
 
Abstract—Due to the mobility and frequent 

disconnections, the correctness of mobile interaction 
systems, such as mobile robot systems and mobile payment 
systems, are often difficult to analyze. This paper 
introduces three critical properties of systems, called 
system connectivity, interaction soundness and data 
validity, and presents a related modeling and analysis 
method, based on a kind of Petri nets called VPN. For a 
given system, a model including component nets and 
interaction structure nets is constructed by using VPNs. 
The component net describes the internal process of each 
component, while the interaction structure net reflects the 
dynamic interaction between components. Based on this 
model, three properties are defined and analyzed. The case 
study of a practical mobile payment system shows the 
effectiveness of the proposed method. 

Index Terms—Mobile interactive system, property 
analysis, Petri nets, formal model.  

I. INTRODUCTION 

N the past few decades, with the continuous promotion and 
development of (mobile) Internet, many emerging 

technologies (fields), such as Pervasive Computing, Internet of 
Thing (IoT), and (Mobile) Cloud Computing were developed 
and well applied [1]-[5]. They assume that a number of 
invisible sensing or computational components (entities) 
interact both with users and with the environment, and can 
deliver mobile, seamless, transparent, ubiquitous and 
customized services to users in a context-aware manner. 
Among the common features of those technologies, mobility 
and dynamic interactions are critical [6], [32]-[35]. 

The systems with mobile interactive components 
(collectively called mobile interactive systems in this paper) 
have raised many interests. In their execution, components can 
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move and communicate with each other to accomplish a given 
task, and the movement of components (and environmental 
change) can lead to frequent and dynamic disconnections 
among them.  

However, due to the mobility and frequent disconnections 
[2], the correctness of mobile interaction systems are often 
difficult to guarantee. It is urgent for researchers in this field to 
understand systems having such characteristics, establish a 
rigorous mathematical model and provide the proper analysis 
from different aspects for them.  

Formal methods, such as Petri nets (PN) [7], [8], seem to be a 
good choice to model and analyze those systems. They own 
rigorous semantics and can describe system features clearly. 
However, current studies do not give a specific description of 
the overall structure, component execution, and various 
interactions of mobile interactive systems, and thus cannot 
provide a complete modeling and analysis method. This makes 
them difficult to apply to actual system design. The literature 
review in this field can be found in the Supplementary file 
[13]-[31]. 

We have proposed a new PN, called a Variable Petri Net 
(VPN) in [40], which can describe the dynamicity of 
interactions in systems. Based on VPN, this paper focuses on 
modeling and analysis of properties of mobile interactive 
systems. Its main contributions are:  

1) It introduces a modeling method for a mobile interactive 
system based on VPN. The modeling process is performed 
from one component to multi-components by considering its 
dynamic interactions and contextual changes. 

2) It proposes three properties of systems called system 
connectivity, interaction soundness and data validity, to reflect 
their execution and interaction conditions, and then presents the 
analysis methods for these properties.  

3) A practical mobile transaction system is modeled and 
analyzed to show the proposed concepts and methods.  

The rest of the paper is organized as follows. The next 
section introduces mobile interactive systems and a simple 
example. Section 3 gives the definitions and firing rule of VPN, 
and also the graphic and behavior analysis techniques for VPN. 
Section 4 introduces the modeling method for mobile 
interactive systems by using VPN. Section 5 proposes three 
properties of systems and their related analysis methods. 
Section 6 presents a case study. Section 7 discusses the related 
work. Section 8 concludes this paper. 
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II. MOBILE INTERACTIVE SYSTEMS AND THEIR PROPERTIES 

A mobile interactive system is a system consisting of several 
components that are distributed and can run independently. In 
its execution, some components are mobile and communicate 
with each other to accomplish an expected task. Because of the 
mobility of components and contextual changes, the 
interactions (connections and disconnections) among 
components are uncertain and dynamic. Thus system behaviors 
are very complex. Mobile transaction systems and mobile robot 
systems belong to this kind of systems. 

 
Fig. 1. Example 1 (A tourism system) 

Next we introduce a simple example of a mobile interactive 
system. A tourist attraction designs a Tourist app (system) for 
the convenience of tourists. Tourists can use mobile phones or 
other mobile devices (MD) to call (invoke) some services 
(components) in this system. For simplification, suppose that 
these exist two scenes A and B, and three Scenic spot services 
S1, S2 and S3 in the system. S1 is a service for the speciality 
products reservation that can be used in all locations, and S2 
and S3 are services for the voice explanations for A and B. Thus 
S2 and S3 can be used in locations A and B, respectively. It is 
noted that there exist connections and disconnections among a 
mobile device and services. This system is shown in Fig. 1. 

Because of the movement of a device, the interactions 
between it and services are dynamic. Thu some common 
properties of mobile interaction systems, such as reachability 
and liveness, are inadequate for them. Some specific properties 
about the dynamic interactions need to be focused on and 
verified in the system design stage. 
 System connectivity 
In a mobile interactive system, components can connect and 

interact with each other. Whether a system has the link 
(connection) capacity or not is absolutely critical and can 
determine the connection (interaction) processes among 
components. Hence, the verification of link capacity of a 
mobile interactive system is necessary. In this paper we call this 
property as “system connectivity”.  
 Interaction soundness 
After the connection or disconnection among components 

because of their movement or contextual changes, they can 
begin or suspend to interact with each other. Then an 
interaction process among them can determine the completion 
status of a task. Thus if the interactions are executed smoothly 
and reasonably, they can ensure the correctness and safety of a 
system. Here we call this property as “interaction soundness”.  
 Data validity 
Data is an indispensable part in actual systems. There may 

exist data manipulation in the internal process of a component, 
and data exchange, transferring or synchronization in the 
interactions among components in a mobile interactive system. 

Data interaction may directly influence the result of a system. 
This can help one to judge whether the parameter for data is 
valid in an interaction. Here we call this property as “data 
validity”.  

Then, how to verify these these properties of mobile 
interaction systems? The modeling and related analysis for 
systems may be used to answer the above question. And the 
modeling process should consider both the internal workflow 
of each component and the interaction process between 
different components. The VPN model proposed in our 
previous work [40] is appropriate to model the dynamic 
interactions in a system, and thus is used as the basic model to 
construct the system model and perform the analysis of the 
mobile interactive systems in this work. Then, in the next 
section, we introduce the basic definitions of VPN [40] and 
propose some analysis methods of it. 

III. VARIABLE PETRI NETS 

A Variable Petri Net (VPN) introduces the mapping relations 
to places and the concept of virtual places to PNs, which allows 
one to fully describe the mobility and dynamicity in a system. It 
is an appropriate model to deal with dynamic interactions and 
contexts in mobile interactive systems [40].  

A. VPN 

Let Σ be a finite set of names which are used to indicate 
places, tokens and arc weights in the following. Let Σ = V  C, 
where V is a set of variables, or called formal parameters, and C 
is a set of constants, or called actual parameters. C contains a 
special character ε for the ordinary token by default, and each 

element c  C is asscoiated with an arity n  + . For any set A, 
we use 2A to denote all subsets of A, A* to denote all tuples 
formed by the elements in A, and An to denote all tuples with 
exactly n elements of A (whose length is n). 

In the following, we use  , + and   to denote the sets of 
non-negative integers, positive integers and integers, 
respectively. 

Definition 2.1 (multiset). For any set A, a multiset (bag) m 
over A is defined as a mapping m: A → . The set of all bags 

over A is denoted by A .  
Here we introduce the definition of VPN.  
Definition 2.2 (VPN). A Variable Petri Net (VPN) N over 

the universe Σ = C  V is an 8-tuple N = (P, T, F, γ, W, φ, ρ, M0), 
where 

1. P  C is a set of places. Each place is associated with an 
arity, which is the length of tuples of tokens in it.  

2. T is a finite set of transitions. P  T = . 
3. F  (P × T)  (T × P)  (T ×V)  (V ×T) is a set of arcs. 

Each arc (t, v)  (T × V) or (v, t)  (V ×T) is called a virtual arc, 
and each variable in a virtual arc is called a virtual place. 

4. γ: V → 2C
 is a constraint function mapping variable v  V 

to a set of constants X  2C, and each element c  X is a place in 
P or a newly generated place in C. 

5. W: F →
*( )  is an arc labelling function (expressions) 

representing the weight for arcs. Each label can be tuples of 



constants and variables or the empty set . For any transition t 
 T, if a variable v  V meets the condition “(t, v)  F or  e  
Σ: v  W(t, e)”, it must also satisfy that “(v, t)  F or  e'  Σ: v 

 W(e', t)”. For each arc f  (T × P) or (P ×T) , W(f)  ( )n , 
where n is the arity of the place in f. 

6. φ: T →  is a guard function associated with each 
transition, where   is the set of all Boolean expressions that 
can be constructed by using constants and variables in Σ.  

7. ρ: T → (  ) is a link function of transitions, where   
is a series of operations which are done when   is judged as 
true. For a transition t, ρ(t) = (b, h), where b and h is a 
do-nothing operation or an operation to add/delete (“+/-”) a γ 
constraint to each variable v satisfying that (t, v)  F, denoted 
as (v, +/-). 

8. M0 is an initial marking. A marking of N is a function M: 

P→
*( )C , where M(p)  ( )

npC  (np is the arity of p) is the set 
of tokens residing in p. 

For a node x  PT, its preset •x and postset x• are subsets of 
P  T  V such that •x = {y|(y, x)  F} and x• = {y|(x, y)  F}. 
Let t be a transition. For any x •t (or t•), if x  C, arc (x, t) is 
called an input arc (or (t, x) is called an output arc); otherwise, 
(x, t) is called a virtual input arc (or (t, x) is called a virtual 
output arc). These arcs are collectively called adjacent arcs of t. 
And x is called the (virtual) pre-place or post-place. 

Definition 3.3. A guard φ(t) of a transition t is a relational 
expression formed by the constants in C and the variables that 
exist in the input arc expressions or as the virtual pre-places of t.  

Next, given N = (P, T, F, γ, W, φ, ρ, M0) over Σ = C  V being 
a VPN, some definitions about its execution are introduced.  

Variables in the VPN can be substituted with constants 
during its execution. And these substitutions are defined as 
bindings as follows.  

Definition 3.4 (Binding). A binding β of any transition t  T 
is a (partial) function: V → C which associates a variable to a 
constant, and satisfies that if vV is a virtual place such that (t, 
v) or (v, t)  F, the length of tuples in W(t, v) or W(v, t) should 
be equal to the arity of place v[β], or W(t, v) = .  

Binding β to virtual pre/post-place v, adjacent arc labels and 
guard function W(p, t), W(t, p), W(v, t), W(t, v) and φ(t) of t are 
denoted by v[β], W(p, t)[β], W(t, p)[β], W(v[β], t)[β], W(t, 
v[β])[β]) and φ(t)[β], respectively. 

Using a marking, a place set and γ, we can uniquely identify a 
configuration of a changed VPN. 

Definition 3.5 (Configuration of VPN). Let M, P′ and γ′ be 
a marking, a place set and a constraint function of N, then Π = 
(M, P′, γ′) is called a configuration Π of N. The initial 
configuration of N is Π0 = (M0, P, γ). 

Then the firing rule of VPN is introduced as follows.  
Definition 3.6. A transition t  T is enabled in a 

configuration Π = (M, P, γ) of N iff there exist one binding β 
satisfying that, 

1) φ(t)[β] = true; 
2) p  P, v  V: (p, t)  F  M(p) ≥ W(p, t)[β],  (v, 

t)F  (M(v[β]) ≥ W(v[β], t)[β] and v[β]  γ(v));   

3) For all variables v1,…, vk  such that (v1, t),…, (vk, t)F 
and v1[β] = … = vk[β] = p, M(p) ≥ W(v1[β], t)[β]+…+ 
W(vk[β], t)[β]; 

which is denoted as Π[t >β  or (M, P, γ)[t >β.  

Definition 3.7. Firing an enabled transition t with binding β 
at a configuration Π = (M, P, γ) results in the following changes:  

1. P into P': for each constant v[β] such that (t, v) F and 
v[β]  P, it is added to the place set P (P = P  v[β]), 
and M(v[β]) = ; The final result of P is denoted as P'. 

2. γ into γ': for each variable v such that (t, v) F, if its 
condition and operation in ρ(t) is (b, (v, o)), then γ(v) = 
γ(v)  {v[β]} if b[β] is true and o = “+”, and γ(v) = γ(v) 
 {v[β]} if b[β] is true and o = “”; The final result of γ 
is denoted as γ'. 

3. M into M' such that for each p  P:  M'(p) = M(p) − W(p, 
t)[β] + W(t, p)[β] −

( , )  : [ ]=  
( , )[ ]

v t F v p
W v t




  +

( , )  : [ ]=  
( , )[ ]

t v F v p
W t v




 . 

4. each arc (v, t) or (t, v)  F in N into solid arc (v[β], t) or 
(t, v[β]) at the firing of t, and then into virtual arc again 
when a new marking M' is generated. 

The new marking M', place set P', and constraint function γ' 
form a new configuration Π′ = (M', P', γ'). Thus, Π is 
transformed to Π′ by firing t with binding β, represented by 
Π[t >β Π′ or M[t >β M', P[t >β P' and γ[t >β γ'. 

Definition 3.8. A sequence of transitions σ = t1t2…tk is a 
firing sequence if there exists a series of bindings β = β1β2…βk 

and configurations such that Π[t1 >β1 Π1[t2 >β2…Πk-1[tk >βk Πk, 
written as Π[σ>β Πk, and Πk is said to be reachable from Π by 
firing σ. σ can be called a transition (firing) sequence from Π to 
Πk; If Π is reachable from Π0, then R(Π) is the reachability set 
of all configurations reachable from Π (ΠR(Π)). 

According to the firing rule, a property called data 
synchronization of a VPN is defined.  

Definition 3.9 (data synchronization). The data 
synchronization of VPN N is defined as: for any variable v1  V 
and v2  V such that v1 and v2 are contained in two input arc 
expressions of any transition t  T, if v1 = v2, then v1[β] = v2[β] 
at any firing of t with a binding β. 

According to the above definitions, we note that VPN has 
three main features:  

1) Folding of transitions, which makes it has a simpler 
structure than some existing models, such as CPN;  

2) Virtual places and two new functions γ and ρ, which can 
reflect the dynamic (dis)connections and context in systems;  

3) Configuration including a marking and constraint function 
γ, which can represent both state and connection capacity of 
systems.  

This greatly help us describe the dynamic interaction and 
context in mobile interactive systems. The analysis techniques 
of VPN are the foundation of the analysis for mobile interactive 
systems based on VPN. Hence, in the following, the specific 
analysis techniques for VPNs are proposed.  

B. Configuration tree generation and Behavior analysis 

Firstly, as the basic analysis technique of PNs, a state space 



called a configuration tree (CT) of VPN is introduced to reflect 
some dynamic behaviors and features of systems. Suppose that 
N = (P, T, F, γ, W, φ, ρ, M0) is a VPN over the universe Σ = C  
V where C and V are sets of constant and variable names 
respectively, and the initial configuration Π0 = (M0, γ) unless 
otherwise stated in the following discussion. 

Definition 3.10 (configuration tree). The configuration tree 
CT of a VPN N is a labeled directed tree whose nodes are the 
reachable configurations (root node is Π0) such that there is an 
arc from configuration Π to Π′ labeled with (t, β), satisfying that 
t is the fired transition, β is the used binding, and Π[t>β Π′.  

The construction algorithm of CT has been given in our 
previous work and can be generated by the VPN tool [32]. In 
CT, all reachable configurations are represented as nodes, and 
reachability relations among configurations are represented as 
arcs. Through merging the same nodes into one node, CT is 
transformed to be a graph (CG). Based on CT and CG, some 
properties of VPN can be revealed. 

Here we just introduce some symbols and new definition 
about the behaviors of a VPN N.  

Definition 3.11 (projection and extension language). 
Suppose that X is a finite input alphabet, Y  X. LX and LY are 
the language on X and Y. Let 

X Y(LX) = {X Y() Y* |  LX}, 
-1

X Y (LY) = {-1
Y X (’)| ’ Y*}, 

then X Y(LX) is called the projection language of LX from X to 
Y, -1

X Y (LY) is called the extension language of LY from Y to 
X. 

Definition 3.12 (Control and Data Language).  
LC(N) ={T*| Π0[ >βΠ or Π R(Π0): Π[ >β Π} 

LD(N) = {β |Π0[ >βΠ or ΠR(Π0): Π[ >β Π} 
are called the control language and data one determined by 

N, respectively. 
LC(N) and LD(N) are the sets of all possible fired transition 

sequences and binding sequences from the initial configuration 
Π0 of N. The control and data languages of N are collectively 
called languages determined by N.  

Definition 3.13. Given a variable q  V, 
 (q) = {q′ | Π0 [ >β Π  {q→q′}  β  q′  C} 

is called q’s mapping set determined by N. 
Definition 3.14. Given any transition t T, 

 (t) = {β |Π R(Π0): Π [t >β Π} 

is called the t’s binding function determined by N. 
 (q) is the set of all constants (actual parameters) that can 

be instantiated from a variable (formal parameter) q with firing 
all possible fired transition sequences of N.  (t) is the set of all 
bindings used with firing t in N. Both of them can be generated 
from the language determined by the VPN based on CT. 

Definition 3.15 (connectivity set). Let N be a VPN, Γ(N) 
satisfying that 1) γ  Γ(N), and 2) Γ(N) = {γ′ |, β: (M0, γ)[ >β 

(M′, γ′)}, is called the connectivity set of N. 
The difference between two constraint functions in N can be 

used to denote a new link (binding), broken or unchanged link 
between formal and actual parameters (variables and constants) 
in a net’s execution. Here we call the set of possible newly 
created and broken links between formal and actual parameters 

in the execution of N as   and  , and the set of links that can 
be sustained as   of N. The set including {  ,  ,  } are 
called a link set  of N. The algorithm to discover   can be 
generated based on CG and Γ(N) [40].  

Besides the set of links, the sequences of links also need to be 
considered and analyzed in a VPN. Thus we give a definition. 

Definition 3.16 (connectivity language). For a firing 
sequence σ = t1t2…tk such that Π[t1 >β1 Π1[t2 >β2…Πk-1[tk >βk Πk 
and Π0 = (M0, γ)), Π1= (M1, γ1), … , Πk = (Mk, γk), the sequence 
of constraint functions γ,γ1,…,γk is called its connectivity 
sequence, the sequence of the difference of them 
(γ1-γ),(γ2-γ1),…,(γk-γk-1) is called its new-link sequence, and 
sequence (γ-γ1),(γ1-γ2),…,(γk-1-γk) is called its broken-link 
sequence. All possible connectivity, new-link and broken-link 
sequences from the initial γ in N are called the connectivity, 
new-link and broken-link language determined by N, denoted 
by LK(N), LK

N(N) and LK
B(N), respectively.  

LK(N), LK
A(N) and LK

B(N) can be generated from CT (CG) of 
N, which are similar to the discovery of  . 

C. Correlation analysis 

If different VPNs are merged (integrated) into one with the 
same place or transition, their properties and behaviors may be 
influenced. This is because merging often reflects some 
interaction among VPNs (components). Next we discuss its 
influences on VPNs based on these structures, i.e., the 
correlation analysis of VPNs.  

Then we introduce some rules to judge property and 
behavior correlations between N1 and N2 with three different 
merging (interaction) ways. 

In the following first two classes, N1 and N2 have no same 
place and one same transition t, and φ(t) = φ1(t)  φ2(t). They 
are merged to N by merging t. 
(1) Merging by an asynchronous communication transition 

In the condition as shown in Fig. 3(a), t is regarded as a 
transition transferring data from N1 (S1) to N2 (S2). Here we 
suppose that S1 = {t1}, S2

 = {t2}, t1
  S1 ≠  and t2  S2 ≠ . In 

order to simplify the analysis, the interaction parts (t1, S1, t, S2, 
t2) are ignored in N1 and N2 before merging. Then we have the 
following results. 

  
(a)  Asynchronization                           (b) Synchronization 

Fig. 3. Two different cases of the merging of two VPNs with a transition 

Theorem 3.1. If N1 and N2 are live before merging, then N is 
live if φ(t) =  or there exist an infinite number of tokens in 
some instantiation places of S1 whose assignment to variables 
in e such that φ(t) = true; if N1 is not live, then N is not live.  

Please see the proofs of Lemma 3.1 and all the following 
lemmas and theorems in Supplementary File. 
(2) Merging by a synchronous communication transition 

In the condition as shown in Fig. 3(b), t is used for the 
synchronous communication between N1 and N2. Then the 
correlation between N1 and N2 can be analyzed as follows. 



Theorem 3.2. If N1 and N2 are live before merging, then N is 
live if e1 and e2 have no same variable, or the binding sequence 
of each infinite firing sequence of Ni has the same assignment 
to the same variables of e1 and e2 with the binding sequence of 
an infinite firing sequence of N3-i (i = 0 or 1). 

In the last class, N1 and N2 have no same transition and a 
same virtual place S, and can merge by sharing S. 

 
Fig. 4. A case of the merging of two VPNs with a virtual place 

(3) Merging with a synchronous virtual place (interface)  
As shown in Fig. 4, N1 and N2 both have an input transition 

and an output transition of S. t2 can fire only after t1, and t4 can 
fire only after t3. This figure shows a Request-Response 
interaction process between two VPNs. In order to simplify the 
analysis, the interaction parts (t1, S), (S, t3), (t4, S), (S, t2) and S 
are ignored in N1 and N2 before merging. 

In this condition, S is a virtual place and can be instantiated 
as different places and contain different data (tokens). Thus the 
possible relations between N1 and N2 become much more 
complex. The analysis of this kind of merging greatly depends 
on actual processes of VPNs. Here we give one conclusion. 

Theorem 3.3. If N1 and N2 are live before merging, then N is 
live if the instantiation of each firing of t1 to arc e and S can 
always make φ(t3) = true meanwhile the instantiation of each 
firing of t4 to arc e and S can always make φ(t2) = true. 

Based on the definitions and theorems in this section, VPN 
can be used to analyze mobile interactive systems. 

IV. MODELING OF MOBILE INTERACTIVE SYSTEMS 

In general, a VPN-based model for a mobile interactive 
system contains two parts: component and interaction parts. 
Then a specific modeling method for such systems is 
introduced next. 

A. Component nets 

Each kind of components (entities) in a system is modeled as 
a VPN. Each VPN can be independent or have flow relations 
with the interaction part. Then we introduce a component net 
for each component. 

Definition 4.1 (Component net). The component net (CN) 
is an VPN defined as CN = (P, T, F, γ, W, φ, ρ, M0) over the 
universe Σ = C  V, where 

(1) P＝PF  PP  PD  PC  PI is the set of places, where PF 
contains an initial place and final place, PP is the set of process 
places, PD is the set of data places, PC is the set of contextual 
places and PI is the set of interface places.  

(2) T＝TP  TI is the set of transitions, where TP is the set of 
internal process transitions and TI is the set of internal 
interaction (connection or disconnection) transitions. 

It is noted in a CN, there may exist five kinds of internal 
places: 1) initial place and final place (PF); 2) process places 
(PP); 3) data (state) places (PD); 4) contextual places (PC); 5) 
interface places (PI). The initial and final places are used for the 

start and end of a component. Process places reflect an 
execution process of a component. Data places store its current 
state or data, and also its interfaces. The contextual change in it 
is often denoted by a virtual place that can be instantiated as an 
actual contextual place. An interface place means the certain 
interface of a component, which can be an instantiation of a 
virtual interface. PC and PI can be . There are two kinds of 
tokens in the places of CNs: black tokens and tuple tokens. 

T is the set of transitions, in which TP models an internal 
control process (events, actions) in the component, and TI 

describes an interaction process of the component with others. 
The postset of TI can only be a virtual interface place (variable) 
or actual interface place.  

Remark 4.1 (context description). Except an interaction 
process, the internal process of components, such as the 
location changes of cars in vehicular cyber physical systems 
[34], may be uncertain and unknown in the execution. We can 
regard these conditions as the uncertain contextual changes in 
systems, and describe them by using a virtual (contextual) place 
contained in V and also actual contextual place in CN. 
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Fig. 5. Component nets (CNs) of Example 1. 

In fact, when just considering each component, we may not 
execute some actions and events (modeled by transitions) if 



they use the data from other components. Thus the firing rule 
does not apply to the components directly before they receive 
data from others. 

For example, CN1 for mobile device, CN2 for speciality 
products reservation service S1, and CN3 for voice explanations 
services S2 and S3 in Example 1 are constructed based on the 
above criterion respectively, as shown in Figs. 5(a), (b) and (c). 
Their initial markings are M10 = {P1{·}, In1{{S1, F1}, {S2, F2}, 
{S3, F2}}, Loc{LA, LB}}, M20 = {P2{·}, In2{S1, F1}, St3{{LA, F1, 
D11}, {LB, F1, D12}}} and M30 = {P4{·}, In3{{S2, F2}, {S3, F2}}, 
St3{{LA, F2, D2}, {LB, F2, D3}}}, respectively. The parameters 
of each CN, and the usage and classification of (virtual) places 
and transitions in it are also given. In addition, it is noted that 
there exist another virtual place L to denote the location in CN1. 
Its instantiation to contextual place LA or LB can reflect the 
contextual changes, i.e., changes of locations of a mobile 
device. 

B. Interaction structure net 

The possible interactions among components in mobile 
interaction systems are dynamic and may be determined during 
component execution. Thus the interaction part is modeled by 
using some virtual places and transitions in VPN, which is 
different from fixed structures in other PN models. All possible 
connected interfaces in a system are considered as a predefined 
set called Interface set    C (C is the constant set). We can 
next model the interactions by using interaction structure nets 
among components. 

Definition 4.2 (Interaction structure net). Suppose that 
components CNi1-CNij have interaction relations. An interaction 
structure net (ISN) among them is a VPN defined as ISN = (PI, 
TI, FI, γI, WI, φI, ρI, MI

0) over the universe ΣI = CI  VI, where 
(1) PI

 is a set of interface places. 
(2) TI

  = TII  TEI is the set of interaction transitions. TII is a set 
of internal interaction transitions in CNi1-CNij, and TEI is a set of 
external interaction transitions. 

PI is a set of interface places, which denotes the channels 
among components. 

TI is a set of interaction transitions, which represents 
message sending or receiving. TEI can be . 

Specific modeling details are described as follows. 
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Fig. 6. Models for the interaction part. 

 Dynamic interactions among components.  
1) Synchronization. A synchronous interaction between two 

components are modeled as an interaction transition and a 
couple of virtual interfaces (places) in VI, as shown in Fig. 5(a).  

2) Asynchronization. An asynchronous interaction between 
two components can be modeled in three ways as shown in Figs. 
5(b), (c) and (d): one is an external interaction transition and a 
couple of virtual interfaces, which reflect a detailed interaction 
process; one is a virtual interface, several actual interfaces and 
internal interaction transitions, which reflect the abstraction of 
the interfaces of a component interaction process; the last one is 
one virtual interface (and several internal interaction transitions 
in components) for simplicity. The virtual interface (place) can 
be instantiated into different (existing or new created) actual 
interfaces in net execution.  
 The predefined (possible) connections & disconnections 

(failures) of components. On one hand, if it has been already 
known that some components have connected and thus some 
actual interfaces (places) of them can certainly be instantiated 
from some virtual interfaces (places), these relations between 
actual and virtual interfaces are added in the initial γ function; 
On the other hand, if a component can connect or disconnect 
with others by an action (event), an interaction transition with a 
function ρ is added as the input transition of a virtual place in a 
VPN model for the action. ρ is defined to bind or unbind the 
relation between the virtual place (interface) and the interface 
of the component. 
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Fig. 7. The interaction structure net (ISN) of Example 1. 

ISN for Example 1 is constructed accordingly as shown in 
Fig. 7.  = {S1, S2, S3}. The interface is modeled by one virtual 
place S, and S can be bound with the interface of services and 
also unbound with some of them because of the mobility. The 
information (message) transferred among components are 
denoted as a tuple (L, S, F, D, RE), where L stands for a location, 
S for the interface of a service, F for the function of a service, D 
for the data, and RE for a message type (res or req). 

C. Multi-component net 

Finally, we combine component nets and interaction 
structure nets, and introduce a multi-component net that can 
describe component execution and mutual interaction among 
components. 

Definition 4.3 (Multi-component net) 
A multi-component net (MCN) is a VPN defined as Nm = (, 

) over the universe Σ, where  
(1)  = {CN1, CN2 ... CNm} is a series of CNs; 
(2)  = {ISN1, ISN2 ... ISNn} is a set of ISNs among CNs; 
(3) Nm. Σ (P, T, F, γ, W, φ, ρ, M0) = . Σ (P, T, F, γ, W, φ, ρ, 



M0)  . Σ (P, T, F, γ, W, φ, ρ, M0). 
MCN contains several component nets and interaction 

structure nets, which are all VPNs. It follows the firing rule of 
VPN. It is variable, and can describe concurrent components 
and dynamic interactions among them. 
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(b) Parameters and meanings of places and transitions in it 

Fig. 8. VPN model Nm
e1 for Example 1 

Data synchronization (matching) is realized by the same 
formal parameter on multiple input arcs of an interaction 
transition in ISN or internal transition in CN. 

The VPN model Nm
e1 for Example 1 is constructed as shown 

in Fig. 8. Nm
e1 = ( 1= {CN1, CN2, CN3}, 1 ={ISN}). And its 

initial marking is M0 = M10 M20  M30 = {P1{·}, In1{{S1, F1}, 
{S2, F2}, {S3, F2}}, Loc{LA, LB}, {P2{·}, In2{S1, F1}, St3{{LA, 
F1, D11}, {LB, F1, D12}}, {P4{·}, In3{{S2, F2}, {S3, F2}}, 
St3{{LA, F2, D2}, {LB, F2, D3}}}. It is noted that Fig. 8 gives a 
description for the system in Example 1 and can be used to 
answer the questions if the modeled system has good 
properties.  

Then in order to give the targeted analysis for a mobile 
interaction system based on a VPN model, we introduce three 
properties and their related analysis methods next. 

V. ANALYSIS OF MOBILE INTERACTIVE SYSTEMS BASED ON 

VPNS 

In this section, we introduce the definitions and verification 
of properties based on the VPN models. Suppose that Nm = (P, 
T, F, γ, W, φ, ρ, M0) over the universe Σ = C  V is a VPN for a 
mobile interactive system, and the initial configuration Π0 = 
(M0, γ). The interface set is  .  

A. Three properties 

Then we introduce the following properties of Nm. 
(1) System connectivity 
Definition 5.1 (system connectivity). The system 

connectivity is defined as a system that has the link capacity, 
i.e., the mapping set of interface I of Nm is not null ( ( )I ≠ ).  

For example, in Example 1, the system connectivity can be 
analyzed by judging ( )S = {S1, S2, S3} ≠ . Hence, Example 

1 owns “system connectivity”. 
(2) Interaction soundness 
Definition 5.2 (interaction soundness). The interaction 

soundness in a system is defined as: 
• Interaction can be finished, i.e., final places can have 

tokens. 
• All possible created, connected and disconnected links 

(reflected by the binding/unbinding relations between 
some virtual and actual places in γ functions) of the 
system are not beyond the link capacity of the system. 
That is,    where   is a set of actual interfaces 
(constants) in   of Nm. 

• The interfaces can be used to transfer data after its 
connection and become unavailable after 
disconnection (also called as having good usability), 
i.e., for each constant IA of Nm such that (I, IA)   /  
(or  ) and I is a variable, IA  (t) (or  (t)) where 
t is a (or any) interaction transition.  

For example, the interaction soundness of Nm
e1 in Fig. 8 is 

analyzed as follows. Firstly, note that all final places can obtain 
tokens; Secondly,  = { = {S → S1},  = {S → {S1, S2, S3}}, 
= {S → {S2, S3}}} can be computed, and thus  = {S1, S2, S3}
  ; Thirdly, it is found that interfaces among CN1 (mobile 
device), CN2 (Service S1) and CN3 (Services S2 and S3) have 
good usability: S1, S2 and S3 are connected after the firing of 
transitions con1-2 and can transfer data by using the interface S1, 
S2 and S3 through firing transitions rec1-4 and res1-2, and S2 or S3 
become disconnected by firing transition mov and meanwhile 
S2 and S3 become unavailable interface. In summary, the system 
of Example 1 has interaction soundness. 

(3) Data validity 
Definition 5.3 (data validity). Data validity in a system is 

defined as: 
• Data synchronization is satisfied (Definition 3.6). 
• Data interaction has the non-repeatability and 

atomicity, i.e., before the data in an actual interface 
sent by a component is transferred to the receivers (or 
be discarded), this component cannot send another 
data to this actual interface (Before tokens generated in 
any actual interface IA by firing a transition t such that 
(t, IA)  F are consumed (transferred) by a transition t 
such that (IA, t)  F, t cannot be fired). 

• There exist no invalid data that cannot be received by 
components or be discarded, i.e., any token in the 
interface I can always be consumed (transferred) by 
firing an interaction transition.  

B. Analyzing algorithms 

The analysis of the first property “system connectivity” can 
be performed by a set of the VPN model. Thus here we give two 
algorithms to analyze the latter two properties. 

Algorithm 5.1. Interaction Soundness Analysis  



Input: A VPN Nm, its CT and interface set   
Output: sound or not  
1) If the configurations (markings) representing the final 

places have the tokens are reachable in CT of the net, then 
2)  Obtain  = { , , } of Nm, where   (new adding 

part of γ functions) reflects the newly created connections,   
(deleting part of γ functions) reflects the disconnections, and 
(terms not changed in γ functions) reflects the sustained 
connections without broken.  

3)  If    such that  is set of actual interfaces (constants) 
in  , then 

4)   If after any relation {I→i} (in or ) between a virtual 
input place I and a constant i is added in the γ function by firing 
interaction transitions, I can be instantiated as the available 
interface i to send data in the execution, i.e., {I→i} is contained 
in  (t) of an interaction transition t, then 

5)     If after any relation {I→o} (in ) between a virtual 
place I and a constant o is not contained in γ functions, I never 
can be instantiated as the unavailable interface o to send data in 
the execution before o becomes available again, i.e., {I→o} is 
not in the binding β of any transition after the disconnection, 
then 

6)         return true; 
7) return false; 
8)End. 
Algorithm 5.1 corresponds to Definition 5.2. Step 4 is used 

to verify the connections while Step 5 verifies the 
disconnections in mobile interactive systems. 

Algorithm 5.2. Data Validity Analysis. 

Input: A VPN Nm, its CT 
Output: valid or not  
1) If there is only one instantiation of each formal parameter 

(for the data) in the binding β of one firing of any transition 
according to Definition 3.6, then  

2)    Analyze if different instantiations of this parameter will 
lead to errors. 

3)     If for each actual interface place IA, if M0[t > M where 
 is a firing sequence without transition t, (t, IA)  F and M(IA) 
≠ ,  then any firing sequence  such that M[> cannot 
contain t unless it contain a transition t such that (IA, t)  F, 
then  

4)      If for each marking M such that M(I) ≠ , there exists a 
transition t such that M[t>, then 

5)          return true; 
6) return false; 
7) End. 
Algorithm 5.2 corresponds to Definition 5.3 and aims to 

analyze the data validity in mobile interactive systems. 

VI. CASE STUDY 

A. System description 

In this section, we use a tourist system as Example 2, which 
is extended from a practical example in [11]-[12], to 
demonstrate the proposed concepts and methods.  

Three components: Client (with mobile device), Merchant 
(Tourism app) and TPP (third-party platform) participate in an 
execution process of this system. The tourist system has two 

functions: ticket-buying (f1) and hotel reservation (f2). The 
hotel reservation function needs the interaction between Client 
and Merchant while the ticket-buying function needs the 
interaction among three components. A mobile device can 
move from one place to another, which leads to fragile 
connections between it and Merchant or TPP. The schematic 
diagram is shown in Fig. 9(a), and the more detailed interaction 
process among them are shown in Figs. 9(b) and (c). 

 
(a) System structure 

 
(b) The interaction process among TPP, Client and Merchant of f1 

 
(c) The interaction process between Client and Merchant of f2 

Fig. 9. An extended tourist system (Example 2) 

Fig. 9(b) shows the running process of function f1 [11], [12]. 
Firstly, Client can place an order and send Step1.a to invoke the 
API-placeorder of Merchant, which inserts the order 
information including (orderID, gross) to the data storage. 
Since the order is unpaid, the status is set to pending. Then 
Merchant responds with Step 1.b to transmit the order 
information to Client and redirects its browser to TPP, where 
Client pays according to the order information. TPP can record 
the payment details and return transactionID for the payment 
via Step 2.b. Client invokes API-finishOrder of Merchant in 
Step3.a after the payment to finalize the invoice. Further, 
Merchant makes a call to API-PDTDetails of TPP in Step3.a.a 
by using transactionID to get the payment details through 
Step3.a.b. Based on OrderID in the payment details, it finds the 
order from its data storage. Once the order is located and its 
status is found to be pending, change the status from pending to 
paid and a confirmation is finally sent to Client in Step3.b. 

Fig. 9(c) shows the running process of function f2. It is 
similar to a part of the process in Fig. 9(b). After receiving a 
reservation request of Client, Merchant creates a reservation 
and changes its state from unres to res, and returns the 



reservation information to Client. 
In order to insure the correctness of component execution 

and interaction processes of this system, a system model is 
needed. VPN with an unfixed structure is appropriate. Hence in 
the following, it is used to model and analyze this system. 

 

 
(a) VPN model Nme2

 
(b) Meanings of transitions and places 

Fig. 10. VPN model Nm
e2 for Example 2. 

B. Modeling process 

Components in the system are modeled as three CNs, i.e., 
CLI, MER and TPP. MER contains two parts TB and HR for 
ticket-buying and hotel-reservation. There is one interaction 
structure net ISN including a virtual place and several internal 
interaction transitions in CNs. Then the VPN model Nm

e2 for 
Example 2 is shown in Fig. 10. 

Nm
e2 = (2 = {CLI, MER, TPP}, 2  = {ISN}) = (P, T, F, γ, W, 

φ, ρ, M0) under Σ, where,  
1) P, T, F, γ, W, φ and ρ are given in Fig. 10, and M0 = {P1{·}, 

In1{{placeorderC-M, f1}, {reservationC-M, f2}}, In2 {orderifoC-M}, 
In3{transactionifoC-T}, In4{final1C-M}, In5 {transconfirmC-M}, 
In6{transconfirmM-T}, In7{confirmifoM-T}, In8{final2C-M}, 
In9{transactionC-T}, OInf{orderid,  gross}, 
TraC{transactionid}, State1{orderid,  gross, pending}, State2 
{reservationifo, unres}, Res1{success}, Res2{success}, RInf 
{reservationifo}, S1{·}, S8{·}, R1{·}}.  

(2) Σ = C  V where C = {P1-P6, S1-S7, R1-R4, B1-B3, In1-In9, 
Fin1- Fin5, OInf, TraC, Res1, Res2, RInf, OrdI, PD, DisC, f1, f2, 
placeorderC-M, orderifoC-M, transactionC-T, transactionifoC-T, 
transconfirmC-M, transconfirmM-T, confirmifoM-T, final1C-M, 
reservationC-M, final2C-M, orderid, gross, pending, paid, 
transactionid, success, res, unres, reservationifo}; V ={F, I, IO, 
IP, IF, IR, IC, TransID, OrderID, Gross, Status, URL, ReservIfo, 
Result}. 

Fig. 10(b) shows the usage of several constants (places) and 
transitions in Nm

e2. There exist one virtual place I for the 
connection between Client and Merchant or Client and TPP or 
Merchant and TPP. New places (interfaces) can be generated by 
the instantiations of variable I when components interact. Thus 
the dynamicity and mobility of this system can be directly and 
vividly described. 

C. Analysis process 

We have developed a tool called a VPN tool. It can be used to 
draw VPN, generate its CT and then give some analysis results 
[40]. Here we give the part of CT of Nm

e2 and some results 
based on CT in Fig. 11. In Fig. 11(a), there exist four complete 
paths. PATH 1 (2) means that function f1 is executed among the 
components without (with) disconnections of three interfaces. 
PATH 3 (4) means that function f2 is executed between 
components without (with one) disconnection. Then we 
analyze three fundamental properties and two other 
requirements for this system by using the methods presented in 
the last section. 

(1) System connectivity 
The mapping set of I satisfies  (I) ≠  as shown in Fig. 

11(b), which corresponds to actual connection processes in this 
system.  

(2) Interaction soundness 
Interaction soundness can be analyzed by using the 

corresponding algorithm, and the result is “the system has the 
interaction soundness”. More specific steps are described as 
follows. 

Steps1-2. Based on CT, final places Fin1-Fin5 of three 
components can be reached and receive tokens, such as the 
reachable configurations Πf1 and Πf2 of Nm

e2 in Fig. 11(a). 
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Fig. 11. Analysis of VPN model Nm

e2 for Example 2. 

 
Step3. We discover the change of γ in this system, and obtain

 ,   and   as shown in Fig. 11(b). It is noted that the above 
sets conform to the sets of possible connections and 
disconnections as shown in Figs. 7(a) and (b), and thus are not 
beyond the link capacity of the system. 

Steps4-5. 1) Firstly we verify connections. As shown in Fig. 
7, connections can happen among three components. The actual 

(connected) interface places instantiated from I are obtained as 
shown in Fig. 11(b). According to the firing sequences in Nm

e2, 
they are all used to transfer different data by the firing of 
interaction transitions, such as tord-s, tord-r, tifo-s and tifo-r, in Client, 
Merchant and TPP correspondingly.  

2) Then we verify disconnections. In the system description, 
a disconnection may happen between Client and Merchant or 
TPP because of the mobility. Transition tdiscon represents 
disconnection while trecon means reconnection. According to CT, 
it can be found that firing tdiscon can disassociate I with one of 
disconnected interfaces in Fig. 11(b), and one of receiving 
transitions in {tifo-r, ttifo-r, tfin-r, thresv-r} from this interface cannot 
fire before firing trecon. For example, after firing tdiscon with 
disassociating I with orderifoC-M, it is easy to conclude that tifo-r 
does not fire before firing trecon and fires again after firing trecon 

in the execution (seen in the dashed box in Fig. 11(a)). Hence, 
disconnections are verified as expected. 

Thus all interfaces in this system have good usability 
according to Definition 5.2. 

Hence, interaction soundness of Example 2 has been verified. 
Contextual changes in this example are reflected by different 
instantiations of interfaces which have been analyzed. Here we 
do not elaborate them. 

(3) Data validity 
The data validity of Nm

e2 can be verified by the 
corresponding algorithm, and the result is also “true”. The 
detailed process is introduced as follows. 

Step1. Data synchronization (matching) exists in the firings 
of three transitions tjudge, tsmodi and tttrac-s in MER and TPP. It can 
be easily analyzed that the input arcs of each of them can all 
match when firing each of them according to Definition 3.6. 
We explain the data synchronization in Nm

e2 as an example. 
When Merchant receives the transaction confirmation of Client, 
it sends the corresponding transaction information to TPP. 
Then TPP should match the transaction information (TransID) 
received from Merchant with its storage (tttrac-s) and return the 
corresponding order information to Merchant. Merchant 
receives the order information, and matches it with its storage, 
modifies the order state (tjudge), and returns the result to Client 
finally. Similar to tjudge, tsmodi is to modify the state of a 
reservation. According to binding function  of transitions and 
the net execution in CT, the above parameters are all matched, 
and tjudge, tsmodi and tttrac-s can fire as usual.  

Step2. It should be noted that if the data in any storage place 
in {OrdI, OInf, RInf, State1, State2} of MER or TPP has been 
tampered with, the data synchronization fails (tjudge or tsmodi or 
tttrac-s cannot fire) and a deadlock occurs. The data 
synchronization is important in this system, and places OrdI, 
OInf, RInf, State1 and State2 are vulnerable and critical, which 
have been denoted by grey circles in Fig. 10(a). 

Step3. Based on the binding sequences in the model, the 
formal parameters TransID, OrderID, Gross and ReservIfo 
(which are used for the data) only have one instantiation in the 
interfaces in the net execution (Fig. 10(b)). 

Step4. It can be easily found that each actual interface 
instantiated by I can have at most one token in the consecutive 
net execution and every token in them can be transferred by 



firing an interaction transition. 
According to the above discussion, properties of the system 

are represented and analyzed based on VPN. It is noted that the 
designed system can run normally, and have system 
connectivity, interaction soundness and data validity. However, 
the analysis also indicates that some places (locations) and 
transitions (actions) in VPN may be vulnerable and critical, and 
need more attention. 

VII. CONCLUSION 

This work studies the modeling and analysis of mobile 
interactive systems based on a newly proposed Variable Petri 
Nets (VPN). Firstly we give the description of mobile 
interactive systems. Then we introduce the definition and firing 
rule of VPN. VPN owns a dynamic structure that can be used to 
model uncertain interactions in mobile interactive systems. The 
analysis techniques for VPN are also presented. Then we 
propose a VPN model construction method for mobile 
interactive systems. Based on the obtained model, we introduce 
three critical properties about interactions which need to be 
considered in the system design, and their related analysis 
methods. Finally, we use a practical example to illustrate the 
proposed concepts and methods. Our new method is useful in 
describing and verifying some important properties of mobile 
interactive systems. 

The resulting model is complicated for even a small system. 
Hence in the future research, we intend to focus on the 
simplification of the proposed model as well as more specific 
and practical analysis techniques especially some algebraic 
analysis approaches to mobile interactive systems.  
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