
 
 

Delft University of Technology

Energy-Efficient Routing of a Multirobot Station
A Flexible Time-Space Network Approach
Xin, Jianbin; Meng, Chuang; D'Ariano, Andrea; Schulte, Frederik; Peng, Jinzhu; Negenborn, Rudy R.

DOI
10.1109/TASE.2022.3192914
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Automation Science and Engineering

Citation (APA)
Xin, J., Meng, C., D'Ariano, A., Schulte, F., Peng, J., & Negenborn, R. R. (2023). Energy-Efficient Routing of
a Multirobot Station: A Flexible Time-Space Network Approach. IEEE Transactions on Automation Science
and Engineering, 20(3), 2022-2036. https://doi.org/10.1109/TASE.2022.3192914

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TASE.2022.3192914
https://doi.org/10.1109/TASE.2022.3192914


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



2022 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 20, NO. 3, JULY 2023

Energy-Efficient Routing of a Multirobot Station:
A Flexible Time-Space Network Approach

Jianbin Xin , Member, IEEE, Chuang Meng, Andrea D’Ariano , Frederik Schulte,

Jinzhu Peng , Member, IEEE, and Rudy R. Negenborn

Abstract— This paper investigates a novel routing problem of
a multi-robot station in a manufacturing cell. In the existing
literature, the objective is to minimize the cycle time or energy
consumption separately. The routing problem considered in this
paper aims to reduce the cycle time and energy consumption
jointly for each robot while avoiding collisions between these
robots. For this routing problem, we propose a new flexible
time-space network model that allows us to reduce energy
consumption while minimizing the cycle time. The corresponding
optimization problem is Mixed-Integer Nonlinear Programming
(MINLP). For addressing its computational complexity, this
paper designs a metaheuristic algorithm tailored to the studied
problem and proposes an ε-constraint algorithm to study the
trade-off between these two objectives. We conduct industrially
relevant simulation experiments of case studies to show its
effectiveness, in comparison to a conventional method, two state-
of-the-art solvers, and two commonly-used metaheuristics. The
results show that the proposed methodology can reduce energy
consumption by up to 30% without compromising the cycle time.
Meanwhile, the proposed algorithm can provide efficient solutions
within a reasonable computation time.

Note to Practitioners—This paper is motivated by the problem
of improving energy efficiency when routing cooperative robots
in a manufacturing station. In current approaches for routing
multi-robot stations, the cycle time and energy consumption are
minimized separately. This paper focuses on the movement of
the robot end-effector and its connected joint and suggests a new
approach to minimize these two objectives jointly by proposing a
new mathematical model. The resulting planning problem is com-
putationally intractable. A customized metaheuristic algorithm
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is thus designed for efficiently solving this planning problem.
Our meta-heuristic algorithm is integrated with the ε-constraint
method to study the relationship between these two objectives.
Simulation experiments suggest that this approach can reduce
energy consumption considerably, for the shortest cycle time,
compared with the current approaches. In future research, the
movements of multi-joints will be investigated whereby 3-D
collision-free trajectory planning will be considered.

Index Terms— Multi-robot systems, routing, flexible time-space
network model, energy consumption, collision avoidance.

I. INTRODUCTION

ROBOTS considerably improve the productivity of manu-
facturing systems. In the production lines, a large number

of industrial machines are operated collaboratively to perform
various tasks [1], [2]. Typically, a robotic assembly line con-
sists of several stations that are arranged serially or in parallel
to reach production objectives [3]. At each station, multiple
robots, often sharing the same workspace, work together to
carry out complex operations (e.g., stud, welding, or sealing)
within a predetermined period [4].

For a robotic manufacturing station, the primary goal is to
minimize the cycle time. The cycle time (identical to the term
makespan used in operations research) is a manufacturing indi-
cator, indicating the total time from the start to the end of all
the processes in the workstation. Producers aim to maximize
the production rates to meet the increasing requirements made
by customers. High production rates result from optimizing the
intertwined operations of multiple robots within each station.

Besides the cycle time, producers regard energy con-
sumption as another crucial objective to minimize [5]–[7].
As pointed out in [8], [9], a significant amount of energy is
consumed by industrial robots in the manufacturing process,
which is about 8 % of the total electrical energy consumed
in production processes. Due to the existing strict policy
guideline regarding CO2 emissions and the rising energy
price [9], reducing the robot energy consumption is a necessity.
To maximize the profit, the producers expect to reduce robot
energy consumption without deteriorating the service of high
productivity, aiming for energy-efficient productions.

Motivated by the practical demand of improving energy
efficiency when routing the cooperative robots in a manufac-
turing station, we investigate a new energy-efficient routing
problem. In this problem, minimizing the cycle time and
minimizing energy consumption are considered jointly. The
corresponding optimization problem is not computationally
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tractable for practice-size scenarios, and an efficient algorithm
will be developed to reduce its computational complexity.

A. Related Work

Related research on the planning of manufacturing cells
has received increasing attention due to the development of
‘Industry 4.0’. Here, two types of planning problems are
generally identified: task allocation and routing problems.

As for a manufacturing system, the task allocation focuses
on optimally distributing tasks to the available robots [10].
In [11], an intersection-free geometrical partitioning method is
developed for the allocation of assembly tasks in a multi-robot
cell. For improving the efficiency of multi-robot cells, the
task allocation can also be introduced with the layout design
simultaneously [12]. At the same time, the task allocation
may need to be realized in a distributed way, because of the
communication constraints and limitations [13].

In the routing problems, task orders and the routes of each
robot need to be determined for executing different tasks
in the robotic cell. For a high production rate, the main
objective is to minimize the cycle time of all the robots, while
satisfying the collision-free constraints for each robot. The
integrated collision-free routing and scheduling problem of a
multi-robot station was first studied in [4] using an iterative
approach. Later, the task sequence and collision avoidance
are considered simultaneously (in one framework) using a
Time-Space Network (TSN) model, and the routing problem is
regarded as a particular multiple Traveling Salesman Problem
(mTSP) [14]. In these specific routing problems, the task is
defined as a discrete action to perform a stud or welding
operations by the manipulators.

Besides minimizing the cycle time, the minimization of
energy consumption has recently received increasing atten-
tion when planning the routes in robotic cells. In [15],
[16], the energy-aware scheduling of a single manufacturing
robot has been studied to obtain the relation between the
adjustable motion parameters and the energy consumption.
Bukata et al. [8], [17] investigate the energy consumption
problem by considering the robotic cell as a whole, proposing
a parallel hybrid heuristic algorithm [8] and an exact parallel
algorithm [17] to minimize the energy consumption following
the desired cycle time which is not optimized. Furthermore,
a cyclic multi-robot coordination problem of a press line
is studied, and the energy consumption is minimized by
smoothing the robot trajectories for the predefined paths [18].

The above research contributes to improving the efficiency
of robotic manufacturing cells. The objectives of existing
literature, however, aim at optimizing either the cycle time or
the energy consumption individually. None of them considers
minimizing these two objectives jointly.

B. Contributions

In this paper, we focus on minimizing the cycle time and
energy consumption jointly for a robotic station, and this topic
has not been carefully studied in the literature. The energy
consumption here refers to the total amount of kinetic energy
consumed by all robots to complete their tasks. The energy

consumption is expected to be reduced, while maintaining
a high production rate, thus meeting not only economic but
also environmental criteria. To reach this simultaneous goal,
we make the following contributions:

• We propose a new time-space network model for
the energy-aware and collision-free routing problem of
the multi-robot station. The proposed time-space net-
work representation allows representing the motion time
between successive tasks and task sequence as decision
variables, resulting in a so-called Flexible Time-Space
Network (FTSN) model to reduce energy consumption
when performing the given tasks in the multi-robot sta-
tion in a collision-free way. Existing TSN models of
routing the multi-robot station regard the motion time
as fixed parameters and energy consumption cannot be
reduced [14]. Weighted-sum and lexicographic formula-
tions are considered for determining the energy-efficient
and collision-free route. Due to its nonlinear constraints
and objective functions for minimizing energy consump-
tion, a Mixed-Integer Nonlinear Programming (MINLP)
problem remains to be solved.

• A customized metaheuristic algorithm is developed to
efficiently solve the resulting MINLP problem based on
the FTSN representation. For the studied MINLP, new
two-dimensional encoding schemes and operators are
proposed to deal with the mixed decision variables for
tasks sequences and flexible motion times in a collision-
free way. For the existing metaheuristic to solve the robot
routing problem, the encoding scheme is typically lim-
ited to the one-dimension for sequence planning without
avoiding collisions [19], [20]. Based on the customized
metaheuristic, we further use the ε-constraint method to
study the relationship between these two objectives.

As this paper builds on previous work such as [14], which
addresses the cycle time minimization problem to decide the
collision-free routes of a multi-robot station, it makes clearly
different contributions. In [14], the motion times between
every two successive tasks are regarded as fixed parameters.
Thus, energy consumption concerning robot movements can-
not be directly optimized. There, the optimization problem
is formulated as Mixed-Integer Programming (MIP). In this
work, an MINLP is proposed and solved due to nonlin-
ear energy-related objectives and constraints. The resulting
MINLP is more challenging to be solved than the MIP.

The remainder of this paper is organized as follows:
Section II presents the mathematical formulation of the pro-
posed FTSN model, for the considered energy-aware and
collision-free routing problem. In Section III, a customized
metaheuristic algorithm is designed to solve the corresponding
MINLP problem. Section IV discusses and analyzes the simu-
lation results carried out for industrial case studies. Section V
concludes this paper and provides potential future research.

II. FLEXIBLE TIME-SPACE NETWORK MODEL

This section defines the considered problem of
energy-efficient and collision-free routing of the multi-robot
station and introduces the corresponding flexible time-space
network formulation.
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Fig. 1. Robotic assembly stations in the production line (demonstrated in
software RobotStudio).

A. Problem Definition

At multi-robot stations of manufacturing systems, multiple
robots are operated in a shared workspace to fulfill tasks that
often require cooperation between the robots. Such settings
can, for instance, be found in the automobile industry that uses
cooperative robots in stud-welding or spot-welding, as illus-
trated in Fig. 1. For planning the collaborative motions of
these robots, specific objectives and constraints need to be
considered. A minimum cycle time is desired for maximizing
productivity, but operating the robots at maximum speed
may result in overly high energy consumption that stands in
conflict with the economic and environmental policies of many
operators. Moreover, since the robots share the workspace,
collision avoidance must be granted.

Following the assumptions made in [14], the subsequent
assumptions are made for the specific problem under consid-
eration:

• All robots start from their idle positions.
• All robots are identical.
• A subset of tasks has been assigned to each robot in

advance, but the task sequence for each robot needs to be
decided. The task allocation can be obtained by solving a
classification problem based on the position distribution
of the nodes.

• Each task can be performed by one robot only. Each robot
starts the next task after completing the current one.

• The workspace of the robots is considered in the same
plane, and the tool center point is regarded as the refer-
ence point of each robot.

• The problem considers the operation of the end effector
and its connected joint, disregarding the state of other
joints. For this assumption, each robot could use the
kinematic redundancy of the manipulator to obtain more
degrees of freedom and resolve the conflict between
different operation points which are nearby.

B. Flexible TSN Model

In the existing TSN model of the multi-robot routing prob-
lem [14], the motion time is considered as a fixed parameter,
thus energy consumption cannot be further minimized. For
achieving the energy-aware and collision-free routes of the
multi-robot station, a flexible time-space network model that

TABLE I

NOMENCLATURE

considers flexible motion times is proposed. This model has
a nonlinear objective and adopts location constraints and time
constraints.

We assume that, for m robots, robot k (k ∈ {1, 2, .., m})
owns Nk tasks. In total, m directed graphs Gk = (Vk, Ek)
(k ∈ {1, 2, .., m}) are considered. For robot k, Vk (Vk =
{uk

1, uk
2, . . . , uk

Nk
}) is the collection of nodes and Ek =

{(i, j)|i ∈ Vk, j ∈ Vk} is the collection of arcs.
Each task is defined as executing a single operation (i.e.,

stud-welding and spot-welding) at a particular location. As a
result, a specific node i corresponds to a place for the robot
to perform a task. Arc (i, j) maps to the path from task i to
task j . Nodes represent different locations for the robot to be
visited by the robot.

We consider a planning horizon T ×�t equally discretized
into a set of short time slots denoted by {�t, 2�t, . . . , T ×�t}.
One time slot is given as �t , and T is the total number of
time slots. As a result, the TSN model can decompose the
overall routing process of multiple robots into several time
slots. At each time instant t ∈ {0, 1, .., T }, each robot can
visit a particular node. Before detailing the proposed FTSN
model, the used subscripts, parameters, and decision variables
are introduced in Tables I and II.

For the flexible motion process of robot k on arc (i, j), the
position update from t − 1 to t is given as follows:

xkt = xk(t−1) +
∑

i, j :(i, j∈Ek)

(ui jk(t−1) × x j − xi

ti jk
), ∀k (1)

ykt = yk(t−1) +
∑

i, j :(i, j∈Ek)

(ui jk(t−1) × y j − yi

ti jk
), ∀k (2)

where ti jk is a decision variable, and the motion time on arc
(i, j) can be optimized. It is noted that equations (1)-(2) are
both nonlinear equalities. In [14], ti jk is regarded as a fixed
parameter and the motion time of robot k on arc (i, j) cannot
be further changed. Fig. 2 illustrates the discretized motion
process on arc (i, j ), and this process depends on ti jk . As ti jk

is modified, the number of fictitious points also changes.
The time connectivity of robot k for arc (i, j) is modelled

based on the cumulative flow variables ai jkt and di jkt . This

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2023 at 11:26:25 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Discretized flexible motion process on arc (i, j) depending on the
decision variable ti jk .

TABLE II

DECISION VARIABLES

connectivity is described by the following constraints:
ti jk × zi jk =

∑
t

(t × (di jkt − di jk(t−1)))

−
∑

t

(t × (ai jkt − ai jk(t−1))),

∀k, (i, j) ∈ Ek (3)

ai jkt ≥ ai jk(t−1), ∀k, (i, j) ∈ Ek, t (4)

di jkt ≥ di jk(t−1), ∀k, (i, j) ∈ Ek, t (5)

ui jkt = ai jkt − di jkt , ∀k, (i, j) ∈ Ek, t (6)∑
i. j :(i, j∈Ek)

ui jkt ≤ 1, ∀k, t (7)

ti jk ≥ tmin
i j , ∀k, (i, j) ∈ Ek (8)

where equality (3) is the time constraint for each robot between
two successive tasks, and each robot can wait for more than
one time unit in the node. Note that Inequality (3) is a
nonlinear constraint due to the term zi jk ×ti jk. Inequalities (4)-
(5) are the time connectivity constraints for robot k to perform
two successive tasks regarding the arrival and departure for arc
(i, j). Inequalities (6)-(7) guarantee that each robot can only
perform one task per time unit. inequality (8) ensures that the
time spent on arc (i, j) for robot k is no less than the minimum
time (tmin

i j = 1 if i = j ).
Additional constraints are needed to map the time and space

in the same framework as follows:∑
i :(i,hk )∈Ek

dihk kT ≥ 1, ∀k (9)

∑
j :(hk , j)∈Ek

ahk jkt = 1, ∀k (10)

zi jk = ai jkT , ∀k, (i, j) ∈ Ek (11)∑
i, j :(i, j)∈Ek

di jkt =
∑

j.n:( j,n)∈Ek

a jnkt ∀k, j ∈ Vk − hk (12)

di jkt ≤ ai jkt , ∀k, (i, j) ∈ Ek, t (13)

where inequalities (9)-(10) are time constraints of each robot
at the start and the end positions, ensuring that each robot
moves from the start of the planning horizon. Constraint (11)
is the mapping constraint between the time-space network and
the physical routing network. Constraints (12)-(13) guarantee
the continuity of the arrival and departure times for robot k
when visiting arc (i, j).

Furthermore, the constraints for assigning the tasks of each
robot are given as follows:∑

i, j :(i, j)∈Eo
k (hk )

zi jk ≥ 1, ∀k (14)

∑
i :(i, j)∈E s

k( j)

zi jk =
∑

n:( j.n)∈Eo
k ( j)

z jnk, ∀k, j ∈ Vk − hk (15)

∑
i, j :(i, j)∈E s

k(hk )

zi jk ≥ 1, ∀k (16)

∑
k=1

∑
j=1

zi jk ≥ 1, ∀i (17)

zi jk ≤ δik, ∀i, k, (i, j) ∈ Ek (18)

z jik ≤ δik, ∀i, k, ( j, i) ∈ Ek (19)

where constraints (14)-(16) ensure the task sequence at the
start position, intermediate position, and end position of each
robot. Constraint (17) guarantees that all tasks are executed.
Constraints (18)-(19) ensure that arc (i, j) can only be visited
by robot k when task i is assigned to it.

The collision-free constraints for any two robots are pro-
vided to guarantee that at any time t each robot does not
collide with the other robot, as suggested in [21]. These
constraints are given as follows:

xk1t − xk2 t ≥ R − Mc1
k1k2 t , ∀k1, k2, ∀t (20)

xk2t − xk1t ≥ R − Mc2
k1k2 t , ∀k1, k2, ∀t (21)

yk1t − yk2 t ≥ R − Mc3
k1k2 t , ∀k1, k2, ∀t (22)

yk2t − yk1t ≥ R − Mc4
k1k2 t , ∀k1, k2, ∀t (23)

4∑
q=1

cq
k1k2 t ≥ 3, ∀k1, k2, ∀t (24)

where (xk1t , yk1 t) and (xk2t , yk2 t) are the coordinates of the
end-effectors for robots k1 and k2 at time t . These coordinates
are computed using formulas (1)-(2). cq

k1k2 t is the decision
variable for avoiding the collisions. cq

k1k2 t = 0 indicates that
there is at least R distance between the end-effectors of
robots k1 and k2 in the q th direction in the plane, while
cq

k1k2 t = 1 means that the related constraint is relaxed. These
constraints ensure that the end-effector ranges of any two
robots avoid collisions either at a node or at a fictitious point
of the arc for each robot, as illustrated in Fig. 3. However,
an industrial robot is a 3D entity, and the constraints (20)-(24)
cannot fully guarantees the collision avoidance of the whole
body and every joint, as we focus on the end-effector and its
connected joint.

C. Objective Function

Here, we give the robot routing problem in the
weighted-sum and the lexicographical formulations. These
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Fig. 3. Illustration of collision avoidance for the end-effector areas.

formulations optimize the multiple objectives with different
priorities. For our robot routing problem, we consider two
objectives: the cycle time (denoted by Fc) and the kinetic
energy consumption (represented by Fe). To meet the require-
ment from the manufacturer, minimizing the cycle time is
prioritized, while minimizing the energy consumption is less
critical. Fc and Fe are formulated as follows:

Fc = max{
∑

t

t ×
∑

i :(i,hk )∈E s
k(hk )

[di jkt − di jk(t−1)], ∀k} (25)

Fe =
∑

k

∑
i. j :(i, j)∈Ek

p1
i j × ti jk + p2

i j + p3
i j × t−1

i jk (26)

+ p4
i j × t−2

i jk + p5
i j × t−3

i jk .

Formula (25) gives the cycle time of all robots as defined
in [14]. Formula (26) represents the energy consumption
formulation of all the robotic motions required to complete
the assigned tasks ((i, j) ∈ Ek) at the planning level. Formula
(26) models the kinetic energy consumption of the robotic
motion from node i to node j by a non-linear function of the
travel time ti jk for robot k [22]. This formulation enables the
integration of the robot energy optimization into scheduling
these motions. In (26), p1

i j, . . . , p5
i j represent five constant

parameters related to kinetic energy from node i to node j .
The details of formula (26) are well explained in [22].

First, we use the weighted-sum formulation, in which Fc

and Fe are represented via a linear combination and optimized
simultaneously. The corresponding overall optimization prob-
lem, defined as P1, is described as follows:

P1 : min(Fc + λFe)

s.t. (1) − (24),

where λ is the weighting factor and its unit is normalized.
Note that Fe is a nonlinear function according to (26),

and constraints (1), (2), and (3) are also nonlinear. When
simultaneously optimizing the cycle time and the kinetic
energy consumption, the decision variables listed in Table II
are binary or integer. Therefore, an MINLP model is needed.
Now we prove that P1 is a non-convex MINLP.

Remark 1: The optimization problem P1 is a non-convex
nonlinear optimization problem.

Proof: It is easy to prove that ti jk zi jk in constraint (3)
is a nonlinear function, since ti jk and zi jk are both decision
variables.

The Hessian matrix of ti jkzi jk is computed as

[
0 1
1 0

]
, and

its determinant is negative. Therefore, the function ti jk zi jk is
a non-convex function.

Considering ti jkzi jk is independent to ai jkt and di jkt , con-
straint (3) is a nonlinear and non-convex constraint.

The MINLP problem P1 has at least one non-convex con-
straint. Thus we conclude that P1 is a non-convex MINLP.
�

In addition to the weighted-sum strategy, we also consider
the lexicographical strategy, in which the cycle time Fc is
regarded as the primary objective while the energy consump-
tion Fe is regarded as the secondary objective. The lexico-
graphical formulation of our optimization problem, denoted
as P2, is given as follows:

P2 : min Fe

s.t. Fc ≤ F∗
c , and (1)-(24),

where F∗
c denotes the minimal cycle time subject to constraints

(1)-(24). Similar to Remark 1, the problem P2 can be proved
to be a non-convex MINLP.

In general, non-convex MINLPs are more difficult to solve
than the MIP which owns linear constraints and objectives.
In the next section, efficient algorithms are developed to
solve the formulated MINLPs (P1 and P2), thus obtaining
collision-free and energy-efficient routes for multiple robots.

III. SOLUTION ALGORITHM

In this section, we design a customized Genetic Algo-
rithm (GA) to efficiently solve the MINLP problems for-
mulated in Section II. MINLP problems are known to be
NP-hard [23], and commercial MINLP solvers, like BARON,
cannot provide high-quality solutions in a reasonable compu-
tation time. Therefore, an efficient algorithm is demanded to
solve the formulated MINLP problems based on the FTSN
formulation.

GAs have been proved to be useful for successfully
solving complex combinatorial problems (such as MIP and
MINLP) [24]–[28]. GA has a relatively simple algorithmic
structure, but this metaheuristic has a good ability to diversify
the search in the feasible region of the search space [29]. Our
studied routing problem is a variant of the multiple Traveling
Salesman Problem (mTSP), and the GA is efficient for solving
such a problem [30]. Here, for addressing the MINLP in
this paper, we design new encoding schemes and operators,
allowing the customized GA to be suitable for dealing with the
considered MINLP problems. Based on the customized GA,
we design an ε-constraint method to study the relationship
between the two objectives.

A. Encoding

In our GA, the encoding for the population (the set of
candidate solutions) needs to be initialized. The encoding
scheme for each solution is highly relevant to the solution
quality. For the routing problem of the multi-robot station,
the encoding scheme of existing GAs is designed for the
solution to MIPs only [14], and this scheme cannot be used for
MINLPs. In this part, we develop a new encoding scheme for
constructing the solutions suitable for the considered MINLP.
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Fig. 4. Illustration of composing the two dimensional Xs,k for robot k.

Given m robots and a task set Vk for robot k (k ∈
{1, 2, ..m}). V = V1 ∪ V2 . . . ∪ Vm is the set of all tasks. For
robot k, the set Vk = {uk

1, uk
2, . . . , uk

Nk
} and uk

i �= uk
j (i �= j )

We consider a mixed encoding scheme. The solution X
contains X t and Xs, representing two types of information
(motion time and task sequence, respectively). X t represents
a matrix containing ti jk (the motion time spent on each arc)
of all robots (k = 1, 2, . . . m) to complete all required tasks.
The detailed composition of X t is represented as follows:

X t =

⎡
⎢⎢⎢⎣

M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mm

⎤
⎥⎥⎥⎦, (27)

where the formulation of Mk (k = 1, 2, . . . m) is given as
follows:

Mk =

⎡
⎢⎢⎣

tuk
1uk

1k · · · tuk
Nk

uk
1k

...
. . .

...
tuk

1uk
Nk

k · · · tuk
Nk

uk
Nk

k

⎤
⎥⎥⎦. (28)

Xs follows a two-dimensional encoding scheme for
sequencing the collision-free routes of robots, as shown in
Fig. 4. Xs is made of the following parts: Xs,1, Xs,2, . . . , Xs,m

for each robot. Dimensions 1 and 2 denote the start and
end nodes within several time slots that correspond to the
time spent between these nodes. As seen from Fig. 4, uk

i in
Dimension 1 and uk

j in Dimension 2 are the start and end
nodes of the visited arc (uk

i , uk
j ) for which ti jk is spent by

robot k.
The encoding length for each robot is the planning horizon

T , and the total length of the encoding scheme is mT . Each
column of the encoding is a time slot indicating that the robot
is occupying a particular path within this time window. More
details on Xs are explained in Section III of [14]. We noted
that the number of columns for robot k, occupied by arc (i, j),
corresponds to the (integer) number ti jk , which is described in
the elements of Mk . The initialization of the solution X is
provided in the paper appendix.

B. Energy-Efficient Algorithm

1) Choices of Operators: In this part, we detail the cus-
tomized operators of the developed GA for solving the
MINLPs based on the collision-free mTSP presented in
Section II. The strategies used for the selection and mutation
are constructed to customize the genetic algorithm to effi-
ciently solve the mTSP. The routing problem investigated in
our manuscript is a variant of the mTSP, and the TSP is its
fundamental version. When using the GA to solve the TSP

problem, the removal of the crossover operator is suggested
by the observation that the crossover could result in longer
computation times and deteriorate the solution quality [31].
The mutation operator is regarded as the most effective one
when solving the TSP, since mutation prevents the algorithm
to be trapped in a local minimum [31]. Therefore, only
the selection and mutation operators are considered in our
developed GA.

Regarding the selection strategy, the top-ranking method is
employed. At each iteration, the best 1/8 solutions are selected
from the entire population (as the elite solutions) and retained
until the next iteration.

Our mutation strategy considers seven operators to deal with
the mixed decision variables (motion time and task sequence).
These seven operators are based on three general operators,
namely, flip, swap, and slide. These are considered in the
proposed algorithm. The flip mutation works by randomly
choosing two positions in the chromosome and reversing the
order in which their values appear between those positions.
The swap operator randomly swaps the values of two positions
in the chromosome. For the slide operator, two positions in
the chromosome are randomly selected, and the contents of
these two positions move one position to the left. These three
operators can be described as follows [31]:

f li p(π, p1, p2) � π ′(p1 : p2) = π(p1,−1, p2), (29)

swap(π, p1, p2) � π ′(p1) = π(p2), π
′(p2) = π(p1), (30)

slide(π, p1, p2) � π ′(p1 : p2) = [π(p1 + 1 : p2), π(p1)],
(31)

where π is a segment of the solution. π is a permutation, and
π can be X t and Xs. p1 and p2 represent two positions of the
segment. Since we use a two-dimensional encoding scheme
for representing the task sequence Xs, the positions of two
columns are selected for performing the flip, swap, and slide
operations. As for the motion time part, the contents of two
rows of Xs are selected for the proposed mutation operations.

2) Main Procedures: Following the developed encoding
scheme, we now present the main procedures of the cus-
tomized GA. Algorithm 1 gives the pseudocode to solve the
considered MINLP problem. As discussed above, flip, swap,
and slide operators are the general mutation operators used by
the customized GA. Since two types of decision variables (task
sequence and motion time) are involved, the flip, swap, and
slide operations are performed for the single Xs and combined
Xs and X t . In addition to the above operators, we also consider
a random operator to generate motion times for X t . The details
of these operations are given in Lines 13-19 of Algorithm 1.

Table III lists the related notations used in the devel-
oped algorithm. Sub-populations P1(iiter)–P8(iiter) constitute
the entire population P(iiter). The sizes of P1(iiter)–P8(iiter) are
all assumed to be one eighth of the entire population P(iiter)
(Np/8). P1(iiter) is the elite sub-population, while P2(iiter)–
P8(iiter) are the sub-populations of seven operations based on
P1(iiter). We use the notations Xs(iiter, ip) and X t(iiter, ip) to
represent the ipth elite solutions of P1

Xs
and P1

X t
that constitute

P1(iiter) at iteration iiter.
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Algorithm 1 Weighted-Sum GA for the Formulated MINLP
1: iiter = 0
2: initialize P(iiter)
3: if P(iiter) has infeasible solutions then
4: repair P(iiter)
5: end if
6: while iiter ≤ imax do
7: for doip = 1 to Np

8: evaluate the fitness of F(X) as P(iiter)
9: end for

10: select 1/8 of P(iiter) with the lower fitness as P1(iiter)
11: for ip = 1 to Np/8
12: k = randi(m)
13: flip operation to the kth part of Xs(iiter, ip) used for

P2(iiter, ip), no change to X t(iiter, ip)
14: swap operation to the kth part of Xs(iiter, ip) used for

P3(iiter, ip), no change to X t(iiter, ip)
15: slide operation to the kth part of Xs(iiter, ip) used for

P4(iiter, ip), no change to X t(iiter, ip)
16: rand operation to X t(iiter, ip) as part of P5(iiter, ip),

no change to Xs(iiter, it)
17: flip operation to the kth part of Xs(iiter, ip) and the

whole part of X t(iiter, ip) used for P6(iiter, ip)
18: swap operation to the kth part of Xs(iiter, ip) and the

whole part of X t(iiter, ip) used for P7(iiter, ip)
19: slide operation to the kth part of Xs(iiter, ip) and the

whole part of X t(iiter, ip) used for P8(iiter, ip)
20: end for do
21: P(iiter + 1) = P1(iiter) ∪ P2(iiter) ∪ P3(iiter) ∪ P4(iiter) ∪

P5(iiter) ∪ P6(iiter) ∪ P7(iiter) ∪ P8(iiter)
22: iiter = iiter + 1
23: if P(iiter) has infeasible solutions then
24: repair P(iiter)
25: end if
26: end while

For our customized GA, all the constraints (1)-(24) must
be satisfied. For this, proper measures should be taken when
designing this metaheuristic. Regarding the generated infeasi-
ble solutions that do not satisfy constraints (1)-(19), we use
repairing operations. For any two successive arcs, the end
node of the first arc must be the start node of the next
arc. Also, for each arc, the number of columns must be
consistent with its motion time. If ti jk is below its minimum
value for Constraint (8), ti jk will be replaced by its minimum
value.

Regarding the remaining constraints, a penalty function,
defined as p(iiter, X), is included in the fitness function F(X),
together with the objective function defined as F0(X). The
composition of F(X) is thus given as follows:

F(X) = F0(X) + p(iiter, X) (32)

where F0(X) represents the weighted sum of cycle time and
energy consumption for solution X , defined by following the
objective function of P1 as follows:

F0(X) = Fc(X) + λFe(X). (33)

TABLE III

NOTATIONS USED FOR THE DESIGNED ALGORITHM

To satisfy the collision-free constraints (20)−(24), a penalty
function p(iiter, x) for iteration iiter is defined as follows:

p(i ter, X) = (ρiiter)
α(d1(X)β + d2(X)β), (34)

where ρiiter is a variable multiplication factor, d1(X) is a
function to penalize the solution that fails to satisfy constraints
(20)−(24), and d2(X) is a function to punish the solution that
does not respect the motion time constraint (8). α and β are
the parameters that adjust the size of the penalty value.

The values of ρiiter , d1(X), and d1(X) are designed as
follows:

ρiiter = Ciiter (35)

d1(X) =
{

0, X is feasible

|l − R|, otherwise
(36)

d2(X) =
{

0, X is feasible∣∣∣(ti jk − tmin
i jk )

∣∣∣, otherwise
(37)

where C is a constant, l is the minimum distance between
two arbitrary robots on all time unit windows, and R is the
minimum safety distance. ti jk is the actual motion time for
robot k on arc (i, j).

In addition to the weighted-sum strategy, we also consider a
lexicographic strategy. In the lexicographic strategy, the cycle
time is regarded as the primary objective, while the energy
consumption is treated as the secondary one. The minimal
cycle time is obtained by solving a single-objective optimiza-
tion problem; the obtained cycle time is then incorporated into
Algorithm 1 as an additional constraint. These two strategies
will be evaluated in Section IV.

C. Algorithm for the Pareto Frontier Analysis

This section proposes an algorithm for computing the Pareto
frontier for the cycle time and energy consumption minimiza-
tion by using the ε-constraint method. The ε-constraint method
can be efficiently used for computing non-dominated solu-
tions [32], [33]. Here, we propose an iterative procedure for a
framework based on the ε-constraint method and the developed
GA. At each iteration, we solve a single-objective formulation
for the studied optimization problem. In this problem, one
performance indicator is optimized directly in the objective
function, while the other performance indicator is indirectly
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Algorithm 2 ε-Constraint Method
1: iiter = 0
2: min Fc subject to constraints (1)-(24), and set β1 = F∗

c (iiter),
ϕ2 = F ′′

e (iiter)
3: min Fe subject to constraints (1)-(24), and set β2 = F∗

e (iiter)
4: insert the pair (β1,ϕ2) in the Pareto solution set �
5: while β2 < ϕ2 do
6: iiter = iiter + 1
7: min Fc subject to constraints (1)-(24) plus the constraint:

Fe < ϕ2, and set β1 = F∗
c (iiter), ϕ2 = F ′′

e (iiter)
8: insert the pair (β1,ϕ2) in the Pareto solution set �
9: end while

10: return the Pareto solution set �

optimized by inserting an additional bound constraint in the
single-objective formulation.

Algorithm 2 describes the main steps of our ε-constraint
method. At each iteration iiter, the values of F∗

c (iiter) and
F∗

e (iiter) are computed individually. F ′′
e (iiter) denotes the value

of Fe regarding the optimal solution of F∗
c at iteration

iiter. The proposed ε-constraint method initializes the num-
ber of iterations iiter and finds the optimal values of the
two single-objective optimization problems. The value of the
optimal single-optimization solution (β1, ϕ2) is inserted into
the solution set � . After this initialization, a new single-
optimization problem is iteratively solved by adding an addi-
tional constraint on the value of the secondary indicator Fe.
For each iteration, a new solution pair (β1, ϕ2) is added into
the solution set � . When the value of F ′′

e (iiter) is equal to
F∗

e (iiter), the iterative process ends and returns the set � .

IV. CASE STUDIES

This section discusses the computational results obtained
from the simulation experiments carried out to demonstrate
the effectiveness of the proposed methodology for planning
the collision-free and energy-aware routing of multiple robots
at one workstation. The simulation settings are provided,
and several case studies in the automotive industry are then
conducted.

A. Simulation Settings

To study the effectiveness of the proposed methodology, two
typical types of case studies (spot welding on a car door and
spot welding on a car underbody) are considered [14]. The
settings of our case studies are given in Table IV, in which
seven scenarios are included. Scenarios 1-2 and Scenarios 3-7
are considered for the first type and for the second type of case
studies, respectively. For each scenario, the operation nodes
are distributed equally, and ten experiments have been carried
out. These settings are suggested by [4], [14]. The maximum
computation time is set to 1 hour.

Based on the proposed FTSN model, the developed
weighted-sum GA and lexicographic GA (WGA and LGA for
short) are compared with a conventional method and two state-
of-the-art MINLP solvers (BARON and SCIP). The latter three
methods are explained shortly as follows:

TABLE IV

SETTING OF THE CONSIDERED CASE STUDIES

• The conventional method is based on the TSN model
considering fixed motion times and on the GA developed
in [14] to solve the corresponding MIP that minimizes
the cycle time only.

• BARON is a commercial solver used to solve MINLP
problems [34], [35]. The cycle time and the energy con-
sumption are minimized in a weighted-sum form when
solving the considered MINLP.

• SCIP is the fastest non-commercial solver to solve the
MINLP [36]. The problem formulation for the solver
SCIP is the same MINLP as for the solver BARON.

Both BARON and SCIP implement a spatial branch and bound
algorithm that utilizes linear programming for the bounding
step to solve MINLP problems. The algorithm in the solver
BARON is enhanced by using advanced box reduction tech-
niques and convexification techniques for quadratic functions.
Further, BARON uses NLP relaxations for bounding. These
improvements are not considered in the solver SCIP [37].

In addition to the three methods above, two commonly-used
metaheuristics (Tabu Search (TS) and Variable Neighborhood
Search (VNS)) are evaluated for further comparison. The
tested TS and VNS are next briefly described:

• Tabu search is a deterministic metaheuristic based on
local search. The implemented TS follows the standard
algorithmic procedures presented in [38]. The tabu list
is used to escape from the local optimum. Initially,
this list is empty. The encoding is set the same as the
proposed GA. For generating the candidate list (similarly
to the GA population), the neighborhood solutions of a
candidate solution are modified by adopting one of the
seven operators presented in Algorithm 1 (Lines 13-19)
randomly chosen, and the probability for selecting each
operation is equal. Regarding the aspiration criterion,
if the tabu list contains all the seven operations, the
operation with the best solution is removed from the tabu
list. Here, no advanced intensification or diversification
strategies are used.

• The implemented VNS is the standard version of
VNS [39], which combines deterministic and random
changes in neighborhoods. This algorithm consists of
two phases: the shaking phase for the global search
and the improvement phase for the local search. The
encoding is the same as the proposed GA to construct
the neighborhood. For the global search, one of the
seven operations presented in Algorithm 1 (Lines 13-19)
is randomly selected. For the local search, the seven
operations in Algorithm 1 (same as above) are selected
to modify the neighborhood solutions by following the
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TABLE V

AVERAGED PERFORMANCE FOR SCENARIOS 1–3 VIA WGA

TABLE VI

COMPUTATIONAL RESULTS WHEN VARYING λ

sequencing strategy in Algorithm 1. The local search
stops when the first improvement is achieved.

For the proposed GA, the population size Np and the
maximum number of iterations imax are important parameters.
We thus conducted a group of numerical experiments for
Scenarios 1-3 via the developed WGA to better set these
parameters, as presented in Table V. In these experiments, the
parameter λ is set to a very small positive number to prioritize
the makespan. Table V gives the average cycle time, the energy
consumption, and the computation time for these experiments.
The chosen Np and imax are 120 and 200, because this
setting reaches a good balance between the solution quality
and the computational effort. The settings of Np = 120 and
imax = 300 are also a good choice, but the computation time
increases by about 50% with a very small reduction in Fe

when compared to the settings of Np = 120 and imax = 200.
With the above settings of Np and imax, we study the effect

of varying the weighting factor λ on the cycle time and
energy consumption. Table VI compares the values of these
performance indicators for Scenarios 1 and 2. As λ becomes
large, the energy consumption reduction becomes relatively
more critical, therefore more energy can be saved while the
cycle time grows. To highlight the importance of the cycle
time, a very small positive value of λ is needed. To guarantee
a considerable prioritization of the cycle time over the energy
consumption, λ is set as 10−5.

Regarding the parameters of the penalty function used to
avoid collisions, C is set to 0.5, and α and β are both set to
be 2. The values of these parameters are the same as the ones
suggested in [14] since the same safety distance is considered.

The maximum computation time for all the metaheuristics
(GA, TS, and VNS) is set to 600 seconds. The motion time
ti jk for the rand operator is randomly generated between
[tmin

i jk ,2tmin
i jk ]. For the lexicographic strategy of GA, VNS, and

TS, the MaxFEs to individually compute the two objectives is
set to half of the weighted-sum value.

The hardware for all simulations is an Intel i7-9700 proces-
sor (3.0GHz) with 8GB of memory. The optimization prob-
lems are modelled and solved in Matlab R2018. The software

TABLE VII

CYCLE TIME OF THE METHODS FOR WELDING
ON A DOOR (UNIT: SECONDS)

TABLE VIII

ENERGY CONSUMPTION OF THE METHODS FOR WELDING

ON A DOOR (UNIT: KJ)

ABB RobotStudio is used to simulate the robot operations and
verify the results obtained via the FTSN model. RobotStudio
is a state-of-the-art robot simulation software, which copies
the real software that moves the robots into a production
environment. This simulation software allows to perform real-
istic simulations and a careful assessment of the optimized
solutions, using real robot programs and configuration files
identical to those used on the shop floor [40]. In this software,
the IRB2400 series robot is selected.

B. Welding on a Door

Tables VII and VIII compare the cycle time and energy
consumption for the considered scenarios of welding on a door
(Scenarios 1-2). These two tables show that all the studied
methods always obtain solutions for Scenario 1. Differently,
SCIP and BARON cannot always find feasible solutions for
Scenario 2, which schedules only ten tasks for two robots.
These results indicate that the formulated MINLP problem
(even for a small-scale scenario) suffers from computational
intractability when commercial solvers are used.

Table VII shows that, for every experiment of
Scenarios 1 and 2, both WGA and LGA compute the
shortest cycle time, which is the same achieved by the
conventional method (when minimizing the cycle time
only). As a result, the average values of WGA, LGA, and
the conventional are equal to their worst values, both for
Scenarios 1 and 2.

Table VIII indicates that the average and worst results of
the proposed WGA achieve the lowest energy consumption.
For Scenario 1, WGA and LGA compute the minimum energy
consumption as the one determined by SCIP and BARON. The
energy reduction of these four methods for Scenario 1 is about
21%. For Scenario 2, when using WGA and LGA, the energy
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TABLE IX

AVERAGE COMPUTATION TIME OF WELDING ON A DOOR (UNIT:SECONDS)

Fig. 5. Geometrical overview of Scenario 1.

Fig. 6. Planned routes via the conventional method for Scenario 1.

is decreased by around 35% in comparison to the conventional
method. In summary, for these two scenarios, the proposed
methods efficiently optimize the energy consumption of robot
routes without deteriorating the cycle time.

Table IX records the average computation time of different
methods. The SCIP solver finds the optimal solution in a short
computation time for Scenario 1 while it fails to find a solution
for Scenario 2 within the maximum computation time. The
solver BARON cannot provide a solution for Scenarios 1-2.
The computation times of the studied metaheuristics (WGA,
LGA, WTS, LTS, WVNS, and LVNS) compared with the one
of the conventional method.

We next present the planned routes of Scenario 1 obtained
by the conventional method and WGA. The geometrical
overview is given in Fig. 5. H1 and H2 are the home nodes
for R1 and R2. A, B , C , and D are task nodes. Nodes A and
B are assigned to R2, while nodes C and D are assigned to
R1. The parameters P1

i j –P5
i j , which are computed by following

the formula (8) in [22].
Fig. 6 shows the detailed routes of each robot

obtained by the conventional method including the
fixed motion times between tasks nodes. As given
in Fig. 6, the computed node sequences for each

Fig. 7. Planned routes via the proposed WGA for Scenario 1.

Fig. 8. The planned routes via the proposed WGA for Scenario 1.

robot are as follows: R1: H1 → D → C → H1;
R2: H2 → B → H2 → H2 → A → H2. To avoid the
collision with the robot R1, the robot R2 returns from node B
to home position H2 and waits at node H2 between t = 3 and
t = 4 to avoid collisions.

Fig. 7 details the obtained routes by solving the MINLP
problem via WGA. The computed visited node sequences are
as follows: R1: H1 → D → C → H1; R2: H2 → B →
H2 → A → H2. When using the proposed FTSN model,
R2 can increase the motion time between H2 and A. The
kinetic energy can thus be reduced from waiting at node H2 as
shown in Fig. 6. Meanwhile, the collision between R1 and
R2 is avoided, as shown both in Fig. 6 and Fig. 7.

Fig. 8 and 9 show the planned and simulated routes obtained
by WGA and implemented in RobotStudio for Scenario 1. The
planned and executed routes are marked in yellow and blue,
respectively. The geometry of the included nodes is consistent
with Fig. 5. It can be seen from Fig. 8 and 9 that the executed
routes of R1 and R2 are the same as the planned routes
when using WGA. However, there is a small delay between
the planned schedule and the executed schedule, as given in
Fig. 10. The reason could be the physical constraints of the
robot (e.g., limited joint torques), which are neglected in our
robot scheduling problem.

C. Welding on an Underbody

Table X, Table XI, and Table XII record the performance
of the studied methods for Scenarios 3-7 to weld on the
automotive underbody.
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TABLE X

CYCLE TIME OF THE METHODS FOR WELDING ON AN UNDERBODY (UNIT: SECONDS)

TABLE XI

ENERGY CONSUMPTION OF THE METHODS FOR WELDING ON AN UNDERBODY (UNIT:KJ)

Fig. 9. The simulated routes implemented in RobotStudio for Scenario 1.

Fig. 10. Planned and simulated task schedules for Scenario 1.

Table X presents the average and worst values of the cycle
time for the considered methods. Both the solvers SCIP and
BARON cannot obtain any solution for all the scenarios of
welding on the underbody, as the numbers of tasks and robots

TABLE XII

AVERAGED COMPUTATIONAL TIMES REGARDING WELDING ON AN

UNDERBODY (UNIT:SECONDS)

regarding these scenarios are more complex than the ones of
welding on the door. Regarding the cycle time, LGA and the
conventional method achieve the minimal value, both for the
average and the worst experiment results. This is because LGA
uses the minimal value of the cycle time as a constraint when
searching for the most energy-efficient solution. Although
WGA performs better than WTS, LTS, WVNS, and LVNS
methods, the weighted-sum strategy is not as good as the
lexicographic strategy when the cycle time is prioritized.

Table XI records the average and worst values of the energy
consumption for Scenarios 3-7. Both LGA and WGA reduce
the energy consumption when compared to the conventional
method. Regarding the average values, LGA obtains the lowest
value for all these scenarios, and its energy reduction is at
least 30% when compared to the conventional method. As for
the worst case, although LGA is slightly worse than the WGA
algorithm for Scenarios 6 and 7, their difference is very small.
LGA is still the most efficient searching for the lowest energy
consumption while minimizing the shortest cycle time.

Table XII presents the averaged computation time of
LGA and WGA in comparison to the other methods for
Scenarios 3-7. Table XII confirms that SCIP and BARON fail
to find a feasible solution. The conventional method, and WGA
and LGA efficiently solve all the scenarios in a reasonable
computation time. Since LGA needs first to compute the
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Fig. 11. Relative distances between each pair of robots via the FTSN model
for Scenario 6.

Fig. 12. Robot routes for Scenario 6 based on the FTSN model.

minimal cycle time, the total computation time takes longer
than WGA.

We next discuss the planned routes based on the FTSN
model and WGA. Fig. 11 gives the relative distance of any
two robots based on the FTSN model for Scenario 6. Fig. 11
shows that the FTSN model avoids collisions between robots
for each time slot. Fig. 12 illustrates the corresponding routes.
All the robots start from their home nodes and ultimately
return to these home nodes. Fig. 13 shows their TCP traces in
the welding process. These robots move in a collision-free and
energy-aware way among the predefined tasks, and the traces
are demonstrated in RobotStudio.

D. Relationship Between These Two Objectives

This part discusses the trade-off between the cycle
time and energy consumption minimization for the studied
energy-efficient routing problem.

In general, our paper aims to achieve high productivity
with low energy consumption. The energy reduction is thus
expected to be optimized when the shortest cycle time is
considered. For energy reduction purposes, the solution set
includes Pareto optimal solutions (also called non-dominated
solutions) and weakly Pareto optimal solutions [41]. We use
the coverage area of these two types of solutions as the metric
to evaluate the effects of energy reduction. The coverage

TABLE XIII

SIZES OF EACH COVERAGE AREAS

TABLE XIV

COMPUTED PARETO SOLUTIONS BY THE ε-CONSTRAINT

METHOD FOR SCENARIO 5

area metric is the 2-D form of the hypervolume indicator,
which is a commonly-used metric to evaluate the domi-
nance in multi-objective optimization [42], [43]. We com-
pare ε-constraint method with Non-dominated Sorting Genetic
Algorithm II (NSGA-II), which is a state-of-the-art algorithm
used in multi-objective optimization [44].

Fig. 14 shows the results obtained by the ε-constraint
method (presented in Algorithm 2) and NSGA-II for the
selected scenarios. In Fig. 14, for each scenario, the energy
consumption of multiple robots is reduced considerably for the
shortest cycle time. Table XIII, which compares the coverages
areas of the two methods, shows that the proposed ε-constraint
has a larger coverage area. The ε-constraint method computes
the set of weakly Pareto optimal solutions and Pareto optimal
solutions. The weakly Pareto optimal solutions allow us to
see the changes in energy reduction for the minimum cycle
time. NSGA-II focuses on finding non-dominated points in
the Pareto set, and the changes of energy reduction for the
minimum cycle time cannot be easily detected.

The extreme point with the shortest cycle time in the Pareto
set of these two methods can be compared in Fig. 14. This
extreme point is defined as the point with minimal energy
consumption and the shortest cycle time, and this point can
be useful for the manufacturer to achieve high productivity
with low energy consumption. Comparing the extreme points
with the shortest cycle time, in general, the ε-constraint
method has a shorter cycle time than the NSGA-II method.
This indicates that the NSGA-II method may have difficulties
finding good extreme points, due to its limited exploration
ability for MINLPs, as observed in [45].

We then discuss the solution obtained by the ε-constraint
method for Scenario 5 as an illustrative example. In Fig. 14(d),
when obtaining the minimum cycle time (18 seconds), the
energy consumption of multiple robots can be further reduced
(from about 16 k J to about 9 k J ). It is thus possible to
minimize energy consumption for the minimized cycle time.
Fig. 14(d) also shows that, when the energy consumption is
lower than its value for the minimum cycle time, the cycle
time increases accordingly.
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Fig. 13. Illustration of robot traces using the FTSN model for Scenario 6.

Fig. 14. Pareto frontiers computed via the ε-constraint method for the
selected scenarios.

Table XIV shows that the ε-constraint method computes
four non-dominated solutions (at iterations 4, 6, 8 and 9). For

the minimal cycle time (Fc = 18), energy consumption can be
reduced considerably (from 15.75 KJ to 9.37 KJ) when com-
pared with the case in which Fe is not considered. The solution
at iteration 4 becomes an extreme point of the Pareto frontier
regarding the minimum cycle time. Since Algorithm 2 is based
on GA, the computation times at different iterations are quite
close to each other, considering that at each iteration a single
objective optimization problem is solved by the same GA
configuration.

V. CONCLUSION AND FUTURE RESEARCH

This paper studies the energy-efficient robot routing prob-
lem for a multi-robot station in manufacturing cells. Our
paper minimizes the cycle time and energy consumption
jointly and meets the expectation of the producers to save
energy for the shortest cycle time. We propose a flexible
time-space network model and a customized GA to enable
energy-aware and collision-free routing of the robots. Lexico-
graphic and weighted-sum strategies are considered to mini-
mize energy consumption while considering the minimal cycle
time. Moreover, we present an ε-constraint algorithm to study
the trade-off of the two objectives for the considered MINLPs.

From the numerical results, optimizing task sequences
and motion times jointly reduces the energy consumption
considerably (up to 30%) without changing the quality of
cycle time. The lexicographic formulation performs slightly
better than the weighted-sum formulation. Since the decision
variables (task orders and motion times) of the studied objec-
tives are closely correlated, the weighted-sum formulation is
less computationally efficient than the lexicographic one. The
results of the ε-constraint method confirm the potential of
energy consumption reduction for the shortest cycle time. The
ε-constraint method computes the set of weakly Pareto optimal
solutions and Pareto optimal solutions, allowing us to see the
changes in energy reduction for the minimum cycle time.
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Future research will extend from the robot routing problem
of planar motions to 3-D moves. This extended problem is
more complicated and needs to consider the movements of
multi-joints.

APPENDIX

The initialization of the solution X is given
in Algorithm 3.

Algorithm 3 Initialize a Solution X
1: for k = 1 : m do
2: generate a sequence sk of all elements from Vk randomly
3: if tk > Vk then
4: for l = Vk + 1 to tk do
5: select an element from Vk randomly for sk(l)
6: end for
7: end if
8: swap the position of the first hk and the last task in sk

9: let Sk,1(1) = hk , Sk,1(2 : tk) = sk(1 : tk − 1)
10: let Sk,2(1 : tk − 1) = sk(1 : tk − 1), Sk,1(tk) = hk

11: Compose Mk by letting ti jk = tmin
i j

12: Compose Xs,k by based on Sk,1, Sk,2 and ti jk

13: end for
14: Compose Xs and X t based on Xs,k and Mk , respectively
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