
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Enhance Connectivity of Promising Regions for
Sampling-based Path Planning

Han Ma, Chenming Li, Jianbang Liu, Jiankun Wang, Senior Member, IEEE and Max Q.-H. Meng, Fellow, IEEE

Abstract—Sampling-based path planning algorithms usually
implement uniform sampling methods to search the state space.
However, uniform sampling may lead to unnecessary exploration
in many scenarios, such as the environment with a few dead
ends. Our previous work proposes to use the promising region
to guide the sampling process to address the issue. However, the
predicted promising regions are often disconnected, which means
they cannot connect the start and goal states, resulting in a lack
of probabilistic completeness. This work focuses on enhancing
the connectivity of predicted promising regions. Our proposed
method regresses the connectivity probability of the edges in
the x and y directions. In addition, it calculates the weight of
the promising edges in loss to guide the neural network to pay
more attention to the connectivity of the promising regions. We
conduct a series of simulation experiments, and the results show
that the connectivity of promising regions improves significantly.
Furthermore, we analyze the effect of connectivity on sampling-
based path planning algorithms and conclude that connectivity
plays an essential role in maintaining algorithm performance.

Note to Practitioners—This work is derived from the promis-
ing region prediction for sampling-based path planning. The
sampling-based path planning methods have been widely used in
robotics due to their efficiency. To further improve the efficiency
of these algorithms, sampling in the promising region predicted
by a neural network is introduced into the sampling procedure.
However, the connectivity of the promising region has yet to be
considered, and it will affect the performance of the algorithms
in several aspects. To demonstrate this problem, we compare the
performance of the neural heuristic algorithms under different
connectivity statuses in this paper. Furthermore, to enhance
the connectivity of the predicted promising region, the novel
prediction output and loss function are proposed. The simulation
results show improvements in the algorithms after utilizing our
method.

Index Terms—Sampling-based path planning, neural network,
promising region prediction.

The work of Max Q.-H. Meng was supported in part by the National Key
Research and Development Program of China under Grant 2019YFB1312400,
in part by the Hong Kong Research Grants Council (RGC) General Research
Fund (GRF) under Grant 14200618, and in part by the National Natural
Science Foundation of China under Grant 62103181. (Corresponding authors:
Jiankun Wang, Max Q.-H. Meng.)

Han Ma, Chenming Li and Jianbang Liu are with the Department of
Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T.,
Hong Kong SAR, China. {hanma, licmjy, henryliu}@link.cuhk.edu.hk.

Jiankun Wang is with Shenzhen Key Laboratory of Robotics Perception and
Intelligence, and the Department of Electronic and Electrical Engineering,
Southern University of Science and Technology, Shenzhen 518055, China.
wangjk@sustech.edu.cn.

Max Q.-H. Meng is with Shenzhen Key Laboratory of Robotics Perception
and Intelligence, and the Department of Electronic and Electrical Engineering,
Southern University of Science and Technology, Shenzhen 518055, China,
on leave from the Department of Electronic Engineering, The Chinese
University of Hong Kong, Hong Kong, and also with the Shenzhen Research
Institute of The Chinese University of Hong Kong, Shenzhen 518057, China.
max.meng@ieee.org.

Fig. 1: The blue/red dots denote the start/goal states. The
sky blue regions represent the promising regions. The left
column shows the original map. The middle and right columns
show the disconnected and connected prediction results, re-
spectively.

I. INTRODUCTION

PATH planning is one of the basic problems of robotics,
and it has attracted a lot of attention in recent decades.

Path planning aims to find a feasible path that does not
collide with obstacles in the environment. Many methods
have been proposed to solve the path planning problem in
robotics. They can be roughly divided into four classes. The
grid-based methods discretize the space into grids and then
utilize the graph search algorithms like Dijkstra [1] and A*
[2] to find the optimal path. However, as the dimension of the
search space increases, the memory and time costs increase
exponentially. This limits the use of this method in high-
dimensional search spaces. The artificial potential field-based
method [3] couples the perception feedback with the low-level

ar
X

iv
:2

11
2.

08
10

6v
2

 [
cs

.R
O

]
 2

2
Ju

l 2
02

2

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

control. It constructs a force field based on the start state, the
goal state, and the perception of the surrounding environment.
The force field can drive the robot from the start to the goal
without collision. Nevertheless, the robot may be trapped at
a local minimum. The reward-based methods give reward to
each action of the robot, such as [4] [5]. The path planning is
formulated as a Markov Decision Process (MDP), and a well-
defined reward function is required to obtain a better solution.
Nevertheless, the computation load will be unacceptable when
the state space becomes huge. The sampling-based methods
draw samples from the state space and construct a random
graph with the samples, such as Rapidly-exploring Random
Tree (RRT) [6], and Probabilistic Roadmap (PRM) [7]. A
feasible path is then searched on the graph. RRT constructs
a random tree incrementally from the start to the goal, which
is suitable for single-query problems, while PRM constructs
a random graph after the sampling process, which adapts
to multi-query problems. The sampling-based methods have
been widely deployed due to their high efficiency in high-
dimensional state space. Furthermore, their variants RRT∗

and PRM∗ [8] are proposed for asymptotically optimal path
planning.

The sampling-based methods suffer from random initial
solutions and slow convergence to the optimal solution. The
reason is that they uniformly sample in the state space, which
involves many redundant samples into the post-processing
procedures. This increases the burden of some already time-
consuming procedures like collision checking. Thus, some
heuristic sampling strategies are proposed to sample in the
promising region where feasible or optimal solutions probably
exist. Informed RRT∗ [9] is a well-known algorithm using
the start, the goal, and the current solution to construct
a heuristic sampling ellipsoid. It can converge towards the
optimal solution faster than RRT∗. But when the ratio of the
theoretical minimum cost to the current solution cost is close
to zero, informed RRT∗ will lose efficiency. Deep learning is
good at making predictions based on prior knowledge, which
has been used in control [10] and path planning [11]. In
[11], Neural RRT∗ utilizes a nonuniform sampling distribution
predicted by a Convolutional Neural Network (CNN). Gener-
ative Adversarial Network (GAN) can be also implemented
to achieve nonuniform sampling [12] [13]. However, they do
not discuss the effect of the connectivity of the predicted
promising region. They just use fixed heuristic sampling bias.
In this work, we focus on analyzing the connectivity of the
promising region. Connected promising areas provide more
powerful improvements for our neural heuristic algorithm,
while disconnected promising areas may degrade performance.
This is explained in detail in section V.

We modify the neural network’s output and design connec-
tivity loss to enhance the connectivity of promising regions and
reduce the harmful effects of poor connectivity. Specifically,
our proposed method outputs the connectivity probability of
the edges in the x and y directions and trains the model to
pay more attention to the promising regions by computing the
weight of each edge in the loss. In the simulation experiments,
we test our method on a UNet model and compare the
predicted results’ connectivity rates and false-negative rates

under different output formats and loss settings. Besides,
we also compare the connectivity rates and false-negative
rates of the results generated by CGAN [12]. Fig. 1 shows
the comparison between the poor connectivity and the good
connectivity for the same maps. The middle column is selected
from the predicted results with the lowest connectivity rate in
section IV-B. The right column shows the promising regions
predicted by our proposed method, where the connectivity of
the predicted regions is far better than the ones of the middle
column. In the right column of Fig. 1, all the predicted results
can connect the start with the goal, which will be helpful when
utilizing the promising regions in sampling-based algorithms.

A. Related Work

Sampling-based path planning methods are widely deployed
in various robot systems due to their efficiency. RRT [6], and
PRM [7] both are fundamental and well-known sampling-
based methods, and both of them guarantee probabilistic
completeness. However, no asymptotic optimality is provided
by RRT or PRM. RRT∗ and PRM∗ are the variants of
RRT and PRM, which provide asymptotic optimality as the
number of samples goes infinite. Nevertheless, the converge
rates of RRT∗ and PRM∗ are expected to be improved. Fast
Marching Tree (FMT∗) [14] combines the features of RRT and
PRM and performs a ’lazy’ dynamic programming recursion.
The numerical experiments demonstrate that FMT∗ converges
faster than RRT∗ and PRM∗. Informed RRT∗ is another try to
improve the converge rate of RRT∗ by sampling in a designed
hyper ellipsoid. Furthermore, based on informed RRT∗, Batch
Informed Trees (BIT∗) [15] is proposed. BIT∗ finds better
solutions than RRT∗, informed RRT∗ and FMT∗ with a
faster converge rate. Its improvements benefit from processing
samples in batches and sampling in a heuristic hyper ellipsoid.
Adaptively Informed Trees (AIT∗) [16] deriving from BIT∗

uses a reverse tree to estimate the cost-to-go. The reverse tree
performs a lazy search with Lifelong Planning A∗ (LPA∗) [17].
It finds the solution as fast as RRT-Connect [18] while keeping
the asymptotic optimality. Mandalika et al. [19] design a local
densification method to make the informed set more efficient.
In their method, local subsets defined by beacon nodes are
leveraged to guide sampling, which increases the utilization
of the informed set.

The above methods counting on manually designed heuristic
lose efficacy in some extreme environments, and besides, the
sampling complexity is desired to be reduced. Deep learning
methods’ flourishing motivates researchers to utilize them to
solve path planning problems. [20] presents a policy-based
search method to learn the implicit sampling distribution that
is implemented in rejecting sampling manner. [21] proposes
critical PRM, which leverages neural networks to identify
the critical points in the maps for path planning. Ichter
et al. [22] learn a nonuniform sampler with a Conditional
Variational Autoencoder (CVAE) [23]. The data are collected
from previous successful motion plans. Kumar et al. [24]
propose a promotion of [22], called Leveraging Experience
with Graph Oracles (LEGO). LEGO trains a CVAE model on a
diverse shortest paths set, and then, the trained model predicts

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

the bottleneck nodes. Jenamani et al. [25] further improve
LEGO. [25] presents a method to locate the bottleneck regions
and proposes two methods using local sampling to utilize
the bottleneck locations. Qureshi et al. [26] put forward a
neural network-based adaptive sampler for sampling-based
motion planning, named DeepSMP. DeepSMP consists of an
environment encoder encoding raw point cloud data and a
random sampler based on dropout layers. The training data
are generated by RRT∗. In [27], Qureshi et al. present Mo-
tion Planning Networks (MPNet), which contains an encoder
network and a planning network. Like DeepSMP, the encoder
network embeds the environment information (e.g., point cloud
from depth camera or LIDAR) to a latent space. Then, the
planning network takes the current state, goal state, and latent
variable and outputs a new state. In such a way, MPNet
can solve a planning problem with near-optimal heuristics.
In [28], Khan et al. use Graph Neural Networks (GNNs) to
encode the topology of the state space, and two different
methods are proposed, one for constant graph and others
for the incremental graph. [11] and [12] predict promising
region to guide the sampling. However, the effects of the
connectivity quality of the promising region are not stated,
and the connectivity of the promising region is not enhanced.

Some work tries to improve the connectivity of the predic-
tion results in the computer vision field where the same kind
of pixels is considered to be connected. In [29], to segment an
image more accurately, Kampffmeyer et al. insert a non-local
block into the encoder and take eight directions’ connectivity
of the pixels as labels. [30] presents a loss minimizing the
topological error on the predicted connectivity, and the method
is improved in [31]. These methods regard the image as a
graph in the loss computation, which works well in their tasks.
In path planning problems, the topological features of the
map data are much more important than the texture features.
Thus, we propose a new output format for the model and
design a new loss function to achieve better connectivity of
the predicted promising region.

B. Original Contributions

The contributions of this paper include:
• we propose a UNet based model that outputs the connec-

tivity probability of the edges in the x and y directions and
design the connectivity loss to guide the learning of the
model, which enhances the connectivity of the predicted
promising regions significantly;

• we evaluate the effects of different connectivity statuses
on the sampling-based planning algorithms;

• besides, we discuss the performance of the sampling-
based methods under different sampling biases in the
promising regions and demonstrate the practicability of
our neural heuristic methods with simulations in the
Robot Operating System (ROS).

The rest of this paper is organized as follows. We formulate
the problem and introduce the background methods briefly
in section II. Section III presents the structure of the neural
network model and explains the details of the designed loss
functions. In section IV, we present the simulation results

of our method. Section V discusses the effects of different
connectivity statuses and heuristic sampling biases on the per-
formance of the sampling-based path planning algorithms, and
section V also discusses the performance of neural heuristic
methods in robot navigation tasks. In the end, we draw a
conclusion and discuss the future work in section VI.

II. PRELIMINARIES

Firstly, we formulate the path planning problem in section
II-A. Secondly, section II-B overviews neural heuristic RRT
and RRT∗ algorithm. Thirdly, we describe the map repre-
sentations in section II-C. At last, section II-D gives a brief
introduction of the Canonical Binary Partition Tree (CBPT)
[32] used in our loss computation.

A. Path Planning Problem

Let X ⊂ Rn be the state space of the planning problem.
Xfree ⊂ X denotes the collision-free subspace of the state
space. Xobs = X \ Xfree denotes the obstacles in the state
space. x1, x2 ∈ X are any two different states in X . The
Euclidean distance between x1 and x2 can be computed by L2

norm, ||x1−x2||2. The r-radius ball centers at x is denoted as
B(x, r). Let xs ∈ Xfree and xg ∈ Xfree be the start state and
goal state, respectively. Let σ : [0, T] 7→ Xfree be a feasible
solution to the planning problem. Then, σ is a sequence of
states, and we have σ(0) = xs, σ(T) ∈ B(xg, rg) and σ(t) ∈
Xfree, t ∈ [0, T], where rg is the predefined threshold. Let Σ
be the set of feasible solutions and σ ∈ Σ. The cost of path
σ is defined as c(σ) = ΣTt=1||σ(t)− σ(t− 1)||2. The optimal
path planning algorithm can be formulated as below:

σ∗ = arg min
σ

c(σ)

s.t. σ ∈ Σ
(1)

where σ∗ is the optimal solution.

B. Neural Heuristic RRT and RRT∗

The evaluation and demonstration of our method are based
on neural heuristic RRT and RRT∗, abbreviated to NH-RRT
and NH-RRT∗. This section gives a brief introduction to
NH-RRT and NH-RRT∗. RRT consists of several subrou-
tines, including random sampling, finding the nearest state,
collision checking of states and edges, and steering. RRT∗

is a modification of RRT, and it adds two subroutines to
obtain asymptotic optimality. One is choosing a parent who
finds a parent state for the new state in its near neighbor,
and the other is rewiring which rewires the neighbor edges
of the new state to get smaller cost-to-comes. Both RRT
and RRT∗ grow a random search tree T incrementally as
the sampling process goes on. In NH-RRT and NH-RRT∗,
the neural heuristic is introduced into the random sampling
procedure to sample in the promising region. Let V be the
set of the vertices in T and E be the set of edges between
the vertices, i.e., T = {V,E}. The uniform random sampling
and heuristic random sampling is denoted as Sampleu() and
Sampleh(), respectively. FreeState(x) returns the collision
status of x, and FreeEdge(x1, x2) returns the collision status

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Algorithm 1: NH-RRT/RRT*

1 V ← ∅, E ← ∅;
2 for i = 1 to n do
3 repeat
4 if Random(0, 1) > hb then
5 xrand ← Sampleu();

6 else
7 xrand ← Sampleh();

8 xnearest ← Nearest(xrand);
9 xnew ← Steer(xnearest, xrand);

10 until FreeState(xnew);
11 if RRT then
12 if FreeEdge(xnearest, xnew) then
13 V ← V ∪ xnew;
14 E ← E ∪ {xnearest, xnew};

15 else if RRT ∗ then
16 xparent ← ChooseParent(xnew);
17 V ← V ∪ xnew;
18 E ← E ∪ {xparent, xnew};
19 Rewire();

20 if Terminate() then
21 Break;

of edge x1x2. ChooseParent(x) returns the best parent state
xparent of x, and {xparent, x} is collision free. Rewire()
represents the rewiring subroutine. Nearest(x) returns the
nearest neighbor of x in T . The whole procedure of NH-
RRT/RRT∗ is summarized in Algorithm 1 where xrand, xnew,
xnearest and xparent represent random state, new state, the
nearest state and the parent state, respectively. Random(0, 1)
generates a random number distributing uniformly in [0, 1].
The heuristic sampling bias is denoted as hb. In section V, to
demonstrate the effects of hb on the algorithms, we change
the value of hb under different connectivity statuses.

C. Map Representations

The map in robot path planning contains all the information
of free space and obstacle space. It can be represented by
a lattice, and in the implementation, we store it as the
image format shown in Fig. 1. The white region denotes free
space, while the black region denotes obstacle space. In the
promising region prediction task, each pixel in the map data
represents a candidate node. The objective is to select all the
promising nodes that near-optimal solutions are more likely
to go through. In the output of the neural network model, to
place extra emphasis on the connectivity, instead of regarding
the map as an image, we represent the map with a graph. As is
shown in Fig. 2, the graph consists of the candidate nodes and
the edges between them. The edges between the promising
nodes are promising, while other edges are unpromising. In
the left top of Fig. 2, the blue and yellow nodes in the lattice
represent unpromising and promising nodes, respectively. The
horizontal direction is defined as the x-direction, and the

Fig. 2: Output representation and the corresponding labels.

vertical direction is defined as the y-direction. We label the
edges in two directions instead of labeling the nodes. The
promising edges are labeled ones, while the unpromising ones
are labeled zeroes. To keep the size consistent with the original
map, we add a column padding and a row padding to the labels
in x and y directions, and the paddings are labeled zeroes. The
left bottom and right top of Fig. 2 show the corresponding
labels of each direction, as opposed to the node label at the
right bottom of Fig. 2. We find that with this kind of label
and the proposed connectivity loss, compared with labeling the
nodes, the connectivity of the prediction results is significantly
improved.

D. Canonical Binary Partition Tree

Let V = {v0, v1, ..., vn} be a node set and E =
{e0, e1, ..., ek} be an ordered edge set, where ei ≺ ei+1 means
ei has smaller weight than ei+1 and i ∈ {0, 1, ..., k − 1}.
Given a weighted graph G = {V,E}, a CBPT is constructed
according to the weights of the edges ei ∈ E. Then, a
Minimum Spanning Tree (MST) can be established based on
the order of E. Establishing an MST is a merging process of
the nodes on G. Let B be the edge set of the MST. According
to the order of E, the MST algorithm tries to add an edge ei to
B in turn. If at least one of the extremities of ei is not included
in any of the edges in B, ei is added to B. Otherwise, ei is
abandoned. This process is repeated until |B| = n− 1, which
means the MST corresponding to G is established successfully,
and | · | denotes the cardinality of a set. A CBPT records the
merging steps of an MST, and each node of CBPT is related to
an edge of MST. Fig. 3 presents an example of the relationship
between CBPT and MST. Intuitively, the node related to an
edge with a smaller weight is closer to the leaf node of CBPT,
and otherwise, it is closer to the root node of CBPT. The root
node of CBPT is related to the edge with the most significant
weight in MST.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

Fig. 3: This figure shows that a CBPT is constructed upon a
MST. The dotted blue curves denote the associations between
nodes of the CBPT and the MST.

III. METHODOLOGY

In this section, we first introduce the structure of the neural
model in section III-A. Then, we describe the proposed loss
function in detail in section III-B. At last, section III-C
formulates the promising region computation.

A. Neural Network Model

The input data is a 3-channel 2D map image with the
start and goal states. As illustrated in Fig. 1, black color
represents the obstacle space, and white color represents the
free space. The red and blue dots represent the start and the
goal, respectively. For the sake of concise, we denote the
input map with size (3, H,W) as M. Before being fed to
the neural model, M is normalized. The output of the neural
model is a 2-channel tensor P with size (2, H,W). Each
channel of P is the probabilistic distribution indicating the
connectivity probability of the edges in a specific direction.
Let Px and Py denote the two channels of P . Then, Px is the
edge connectivity probabilistic distribution in the x-direction,
and Py is the edge connectivity probabilistic distribution
in the y-direction. Each element of P , i.e., Pi,j ∈ [0, 1]
indicates the probability that the corresponding edge connects
two promising nodes. The higher value of Pi,j means the
higher probability the corresponding edge lies in the promising
region.

Our promising region prediction task is similar to semantic
segmentation. The objective of both tasks is to select areas
worthy of attention. Thus, inspired by the popular methods
for semantic segmentation, we use a CNN-based model to
obtain the features of the map. Multiscale features should be
considered to predict a more accurate promising region. We
utilize the UNet structure to satisfy this requirement that can
fuse multiscale features through skip connections. Fig. 4 shows
the structure of the UNet model, and three skip connections
are utilized to fuse the features in the encoder with those in the

decoder. There are four layers in total in the encoder, and each
layer consists of a residual block, including a downsampling
process with a factor of 2. Symmetrical to the encoder, the
decoder comprises four upsampling layers with a factor of 2.
Downsampling is achieved by setting the convolution stride to
2, and upsampling is achieved through bilinear interpolation.
If we denote a feature map with k channels as Fk, the encoder
used can be described as: F3−F64−F256−F512−F1024, and
the decoder used can be described as: F1024 − F512 − F256 −
F128 − F64 − F16 − F2. Assuming that the size of the input
is (H,W), the sizes of the features maps in the encoder are
(H2 ,

W
2), (H4 ,

W
4), (H8 ,

W
8), (H16 ,

W
16). The sizes of the features

maps in the decoder are (H16 ,
W
16), (H8 ,

W
8), (H4 ,

W
4), (H2 ,

W
2),

(H,W), (H,W).

B. Loss Functions

The objective of the promising region prediction task is to
distinguish the promising nodes from the unpromising ones
in the input map M. Binary cross entropy is widely used to
evaluate the difference between two distributions for a given
random variable. We expect our model to output the same
distribution as the target distribution. Henceforth, Binary Cross
Entropy (BCE) loss is performed in the loss function of our
task. As is specified in section II-C, we label the edges in x
and y directions rather than label the nodes. The BCE loss
can be divided into two branches, Lxbce and Lybce. (2) and (3)
specify the computation of Lxbce and Lybce, where P is the
target distribution and P̂ is the predicted distribution.

Lxbce(Px, P̂x) =

H∑
i=1

W∑
j=1

Pxi,j log(P̂xi,j)+(1−Pxi,j)log(1−P̂xi,j)

(2)

Lybce(P
y, P̂y) =

H∑
i=1

W∑
j=1

Pyi,j log(P̂yi,j)+(1−Pyi,j)log(1−P̂yi,j)

(3)
The overall BCE loss Lxybce consists of Lxbce and Lybce.

Lxybce penalizes wrong classification results, the greater the
difference between P and P̂ , the larger the value of Lxybce.

Lxybce(P, P̂) = Lxbce(Px, P̂x) + Lybce(P
y, P̂y) (4)

In our task, the promising region may only occupy a small
part of the whole map. This may result in the neural network
model getting trapped in a local minimum. The model’s output
will be heavily biased towards the unpromising area, which
means the predicted promising region will be inaccurate, and
its connectivity will not be guaranteed. Dice loss (Ldice) is
an objective function based on the dice coefficient. Intuitively,
the larger the dice coefficient, the more accurate the prediction
result is relative to the ground truth. To derive Lxydice, we first
need to compute the dice coefficient of the two channels.
The intersection of each channel is defined in (5) and (7),
respectively. The cardinality of each channel is defined in (6)
and (8), respectively. Lxydice is one minus the dice coefficient
as defined in (9).

|Px ∩ P̂x| =
H∑
i=1

W∑
j=1

Pxi,j ∗ P̂xi,j (5)

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Fig. 4: Illustration of the structure of the neural network model.

|Px2|+ |P̂x2| =
H∑
i=1

W∑
j=1

P̂xi,j ∗ P̂xi,j +

H∑
i=1

W∑
j=1

Pxi,j ∗ Pxi,j (6)

|Py ∩ P̂y| =
H∑
i=1

W∑
j=1

Pyi,j ∗ P̂
y
i,j (7)

|Py2|+ |P̂y2| =
H∑
i=1

W∑
j=1

P̂yi,j ∗ P̂
y
i,j +

H∑
i=1

W∑
j=1

Pyi,j ∗ P
y
i,j (8)

Lxydice(P, P̂) = 1− 2|Px ∩ P̂x|+ 2|Py ∩ P̂y|
|Px2|+ |P̂x2|+ |Py2|+ |P̂y2|

(9)

To enhance the connectivity of the promising region pre-
diction, we design the connectivity loss denoted as Lc. Lc
is only performed on the promising region indicated by the
ground truth. Let the graph corresponding to M be G, and
G = {E ,V, fp}, where E and V are the edge set and the node
set, respectively, and fp judges whether a node is promising or
not, i.e., fp : v → {0, 1}, v ∈ V . Let ek be an edge in E , where
k ∈ {1, 2, 3,, 2HW − H −W} is the index of the edge.
As defined in section III-A, every edge in E is corresponding
to an element of P . Here, we define a mapping p : E → P to
map E to P . Given an arbitrary edge e ∈ E , δ : E → {0, 1}
indicating whether e lies in the promising region or not, which
is defined below:

δ(e) =

{
1, if fp(e(0)) = 1 and fp(e(1)) = 1,

0, otherwise,
(10)

where e(0) and e(1) are the two nodes connected by e. To
guide the neural network model to pay more attention to the
promising region and make the back propagation more effec-
tive, the weight of each edge in E should be computed. The
weight of e ∈ E is defined in (11), where P (u, v,MST (P̂))
means the path connecting u with v in the MST of G, and
the edge weights of G is given by the predicted connectivity
probability P̂ .

w(e) =|{(u, v) |fp(u) = 1 and fp(v) = 1,

δ(e) = 1, e ∈ P (u, v,MST (P̂))}|
(11)

According to (11), the weight can be expressed as (12) more
concisely.

w(e) = |VT0
||VT1

| (12)

where T0 and T1 are two subtrees of MST (P̂) merged by
e, i.e., T0 ⊂ MST (P̂), T1 ⊂ MST (P̂), and e lies in the
promising region, i.e., δ(e) = 1. | · | in (11) and (12) denotes
the cardinality of a set. VT0

is the set of promising nodes
in T0, and VT1

is the set of promising nodes in T1. |VT0
|

and |VT1 | can be computed by CBPT algorithm mentioned in
section II-D. Intuitively, w(e) is determined by the promising
nodes pairs that e connects. If e connects more pairs of the
promising nodes, e is more critical in the promising region,
and thus, w(e) has a higher value. As Lc only considers the
promising region inM, Lc can be computed through the error
between the predicted connectivity probability and the target
connectivity probability (i.e., δ(ek) = 1). The computation of
Lc is summarized as below:

Lc(P, P̂) =
∑

ek∈MST (P̂),δ(ek)=1

w(ek)||1− p(ek)||2. (13)

As the value of w(e) may be very large, and we want to
combine the efficacy of the aforementioned two losses, we
normalize Lc by dividing the sum of all edge weights.

Lc(P, P̂) =

∑
ek∈MST (P̂),δ(ek)=1 w(ek)||1− p(ek)||2∑

ek∈MST (P̂),δ(ek)=1 w(ek)
(14)

The overall loss defined in (15) comprises BCE loss, Dice
loss, and connectivity loss. Lxybce penalizes inaccurate predic-
tions in both promising and unpromising areas. Lxydice guides
the network to avoid the local optimum in order to predict a
more accurate promising region. Furthermore, Lc focuses on
predicting the promising region, allowing the network to pay
attention to the area that causes disconnection. Combining the
capabilities of the three losses enables the trained network to
ensure the connectivity of the network prediction results in
long distances and narrow passages.

L(P, P̂) = Lxybce(P, P̂) + Lxydice(P, P̂) + Lc(P, P̂) (15)

C. Promising Region Computation

As our model outputs the connectivity probability of the
edges, we need to convert it into a promising region prediction
map. The key to the conversion problem is to judge whether
nodes on the map are promising by the connectivity status of
the edges. As is shown in Fig. 2, one promising node at least

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

has one promising edge. In the neural network’s output P̂ , an
edge is promising means that the value of the corresponding
element of P̂ is larger than the unpromising ones. Here, we
define a threshold t to evaluate the connectivity of an edge. If
P̂i,j > t, the corresponding edge of P̂i,j is promising. In the
simulation experiments, we set t to 0.09 empirically. Let Pf
denote the final promising region prediction result. Then, the
computation of Pf can be formulated as (16).

Pfi,j =

{
1, if

P̂x
i,j+P̂

y
i,j

2 > t,

0, otherwise.
(16)

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-
posed method by comparing it with different output formats,
and loss function designs and also our previous method [12],
on the connectivity rates of the test set. The organization
of this section is as follows. In section IV-A, we describe
the hyperparameter setup and training details of the neural
network, and we also introduce the generation of the dataset
used in the training. In section IV-B, we first describe the four
methods that participate in the comparison and then evaluate
the connectivity rates of these methods on the test set.

A. Network Training Details
The neural network model is trained on NVIDIA GeForce

RTX3080 with Pytorch. Mini-batch Stochastic Gradient De-
scent (SGD) optimizer is used in the training. The momentum
and weight decay of the optimizer are set to 0.9 and 1.0×10−4,
respectively. lr is updated according to the rule below:

lr = lr × (1.0− Inum
Imax iter

)0.9, (17)

where Inum is current iteration steps, and Imax iter is the total
iteration steps. We train the model for 30 epochs with batch
size 30 with all methods involved in the comparison.

We use the same dataset as [12], and for clarity, we restate
the generation of the dataset here. The dataset is generated
by randomly placing obstacles of different shapes on the map.
The maps are classified into five categories according to the
shape of the main obstacles. Fig. 5 shows one example of
each category. Then, we randomly sample the start and goal
states on the maps, shown as red and blue dots on maps.
To obtain the corresponding ground truth where the feasible
paths are more likely to locate, we run the RRT algorithm
50 times on each map. Fifty solutions generated by RRT are
drawn on the corresponding map in green, as shown in the
second row of Fig. 5. The green regions denote the promising
regions. Next, we generate the ground truths in the x and y
directions according to the promising regions, as shown in the
third and fourth rows of Fig. 5. Finally, the ground truth is
composed of two channels. One is the connectivity map in
the x-direction, and the other is the connectivity map in the
y-direction. The three leftmost categories are used in training.
The two rightmost categories are only used in testing. There
are 12000 maps in the training set, and we select 500 of them
as the test set. In addition, we generate 500 maps of the two
rightmost categories and add them to the test set. The shape
of each map is (3, 256, 256).

Fig. 5: This figure shows 5 examples corresponding to the
5 categories of the generated dataset. The first row presents
5 examples of the original maps. The second row presents
the feasible path sets drawn on the maps. The third and
fourth rows present the edge labels along x-direction and y-
direction, respectively. The green regions represent the sets of
the feasible paths, and the white areas in the last two rows
represent the edges lying in the promising regions.

B. Comparison of Connectivity Rates

To demonstrate the performance of the proposed method,
we compare it with a typical semantic segmentation method
(Lbce + Ldice in Table I), and our previous method [12].
Besides, we also conduct an ablation experiment to evaluate
the efficacy of the connectivity loss Lc. The connectivity rates
and false negative rates obtained by all the methods involved
in the comparison are summarized in Table I. The test set
is divided into two subsets according to the pattern of the
obstacles, as mentioned in section IV-A. The map set similar
to the training set contains 500 maps, named Similar in Table
I, while the map set dissimilar to the training set also contains
500 maps, named Dissimilar in Table I. The corresponding
methods are indicated by the loss formats and the name of
the model. For ease of presentation, the methods in the table
are marked as method 1 to method 4 from top to bottom.
Method 1 in the comparison outputs a 2-channel probabilistic
map, and the first channel’s values denote the likelihood to
be unpromising nodes, whereas the second channel’s values
denote the likelihood to be promising nodes. Method 1 is
trained with BCE and Dice loss (i.e., Lbce and Ldice), and
take the node labels as the ground truth. Method 2 is our
previous method denoted as CGAN. Method 4 is the proposed
method that also outputs a 2-channel probabilistic map, and
each channel represents the likelihood of the connectivity of
the edges. Method 3 is an ablation experiment of the proposed
method, where Lc is not performed.

The connectivity is evaluated on the final promising region
prediction results. Let Pf1, Pf2, Pf3, and Pf4 be the final
prediction results of methods 1 to 4. The computation of Pf1

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TABLE I: Comparison of connectivity rates and false negative rates.

Methods
Similar Dissimilar

Connectivity Rate↑ (%) False Negative Rate↓ (%) Connectivity Rate↑ (%) False Negative Rate↓ (%)

Lbce + Ldice 70.4 24.5 76.2 37.9

CGAN [12] 91.8 16.3 77.8 33.0

Lxy
bce

+ Lxy
dice

98.8 6.5 97.8 14.5

Lxy
bce

+ Lxy
dice

+ Lc 99.4 4.9 99.8 11.9

is formulated below:

Pf1i,j =

{
1, if P̂1 < P̂2,

0, otherwise,
(18)

where {P̂1, P̂2} is the 2-channel output of method 1. Pf3
and Pf4 are computed according to the rule defined in (16).
Then, we search on the final promising region prediction
results (i.e., Pf) for a feasible path from the start state to
the goal state. If the path exists on Pf , Pf is considered to
be connected. Otherwise, it is disconnected. We calculate the
connectivity rates of the predicted results of methods 1 to 4 for
Similar and Dissimilar sets and summarize them in Table I.
Moreover, we evaluate the false-negative rates of the two test
sets. False-negative rate reflects the degree of misprediction of
the prediction result relative to ground truth. The smaller value
of the false-negative rate means the better prediction quality.
The model with the proposed method (i.e., method 3) achieves
the highest connectivity rate and the lowest false-negative rate
than others. The reason is that our method takes into account
the connectivity of the edges and Lc guides the model to pay
more attention to the promising regions. After training, the
processing speed of this model can achieve 70Hz, which is
enough to deploy it to a real-time robotic platform.

Note that our method has similar performance in both
Similar and Dissimilar test sets. Nevertheless, CGAN
performs in Dissimilar not as well as in Similar. The
performance of CGAN highly depends on the training data.
During training, it learns the transformation from the data
distribution to a normal distribution and the transformation
from the normal distribution to the data distribution. After
training, it samples the normal distribution to generate the
corresponding promising region. The model learns similar data
transformations well, while the dissimilar data distribution
transformations are not. Our model directly learns the transfor-
mation from the input map data distribution to the prediction
results distribution, showing better generalization than CGAN
in our task with the same training and test sets.

V. DISCUSSION

Section V-A discusses the performance of NH-RRT/RRT∗

with promising regions under different connectivity statuses.
In section V-B, we implement the NH methods on ROS to
demonstrate their practicability. Section V-C discusses the
performance of NH-RRT/RRT∗ under different heuristic sam-
pling biases. In addition, we also discuss the performance of
NH-BIT∗ with promising regions under different connectivity
statuses in section V-D.

TABLE II: Comparison of sampling-based algorithms’ per-
formance under different connectivity statuses. ’d/c’ indicates
NH-RRT/RRT∗ with disconnected/connected prediction re-
sults. Bold fonts in the table indicate the best results.

Maps Methods Iteration
Numbers↓

Node
Numbers↓

Path Cost↓ Success Rate↑

A

RRT 1021 403 428.9 100.0%
d/c 1211/659 683/364 430.9/423.2 96.0%/100.0%

RRT* 1186 464 358.8 96.0%

d/c 1201/721 689/409 369.9/344.3 94.0%/100.0%

B

RRT 873 403 502.7 100.0%
d/c 812/571 496/327 479.9/477.3 100.0%/100.0%

RRT* 850 397 438.6 100.0%
d/c 816/615 502/356 417.9/418.8 100.0%/100.0%

C

RRT 1604 901 388.1 100.0%
d/c 1486/541 919/358 376.4/386.6 96.0%/100.0%

RRT* 1107 652 341.1 98.0%

d/c 1190/523 757/353 327.2/338.0 94.0%/100.0%

D

RRT 325 216 342.6 100.0%
d/c 293/245 220/172 330.2/330.4 100.0%/100.0%

RRT* 406 284 289.5 100.0%
d/c 306/252 234/174 268.3/275.8 100.0%/100.0%

E

RRT 1000 588 453.5 100.0%
d/c 1394/598 569/399 417.8/366.7 100.0%/100.0%

RRT* 966 567 398.1 100.0%
d/c 1360/627 565/420 361.4/299.8 100.0%/100.0%

F

RRT 522 326 407.1 100.0%
d/c 482/268 341/197 374.8/368.4 100.0%/100.0%

RRT* 546 341 343.9 100.0%
d/c 496/290 347/212 309.6/303.9 100.0%/100.0%

G

RRT 664 454 350.6 100.0%
d/c 531/406 383/299 303.0/301.4 100.0%/100.0%

RRT* 704 482 297.1 100.0%
d/c 611/390 442/285 246.6/256.1 100.0%/100.0%

H

RRT 268 176 257.6 100.0%
d/c 257/179 179/145 220.9/255.3 100.0%/100.0%

RRT* 282 185 219.9 100.0%
d/c 254/183 176/147 180.8/206.0 100.0%/100.0%

A. Discussion on Different Connectivity Statuses

This section discusses the performance of NH-RRT/RRT∗

on maps with different connectivity statuses. We select eight
maps from four categories of the test set. The connected
results are selected from the results set with the highest
connectivity rate predicted by the proposed method. The
disconnected results are selected from the result set with
the lowest connectivity rate predicted by method 1. The
visualization of the selected maps and their corresponding

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fig. 6: The first row shows the original maps and second/third shows the disconnected/connected prediction results.

Fig. 7: This figure shows successful examples of RRT in the first row and NH-RRT(d/c) in the second/third row.

Fig. 8: This figure shows successful examples of RRT∗ in the first row and NH-RRT∗(d/c) in the second/third row.

promising region prediction results are shown in Fig. 6. For
ease of representation, these maps are denoted as Map A-H. In
this section, the heuristic sampling bias hb is set to 0.5. We run
RRT/RRT∗ and NH-RRT/RRT∗ for 50 times on each map, and
the algorithms stop when they find a feasible solution or reach
the maximum iteration number. The step size of the random
trees is 10. The maximum iteration number is set to 5000 in all
the simulations. The path cost of the initial solution, iteration
numbers, node numbers of the random tree are compared in
Table II. Besides, we also compare the success rates under
different connectivity statuses. All the numbers in Table II are

the mean values of 50 repeated trials.

From Table II, we find that NH-RRT/RRT∗ with the
connected promising region reaches the best performance,
especially in the iteration numbers, node numbers, and suc-
cess rates. Note that the disconnected prediction results may
degrade the performance of the algorithms if a low-quality
prediction result is utilized (e.g., Map E). More iteration and
node numbers are needed to find a feasible solution with an
even higher cost. Moreover, success rates are also reduced
in some planning problems with multiple narrow passages or
long narrow passages (e.g., Map A and C). This is because

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

Fig. 9: The first and second rows are navigation processes
without heuristic sampling (RRT), and the third and fourth
rows are with heuristic sampling (NH-RRT). Both 2D and 3D
views are shown for each example. In 2D views, the circles
denote the robot, and the red edges are the edges for the
random trees, and the green curves denote the global plans,
and the red arrows are the local plan generated by TEB local
planner. In 3D views, the red cuboids represent the robot, and
the following red squares are its footprints.

the samples aggregating in a local area trap the tree from
growing outwards. The second rows of Fig. 7 and Fig. 8 give
an intuition. In some cases, NH-RRT/RRT∗(d) reaches similar
or even a little better path cost than NH-RRT/RRT∗(c). The
reason is that the disconnected promising region is narrower
than the connected ones and is distributed in the area where
the optimal path probably lies. By contrast, the model with
our method predicts a much more accurate promising region
that connects the start with the goal state, as shown in the
third row of Fig. 6. NH-RRT/RRT∗ based on this prediction
(i.e., NH-RRT/RRT∗(c)) grows towards the goal state through
the promising region, which allows the random tree to find a
better solution with fewer iteration numbers. The connected
predictions indicate more accurate feasible path distributions,
which guarantee the best success rates in all selected maps.
The third rows of Fig. 7 and Fig. 8 give an intuition. Without
the promising region heuristic, the random tree explores the
whole free space uniformly, and it may easily be trapped by
the narrow passages. With the disconnected promising region
heuristic, the random tree concentrates on some local heuristic
areas, which may degrade the performance of the algorithms.
However, when the predicted promising region is connected
and reflects a more accurate distribution of the feasible paths,
the random tree grows directly towards the goal and does not
explore unnecessary areas. The connected promising regions
significantly improve the robustness of the neural heuristic
methods.

Fig. 10: The first and second rows are navigation processes
without heuristic sampling (RRT∗), and the third and fourth
rows are with heuristic sampling (NH-RRT∗). Both 2D and
3D views are shown for each example.

B. Simulations in ROS

In addition, we conduct simulation experiments based on
ROS to demonstrate the practicability of our method. In the
simulations of this section, we select four maps from the test
set, which are shown in Fig. 9 and Fig. 10. For convenience,
we name these four maps as Map I, Map II, Map III and Map
IV from left to right in Fig. 9. Map I and Map II are from
Similar, and Map III and Map IV are from Dissimilar.
The resolution of these maps is set to 0.04m/pixel. We use
the ROS map server to define the maps. A differential-driven
mobile robot with the size of 0.25m× 0.25m× 0.4m is used
in the navigation tasks, which is also installed with a laser
scanner for localization. We use the ROS Stage platform to
define the robot with sensors. Each map corresponds to a
navigation task, in which the robot needs to navigate from a
start state to a goal state. In the simulations, RRT/RRT∗ or NH-
RRT/RRT∗ serves as the global planner, and Timed-Elastic-
Bands (TEB) [33] serves as the local planner. All the algorithm
runs until the solution is found, and the step size of the random
trees are set to 0.5m. The linear velocity range of the robot
is [−0.2, 0.4]m/s, and the angular velocity range of the robot
is [−0.3, 0.3]rad/s. Note that we optimize the path to get
the final global plan via Lazy States Contraction (LSC) [34],
and all the algorithms are implemented in C++. We compare
the performance of RRT/RRT∗ with NH-RRT/RRT∗ in terms
of average Planning Time (PT) and average Navigation Time
(NT). PT indicates the total planning time consumption during
a navigation task, while NT indicates the time taken by the
robot from receiving the goal state to reaching the goal state.
For NH-RRT/RRT∗, we use the heuristic generated by our
method and set hb to 0.5.

Fig. 9 and Fig. 10 show the scenes where the robot is
navigating on the maps, in 2D and 3D views. Each navigation
task is solved 30 times by each method, and we record the
average PT and NT corresponding to each method in Table

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

TABLE III: Average Planning Time (PT) and Navigation Time (NT) on four maps in ROS simulation.

Methods Map I Map II Map III Map IV
PT(s)↓ NT(m)↓ PT(s)↓ NT(m)↓ PT(s)↓ NT(m)↓ PT(s)↓ NT(m)↓

RRT 45.139 97.223 8.811 54.148 21.745 53.845 0.916 32.488
NH-RRT 0.52 51.878 1.134 45.955 0.156 29.756 0.198 30.793

RRT∗ 39.367 90.147 14.115 59.229 14.73 47.582 1.531 32.902
NH-RRT∗ 1.534 50.492 1.271 46.068 0.586 30.457 0.477 31.01

III. We find that NH-RRT/RRT∗ consumes much less average
PT and NT than RRT/RRT∗ for all the navigation tasks in
the simulations. The improvement is significant, especially in
the hard task in Map I. The reason is that many unnecessary
samples are not involved in the planning procedure with
the neural heuristic, and many samples are drawn from the
promising region. Therefore, the random trees can extend more
aggressively towards the goal state.

C. Discussion on Different Heuristic Sampling Bias

In this section, we discuss the effects of different heuris-
tic sampling biases (hb) on the performance of NH-
RRT/RRT∗(d/c). hb is set to 0.0, 0.3, 0.6, and 0.9. We also
run NH-RRT/RRT∗ for 50 times under each hb setting. The
iteration numbers, node numbers of the random tree, path cost
of the initial solution, and success rate are considered in the
comparison. Table IV lists all the results on Map A, C, E,
and G. All the numbers in Table IV are the mean values of 50
repeated trials. When hb = 0.0, NH-RRT/RRT∗ degenerates to
the original RRT/RRT∗. Thus, we use the name of the original
algorithms to denote hb = 0.0 in Table IV.

According to Table IV, in most cases, the performance of
NH-RRT/RRT∗ with the connected prediction results (i.e., NH-
RRT/RRT∗(c)) improves as hb increases. In the four maps,
NH-RRT/RRT∗(c) with all hb settings achieves the highest
success rate while taking the minor iteration numbers. In
most cases, NH-RRT/RRT∗(c) also generates the fewest node
numbers and reaches the lowest path cost. However, in some
cases, the performance of NH-RRT/RRT∗(d) may decrease as
hb increases. The reason is that the disconnected promising
region predictions hinder the exploration of the random trees
when hb is large. On the contrary, the connected promising
region predictions contain some feasible solutions, which
prevent the random tree from being trapped in a local area. In
Map C and Map G, NH-RRT/RRT∗(d) reaches similar or even
a little better path cost than NH-RRT/RRT∗(c). The reason is
that the disconnected promising region is narrower than the
connected ones and is distributed in the area where the optimal
path probably lies. Besides, when hb is set to a large value and
the promising region prediction is connected, the random tree
can find a feasible solution even more quickly. A good initial
solution is beneficial for algorithms like RRT∗ to converge to
the optimal solution. On the other hand, a connected prediction
result can also reduce the NH algorithms’ dependence on the
heuristic sampling bias.

D. Discussion on Neural Heuristic BIT∗

BIT∗ is one of the state-of-the-art sampling-based algo-
rithms. In this section, we discuss the performance of BIT∗

TABLE IV: Comparison of the algorithms’ performance under
different heuristic sampling biases. ’d/c hb’ represents that
NH-RRT/RRT* with the disconnected/connected prediction
result run when heuristic sampling bias equals hb. Bold fonts
in the table indicate the best results.

Maps Methods Iteration
Numbers↓

Node
Numbers↓

Path Cost↓ Success Rate↑

A

RRT 1021 403 428.9 100.0%
d/c 0.3 1197/716 607/359 426.7/417.6 98.0%/100.0%
d/c 0.6 1208/596 743/349 421.2/415.0 88.0%/100.0%
d/c 0.9 1284/416 893/272 411.3/406.5 80.0%/100.0%
RRT* 1186 464 358.8 96.0%

d/c 0.3 887/800 456/398 363.7/347.8 92.0%/100.0%
d/c 0.6 1035/695 639/409 360.7/346.0 90.0%/100.0%
d/c 0.9 1361/654 921/433 360.5/339.8 76.0%/100.0%

C

RRT 1604 901 388.1 100.0%
d/c 0.3 1570/674 941/432 383.5/384.6 98.0%/100.0%
d/c 0.6 1267/451 807/308 367.9/381.7 88.0%/100.0%
d/c 0.9 2427/355 1580/256 371.1/379.3 76.0%/100.0%
RRT* 1107 652 341.1 98.0%

d/c 0.3 1452/711 873/452 327.0/333.3 96.0%/100.0%
d/c 0.6 1242/451 802/313 331.5/337.1 88.0%/100.0%
d/c 0.9 2064/388 1339/278 323.8/332.9 84.0%/100.0%

E

RRT 1000 588 453.5 100.0%
d/c 0.3 1082/841 512/527 410.4/401.3 100.0%/100.0%
d/c 0.6 1680/521 645/359 408.5/350.7 100.0%/100.0%
d/c 0.9 4056/426 1202/317 377.9/352.7 22.0%/100.0%
RRT* 966 567 398.1 100.0%
d/c 0.3 1129/813 531/514 372.6/326.5 100.0%/100.0%
d/c 0.6 1793/585 685/399 375.4/290.0 100.0%/100.0%
d/c 0.9 3812/436 1144/326 351.9/282.3 16.0%/100.0%

G

RRT 664 454 350.6 100.0%
d/c 0.3 578/490 412/353 306.3/320.0 100.0%/100.0%
d/c 0.6 655/416 468/306 301.2/303.7 100.0%/100.0%
d/c 0.9 1031/341 773/256 290.0/293.5 96.0%/100.0%
RRT* 704 482 297.1 100.0%
d/c 0.3 511/512 361/370 266.2/268.7 100.0%/100.0%
d/c 0.6 625/391 448/291 252.3/251.1 100.0%/100.0%
d/c 0.9 1097/352 819/266 242.7/243.2 98.0%/100.0%

with our method (NH-BIT∗) to show our method’s capability
to combine with the state-of-the-art sampling-based algorithm.
Since BIT∗ is an informed tree-based method that samples
in an informed ellipsoid after finding the initial solution, the
heuristic sampling of our method may disturb its original
informed sampling. Therefore, we only consider the stage
where BIT∗ searches for the initial solution. The sampling
process of BIT∗ is similar to RRT/RRT∗ except that it samples
a batch of samples once a time. Thus, the modification of
the sampling strategy in NH-BIT∗ is the same as that of NH-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Fig. 11: This figure shows successful examples of BIT∗ in the first row and NH-BIT∗(d)/(c) in the second/third row.

TABLE V: Comparison of sampling-based algorithms’ per-
formance under different connectivity statuses. ’d/c’ indicates
NH-BIT* with disconnected/connected prediction results.
Bold fonts in the table indicate the best results.

Maps Methods Iteration
Numbers↓

Node
Numbers↓

Path Cost↓ Success Rate↑

A
BIT* 1746 155 378.5 94.0%

d/c 0.5 8660/593 163/63 363.1/373.0 90.0%/100.0%

B
BIT* 334 67 445.1 100.0%

d/c 0.5 901/426 111/58 422.4/ 424.8 100.0%/100.0%

C
BIT* 1135 84 350.5 100.0%

d/c 0.5 11479/254 175/42 344.7/346.7 96.0%/100.0%

D
BIT* 78 16 302.5 100.0%

d/c 0.5 105/100 17/14 278.6/287.2 100.0%/100.0%

E
BIT* 91 21 352.9 100.0%

d/c 0.5 410/155 27/ 24 370.4/298.2 100.0%/100.0%

F
BIT* 87 23 331.9 100.0%

d/c 0.5 207/104 29/ 20 309.9/299.7 100.0%/100.0%

G
BIT* 161 37 353.4 100.0%

d/c 0.5 513/176 52/28 296.3/296.3 100.0%/100.0%

H
BIT* 60 14 233.7 100.0%

d/c 0.5 120/51 18/14 215.2/ 210.2 100.0%/100.0%

RRT/RRT∗. The batch size of BIT∗/NH-BIT∗ is set to 30, and
we run BIT∗/NH-BIT∗ 50 times on each map. The hb of NH-
BIT∗ is set to 0.5. The maximum run time of BIT∗/NH-BIT∗

is limited to 10s. The maximum sample number of BIT∗/NH-
BIT∗ is limited to 1000. Fig. 11 presents some examples
of BIT∗ and NH-BIT∗ with the disconnected or connected
promising region. The success rate, average iteration numbers,
node numbers, and path cost of 50 repeated trials on each map
are presented in Table V. It is observed that the average path
costs achieved by NH-BIT∗ are smaller than those achieved
by BIT∗, and NH-BIT∗(c) always has the highest success rate.
However, the average iteration numbers may increase with
heuristic sampling. The reason is that some of the samples
in one batch are gathered in the promising region. In other
words, the extension of the tree with heuristic sampling will
be slower than that without NH, but NH reduces the cost of
the initial solution. In all test cases, NH-BIT∗(c) increases the
iteration numbers to a smaller extent than NH-BIT∗(d), and

NH-BIT∗(c) can reduce the iteration numbers in some complex
problems such as Map A and C. Therefore, NH-BIT∗(c) can
improve the performance of BIT* more stably and has the
ability to deal with more complex problems.

VI. CONCLUSION AND FUTURE WORK

We present a novel method to enhance the connectivity
of the promising region predicted by neural networks. The
simulation results demonstrate that our method improves the
connectivity rates of the promising region predictions. More-
over, we discuss the effects of the connectivity status of the
prediction results on the neural heuristic sampling-based algo-
rithms. The results show that the connected promising region
predictions ensure the robustness of the algorithms and reduce
the dependence on heuristic sampling bias. Therefore, ensuring
the connectivity of promising regions is necessary for applying
neural heuristics in sampling-based path planning algorithms.
We also implement ROS simulations that demonstrate the
practicability of NH sampling-based methods.

In future work, we hope to extend our method to 3D
environments. The extension can be achieved by substituting
2D convolutional layers with 3D convolutional layers and
adding one more direction in map representation and loss
computations.

REFERENCES

[1] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[4] D. Ferguson and A. Stentz, “Focussed processing of mdps for path
planning,” in 16th IEEE International Conference on Tools with Artificial
Intelligence. IEEE, 2004, pp. 310–317.

[5] B. Bakker, Z. Zivkovic, and B. Krose, “Hierarchical dynamic pro-
gramming for robot path planning,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2005, pp. 2756–
2761.

[6] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378–
400, 2001.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

[8] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, no. 2, 2010.

[9] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2997–
3004.

[10] S. Xu, J. Liu, C. Yang, X. Wu, and T. Xu, “A learning-based stable servo
control strategy using broad learning system applied for microrobotic
control,” IEEE Transactions on Cybernetics, 2021.

[11] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural
rrt*: Learning-based optimal path planning,” IEEE Transactions on
Automation Science and Engineering, vol. 17, no. 4, pp. 1748–1758,
2020.

[12] N. Ma, J. Wang, J. Liu, and M. Q.-H. Meng, “Conditional generative
adversarial networks for optimal path planning,” IEEE Transactions on
Cognitive and Developmental Systems, 2021.

[13] T. Zhang, J. Wang, and M. Q.-H. Meng, “Generative adversarial network
based heuristics for sampling-based path planning,” IEEE/CAA Journal
of Automatica Sinica, vol. 9, no. 1, pp. 64–74, 2021.

[14] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree:
A fast marching sampling-based method for optimal motion planning
in many dimensions,” The International journal of robotics research,
vol. 34, no. 7, pp. 883–921, 2015.

[15] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees
(bit*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in 2015 IEEE international
conference on robotics and automation (ICRA). IEEE, 2015, pp. 3067–
3074.

[16] M. P. Strub and J. D. Gammell, “Adaptively informed trees (ait*):
Fast asymptotically optimal path planning through adaptive heuristics,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 3191–3198.

[17] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artifi-
cial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[18] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000,
pp. 995–1001.

[19] A. Mandalika, R. Scalise, B. Hou, S. Choudhury, and S. S. Srinivasa,
“Guided incremental local densification for accelerated sampling-based
motion planning,” arXiv preprint arXiv:2104.05037, 2021.

[20] C. Zhang, J. Huh, and D. D. Lee, “Learning implicit sampling distribu-
tions for motion planning,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3654–3661.

[21] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned critical
probabilistic roadmaps for robotic motion planning,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 9535–9541.

[22] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[23] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[24] R. Kumar, A. Mandalika, S. Choudhury, and S. Srinivasa, “Lego: Lever-
aging experience in roadmap generation for sampling-based planning,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 1488–1495.

[25] R. K. Jenamani, R. Kumar, P. Mall, and K. Kedia, “Robotic motion
planning using learned critical sources and local sampling,” arXiv
preprint arXiv:2006.04194, 2020.

[26] A. H. Qureshi and M. C. Yip, “Deeply informed neural sampling for
robot motion planning,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 6582–6588.

[27] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning
networks: Bridging the gap between learning-based and classical motion
planners,” IEEE Transactions on Robotics, vol. 37, no. 1, pp. 48–66,
2020.

[28] A. Khan, A. Ribeiro, V. Kumar, and A. G. Francis, “Graph neural
networks for motion planning,” arXiv preprint arXiv:2006.06248, 2020.

[29] M. Kampffmeyer, N. Dong, X. Liang, Y. Zhang, and E. P. Xing,
“Connnet: A long-range relation-aware pixel-connectivity network for
salient segmentation,” IEEE Transactions on Image Processing, vol. 28,
no. 5, pp. 2518–2529, 2018.

[30] S. C. Turaga, K. L. Briggman, M. Helmstaedter, W. Denk, and H. S. Se-
ung, “Maximin affinity learning of image segmentation,” arXiv preprint
arXiv:0911.5372, 2009.

[31] J. Funke, F. Tschopp, W. Grisaitis, A. Sheridan, C. Singh, S. Saalfeld,
and S. C. Turaga, “Large scale image segmentation with structured loss
based deep learning for connectome reconstruction,” IEEE transactions
on pattern analysis and machine intelligence, vol. 41, no. 7, pp. 1669–
1680, 2018.

[32] J. Cousty, L. Najman, Y. Kenmochi, and S. Guimarães, “Hierarchical
segmentations with graphs: quasi-flat zones, minimum spanning trees,
and saliency maps,” Journal of Mathematical Imaging and Vision,
vol. 60, no. 4, pp. 479–502, 2018.

[33] C. Rösmann, F. Hoffmann, and T. Bertram, “Kinodynamic trajectory
optimization and control for car-like robots,” in 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2017,
pp. 5681–5686.

[34] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” in 2010 IEEE
international conference on robotics and automation. IEEE, 2010, pp.
2493–2498.

Han Ma received the B.E. degree in measurement,
control technology and instrument from the Depart-
ment of Precision Instrument of Tsinghua University,
Beijing, China, in 2019. He is now working towards
the Ph.D. degree in the Department of Electronic
Engineering of The Chinese University of Hong
Kong, Hong Kong SAR, China. His research inter-
ests include path planning and machine learning in
robotics.

Chenming Li received the B.E. degree in petroleum
engineering from the China University of Petroleum,
Qingdao, China, in 2017, and the M.Sc. degree in
electronic engineering from The Chinese University
of Hong Kong, Hong Kong SAR, China, in 2018.
He is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering, The Chinese
University of Hong Kong. His current research in-
terests include robot motion planning, and machine
learning in robotics.

Jianbang Liu received the B.E. degree in microelec-
tronics from Sun Yat-sen University, Guangzhou,
China, B.E. degree in electronic engineering from
the Hong Kong Polytechnic University , Hong Kong,
in 2015, and M.Sc. degree from the University of
Hong Kong, Hong Kong in 2016. Currently, he is
working toward the Ph.D. degree at the Chinese
University of Hong Kong, Hong Kong. His re-
search interests include sensor fusion, path planning,
robotic perception for decision making and control.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

Jiankun Wang received the B.E. degree in Au-
tomation from Shandong University, Jinan, China,
in 2015, and the Ph.D. degree in Department of
Electronic Engineering, The Chinese University of
Hong Kong, Hong Kong, in 2019. He is currently
an Assistant Professor with the Department of Elec-
tronic and Electrical Engineering of the Southern
University of Science and Technology, Shenzhen,
China.

During his Ph.D. degree, he spent six months at
Stanford University, CA, USA, as a Visiting Student

Scholar supervised by Prof. Oussama Khatib. His current research interests
include motion planning and control, human robot interaction, and machine
learning in robotics.

Max Q.-H. Meng received his Ph.D. degree in
Electrical and Computer Engineering from the Uni-
versity of Victoria, Canada, in 1992. He is currently
a Chair Professor and the Head of the Depart-
ment of Electronic and Electrical Engineering at the
Southern University of Science and Technology in
Shenzhen, China, on leave from the Department of
Electronic Engineering at the Chinese University of
Hong Kong. He joined the Chinese University of
Hong Kong in 2001 as a Professor and later the
Chairperson of Department of Electronic Engineer-

ing. He was with the Department of Electrical and Computer Engineering
at the University of Alberta in Canada, where he served as the Director of
the ART (Advanced Robotics and Teleoperation) Lab and held the positions
of Assistant Professor (1994), Associate Professor (1998), and Professor
(2000), respectively. He is an Honorary Chair Professor at Harbin Institute
of Technology and Zhejiang University, and also the Honorary Dean of the
School of Control Science and Engineering at Shandong University, in China.

His research interests include medical and service robotics, robotics percep-
tion and intelligence. He has published more than 750 journal and conference
papers and book chapters and led more than 60 funded research projects to
completion as Principal Investigator.

Prof. Meng has been serving as the Editor-in-Chief and editorial board of a
number of international journals, including the Editor-in-Chief of the Elsevier
Journal of Biomimetic Intelligence and Robotics, and as the General Chair
or Program Chair of many international conferences, including the General
Chair of IROS 2005 and ICRA 2021, respectively. He served as an Associate
VP for Conferences of the IEEE Robotics and Automation Society (2004-
2007), Co-Chair of the Fellow Evaluation Committee and an elected member
of the AdCom of IEEE RAS for two terms. He is a recipient of the IEEE
Millennium Medal, a Fellow of IEEE, a Fellow of Hong Kong Institution of
Engineers, and an Academician of the Canadian Academy of Engineering.

