

Abstract—Due to the mobility and frequent

disconnections, the correctness of mobile interaction
systems, such as mobile robot systems and mobile payment
systems, are often difficult to analyze. This paper
introduces three critical properties of systems, called
system connectivity, interaction soundness and data
validity, and presents a related modeling and analysis
method, based on a kind of Petri nets called VPN. For a
given system, a model including component nets and
interaction structure nets is constructed by using VPNs.
The component net describes the internal process of each
component, while the interaction structure net reflects the
dynamic interaction between components. Based on this
model, three properties are defined and analyzed. The case
study of a practical mobile payment system shows the
effectiveness of the proposed method.

Index Terms—Mobile interactive system, property
analysis, Petri nets, formal model.

I. INTRODUCTION

N the past few decades, with the continuous promotion and
development of (mobile) Internet, many emerging

technologies (fields), such as Pervasive Computing, Internet of
Thing (IoT), and (Mobile) Cloud Computing were developed
and well applied [1]-[5]. They assume that a number of
invisible sensing or computational components (entities)
interact both with users and with the environment, and can
deliver mobile, seamless, transparent, ubiquitous and
customized services to users in a context-aware manner.
Among the common features of those technologies, mobility
and dynamic interactions are critical [6], [32]-[35].

The systems with mobile interactive components
(collectively called mobile interactive systems in this paper)
have raised many interests. In their execution, components can

This work is partially supported by National Natural Science Foundation of

China under Grant No. 61173042. (Corresponding author: Zhijun Ding.)
R. Yang, Z. Ding, and C. Jiang are with the Key Laboratory of Embedded

System and Service Computing, Ministry of Education, Tongji University, and
also with the Department of Computer Science and Technology, Tongji
University, Shanghai, 201804, China (e-mail: yangru@tongji.edu.cn,
zhijun_ding@outlook.com, cjjiang@tongji.edu.cn).

M. Zhou is with the Institute of Systems Engineering, Macau University of
Science and Technology, Macau 999078, China and also with the Department
of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102 USA (e-mail: zhou@njit.edu).

move and communicate with each other to accomplish a given
task, and the movement of components (and environmental
change) can lead to frequent and dynamic disconnections
among them.

However, due to the mobility and frequent disconnections
[2], the correctness of mobile interaction systems are often
difficult to guarantee. It is urgent for researchers in this field to
understand systems having such characteristics, establish a
rigorous mathematical model and provide the proper analysis
from different aspects for them.

Formal methods, such as Petri nets (PN) [7], [8], seem to be a
good choice to model and analyze those systems. They own
rigorous semantics and can describe system features clearly.
However, current studies do not give a specific description of
the overall structure, component execution, and various
interactions of mobile interactive systems, and thus cannot
provide a complete modeling and analysis method. This makes
them difficult to apply to actual system design. The literature
review in this field can be found in the Supplementary file
[13]-[31].

We have proposed a new PN, called a Variable Petri Net
(VPN) in [40], which can describe the dynamicity of
interactions in systems. Based on VPN, this paper focuses on
modeling and analysis of properties of mobile interactive
systems. Its main contributions are:

1) It introduces a modeling method for a mobile interactive
system based on VPN. The modeling process is performed
from one component to multi-components by considering its
dynamic interactions and contextual changes.

2) It proposes three properties of systems called system
connectivity, interaction soundness and data validity, to reflect
their execution and interaction conditions, and then presents the
analysis methods for these properties.

3) A practical mobile transaction system is modeled and
analyzed to show the proposed concepts and methods.

The rest of the paper is organized as follows. The next
section introduces mobile interactive systems and a simple
example. Section 3 gives the definitions and firing rule of VPN,
and also the graphic and behavior analysis techniques for VPN.
Section 4 introduces the modeling method for mobile
interactive systems by using VPN. Section 5 proposes three
properties of systems and their related analysis methods.
Section 6 presents a case study. Section 7 discusses the related
work. Section 8 concludes this paper.

Modeling and Analysis of Three Properties of
Mobile Interactive Systems Based on Variable

Petri Nets

Ru Yang, Zhijun Ding, Senior Member, IEEE, Changjun Jiang, MengChu Zhou, Fellow, IEEE.1

I

II. MOBILE INTERACTIVE SYSTEMS AND THEIR PROPERTIES

A mobile interactive system is a system consisting of several
components that are distributed and can run independently. In
its execution, some components are mobile and communicate
with each other to accomplish an expected task. Because of the
mobility of components and contextual changes, the
interactions (connections and disconnections) among
components are uncertain and dynamic. Thus system behaviors
are very complex. Mobile transaction systems and mobile robot
systems belong to this kind of systems.

Fig. 1. Example 1 (A tourism system)

Next we introduce a simple example of a mobile interactive
system. A tourist attraction designs a Tourist app (system) for
the convenience of tourists. Tourists can use mobile phones or
other mobile devices (MD) to call (invoke) some services
(components) in this system. For simplification, suppose that
these exist two scenes A and B, and three Scenic spot services
S1, S2 and S3 in the system. S1 is a service for the speciality
products reservation that can be used in all locations, and S2
and S3 are services for the voice explanations for A and B. Thus
S2 and S3 can be used in locations A and B, respectively. It is
noted that there exist connections and disconnections among a
mobile device and services. This system is shown in Fig. 1.

Because of the movement of a device, the interactions
between it and services are dynamic. Thu some common
properties of mobile interaction systems, such as reachability
and liveness, are inadequate for them. Some specific properties
about the dynamic interactions need to be focused on and
verified in the system design stage.
 System connectivity
In a mobile interactive system, components can connect and

interact with each other. Whether a system has the link
(connection) capacity or not is absolutely critical and can
determine the connection (interaction) processes among
components. Hence, the verification of link capacity of a
mobile interactive system is necessary. In this paper we call this
property as “system connectivity”.
 Interaction soundness
After the connection or disconnection among components

because of their movement or contextual changes, they can
begin or suspend to interact with each other. Then an
interaction process among them can determine the completion
status of a task. Thus if the interactions are executed smoothly
and reasonably, they can ensure the correctness and safety of a
system. Here we call this property as “interaction soundness”.
 Data validity
Data is an indispensable part in actual systems. There may

exist data manipulation in the internal process of a component,
and data exchange, transferring or synchronization in the
interactions among components in a mobile interactive system.

Data interaction may directly influence the result of a system.
This can help one to judge whether the parameter for data is
valid in an interaction. Here we call this property as “data
validity”.

Then, how to verify these these properties of mobile
interaction systems? The modeling and related analysis for
systems may be used to answer the above question. And the
modeling process should consider both the internal workflow
of each component and the interaction process between
different components. The VPN model proposed in our
previous work [40] is appropriate to model the dynamic
interactions in a system, and thus is used as the basic model to
construct the system model and perform the analysis of the
mobile interactive systems in this work. Then, in the next
section, we introduce the basic definitions of VPN [40] and
propose some analysis methods of it.

III. VARIABLE PETRI NETS

A Variable Petri Net (VPN) introduces the mapping relations
to places and the concept of virtual places to PNs, which allows
one to fully describe the mobility and dynamicity in a system. It
is an appropriate model to deal with dynamic interactions and
contexts in mobile interactive systems [40].

A. VPN

Let Σ be a finite set of names which are used to indicate
places, tokens and arc weights in the following. Let Σ = V  C,
where V is a set of variables, or called formal parameters, and C
is a set of constants, or called actual parameters. C contains a
special character ε for the ordinary token by default, and each

element c  C is asscoiated with an arity n  + . For any set A,
we use 2A to denote all subsets of A, A* to denote all tuples
formed by the elements in A, and An to denote all tuples with
exactly n elements of A (whose length is n).

In the following, we use  , + and  to denote the sets of
non-negative integers, positive integers and integers,
respectively.

Definition 2.1 (multiset). For any set A, a multiset (bag) m
over A is defined as a mapping m: A → . The set of all bags

over A is denoted by A .
Here we introduce the definition of VPN.
Definition 2.2 (VPN). A Variable Petri Net (VPN) N over

the universe Σ = C  V is an 8-tuple N = (P, T, F, γ, W, φ, ρ, M0),
where

1. P  C is a set of places. Each place is associated with an
arity, which is the length of tuples of tokens in it.

2. T is a finite set of transitions. P  T = .
3. F  (P × T)  (T × P)  (T ×V)  (V ×T) is a set of arcs.

Each arc (t, v)  (T × V) or (v, t)  (V ×T) is called a virtual arc,
and each variable in a virtual arc is called a virtual place.

4. γ: V → 2C
 is a constraint function mapping variable v  V

to a set of constants X  2C, and each element c  X is a place in
P or a newly generated place in C.

5. W: F →
*() is an arc labelling function (expressions)

representing the weight for arcs. Each label can be tuples of

constants and variables or the empty set . For any transition t
 T, if a variable v  V meets the condition “(t, v)  F or  e 
Σ: v  W(t, e)”, it must also satisfy that “(v, t)  F or  e'  Σ: v

 W(e', t)”. For each arc f  (T × P) or (P ×T) , W(f)  ()n ,
where n is the arity of the place in f.

6. φ: T →  is a guard function associated with each
transition, where  is the set of all Boolean expressions that
can be constructed by using constants and variables in Σ.

7. ρ: T → ( ) is a link function of transitions, where 
is a series of operations which are done when  is judged as
true. For a transition t, ρ(t) = (b, h), where b and h is a
do-nothing operation or an operation to add/delete (“+/-”) a γ
constraint to each variable v satisfying that (t, v)  F, denoted
as (v, +/-).

8. M0 is an initial marking. A marking of N is a function M:

P→
*()C , where M(p)  ()

npC (np is the arity of p) is the set
of tokens residing in p.

For a node x  PT, its preset •x and postset x• are subsets of
P  T  V such that •x = {y|(y, x)  F} and x• = {y|(x, y)  F}.
Let t be a transition. For any x •t (or t•), if x  C, arc (x, t) is
called an input arc (or (t, x) is called an output arc); otherwise,
(x, t) is called a virtual input arc (or (t, x) is called a virtual
output arc). These arcs are collectively called adjacent arcs of t.
And x is called the (virtual) pre-place or post-place.

Definition 3.3. A guard φ(t) of a transition t is a relational
expression formed by the constants in C and the variables that
exist in the input arc expressions or as the virtual pre-places of t.

Next, given N = (P, T, F, γ, W, φ, ρ, M0) over Σ = C  V being
a VPN, some definitions about its execution are introduced.

Variables in the VPN can be substituted with constants
during its execution. And these substitutions are defined as
bindings as follows.

Definition 3.4 (Binding). A binding β of any transition t  T
is a (partial) function: V → C which associates a variable to a
constant, and satisfies that if vV is a virtual place such that (t,
v) or (v, t)  F, the length of tuples in W(t, v) or W(v, t) should
be equal to the arity of place v[β], or W(t, v) = .

Binding β to virtual pre/post-place v, adjacent arc labels and
guard function W(p, t), W(t, p), W(v, t), W(t, v) and φ(t) of t are
denoted by v[β], W(p, t)[β], W(t, p)[β], W(v[β], t)[β], W(t,
v[β])[β]) and φ(t)[β], respectively.

Using a marking, a place set and γ, we can uniquely identify a
configuration of a changed VPN.

Definition 3.5 (Configuration of VPN). Let M, P′ and γ′ be
a marking, a place set and a constraint function of N, then Π =
(M, P′, γ′) is called a configuration Π of N. The initial
configuration of N is Π0 = (M0, P, γ).

Then the firing rule of VPN is introduced as follows.
Definition 3.6. A transition t  T is enabled in a

configuration Π = (M, P, γ) of N iff there exist one binding β
satisfying that,

1) φ(t)[β] = true;
2) p  P, v  V: (p, t)  F  M(p) ≥ W(p, t)[β], (v,

t)F  (M(v[β]) ≥ W(v[β], t)[β] and v[β]  γ(v));

3) For all variables v1,…, vk such that (v1, t),…, (vk, t)F
and v1[β] = … = vk[β] = p, M(p) ≥ W(v1[β], t)[β]+…+
W(vk[β], t)[β];

which is denoted as Π[t >β or (M, P, γ)[t >β.

Definition 3.7. Firing an enabled transition t with binding β
at a configuration Π = (M, P, γ) results in the following changes:

1. P into P': for each constant v[β] such that (t, v) F and
v[β]  P, it is added to the place set P (P = P  v[β]),
and M(v[β]) = ; The final result of P is denoted as P'.

2. γ into γ': for each variable v such that (t, v) F, if its
condition and operation in ρ(t) is (b, (v, o)), then γ(v) =
γ(v)  {v[β]} if b[β] is true and o = “+”, and γ(v) = γ(v)
 {v[β]} if b[β] is true and o = “”; The final result of γ
is denoted as γ'.

3. M into M' such that for each p  P: M'(p) = M(p) − W(p,
t)[β] + W(t, p)[β] −

(,) : []=
(,)[]

v t F v p
W v t




 +

(,) : []=
(,)[]

t v F v p
W t v




 .

4. each arc (v, t) or (t, v)  F in N into solid arc (v[β], t) or
(t, v[β]) at the firing of t, and then into virtual arc again
when a new marking M' is generated.

The new marking M', place set P', and constraint function γ'
form a new configuration Π′ = (M', P', γ'). Thus, Π is
transformed to Π′ by firing t with binding β, represented by
Π[t >β Π′ or M[t >β M', P[t >β P' and γ[t >β γ'.

Definition 3.8. A sequence of transitions σ = t1t2…tk is a
firing sequence if there exists a series of bindings β = β1β2…βk

and configurations such that Π[t1 >β1 Π1[t2 >β2…Πk-1[tk >βk Πk,
written as Π[σ>β Πk, and Πk is said to be reachable from Π by
firing σ. σ can be called a transition (firing) sequence from Π to
Πk; If Π is reachable from Π0, then R(Π) is the reachability set
of all configurations reachable from Π (ΠR(Π)).

According to the firing rule, a property called data
synchronization of a VPN is defined.

Definition 3.9 (data synchronization). The data
synchronization of VPN N is defined as: for any variable v1  V
and v2  V such that v1 and v2 are contained in two input arc
expressions of any transition t  T, if v1 = v2, then v1[β] = v2[β]
at any firing of t with a binding β.

According to the above definitions, we note that VPN has
three main features:

1) Folding of transitions, which makes it has a simpler
structure than some existing models, such as CPN;

2) Virtual places and two new functions γ and ρ, which can
reflect the dynamic (dis)connections and context in systems;

3) Configuration including a marking and constraint function
γ, which can represent both state and connection capacity of
systems.

This greatly help us describe the dynamic interaction and
context in mobile interactive systems. The analysis techniques
of VPN are the foundation of the analysis for mobile interactive
systems based on VPN. Hence, in the following, the specific
analysis techniques for VPNs are proposed.

B. Configuration tree generation and Behavior analysis

Firstly, as the basic analysis technique of PNs, a state space

called a configuration tree (CT) of VPN is introduced to reflect
some dynamic behaviors and features of systems. Suppose that
N = (P, T, F, γ, W, φ, ρ, M0) is a VPN over the universe Σ = C 
V where C and V are sets of constant and variable names
respectively, and the initial configuration Π0 = (M0, γ) unless
otherwise stated in the following discussion.

Definition 3.10 (configuration tree). The configuration tree
CT of a VPN N is a labeled directed tree whose nodes are the
reachable configurations (root node is Π0) such that there is an
arc from configuration Π to Π′ labeled with (t, β), satisfying that
t is the fired transition, β is the used binding, and Π[t>β Π′.

The construction algorithm of CT has been given in our
previous work and can be generated by the VPN tool [32]. In
CT, all reachable configurations are represented as nodes, and
reachability relations among configurations are represented as
arcs. Through merging the same nodes into one node, CT is
transformed to be a graph (CG). Based on CT and CG, some
properties of VPN can be revealed.

Here we just introduce some symbols and new definition
about the behaviors of a VPN N.

Definition 3.11 (projection and extension language).
Suppose that X is a finite input alphabet, Y  X. LX and LY are
the language on X and Y. Let

X Y(LX) = {X Y() Y* |  LX},
-1

X Y (LY) = {-1
Y X (’)| ’ Y*},

then X Y(LX) is called the projection language of LX from X to
Y, -1

X Y (LY) is called the extension language of LY from Y to
X.

Definition 3.12 (Control and Data Language).
LC(N) ={T*| Π0[ >βΠ or Π R(Π0): Π[ >β Π}

LD(N) = {β |Π0[ >βΠ or ΠR(Π0): Π[ >β Π}
are called the control language and data one determined by

N, respectively.
LC(N) and LD(N) are the sets of all possible fired transition

sequences and binding sequences from the initial configuration
Π0 of N. The control and data languages of N are collectively
called languages determined by N.

Definition 3.13. Given a variable q  V,
 (q) = {q′ | Π0 [ >β Π  {q→q′}  β  q′  C}

is called q’s mapping set determined by N.
Definition 3.14. Given any transition t T,

 (t) = {β |Π R(Π0): Π [t >β Π}

is called the t’s binding function determined by N.
 (q) is the set of all constants (actual parameters) that can

be instantiated from a variable (formal parameter) q with firing
all possible fired transition sequences of N.  (t) is the set of all
bindings used with firing t in N. Both of them can be generated
from the language determined by the VPN based on CT.

Definition 3.15 (connectivity set). Let N be a VPN, Γ(N)
satisfying that 1) γ  Γ(N), and 2) Γ(N) = {γ′ |, β: (M0, γ)[ >β

(M′, γ′)}, is called the connectivity set of N.
The difference between two constraint functions in N can be

used to denote a new link (binding), broken or unchanged link
between formal and actual parameters (variables and constants)
in a net’s execution. Here we call the set of possible newly
created and broken links between formal and actual parameters

in the execution of N as  and  , and the set of links that can
be sustained as  of N. The set including {  ,  ,  } are
called a link set  of N. The algorithm to discover  can be
generated based on CG and Γ(N) [40].

Besides the set of links, the sequences of links also need to be
considered and analyzed in a VPN. Thus we give a definition.

Definition 3.16 (connectivity language). For a firing
sequence σ = t1t2…tk such that Π[t1 >β1 Π1[t2 >β2…Πk-1[tk >βk Πk
and Π0 = (M0, γ)), Π1= (M1, γ1), … , Πk = (Mk, γk), the sequence
of constraint functions γ,γ1,…,γk is called its connectivity
sequence, the sequence of the difference of them
(γ1-γ),(γ2-γ1),…,(γk-γk-1) is called its new-link sequence, and
sequence (γ-γ1),(γ1-γ2),…,(γk-1-γk) is called its broken-link
sequence. All possible connectivity, new-link and broken-link
sequences from the initial γ in N are called the connectivity,
new-link and broken-link language determined by N, denoted
by LK(N), LK

N(N) and LK
B(N), respectively.

LK(N), LK
A(N) and LK

B(N) can be generated from CT (CG) of
N, which are similar to the discovery of  .

C. Correlation analysis

If different VPNs are merged (integrated) into one with the
same place or transition, their properties and behaviors may be
influenced. This is because merging often reflects some
interaction among VPNs (components). Next we discuss its
influences on VPNs based on these structures, i.e., the
correlation analysis of VPNs.

Then we introduce some rules to judge property and
behavior correlations between N1 and N2 with three different
merging (interaction) ways.

In the following first two classes, N1 and N2 have no same
place and one same transition t, and φ(t) = φ1(t)  φ2(t). They
are merged to N by merging t.
(1) Merging by an asynchronous communication transition

In the condition as shown in Fig. 3(a), t is regarded as a
transition transferring data from N1 (S1) to N2 (S2). Here we
suppose that S1 = {t1}, S2

 = {t2}, t1
  S1 ≠  and t2  S2 ≠ . In

order to simplify the analysis, the interaction parts (t1, S1, t, S2,
t2) are ignored in N1 and N2 before merging. Then we have the
following results.

(a) Asynchronization (b) Synchronization

Fig. 3. Two different cases of the merging of two VPNs with a transition

Theorem 3.1. If N1 and N2 are live before merging, then N is
live if φ(t) =  or there exist an infinite number of tokens in
some instantiation places of S1 whose assignment to variables
in e such that φ(t) = true; if N1 is not live, then N is not live.

Please see the proofs of Lemma 3.1 and all the following
lemmas and theorems in Supplementary File.
(2) Merging by a synchronous communication transition

In the condition as shown in Fig. 3(b), t is used for the
synchronous communication between N1 and N2. Then the
correlation between N1 and N2 can be analyzed as follows.

Theorem 3.2. If N1 and N2 are live before merging, then N is
live if e1 and e2 have no same variable, or the binding sequence
of each infinite firing sequence of Ni has the same assignment
to the same variables of e1 and e2 with the binding sequence of
an infinite firing sequence of N3-i (i = 0 or 1).

In the last class, N1 and N2 have no same transition and a
same virtual place S, and can merge by sharing S.

Fig. 4. A case of the merging of two VPNs with a virtual place

(3) Merging with a synchronous virtual place (interface)
As shown in Fig. 4, N1 and N2 both have an input transition

and an output transition of S. t2 can fire only after t1, and t4 can
fire only after t3. This figure shows a Request-Response
interaction process between two VPNs. In order to simplify the
analysis, the interaction parts (t1, S), (S, t3), (t4, S), (S, t2) and S
are ignored in N1 and N2 before merging.

In this condition, S is a virtual place and can be instantiated
as different places and contain different data (tokens). Thus the
possible relations between N1 and N2 become much more
complex. The analysis of this kind of merging greatly depends
on actual processes of VPNs. Here we give one conclusion.

Theorem 3.3. If N1 and N2 are live before merging, then N is
live if the instantiation of each firing of t1 to arc e and S can
always make φ(t3) = true meanwhile the instantiation of each
firing of t4 to arc e and S can always make φ(t2) = true.

Based on the definitions and theorems in this section, VPN
can be used to analyze mobile interactive systems.

IV. MODELING OF MOBILE INTERACTIVE SYSTEMS

In general, a VPN-based model for a mobile interactive
system contains two parts: component and interaction parts.
Then a specific modeling method for such systems is
introduced next.

A. Component nets

Each kind of components (entities) in a system is modeled as
a VPN. Each VPN can be independent or have flow relations
with the interaction part. Then we introduce a component net
for each component.

Definition 4.1 (Component net). The component net (CN)
is an VPN defined as CN = (P, T, F, γ, W, φ, ρ, M0) over the
universe Σ = C  V, where

(1) P＝PF  PP  PD  PC  PI is the set of places, where PF
contains an initial place and final place, PP is the set of process
places, PD is the set of data places, PC is the set of contextual
places and PI is the set of interface places.

(2) T＝TP  TI is the set of transitions, where TP is the set of
internal process transitions and TI is the set of internal
interaction (connection or disconnection) transitions.

It is noted in a CN, there may exist five kinds of internal
places: 1) initial place and final place (PF); 2) process places
(PP); 3) data (state) places (PD); 4) contextual places (PC); 5)
interface places (PI). The initial and final places are used for the

start and end of a component. Process places reflect an
execution process of a component. Data places store its current
state or data, and also its interfaces. The contextual change in it
is often denoted by a virtual place that can be instantiated as an
actual contextual place. An interface place means the certain
interface of a component, which can be an instantiation of a
virtual interface. PC and PI can be . There are two kinds of
tokens in the places of CNs: black tokens and tuple tokens.

T is the set of transitions, in which TP models an internal
control process (events, actions) in the component, and TI

describes an interaction process of the component with others.
The postset of TI can only be a virtual interface place (variable)
or actual interface place.

Remark 4.1 (context description). Except an interaction
process, the internal process of components, such as the
location changes of cars in vehicular cyber physical systems
[34], may be uncertain and unknown in the execution. We can
regard these conditions as the uncertain contextual changes in
systems, and describe them by using a virtual (contextual) place
contained in V and also actual contextual place in CN.

1con
2con

Md

1Fin

1In

11St

inmov

4rec 3rec

12St

1Sta

1CP
2CP

firsc

1con

2con
L L



, ,L S F

1CP 2CP

(a) CN1

1P
3St

1res

2Sta

1rec

2In

2Fin

1reb

  

(b) CN2

3St

2P

3In 3Sta

2res

2rec

2reb

3Fin

  

(c) CN3

Fig. 5. Component nets (CNs) of Example 1.

In fact, when just considering each component, we may not
execute some actions and events (modeled by transitions) if

they use the data from other components. Thus the firing rule
does not apply to the components directly before they receive
data from others.

For example, CN1 for mobile device, CN2 for speciality
products reservation service S1, and CN3 for voice explanations
services S2 and S3 in Example 1 are constructed based on the
above criterion respectively, as shown in Figs. 5(a), (b) and (c).
Their initial markings are M10 = {P1{·}, In1{{S1, F1}, {S2, F2},
{S3, F2}}, Loc{LA, LB}}, M20 = {P2{·}, In2{S1, F1}, St3{{LA, F1,
D11}, {LB, F1, D12}}} and M30 = {P4{·}, In3{{S2, F2}, {S3, F2}},
St3{{LA, F2, D2}, {LB, F2, D3}}}, respectively. The parameters
of each CN, and the usage and classification of (virtual) places
and transitions in it are also given. In addition, it is noted that
there exist another virtual place L to denote the location in CN1.
Its instantiation to contextual place LA or LB can reflect the
contextual changes, i.e., changes of locations of a mobile
device.

B. Interaction structure net

The possible interactions among components in mobile
interaction systems are dynamic and may be determined during
component execution. Thus the interaction part is modeled by
using some virtual places and transitions in VPN, which is
different from fixed structures in other PN models. All possible
connected interfaces in a system are considered as a predefined
set called Interface set   C (C is the constant set). We can
next model the interactions by using interaction structure nets
among components.

Definition 4.2 (Interaction structure net). Suppose that
components CNi1-CNij have interaction relations. An interaction
structure net (ISN) among them is a VPN defined as ISN = (PI,
TI, FI, γI, WI, φI, ρI, MI

0) over the universe ΣI = CI  VI, where
(1) PI

 is a set of interface places.
(2) TI

 = TII  TEI is the set of interaction transitions. TII is a set
of internal interaction transitions in CNi1-CNij, and TEI is a set of
external interaction transitions.

PI is a set of interface places, which denotes the channels
among components.

TI is a set of interaction transitions, which represents
message sending or receiving. TEI can be .

Specific modeling details are described as follows.

t

1S
x 2S

y

t

1S
x 2S

x

 (a) Synchronization (b) Asynchronization(1)

 1t S

x x

2t1S
 1t S

x x

2t
 (c) Asynchronization(2) (d) Asynchronization(3)

Fig. 6. Models for the interaction part.

 Dynamic interactions among components.
1) Synchronization. A synchronous interaction between two

components are modeled as an interaction transition and a
couple of virtual interfaces (places) in VI, as shown in Fig. 5(a).

2) Asynchronization. An asynchronous interaction between
two components can be modeled in three ways as shown in Figs.
5(b), (c) and (d): one is an external interaction transition and a
couple of virtual interfaces, which reflect a detailed interaction
process; one is a virtual interface, several actual interfaces and
internal interaction transitions, which reflect the abstraction of
the interfaces of a component interaction process; the last one is
one virtual interface (and several internal interaction transitions
in components) for simplicity. The virtual interface (place) can
be instantiated into different (existing or new created) actual
interfaces in net execution.
 The predefined (possible) connections & disconnections

(failures) of components. On one hand, if it has been already
known that some components have connected and thus some
actual interfaces (places) of them can certainly be instantiated
from some virtual interfaces (places), these relations between
actual and virtual interfaces are added in the initial γ function;
On the other hand, if a component can connect or disconnect
with others by an action (event), an interaction transition with a
function ρ is added as the input transition of a virtual place in a
VPN model for the action. ρ is defined to bind or unbind the
relation between the virtual place (interface) and the interface
of the component.

1con
2con

1res

2CN

l5

1rec
4rec 3rec

2res
S

mov

l6

l6
l5

2rec

l7

l7



L, S, F, null, reql5

l6 L, S, F, D, RE
L, S, F, D, resl7

l6 l6

3CN

1CN

S (virtual) interface place

Usage

C

V

S1, S2, S3, LA, LB, F1, F2, D11,
D12, D2, D3, res, req, null

1rec

2rec
RE=res, L=LA3rec

4rec
mov L L

Tran-
sition

Guard

ρ 1 2, : (, (,))con con true S 

γ 
mov: (F=F2, (S, -))

RE=res, L=LB

RE=req, F=F1

RE=req, F=F2

L, S, F, D, RE, L’

con1,2 Connect and send request

rec1,2

rec3,4

Receive the request from
the device

res1,2 Response data to the device
Receive the response from
the services

VI

TII

Fig. 7. The interaction structure net (ISN) of Example 1.

ISN for Example 1 is constructed accordingly as shown in
Fig. 7.  = {S1, S2, S3}. The interface is modeled by one virtual
place S, and S can be bound with the interface of services and
also unbound with some of them because of the mobility. The
information (message) transferred among components are
denoted as a tuple (L, S, F, D, RE), where L stands for a location,
S for the interface of a service, F for the function of a service, D
for the data, and RE for a message type (res or req).

C. Multi-component net

Finally, we combine component nets and interaction
structure nets, and introduce a multi-component net that can
describe component execution and mutual interaction among
components.

Definition 4.3 (Multi-component net)
A multi-component net (MCN) is a VPN defined as Nm = (,

) over the universe Σ, where
(1)  = {CN1, CN2 ... CNm} is a series of CNs;
(2)  = {ISN1, ISN2 ... ISNn} is a set of ISNs among CNs;
(3) Nm. Σ (P, T, F, γ, W, φ, ρ, M0) = . Σ (P, T, F, γ, W, φ, ρ,

M0)  . Σ (P, T, F, γ, W, φ, ρ, M0).
MCN contains several component nets and interaction

structure nets, which are all VPNs. It follows the firing rule of
VPN. It is variable, and can describe concurrent components
and dynamic interactions among them.

3St

1con

1P
2St

2con

1res

2P

3CN

1CN

1Fin

2Sta

1In

2CN

11St

1rec

inmov

2In

3In 3Sta

4rec 3rec

2res

2rec

12St

1Sta

1CP
2CP



firsc
2reb

2Fin

3Fin

1reb

, ,L S F

(a) VPN model

C

V

Sta1-3, Fin1-3, P1-2, Pc1-2,
In1-3, St11-12, St2-3, S1-3, LA,
LB, F1-2, Loc, D11-12, D2,

D3, res, req, null
1con

2con
L=LA, S = S1 or S2

L=LB, S = S1 or S3

1rec

2rec
RE=res, L=LA3rec

4rec
mov L L

Transition Guard

ρ

γ 
RE=res, L=LB

RE=req, F=F1

RE=req, F=F2

L, S, F, D, RE, L’

1 2, : (, (,))con con true S 
mov: (F=F2, (S, -))

(b) Parameters and meanings of places and transitions in it

Fig. 8. VPN model Nm
e1 for Example 1

Data synchronization (matching) is realized by the same
formal parameter on multiple input arcs of an interaction
transition in ISN or internal transition in CN.

The VPN model Nm
e1 for Example 1 is constructed as shown

in Fig. 8. Nm
e1 = ( 1= {CN1, CN2, CN3}, 1 ={ISN}). And its

initial marking is M0 = M10 M20  M30 = {P1{·}, In1{{S1, F1},
{S2, F2}, {S3, F2}}, Loc{LA, LB}, {P2{·}, In2{S1, F1}, St3{{LA,
F1, D11}, {LB, F1, D12}}, {P4{·}, In3{{S2, F2}, {S3, F2}},
St3{{LA, F2, D2}, {LB, F2, D3}}}. It is noted that Fig. 8 gives a
description for the system in Example 1 and can be used to
answer the questions if the modeled system has good
properties.

Then in order to give the targeted analysis for a mobile
interaction system based on a VPN model, we introduce three
properties and their related analysis methods next.

V. ANALYSIS OF MOBILE INTERACTIVE SYSTEMS BASED ON

VPNS

In this section, we introduce the definitions and verification
of properties based on the VPN models. Suppose that Nm = (P,
T, F, γ, W, φ, ρ, M0) over the universe Σ = C  V is a VPN for a
mobile interactive system, and the initial configuration Π0 =
(M0, γ). The interface set is  .

A. Three properties

Then we introduce the following properties of Nm.
(1) System connectivity
Definition 5.1 (system connectivity). The system

connectivity is defined as a system that has the link capacity,
i.e., the mapping set of interface I of Nm is not null (()I ≠ ).

For example, in Example 1, the system connectivity can be
analyzed by judging ()S = {S1, S2, S3} ≠ . Hence, Example

1 owns “system connectivity”.
(2) Interaction soundness
Definition 5.2 (interaction soundness). The interaction

soundness in a system is defined as:
• Interaction can be finished, i.e., final places can have

tokens.
• All possible created, connected and disconnected links

(reflected by the binding/unbinding relations between
some virtual and actual places in γ functions) of the
system are not beyond the link capacity of the system.
That is,   where  is a set of actual interfaces
(constants) in  of Nm.

• The interfaces can be used to transfer data after its
connection and become unavailable after
disconnection (also called as having good usability),
i.e., for each constant IA of Nm such that (I, IA)   /
(or ) and I is a variable, IA  (t) (or  (t)) where
t is a (or any) interaction transition.

For example, the interaction soundness of Nm
e1 in Fig. 8 is

analyzed as follows. Firstly, note that all final places can obtain
tokens; Secondly,  = { = {S → S1},  = {S → {S1, S2, S3}},
= {S → {S2, S3}}} can be computed, and thus  = {S1, S2, S3}
  ; Thirdly, it is found that interfaces among CN1 (mobile
device), CN2 (Service S1) and CN3 (Services S2 and S3) have
good usability: S1, S2 and S3 are connected after the firing of
transitions con1-2 and can transfer data by using the interface S1,
S2 and S3 through firing transitions rec1-4 and res1-2, and S2 or S3
become disconnected by firing transition mov and meanwhile
S2 and S3 become unavailable interface. In summary, the system
of Example 1 has interaction soundness.

(3) Data validity
Definition 5.3 (data validity). Data validity in a system is

defined as:
• Data synchronization is satisfied (Definition 3.6).
• Data interaction has the non-repeatability and

atomicity, i.e., before the data in an actual interface
sent by a component is transferred to the receivers (or
be discarded), this component cannot send another
data to this actual interface (Before tokens generated in
any actual interface IA by firing a transition t such that
(t, IA)  F are consumed (transferred) by a transition t
such that (IA, t)  F, t cannot be fired).

• There exist no invalid data that cannot be received by
components or be discarded, i.e., any token in the
interface I can always be consumed (transferred) by
firing an interaction transition.

B. Analyzing algorithms

The analysis of the first property “system connectivity” can
be performed by a set of the VPN model. Thus here we give two
algorithms to analyze the latter two properties.

Algorithm 5.1. Interaction Soundness Analysis

Input: A VPN Nm, its CT and interface set 
Output: sound or not
1) If the configurations (markings) representing the final

places have the tokens are reachable in CT of the net, then
2) Obtain  = { , , } of Nm, where  (new adding

part of γ functions) reflects the newly created connections, 
(deleting part of γ functions) reflects the disconnections, and 
(terms not changed in γ functions) reflects the sustained
connections without broken.

3) If    such that  is set of actual interfaces (constants)
in  , then

4) If after any relation {I→i} (in or) between a virtual
input place I and a constant i is added in the γ function by firing
interaction transitions, I can be instantiated as the available
interface i to send data in the execution, i.e., {I→i} is contained
in  (t) of an interaction transition t, then

5) If after any relation {I→o} (in) between a virtual
place I and a constant o is not contained in γ functions, I never
can be instantiated as the unavailable interface o to send data in
the execution before o becomes available again, i.e., {I→o} is
not in the binding β of any transition after the disconnection,
then

6) return true;
7) return false;
8)End.
Algorithm 5.1 corresponds to Definition 5.2. Step 4 is used

to verify the connections while Step 5 verifies the
disconnections in mobile interactive systems.

Algorithm 5.2. Data Validity Analysis.

Input: A VPN Nm, its CT
Output: valid or not
1) If there is only one instantiation of each formal parameter

(for the data) in the binding β of one firing of any transition
according to Definition 3.6, then

2) Analyze if different instantiations of this parameter will
lead to errors.

3) If for each actual interface place IA, if M0[t > M where
 is a firing sequence without transition t, (t, IA)  F and M(IA)
≠ , then any firing sequence  such that M[> cannot
contain t unless it contain a transition t such that (IA, t)  F,
then

4) If for each marking M such that M(I) ≠ , there exists a
transition t such that M[t>, then

5) return true;
6) return false;
7) End.
Algorithm 5.2 corresponds to Definition 5.3 and aims to

analyze the data validity in mobile interactive systems.

VI. CASE STUDY

A. System description

In this section, we use a tourist system as Example 2, which
is extended from a practical example in [11]-[12], to
demonstrate the proposed concepts and methods.

Three components: Client (with mobile device), Merchant
(Tourism app) and TPP (third-party platform) participate in an
execution process of this system. The tourist system has two

functions: ticket-buying (f1) and hotel reservation (f2). The
hotel reservation function needs the interaction between Client
and Merchant while the ticket-buying function needs the
interaction among three components. A mobile device can
move from one place to another, which leads to fragile
connections between it and Merchant or TPP. The schematic
diagram is shown in Fig. 9(a), and the more detailed interaction
process among them are shown in Figs. 9(b) and (c).

(a) System structure

(b) The interaction process among TPP, Client and Merchant of f1

(c) The interaction process between Client and Merchant of f2

Fig. 9. An extended tourist system (Example 2)

Fig. 9(b) shows the running process of function f1 [11], [12].
Firstly, Client can place an order and send Step1.a to invoke the
API-placeorder of Merchant, which inserts the order
information including (orderID, gross) to the data storage.
Since the order is unpaid, the status is set to pending. Then
Merchant responds with Step 1.b to transmit the order
information to Client and redirects its browser to TPP, where
Client pays according to the order information. TPP can record
the payment details and return transactionID for the payment
via Step 2.b. Client invokes API-finishOrder of Merchant in
Step3.a after the payment to finalize the invoice. Further,
Merchant makes a call to API-PDTDetails of TPP in Step3.a.a
by using transactionID to get the payment details through
Step3.a.b. Based on OrderID in the payment details, it finds the
order from its data storage. Once the order is located and its
status is found to be pending, change the status from pending to
paid and a confirmation is finally sent to Client in Step3.b.

Fig. 9(c) shows the running process of function f2. It is
similar to a part of the process in Fig. 9(b). After receiving a
reservation request of Client, Merchant creates a reservation
and changes its state from unres to res, and returns the

reservation information to Client.
In order to insure the correctness of component execution

and interaction processes of this system, a system model is
needed. VPN with an unfixed structure is appropriate. Hence in
the following, it is used to model and analyze this system.

(a) VPN model Nme2

(b) Meanings of transitions and places

Fig. 10. VPN model Nm
e2 for Example 2.

B. Modeling process

Components in the system are modeled as three CNs, i.e.,
CLI, MER and TPP. MER contains two parts TB and HR for
ticket-buying and hotel-reservation. There is one interaction
structure net ISN including a virtual place and several internal
interaction transitions in CNs. Then the VPN model Nm

e2 for
Example 2 is shown in Fig. 10.

Nm
e2 = (2 = {CLI, MER, TPP}, 2 = {ISN}) = (P, T, F, γ, W,

φ, ρ, M0) under Σ, where,
1) P, T, F, γ, W, φ and ρ are given in Fig. 10, and M0 = {P1{·},

In1{{placeorderC-M, f1}, {reservationC-M, f2}}, In2 {orderifoC-M},
In3{transactionifoC-T}, In4{final1C-M}, In5 {transconfirmC-M},
In6{transconfirmM-T}, In7{confirmifoM-T}, In8{final2C-M},
In9{transactionC-T}, OInf{orderid, gross},
TraC{transactionid}, State1{orderid, gross, pending}, State2
{reservationifo, unres}, Res1{success}, Res2{success}, RInf
{reservationifo}, S1{·}, S8{·}, R1{·}}.

(2) Σ = C  V where C = {P1-P6, S1-S7, R1-R4, B1-B3, In1-In9,
Fin1- Fin5, OInf, TraC, Res1, Res2, RInf, OrdI, PD, DisC, f1, f2,
placeorderC-M, orderifoC-M, transactionC-T, transactionifoC-T,
transconfirmC-M, transconfirmM-T, confirmifoM-T, final1C-M,
reservationC-M, final2C-M, orderid, gross, pending, paid,
transactionid, success, res, unres, reservationifo}; V ={F, I, IO,
IP, IF, IR, IC, TransID, OrderID, Gross, Status, URL, ReservIfo,
Result}.

Fig. 10(b) shows the usage of several constants (places) and
transitions in Nm

e2. There exist one virtual place I for the
connection between Client and Merchant or Client and TPP or
Merchant and TPP. New places (interfaces) can be generated by
the instantiations of variable I when components interact. Thus
the dynamicity and mobility of this system can be directly and
vividly described.

C. Analysis process

We have developed a tool called a VPN tool. It can be used to
draw VPN, generate its CT and then give some analysis results
[40]. Here we give the part of CT of Nm

e2 and some results
based on CT in Fig. 11. In Fig. 11(a), there exist four complete
paths. PATH 1 (2) means that function f1 is executed among the
components without (with) disconnections of three interfaces.
PATH 3 (4) means that function f2 is executed between
components without (with one) disconnection. Then we
analyze three fundamental properties and two other
requirements for this system by using the methods presented in
the last section.

(1) System connectivity
The mapping set of I satisfies  (I) ≠  as shown in Fig.

11(b), which corresponds to actual connection processes in this
system.

(2) Interaction soundness
Interaction soundness can be analyzed by using the

corresponding algorithm, and the result is “the system has the
interaction soundness”. More specific steps are described as
follows.

Steps1-2. Based on CT, final places Fin1-Fin5 of three
components can be reached and receive tokens, such as the
reachable configurations Πf1 and Πf2 of Nm

e2 in Fig. 11(a).

0

1 f

1 f

2 f

2 f

(a) A part of CT of Nm

e2

()I

(, , ,)TransID OrderID Gross ReservIfo








(b) Some results of Nm

e2 based on its CT
Fig. 11. Analysis of VPN model Nm

e2 for Example 2.

Step3. We discover the change of γ in this system, and obtain

 ,  and  as shown in Fig. 11(b). It is noted that the above
sets conform to the sets of possible connections and
disconnections as shown in Figs. 7(a) and (b), and thus are not
beyond the link capacity of the system.

Steps4-5. 1) Firstly we verify connections. As shown in Fig.
7, connections can happen among three components. The actual

(connected) interface places instantiated from I are obtained as
shown in Fig. 11(b). According to the firing sequences in Nm

e2,
they are all used to transfer different data by the firing of
interaction transitions, such as tord-s, tord-r, tifo-s and tifo-r, in Client,
Merchant and TPP correspondingly.

2) Then we verify disconnections. In the system description,
a disconnection may happen between Client and Merchant or
TPP because of the mobility. Transition tdiscon represents
disconnection while trecon means reconnection. According to CT,
it can be found that firing tdiscon can disassociate I with one of
disconnected interfaces in Fig. 11(b), and one of receiving
transitions in {tifo-r, ttifo-r, tfin-r, thresv-r} from this interface cannot
fire before firing trecon. For example, after firing tdiscon with
disassociating I with orderifoC-M, it is easy to conclude that tifo-r
does not fire before firing trecon and fires again after firing trecon

in the execution (seen in the dashed box in Fig. 11(a)). Hence,
disconnections are verified as expected.

Thus all interfaces in this system have good usability
according to Definition 5.2.

Hence, interaction soundness of Example 2 has been verified.
Contextual changes in this example are reflected by different
instantiations of interfaces which have been analyzed. Here we
do not elaborate them.

(3) Data validity
The data validity of Nm

e2 can be verified by the
corresponding algorithm, and the result is also “true”. The
detailed process is introduced as follows.

Step1. Data synchronization (matching) exists in the firings
of three transitions tjudge, tsmodi and tttrac-s in MER and TPP. It can
be easily analyzed that the input arcs of each of them can all
match when firing each of them according to Definition 3.6.
We explain the data synchronization in Nm

e2 as an example.
When Merchant receives the transaction confirmation of Client,
it sends the corresponding transaction information to TPP.
Then TPP should match the transaction information (TransID)
received from Merchant with its storage (tttrac-s) and return the
corresponding order information to Merchant. Merchant
receives the order information, and matches it with its storage,
modifies the order state (tjudge), and returns the result to Client
finally. Similar to tjudge, tsmodi is to modify the state of a
reservation. According to binding function  of transitions and
the net execution in CT, the above parameters are all matched,
and tjudge, tsmodi and tttrac-s can fire as usual.

Step2. It should be noted that if the data in any storage place
in {OrdI, OInf, RInf, State1, State2} of MER or TPP has been
tampered with, the data synchronization fails (tjudge or tsmodi or
tttrac-s cannot fire) and a deadlock occurs. The data
synchronization is important in this system, and places OrdI,
OInf, RInf, State1 and State2 are vulnerable and critical, which
have been denoted by grey circles in Fig. 10(a).

Step3. Based on the binding sequences in the model, the
formal parameters TransID, OrderID, Gross and ReservIfo
(which are used for the data) only have one instantiation in the
interfaces in the net execution (Fig. 10(b)).

Step4. It can be easily found that each actual interface
instantiated by I can have at most one token in the consecutive
net execution and every token in them can be transferred by

firing an interaction transition.
According to the above discussion, properties of the system

are represented and analyzed based on VPN. It is noted that the
designed system can run normally, and have system
connectivity, interaction soundness and data validity. However,
the analysis also indicates that some places (locations) and
transitions (actions) in VPN may be vulnerable and critical, and
need more attention.

VII. CONCLUSION

This work studies the modeling and analysis of mobile
interactive systems based on a newly proposed Variable Petri
Nets (VPN). Firstly we give the description of mobile
interactive systems. Then we introduce the definition and firing
rule of VPN. VPN owns a dynamic structure that can be used to
model uncertain interactions in mobile interactive systems. The
analysis techniques for VPN are also presented. Then we
propose a VPN model construction method for mobile
interactive systems. Based on the obtained model, we introduce
three critical properties about interactions which need to be
considered in the system design, and their related analysis
methods. Finally, we use a practical example to illustrate the
proposed concepts and methods. Our new method is useful in
describing and verifying some important properties of mobile
interactive systems.

The resulting model is complicated for even a small system.
Hence in the future research, we intend to focus on the
simplification of the proposed model as well as more specific
and practical analysis techniques especially some algebraic
analysis approaches to mobile interactive systems.

REFERENCES
[1] M. Weiser. The computer for the 21st century. Scientific American. 1991;

265(3):66.
[2] G. W. Musumba, H. O. Nyongesa. Context awareness in mobile

computing: A review. International Journal of Machine Learning &
Applications, 2013, 2(1).

[3] J. Ye, S. Dobson, S. Mckeever. Situation identification techniques in
pervasive computing: A review. Elsevier Science Publishers B. V. 2012.

[4] C. Perera, A. Zaslavsky, P. Christen, et al. Context Aware Computing for
The Internet of Things: A Survey. IEEE Communications Surveys &
Tutorials, 2013, 16(1):414-454.

[5] A. U. R. Khan, M. Othman, S. A. Madani, et al. A Survey of Mobile
Cloud Computing Application Models. IEEE Communications Surveys &
Tutorials, 2014, 16(1):393-413.

[6] S. Deng, L. Huang, J. Taheri, J. Yin, M. C. Zhou, and A. Y. Zomaya,
“Mobility-Aware Service Composition in Mobile Communities,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 3,
pp. 555 – 568, Mar. 2017.

[7] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

[8] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 1989, 77(4):541-580.

[9] K. Jensen, L. M. Kristensen, Coloured Petri nets: a graphical language for
formal modeling and validation of concurrent systems. Communications
of the ACM, 2015, 58(6): 61-70.

[10] T. Murata, D. Zhang. A predicate-transition net model for parallel
interpretation of logic programs. IEEE Transactions on Software
Engineering, 1988, 14(4):481-497.

[11] R. Wang, S. Chen, X. F.Wang, S. Qadeer. How to Shop for Free Online --
Security Analysis of Cashier-as-a-Service Based Web Stores. IEEE

Symposium on Security and Privacy. IEEE Computer Society,
2011:465-480.

[12] W. Y. Yu, C. G. Yan, Z. J. Ding, et al. Modeling and Validating
E-Commerce Business Process Based on Petri Nets. IEEE Transactions
on Systems Man & Cybernetics Systems, 2014, 44(3):327-341.

[13] M. Elkoutbi, R. K. Keller, Modeling interactive systems with hierarchical
Coloured petri nets. Advanced Simulation Technologies Conference.
1998: 432-37.

[14] H. Ezzedine, C. Kolski. Use of Petri Nets for Modeling an Agent-Based
Interactive System: Basic Principles and Case Study. Petri Net Theory &
Applications, 2008:131-148.

[15] G. Liu, C. Jiang, M. Zhou, P. Xiong, Interactive petri nets. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(2),
291-302.

[16] O. O. Captarencu. Modelling and Verification of Interorganizational
Workflows with Security Constraints: A Petri Nets-Based Approach.
Lecture Notes in Business Information Processing, 2012, 112:486-493.

[17] M. P. Van Der Aalst. Modeling and analyzing interorganizational
workflows. International Conference on Application of Concurrency To
System Design. Proceedings. IEEE, 1998: 262-272.

[18] A. P. Estrada-Vargas, E. López-Mellado, J. J. Lesage. Automated
modelling of reactive discrete event systems from external behavioural
data. International Conference on Electronics, Communications and
Computing. IEEE, 2013:120-125.

[19] R. Valk, Concurrency in communicating object Petri nets. Concurrent
Object-Oriented Programming and Petri Nets. Springer Berlin
Heidelberg, 2001: 164-195.

[20] L. W. Dworzanski, I. A. Lomazova. Structural Place Invariants for
Analyzing the Behavioral Properties of Nested Petri Nets. Application
and Theory of Petri Nets and Concurrency. Springer International
Publishing, 2016: 325-344.

[21] L. Chang, X. He, J. Lian, and S. Shatz: "Applying a Nested Petri Net
Modeling Paradigm to Coordination of Sensor Networks with Mobile
Agents", Proceeding of Workshop on Petri Nets and Distributed Systems
2008, Xian, China, June, 2008, pp.132-145.

[22] Y. Kissoum, R. Maamri, Z. Sahnoun. Modeling smart home using the
paradigm of nets within nets. International Conference on Artificial
Intelligence: Methodology, Systems, and Applications. Springer-Verlag,
2012:286-295.

[23] F. Cristini, C. Tessier. Nets-within-Nets to Model Innovative Space
System Architectures. International Conference on Application and
Theory of Petri Nets. Springer-Verlag, 2012:348-367.

[24] M. Llorens, J. Oliver. Structural and dynamic changes in concurrent
systems: reconfigurable Petri nets. IEEE Transactions on Computers,
2004, 53(9): 1147-1158.

[25] L. Kahloul, A. Chaoui, K. Djouani, Modelling and Analysis of Mobile
Computing Systems: An Extended Petri Nets Formalism. International
Journal of Computers Communications & Control, 2015, 10(2): 211-221.

[26] L. Kahloul, S. Bourekkache, K. Djouani. Designing reconfigurable
manufacturing systems using reconfigurable object Petri nets.
International Journal of Computer Integrated Manufacturing, 2016:1-18.

[27] D. X. Xu, Y. Deng, J. H. Ding, A formal architectural model for logical
agent mobility. IEEE Transactions on Software Engineering, 2003,
29(1):31-45.

[28] T. Miyamoto, K. Horiguchi. Modular Reachability Analysis of Petri Nets
for Multiagent Systems. IEEE Transactions on Systems, Man &
Cybernetics Systems, 2013, 43(6):1411-1423.

[29] G. Yasuda. Behavior-based autonomous cooperative control of intelligent
mobile robot systems with embedded Petri nets. International Symposium
on Soft Computing and Intelligent Systems. IEEE, 2014:1085-1090.

[30] S. L. Jin, M. C. Zhou, P. L. Hsu. A Petri-Net Approach to Modular
Supervision With Conflict Resolution for Semiconductor Manufacturing
Systems. IEEE Transactions on Automation Science & Engineering,
2007, 4(4):584-588.

[31] M. Kloetzer, C. Mahulea. Accomplish multi-robot tasks via Petri net
models. IEEE International Conference on Automation Science and
Engineering. IEEE, 2015:304-309.

[32] R. Kodikara, S. Ling, Zaslavsky A. Evaluating Cross-layer Context
Exchange in Mobile Ad-hoc Networks with Colored Petri Nets. IEEE
International Conference on Pervasive Services. IEEE, 2007:173-176.

[33] M. H. Ghahramani, M. C. Zhou, and C. T. Hon, “Toward Cloud
Computing QoS Architecture: Analysis of Cloud Systems and Cloud
Services,” IEEE/CAA Journal of Automatica Sinica, Vol. 4, No. 1, pp.
5-17, Jan. 2017.

[34] P. Zhang, M. Zhou and G. Fortino, “Security and trust issues in Fog
computing: A survey”, Future Generation Computer Systems, Vol. 88, pp.
16-27, 2018.

[35] Y. Guo, X. Hu, B. HU, J. Cheng, M. Zhou and R. Y. K. Kwok, “Mobile
Cyber Physical Systems: Current Challenges and Future Networking
Applications,” IEEE Access, Vol. 6, pp. 12360-12368, 2018.

[36] X. Lu, M. Zhou, A. C. Ammari, and J. Ji, “Hybrid Petri Nets for Modeling
and Analysis of Microgrid Systems,” IEEE/CAA Journal of Automatica
Sinica, 3(4), pp. 347-354, Oct. 2016.

[37] F. J. Yang, N. Q. Wu, Y. Qiao, and R. Su, “Polynomial approach to
optimal one-wafer cyclic scheduling of treelike hybrid multi-cluster tools
via Petri nets,” IEEE/CAA J. of Autom. Sinica, vol. 5, no. 1, pp. 270-280,
Jan. 2018.

[38] J. J. Cheng, C. Liu, et al. “Automatic composition of semantic web
services based on fuzzy predicate petri nets.” IEEE Transactions on
Automation Science and Engineering 12.2 (2015): 680-689.

[39] H. Chen, L. Amodeo, F. Chu, et al. Modeling and performance evaluation
of supply chains using batch deterministic and stochastic Petri nets. IEEE
Transactions on Automation Science and Engineering, 2005, 2(2):
132-144.

[40] “Variable Petri nets”. IEEE Transactions on Systems Man & Cybernetics
Systems. submitted. 2020

Ru Yang received the B.S. degree from
Shandong University of Science and
Technology, Qingdao, China, in 2013. She
is currently pursuing the Ph.D. degree with
the Department of Computer Science and
Technology, Tongji University, Shanghai,
China.

Her current research interests include
Petri nets and formal engineering.

ZhiJun Ding received the M.S. degree
from Shandong University of Science and
Technology, Taian, China, in 2001, and
Ph.D. degree from Tongji University,
Shanghai, China, in 2007.

Now he is a Professor of the Department
of Computer Science and Technology,
Tongji University. His research interests
are in formal engineering, Petri nets,

services computing, and workflows. He has published more
than 100 papers in domestic and international academic
journals and conference proceedings.

ChangJun Jiang received the Ph.D.
degree from the Institute of Automation,
Chinese Academy of Sciences, Beijing,
China, in 1995.

He is currently a Professor with the
Department of Computer Science and
Technology, Tongji University, Shanghai,
China. His current research interests
include concurrency theory, Petri nets,

formal verification of software, cluster, grid technology,
program testing, intelligent transportation systems, and
service-oriented computing. He has published more than 100
publications.

MengChu Zhou (S’88-M’90-SM’93
-F’03) received his B.S. degree in
Electrical Engineering from Nanjing
University of Science and Technology,
Nanjing, China in 1983, M.S. degree in
Automatic Control from Beijing Institute
of Technology, Beijing, China in 1986,
and Ph. D. degree in Computer and
Systems Engineering from Rensselaer

Polytechnic Institute, Troy, NY in 1990.
He joined the New Jersey Institute of Technology, Newark,

NJ, USA, in 1990, and became a Distinguished Professor of
Electrical and Computer Engineering in 2013. His current
research interests include Petri nets, sensor networks, Web
services, semiconductor manufacturing, transportation, and
energy systems. He has over 600 publications including 12
books, 200+ journal papers (majority in IEEE
TRANSACTIONS), and 28 book chapters.

Dr. Zhou is the Founding Editor of the IEEE Press Book
Series on Systems Science and Engineering. He is a Life
Member of the Chinese Association for Science and
Technology—USA and served as its President in 1999. He is a
fellow of the American Association for the Advancement of
Science.

