact methods to the 3D-SBSBPP. This is mainly due
to the difficulties in representing patterns or practical packing
constraints. For this reason, in Appendix A we report a MILP
formulation of the 3D-SBSBPP based on the literature formu-
lation by Chen et al. [34] that includes geometric, overhang,
rotation, and weight constraints and we compare it with our
approach including the same requirements. In the tests the
pallet dimensions are equal to the standard EUR1 Euro pallet
ones, i.e., θ = 800 mm (width of the pallet), λ = 1200 mm
(length of the pallet). The maximum admissible height for each
bin is ψ = 1800 mm, while the maximum weight supported
by the pallet is F = 1200 kg. These assumptions are realistic,
especially for logistic companies that handle high quantities
of goods.

We first perform a scalability analysis testing both methods
(i.e., for the matheuristic algorithm, indicated as A, and for
the exact method, indicated as Â) over instances with an
increasing number of identical items. The items’ dimensions
are θ = 300 mm (width), λ = 200 mm (length), ψ =
600 mm (height) and ω = 10.8 kg (weight).

Starting with an instance including 10 items and increasing
at each test the number of items by one unit, the computed
results reveal that in 10% of scenarios the exact solution pro-
vides a higher number of bins with respect to the matheuristics.
On the contrary, the matheuristics succeeds in including all
items in a single bin. Moreover, as shown in Fig. 2, the
computational time of the matheuristics presents a growth

Fig. 2. Execution time of the proposed algorithm (A) and the exact method
in Appendix A (Â) as a function of the items number.

rate significantly lower with respect to the exact solution.
In particular, with 32 items the computational time of the
matheuristics is 699.0% lower than the exact solution, thus
demonstrating the efficiency of the proposed algorithm.

We further test and compare the performance of the pro-
posed matheuristics with the ones of the exact method con-
sidering two additional scenarios, i.e., ScA and ScB. The two
scenarios respectively include two and three types of different
items, whose dimensions and weights are reported in Table V.
It is important to mention that in both scenarios the considered
items can fit in a single bin. The obtained results, reported
in Table V are evaluated in terms of computational time Tex,
average fill ratio AvgFRM, and number of obtained bins M for
the matheuristic algorithm A, and for the exact method Â. The
outcomes show that in both cases the matheuristics can provide
a solution with AvgFRM = 100% in shorter computational
times with respect to the exact method, and both assign all
items to a single bin.

B. Comparison With a Literature Reference Matheuristics

In this subsection, we compare the results achieved with
our matheuristics with the ones obtained by in [11] using a
set of randomly generated industrial instances. We highlight
that, in the related literature, the principal well-known data-
sets used to test the efficiency of 3D-SBSBPP algorithms lack
most of the logistic data considered in this work (i.e., items’
weight, stability index, supported load, overhang, categories,
IDs, height and area gap, layer picking) that are necessary to
practically implement the problem resolution. On the contrary,
the work in [11] presents a matheuristics using a layer based
column generation approach combined with second order cone
programming and graphs, and includes all the requirements
considered in this work except for the robotized layer picking.
Moreover, this approach, considered as literature benchmark,
is the extension of the one proposed by the same authors
in [24], which proves that the algorithm largely outperforms
the best performing literature’s algorithms identified by [9],
such as the ones in [16] and [30].

The data-set used for the comparison is obtained with the
instance generator of [11] and is composed of 4 classes with
7 different instances including 100, 150, 200, 500, 1000, 1500,
and 2000 items. The 4 classes contain different percentages
of small to large volume items as specified in [24]. For
what concerns the setup parameters, the pallet dimensions are
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TABLE V

SET-UP AND RESULTS FOR THE COMPARISON OF THE PROPOSED ALGORITHM (A) WITH THE EXACT METHOD OF APPENDIX A (Â)

TABLE VI

RESULTS FOR THE COMPARISON OF THE PROPOSED ALGORITHM (A) WITH THE LITERATURE BENCHMARK [11] (A∗)

θ = 1240 mm, λ = 840 mm and ψ = 2200 mm, and F =
1500 kg. Table VI reports the average results achieved by
testing each combination of class and number of items over
five instances; we use the symbols A and A∗ to respectively
indicate our algorithm and the literature one. Columns I and II
report the class of the instance (i.e., Classes 1 to 4) and the
corresponding number of items (N); column III reports the
minimum, the maximum, and the average number of bins
(M) obtained with the two algorithms for the five instances;
column IV reports the average CPU times obtained over the
instances (AvgTex), and column V reports the minimum the
maximum and the average value of the average bins’ fill ratio
(AvgFRM) achieved over five instances. The achieved results
show that our algorithm provides a higher fill ratio in terms of
the average and the maximum values, while, in some cases,
it provides a lower value of the minimum value with respect
to the reference algorithm. In general, it is possible to notice
that, on the one hand, the difference between the minimum
and the maximum fill ratio values is higher for our algorithm,
meaning that it provides some very full configurations, and
some other emptier because they are filled with the few
remaining items. On the other hand, the number of filled bins is
similar in the two methods, while the execution time is almost

70% higher with our method in the small scale instances,
while it is notably 170% lower in the large scale instances.
Concluding, the developed comparison demonstrates that the
proposed matheuristics can efficiently provide feasible bins’
configurations with different set of instances both in terms
of number of items and features heterogeneity. Moreover,
the proposed method generally outperforms the one in [11]
both in terms of computational time and fill ratio in large
size industrial scenarios and consequently also the principal
literature algorithms.

C. Tests on Industrial Data

In this subsection, our matheuristic method is further tested
on more complex scenarios based on real data provided by the
Italian logistic company Elettric80 Ltd [37]. These data are
related to the three scenarios Sc1, Sc2, and Sc3 –described in
Table VII– corresponding to logistic shipments with different
level of item heterogeneity. The set-up of all scenarios is
reported in Table VII, where column I specifies the scenario,
column II the number of corresponding IDs, columns III-VI
the interval for the length, width, height, and weight of the
items included in the scenario. Each scenario is tested on
3 different instances of size 84, 486, and 522, corresponding
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TABLE VII

SET-UP FOR THE TEST ON INDUSTRIAL DATA

TABLE VIII

RESULTS FOR THE TEST ON INDUSTRIAL DATA

to the three most common sets of deliveries. For the tests the
pallet dimensions are assumed equal to the standard EUR1
Euro pallet ones, i.e., θ = 800 mm (width of the pallet),
λ = 1200 mm (length of the pallet). The maximum admissible
height for each bin is ψ = 1800 mm, while the maximum
weight supported by the pallet is F = 1200 kg.

Table VIII shows the performance evaluation of the
matheuristics for each scenario: columns I and II report the
scenario (i.e., Sc1, Sc2, Sc3) and the corresponding number of
items (N); columns III and IV report the obtained number of
layers (V) and bins (M); column V reports the total computa-
tional time (Tex); column VI reports the average computational
time needed by the algorithm to compute each bin (AvgTM);
column VII reports the average value of the average bins’
fill ratio (AvgFRM). It is apparent that the higher the item
heterogeneity, the higher the computational time. In particular,
the worst performance in terms of computational time is
obtained in Sc1 that contains the lowest level of homogeneous
items. Actually, in Sc1 the largest part of the execution time is
spent in the Layer Building Phase of the matheuristics, since
a high percentage of mixed layers is required to be computed.

As for the quality of the solutions, first, the geometrical
features of the composed bins are evaluated in terms of fill
ratio. From Table VIII it can be noticed that the average fill
ratio of the medium and large instances (i.e., with 486 and
522 items) is generally higher than the smallest one (i.e., with
84 items); in particular, for scenarios Sc2 and Sc3 it is up to
the 99% of the total volume of the volume. In addition, it can
be also noted that the average layers’ fill ratio (AvgFRV) is
always higher than the average bins’ fill ratio (AvgFRM). Both
results are due to two different reasons. First, the higher the
number of items and the lower the number of IDs, the higher
the number of created monoitem and monocategory layers
(and consequently bins). Since these layers include items with
the same geometric features and weight, the maximization of
the fill ratio, i.e., eq. (1), can be more easily achieved with
respect to the case of mixed items. Moreover, the algorithm

TABLE IX

STABILITY AND OVERHANGING INDICES

is set so that the minimum fill ratio for the monoitem and
monocategory layers must be higher than 90% and, in case
this condition is not satisfied, the obtained layers are rejected
and their items are used to create mixed layers. On the
other hand, even if the average layers’ fill ratio is higher
due to weight, height, and safety constraints of the bins’
building problem (Section IV-B), there can be limits to the
possible configurations admissible for the bins’ composition,
especially in the case of mixed bins, thus the average bins’
fill ratio can be lower than the average layers’ fill ratio,
thus leading to lower values in the average bins’ fill ratio.
To further highlight the difference in bins’ fill ratio in the
analyzed scenarios, Fig. 3 reports the 3D configuration of
four illustrative examples that respectively represent: (a) a
bin with residual mixed layers, (b) a full bin with mixed
layers, (c) a full bin with heterogeneous monoitems layers, and
(d) a full bin with homogeneous monoitem layers. The more
homogeneous the items inside of the bin, the higher the fill
ratio: the monoitem layers are generally the fullest ones (i.e.,
FRmono is equal to 99% as specified in the initial set-up of the
algorithm). Additionally, Fig. 4 reports examples respectively
of mixed layers –i.e., (a) and (b)– and monoitem layers –i.e.,
(c)– configurations. Note that the number reported inside each
item represents the item ID.

Finally, the obtained results are assessed in terms of logistic
requirements. In particular, the stability indices (i.e., S1k and
S2k) and the overhang index (i.e., S3k) are evaluated for
each layer of the composed bins. Table IX shows AvgS1,
AvgS2 and AvgS3 respectively representing the average value
of S1k , S2k , and S3k over all the composed bins in the
considered scenarios. According to [38] and [22], the higher
the value of AvgS1 the higher the stability, while the lower
the value of AvgS2 the higher the stability. For scenarios Sc2
and Sc3, very low values of AvgS2 are obtained, against a
higher value in Sc1 that includes more mixed layers than the
other two scenarios. As for AvgS1, it can be noticed that
the corresponding values are particularly low, especially in
scenarios Sc2 and Sc3. As a matter of fact, both in scenario
Sc2 and Sc3 the bins’ configurations are composed mainly
by monoitem and monocategory layers, which are identical
layers. Consequently, each item lies only on a totally full layer,
thus not compromising the stability of the overall configuration
(which has a high fill ratio and hence is more compact). Lastly,
the values obtained by AvgS3 demonstrate that the higher the
number of IDs the higher the overhang index. This implies that
the overhang feature remarkably contributes to improve the
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Fig. 3. Examples of: mixed bin with few items (a), mixed bin with heterogeneous items (b), mixed bin with homogeneous items (c), monoitem bin (d).

Fig. 4. Examples of mixed layers (a, b) and a monoitem layer (c).

fill ratio of scenarios with item heterogeneity, thus providing
benefit to the bin packing in realistic scenarios.

VII. CONCLUSION AND FUTURE DEVELOPMENTS

The 3D Bin Packing Problem (3D-BPP) has a crucial role in
Industry 4.0 and in particular in the management of internal
logistics, since it allows to save time and resources in the
mobilization of goods. Consequently, the 3D-BPP is largely
studied in the literature both because of its NP-hard nature
and its high versatility in industrial applications. This work
presents an innovative matheuristic algorithm based on a layer
building approach that allows the automated resolution of the
3D-BPP in a short computational time and suitably for the
industrial context. In particular, we propose a mixed integer
non-linear programming problem to formulate the 3D-BPP

including a complete set of industrial requirements and we
present a matheuristic algorithm to efficiently solve the prob-
lem. Simulation results on both realistic and real data prove
the efficiency and effectiveness of the proposed algorithm
in terms of computational time, optimization of the bins’
configuration and number, and stability of the bins. Further-
more, the proposed algorithm outperforms the results of the
respective exact method. Future developments will consider
the extension of the proposed approach to the multiple bin size
bin packing problem, i.e., the case of multiple types of load
aids with different sizes, and the inclusion of further logistic
constraints that can improve the stability of the packed bins
and shape constraints. Moreover, with the aim of implementing
an approach even more suitable for the industrial sector, the
implementation of a multi-objective optimization approach to
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generate Pareto efficient solutions will be considered, followed
by a multi-criteria analysis to rank these solutions.

APPENDIX A
EXACT METHOD FOR THE BASIC FORMULATION

OF THE 3D-BPP

This section presents a MILP formulation of the logistic
3D-SBSBPP that aims at minimizing the number of shipping
bins used for packing a given set of items, while fulfilling
a basic set of geometric and safety constraints. Differently
from the classical 3D-BPP in [16], this formulation takes
additional constraints into account. Specifically, a tolerance
excess band (both in width and length) in the size of the
bin base dynamically calculated according to the dimensions
of the items (see Section V), rotation along the z axis, and
weight limits for the pallet. For the notation and meaning
of parameters and variables of the formulation we refer to
Tables III and IV.

The mathematical model is defined as follows:

min
Mmax∑
k=1

(θ + O)(λ+ Q)ψnk −
N∑

i=1

θiλiψi (41)

subject to:
N∑

i=1

pi,k ≤ N nk ∀k (42)

Mmax∑
k=1

pi,k = 1, ∀i (43)

N∑
i=1

pi,k ωi ≤ F, ∀k (44)

xi + θi lxi + λi (1−lxi) ≤ θ + O + (1− pi,k)L, ∀k, i (45)

yi + λi (1−lyi )+ θi lyi ≤ λ+ Q + (1− pi,k)L, ∀k, i (46)

zi + ψi ≤ ψ + (1− pi,k)L, ∀k, i (47)

le(i,i ′) + r(i,i ′) + b(i,i ′) + f(i,i ′) + o(i,i ′)

+u(i,i ′) ≥ pi,k + pi ′,k − 1, ∀k, i, i ′, i ′< i (48)

xi + θi lxi + λi (1−lxi) ≤ xi ′ + (1−le(i,i ′))L, ∀i, i ′, i ′< i (49)

xi ′ + θi ′lxi ′ + λi ′(1−lxi ′) ≤ xi + (1−r(i,i ′))L, ∀i, i ′, i ′< i (50)

yi + λi (1−lyi )+ θi lyi ≤ yi ′ + (1−b(i,i ′))L, ∀i, i ′, i ′< i (51)

yi ′ + λi ′(1−lyi ′)+ θi ′lyi ′ ≤ yi + (1− f(i,i ′))L, ∀i, i ′, i ′< i (52)

zi + ψi ≤ zi ′ + (1−o(i,i ′))L, ∀i, i ′, i ′< i (53)

zi ′ + ψi ′ ≤ zi + (1−u(i,i ′))L, ∀i, i ′, i ′< i (54)

lxi + lyi = 1, ∀i (55)

0 ≤ xi ≤ θ, ∀i (56)

0 ≤ yi ≤ λ, ∀i (57)

0 ≤ zi ≤ ψ, ∀i (58)

nk ≥ nk+1, ∀k ∈ {1, . . . ,Mmax−1} (59)

nk ∈ {0, 1}, ∀k (60)

pi,k ∈ {0, 1}, ∀i, k (61)

le(i,i ′), r(i,i ′), b(i,i ′) ∈ {0, 1}, ∀i, i ′, i ′< i (62)

f(i,i ′), o(i,i ′), u(i,i ′) ∈ {0, 1}, ∀i, i ′, i ′< i (63)

lxi , lyi ∈ {0, 1}, ∀i. (64)

Fig. 5. Example of the relative position of two items laying in the x/y plane.

Fig. 6. Horizontal placement of an item in the rotated and not rotated
configuration.

The objective in (41) is the minimization of the unoccupied
space over the total number of used bins. In addition, con-
straints (42) ensure the consistency between binary variables
pi,k (∀i ) and nk for each bin k, i.e., if any item is assigned
to a bin, the bin is considered not empty. Constraints (43)
make sure that each item can be part at most of one bin.
Constraint (44) make sure that the overall weight of items
allocated to each bin is not greater than the maximum weight
supported by the pallet. Constraints (45)-(47) guarantee that
each item is contained in the dimensions of the bin allowing
a overhang tolerance for the x and y axis; moreover, they
allow the rotation of the item by 90 degrees along the vertical
axis. Constraints (48)-(54) are related to the relative positions
that two items can assume inside the bin: (48) ensure the
assignment of the relative position of two items allowing
the combination of the positions front, back, left, right, over,
and under, while (49)-(54) guarantee that those items do not
overlap. Constraints (55) guarantee the unique assignment of
the orientation of each item i . Finally, constraints (56)-(59)
and (60)-(64) specify the bounding and integrality conditions
on the defined real and binary decision variables, respectively.

Figure 5 shows an example of the relative position of
two items (i and i ′) laying on the x/y plane, that is, item
i is positioned on the front left side with respect to object
i ′ in the same plane. Figure 6 represents the two different
orientations that an item can assume with respect to the value
of the variables lxi and which may be 0 or 1 (for the sake of
simplicity, the image is in 2D because the rotation is done on
the x/y and so the height of the item is not influent).

Summing up, the resulting MILP problem (41)-(64) consists
in determining 3N real and Mmax(N + 1)+ N(3N − 1) binary
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variables, which minimize the objective function in (41) and
meet the 1

2 Mmax(4+7N+N2)+3N(N+1) inequality constraints
(42) and (44)-(54), the 2N equality constraints (43) and (55),
the 6N bounding constraints (56)-(58), the 1

2 Mmax(Mmax − 1)
validity constraints (59), and the Mmax(N + 1) + N(3N + 1)
integrality constraints in (60)-(64).
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