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NR-RRT: Neural Risk-Aware Near-Optimal Path
Planning in Uncertain Nonconvex Environments
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Abstract—Balancing the trade-off between safety and efficiency
is of significant importance for path planning under uncertainty.
Many risk-aware path planners have been developed to explicitly
limit the probability of collision to an acceptable bound in
uncertain environments. However, convex obstacles or Gaussian
uncertainties are usually assumed to make the problem tractable
in the existing method. These assumptions limit the generalization
and application of path planners in real-world implementations.
In this article, we propose to apply deep learning methods to
the sampling-based planner, developing a novel risk bounded
near-optimal path planning algorithm named neural risk-aware
RRT (NR-RRT). Specifically, a deterministic risk contours map is
maintained by perceiving the probabilistic nonconvex obstacles,
and a neural network sampler is proposed to predict the next
most-promising safe state. Furthermore, the recursive divide-and-
conquer planning and bidirectional search strategies are used
to accelerate the convergence to a near-optimal solution with
guaranteed bounded risk. Worst-case theoretical guarantees can
also be proven owing to a standby safety guaranteed planner
utilizing a uniform sampling distribution. Simulation experiments
demonstrate that the proposed algorithm outperforms the state-
of-the-art remarkably for finding risk bounded low-cost paths in
seen and unseen environments with uncertainty and nonconvex
constraints.

Note to Practitioners—This article is motivated by developing
an efficient risk-aware path planner that can quickly find risk
bounded solutions in uncertain nonconvex environments for
practical applications, such as surgical navigation and delivery
in crowded squares. Sampling-based planning approaches such
as rapidly-exploring random tree (RRT) and its variants are
popular for their good performance in exploring the state space.
However, it is quite time-consuming to look for risk bounded
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paths in uncertain environments, especially under nonconvex and
non-Gaussian constraints. The initial paths are often of poor
quality as well. Therefore, we propose the NR-RRT algorithm
to rapidly find near-optimal solutions with guaranteed bounded
risk. It utilizes an informed bidirectional search strategy after
having past experiences in those challenging environments. NR-
RRT can be applied in not only seen but also unseen uncertain
scenarios. However, the algorithm cannot handle entirely unseen
environments that contain new or additional obstacles. In future
research, we will address the problem of planning under robot
model uncertainty.

Index Terms—Planning under uncertainty, Sampling-based
path planning, Learning from demonstration.

I. INTRODUCTION

OBOTS are often required to navigate safely under

sensing uncertainties in many practical applications [1].
In such circumstances, robots need to plan safe trajectories
prior to execution where the probability of collision with
uncertain obstacles is limited to a user-specified bound [2].
To this end, a desirable risk-aware path planning approach
should have the following critical features: 1) completeness
and optimality guarantee—a path will be eventually found
if one exists, and its cost is the lowest, 2) adaptation to
environment constraints—the algorithm can adapt to diverse
uncertain environments where the obstacles can be convex or
not and have arbitrary probabilistic uncertainties, and effec-
tively generate paths that satisfy any user-preferred risk level,
3) computational efficiency—time and memory consumed to
find a solution should be as less as possible. At present,
sampling-based motion planners (SBMPs), such as probabilis-
tic roadmap (PRM) [3] and rapidly-exploring random tree
(RRT) [4], have become prominent because they can quickly
find a solution and guarantee probabilistic completeness [5].
However, the pre-construction of a roadmap makes the PRM-
based approaches impractical for online planning. In contrast,
RRT algorithm iteratively builds a rapidly-exploring tree to
connect the robot’s collision-free states. The primary solution
is obtained by querying the constructed graph after the initial
and goal states are contained in the tree. Despite RRT and
its variants guarantee to find a solution, they often fail to
find the shortest one. RRT* [7], an optimal variant of RRT,
was proposed to additionally keep the cost of the solution
decreasing until being the lowest, i.e., it guarantees asymptotic
optimality. Unfortunately, it not only needs to assume perfect
measurement information but also takes a large amount of time
to find the optimal solution.
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(a) NR-RRT (b) RRT-SOS
Fig. 1: NR-RRT can find comparable risk bounded near-
optimal path solutions in uncertain nonconvex environments
with much higher computation efficiency after exploiting
learned distributions compared to RRT-SOS [6].

Recently, some references have extended the SBMPs to
systems with noisy observations to obtain risk bounded tra-
jectories. For example, Axelrod et al. [8] modified RRT by
verifying safety certificates regarding polytopes with Gaussian
distributed faces to generate safe trajectories in uncertain
circumstances. However, most existing sampling-based risk-
aware planning methods are limited to either convex obstacles
or Gaussian uncertainties [8]-[11]. Although the probabilistic
location, size, and geometry of uncertain nonconvex obstacles
can be explicitly described according to the prior knowledge
of environments, dealing with complex and nonconvex con-
straints is still intractable [6]. Jasour et al. [12] transformed the
uncertain environment into the deterministic information map
named risk contours map through moment-based methods,
no matter what probabilistic distributions over the uncertain
parameters of the obstacles are. The map’s safe regions also
vary with different predefined risk levels. Then, they proposed
RRT-SOS, which constructs an exploring-tree graph in the
risk contours map. By introducing the sum of squares (SOS)
techniques, the algorithm can provide safety guarantees for the
edges of a tree without the need for time discretization [6].
However, this risk-aware path planning algorithm suffers from
a heavy computation burden.

The excellent performance achieved by combing traditional
SBMPs and machine learning techniques has caught the at-
tention of the motion planning community. In our previous
work [13], an efficient learning-based optimal path planner
was developed, the Neural RRT*, which significantly reduces
the planning time. It guides the sampling process of RRT*
according to a nonuniform probability distribution that is
learned from the expert paths generated by the A* algorithm
[14]. In addition, Qureshi et al. [15] proposed the deep neural
network-based bidirectional iterative motion planning method
called MPNet to generate collision-free paths in real-time. By
taking advantage of latent space encoded from the workspace,
MPNet can explicitly generate the deeply informed samples
for the SBMPs in both seen and unseen scenarios of certainty.
Adding lazy states contraction and bidirectional search strate-
gies additionally contributes to high-performance planning.
However, developing an efficient learning-based risk-aware

path planner in uncertain nonconvex environments is still an
open problem.

To fill this gap, we propose a neural risk-aware path
planning method, neural risk-aware RRT (NR-RRT), to find
risk bounded near-optimal solutions in uncertain nonconvex
environments through learning from RRT-SOS algorithm. The
pipeline of our algorithm is illustrated in Fig. 2. A risk-
aware path planning problem is formulated given an uncertain
nonconvex environment, a user-specified risk level, and the
start and goal states. To capture the information of diverse
uncertain nonconvex obstacles, we record their probabilistic
locations, sizes, geometries, and the demand of risk level
in a risk contours map. Then, we train a neural network
sampler consisting of an encoder and inference network. The
encoder embeds the features of the risk contours map. At the
same time, the inference network learns from abundant expert
demonstration paths generated by RRT-SOS to predict the risk
bounded node. The sampler will iteratively output the next
informed state that is probably to be contained in the resulting
near-optimal solution. Next, a risk-aware bidirectional neural
planning strategy utilizes the sampler to extend two trees
incrementally and employs a risk assessor to verify every
edge’s safety. This strategy will be recursively called until a
fixed number of iterations. Once the trees are connected, the
risk bounded near-optimal path is found. In case it cannot be
found within a limited period, the algorithm calls a standby
path planner that guarantees completeness to continue.

Risk-aware Path Planning Problem

Uncertain Nonconvex
Environment

Risk-aware Bidirectional Neural Planning
Neural Network Risk Assessor
Sampler
Standby Planner gd

Fig. 2: Block diagram illustrating the pipeline of NR-RRT
algorithm.

Lsslspadtiied Start & Goal States

Risk Level

Risk Bounded Near-optimal Path

The main contribution of this article is threefold. Firstly,
we propose a neural network sampler to iteratively generate
the risk bounded and informed states in uncertain noncon-
vex environments. Secondly, we propose a computationally
efficient risk-aware path planning approach, NR-RRT, which
can find the risk-bound near-optimal path solutions rapidly.
Thirdly, our method can generalize to unseen uncertain non-
convex scenarios different from those in the training dataset.
Compared with [15] and our previous method [13], NR-RRT
has improved in three aspects: 1) not only considers risk level,
clearance called in [13] but also takes explicit probabilistic
uncertainties of obstacles into account, 2) can handle path
planning problems in both uncertain convex and nonconvex
environments, 3) guarantees a bounded probability of colli-
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sion in such environments. In addition, NR-RRT can obtain
comparable results with significantly reduced computational
costs compared to RRT-SOS in [6].

The remainder of the article is organized as follows. We
review the main piece of planning methods that are related
to this topic in Section II. We formulate the risk-aware path
planning problem in uncertain nonconvex scenarios and intro-
duce preliminary in Section III, and then present the details
of NR-RRT algorithm in Section IV. We conduct simulation
experiments and analyze the results in Section V. Section
VI proves worst-cases theoretical guarantees for NR-RRT and
discuss its asymptotic optimality. Finally, we draw conclusions
and present consideration of future works in Section VII.

II. RELATED WORK

A risk-aware path planning algorithm aims to find a feasible
path connecting given start and goal states, if one exists,
in an uncertain environment; meanwhile, the probability of
collision with uncertain obstacles for the solution is no larger
than a user-specified bound [2]. To this end, SBMPs have
been extended to look for such solutions under measurement
uncertainty [11], [16], [17]. For instance, Janson et al. [16]
proposed a Monte Carlo-based motion planner to find safe
trajectories in which the probability of collision is estimated
by sampling. However, there are no analytical bounds of the
collision risk of the trajectory. An alternative for planning
under uncertainty is the chance-constraint strategy [18]—-[20].
Instead of maximizing the probability of success, it aims to
compute a feasible solution in which the waypoints or seg-
mented trajectories satisfy a minimum probability of collision
constraint. Johnson et al. [19] developed a motion planner that
was capable of reducing the computation complexity in high-
dimensional and obstacle-filled spaces. Furthermore, perfor-
mance improvements can be gained by combining stochastic
optimal control with traditional SBMPs [9], [21]-[23]. The
linear-quadratic Gaussian motion planning algorithm (LQG-
MP) [22] incorporated a local controller into the extensions
procedure of RRT to deal with noisy sensing. Its extended ver-
sion environment-guided RRT [23] estimated path quality and
guided sampling toward safer parts of the state-space. Planning
under uncertainty can also be modeled as a Markov decision
process (MDP) [24] if the fully observable system states exist,
otherwise as a partially observable Markov decision process
(POMDP) [25]-[27]. For example, Van et al. [25] proposed the
belief iterative LQG to obtain a time-varying affine feedback
controller by approximating the quadratic value function over
a belief space. It has all feasible probability distributions
over the robot state space. However, the methods above were
built upon strong assumptions, e.g., convex obstacles and
sensor noise sampled from a Gaussian distribution, which are
limited in more general cases such as nonconvex obstacles
and non-Gaussian measurement noises. Note that complex and
nonconvex constraints are often imposed in planning problems
due to the safety reason [28]. A new arisen branch of the
planning method can address non-Gaussian uncertainties [29],
nonconvex planning problem [2], or combination of them [6]
when sensing uncertainty dominates. However, the computa-

tional costs of these methods are still prohibitive because they
need plenty of samples or multiple iterations to find a solution.

In recent years, reinforcement learning (RL) and deep
learning (DL) have emerged as promising motion planning
tools [30]. The advanced version of RL, called deep RL
(DRL), is shown capable of effectively planning under uncer-
tainty through incorporating traditional RL with deep neural
networks [31], [32]. Faust et al. [33] trained multiple RL
agents on the smallest map in simulation with sensing noise to
learn robust near point-to-point navigation policies. Then, the
PRM-based global planner uses the best policy to construct
roadmaps in the robot’s C-space where all configurations
along the path are safe, realizing a long-range motion planner.
To learn resilient actions for navigation in unseen uncertain
environments, Fan et al. [34] presented an uncertainty-aware
predictor and policy network to gain the uncertain infor-
mation of circumstances and learn the desirable behaviors,
respectively. Although these methods can generalize to new
environments or tasks, they may suffer from weak rewards or
require discretization of the state space.

The function approximation ability of deep neural networks
can be employed to speed up the convergence of SBMPs to
the optimal solution [35], [36]. One main category is to learn
bias sampling heuristic to guide the sampling process, namely,
to learn the promising probability distribution of the optimal
solution [13], [37], while another is to use neural networks to
embed a planner [15], [36]. For example, Zhang et al. [38]
proposed a generative adversarial network model to compute
the most promising area on a map such that the sampling
process can be guided. A method that constructs the SBMP
graph and conducts the collision-checking procedure both in
learned latent spaces was proposed in [36]. Although these
neural planners have achieved remarkable performance in de-
terministic convex environments, realizing rapid path planning
in uncertain nonconvex scenarios remains challenging.

III. PRELIMINARY

A. Problem Definition

Let X € R™* be an uncertain environment containing safe
space Xgre C X and static uncertain obstacles Xops, (w;) C
X,i =1,...,n, where w; € R"™ represent probabilistic
parameters with given probability distributions. All obstacles
can be convex or nonconvex, and each obstacle may have an
uncertain size, location, or geometry. We represent them in
terms of polynomials in © € X as below:

Xobs; (i) ={x € X : Pi(x,w;) >0},i=1,...,n,, (1)

where P; : R"» — R denotes the known polynomial uncertain
obstacles.

Take an ellipse-shaped uncertain convex obstacle as an
example, and a nonconvex obstacle is similar. The polynomial
of itis P: {(z, y) : w? —22/2 —y* >0, w ~ N(0,1)}. Its
major and minor axes are subjected to a Gaussian distribution
of random variable w. Note that the type and dimension of
the probability distribution should depend on the realistic
situation.
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Given a safe initial state xjn;;, goal state Tgoa1, and an
uncertain environment, we intend to find the shortest and
risk bounded path © = [@init, - - -, Tgoal] [0,T] = Xafe
such that w(0) = @iniy and w(T) € Xarget(€Tgoal), Where
Xiarget (Tgoal) = {& € Xae | || — Tgom|| < 7} is the target
region commonly used in practice. Meanwhile, the probability
of collision with uncertain obstacles is no greater than A,
where A € [0,1] is a predefined constant representing the
acceptable risk level.

Further, the risk-aware optimal path planning is defined
mathematically as follows:

T
. . 9
t)]|5 dt )
0T o / I3 )
Stw(o) = ZLinit, :I:(T) S Xt,argeta (3)

Prob(x(t) € Xops, (wi)) < A, Vt € [0,T] [, , 4)

where (2) denotes the cost function regarding the length of
trajectory 7t measured by % norm, and (4) are the collision
risk constraints in terms of probability for the trajectory r.

B. Risk Contours Map

We introduce a cutting-edge mapping method, called risk
contours map [12], to describe the probabilistic information of
uncertain obstacles. This map depicts the relatively safe region
in the uncertain environment where the probability of collision
with the uncertain obstacles is no greater than a given risk level
A. Specifically, considering one uncertain obstacle Xyps(w) in
(1), we define the A-risk contour CTA as the following set of
states:

C2 = {x € X : Prob (x € Xyps(w) < A)}. )

Then, to transform the original probabilistic optimization
problem (2) into a solvable one, a deterministic constraint in
terms of the set of safe states is approximated as follows [6]:

E[P?(z,w)|-E[P(z,w)]”
EP2(z, ) <AE[P(x,w)]<0
(6)
where P(x,w) is the known polynomial of the uncertain ob-
stacle X,ps(w). E[P(x,w)] and E[P?(x,w)] are polynomials
in terms of states « and the moments of probabilistic parameter
w. In other words, the coefficients of « in them are computed
by using the moment of w and the coefficients of P(x,w).
Note that the set CATA is a rational polynomial-based inner
approximation of the original risk contour C2. Thus, we have
a deterministic constraint in terms of the set of risk bounded
states & € C2, Vt € [0, T). The resulting path 7 comprising of
these states is guaranteed to have a no greater than A chance
of collisions. For more details, the readers are referred to
[6]. Finally, we have a deterministic polynomial optimization
problem with risk contours as follows:

@A{me){:

T
. . 2
t dt 7
Lomin / B0k )
S.t. CC(O) = Tinit, :IJ(T) S Xtargeta ®)

a(t) € C2, vt € 0,7 [, )

C. RRT-SOS

RRT algorithm is known for rapid space exploration and
can always find a solution, if one exists, as the number of
samples keeps increasing. It first performs sampling from the
state space according to some sampling distribution, given a
start state as the root vertex of a searching tree. Then, it selects
the nearest verteX Tpearest and tries to connect it through an
extension function. If the connection is collision-free after
performing collision detection, Tyevw adjusted from Tgampte Will
be a new vertex and added to the vertex set of the searching
tree. The pair (Znearests Znew) Will also be included in the edge
set. Repeating the procedures above until a state in the target
region Xjarget is contained in the tree, and then the algorithm
returns the solution. However, the collision detection needs
to be modified since we have probabilistic polynomial infor-
mation P;(x,w;) rather than certain polynomial information
Pi(x) of the obstacles in uncertain environments. We need to
make sure the probability of collision for the connected path
is bounded by A instead of zero. In other words, the paths
should be risk bounded rather than purely collision-free due
to environmental uncertainty.

For this purpose, Jasour et al. [6] proposed RRT-SOS algo-
rithm, which uses the safety sum of squares (SOS) condition as
follows to check the collision risk of the trajectory between
Znearest aNd Zpew iN an uncertain environment. S = {x :
ge(z) > 0,k = 1,...,1} is defined as the feasible point
set of (7), where gi(-) > 0,k = 1,...,1 are polynomial
constraints of all the inner approximations of risk contours
Cﬁ7 i =1,...,n,. The trajectory x(t) between two vertices
satisfies the constraint (9) over the time interval [tq, to], iff
polynomials g (x(t)), k =1,...,1 has the SOS form below:

gr(@(t)) = mor(t) +mir(t) (t—t1) + 7o (t) (t2 — )Ly, (10)

where 7o (t), m1x(t), and max(t) are SOS polynomials with
suitable degrees.

The authors in [6] also initialized a straight line between the
start and target vertices to adaptively sample in its neighbor-
hood during the expansion, which relieved the computation
burden to some extent. After finding a primary path that
connects the start and goal states, a PRM graph whose nodes
and edges satisfy the SOS condition in (10) is constructed
for the solution. Then, the Dijkstra algorithm, a shortest path-
finding method, is performed to reduce the path length of the
feasible solution by querying the generated graph.

IV. NR-RRT: A NEURAL RISK-AWARE PATH PLANNER

In this section, we first describe how to process the uncertain
environment to facilitate the training of our neural networks
in Section IV-A. The architecture and other details of the
proposed neural network sampler are introduced in Sections
IV-B. NR-RRT algorithm is presented in Section IV-C.

A. Pre-processing

2-D images are commonly used to represent the 2-D space.
An image is usually converted into an occupancy grid map
in which zero/one indicates free/occupied space in definite
environments. However, it is insufficient to present the space
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information of uncertain obstacles using this kind of map
because we cannot be sure whether some grids are occupied or
not. To solve this problem, we construct a risk contours map
that replaces the probabilistic grids with deterministic ones in
the image. Specifically, by computing the inner approximation
of static risk contour in (6), we obtain continuous risk levels
in [0, 1] for the coordinates in the risk contours map instead
of {0,1} used for grid-based maps.

We take the 2-D ellipse-shaped uncertain obstacle in Section
III-A as an example again. Given the polynomial P(x, w) and
the distribution of uncertain parameter w ~ N(0,1), we can
calculate the first and second moments as

E[P(x,w)] = E[w? — 0.52% — ¢?]

= —0.52% — y* + E[w?] = —0.52% — y* + 1,
E[P?(z,w)] = E[(w? — 0.522 — y*)?]

= 0.252* + y* + 2%y? — E[w?)(2? + 2y?) + E[w?]
= 0.252* + y* + 22y — 22 — 2% + 3.

(1)

We subsAtitute the moments (11) into the deterministic con-
straint C2 in (6), obtaining two inequalities without the
uncertain parameter but symbolic variables, x and y. By
substituting the coordinates (z,y) in the environment into the
inequalities, we can split the risk contours map into three parts:
safe zone, dangerous zone, and risk zone, as shown in Fig. 3.

More precisely, the safe zone (white) means the inequalities

- Dangerous Zone

Bl Risk Zone

. [] safe Zone
A=20% A=50%
A =100% A= 80%

Fig. 3: The risk contours maps with different A for an
ellipse-shaped uncertain obstacle. A is a predefined acceptable
probability of collision. The dangerous zone (red) is fixed.
In contrast, the risk zone (black) shrinks as the risk level A
increases, as shown in the subfigures clockwise from the left-
top, indicating that the farther away from the dangerous zone,
the smaller probability of collision.

in (6) hold for all coordinates in it, while the dangerous zone
(red) and risk zone (black) indicate E[P(x,w)] < 0 and
E[P2(%rglz55§m’”)]z < A do not hold, respectively. In other
words, 0n1y7states in the safe zone have a no greater than A
chance of collisions.

Furthermore, the image has a size of W x H x C, cor-
responding to width, height, and the number of channels,
respectively, and every pixel in it has a value from 0 to 255
in each channel. As a result, pixels in the image-based risk
contours map have three kinds of values corresponding to three
colors of the zones, i.e., the values of pixels are (0,0,0) in
the risk zone (black), (255, 255, 255) in the safe zone (white),

and (255,0,0) in the dangerous zone (red). Note that we do
not require discretization of the 2-D environment, and the
positions of pixels in the image are not equal to the coordinate
values in the risk contours map, which means our method will
not suffer from the exponentially increased computation cost
brought by the increased map size. Therefore, we record the
continuous probabilistic observations of uncertain obstacles in
image /. We also normalize the path data generated by RRT-
SOS with respect to the boundaries of the risk contours map
to facilitate the training.

B. Neural Network Sampler Architecture

We design an end-to-end neural network sampler (NNS)
consisting of an observation encoder network £ with weights
6. and an inference network 7 with weights 6;, which is
inspired by MPNet [15]. The architecture of our proposed
neural networks is shown in Fig. 4.

Firstly, the encoder £ embeds the observation of obstacles

in images [ into latent features Z,

E(L;0.) — Z. (12)
The fully connected networks treat pixels far apart and those
close together in the same way. It ignores the local features
and is not suitable for image data processing. By contrast,
the convolutional neural networks (CNNs) have impressive
features such as local connectivity, shared weights, and pool-
ing, leading to their better generalization with lower memory
and fewer free parameters [39]. We employ a CNN as our
encoder to automatically extract latent features Z from images
I. Tt has two 2D convolutional layers with the kernel size
3 x 3. Each is connected with batch normalization (BN), an
activation function, the rectified linear unit (ReLU), and a
downsampling layer, max pooling, with filters of size 2 x 2.
The input and output channels of the first and second layers are
(3, 32) and (32, 128), respectively. Every convolutional layer
takes one image-based map and outputs a low-level feature
map. The ReLU allows the CNN to be trained faster, and the
max-pooling layer makes it more robust to variations in the
shapes of uncertain obstacles. The image is then abstracted
to the latent features Z with a size of 64 through two fully
connected layers (FCLs).

After that, the latent-space embedding Z concatenated with
the current state &; € X, goal state Tgoal € Xsage, and risk
level A are fed into the inference network Z, and it outputs
the next state &;4,. towards the goal state Tgoa1,

L(Z, @1, Tgonr, A; 0;) = Ty (13)
The inference network Z comprises six FCLs, and each of
them has Dropouts [40] to let the network Z play a stochastic
behavior. This way increases the probability of exploring the
whole state space rather than being trapped in several informed
samples, which is better to maintain the completeness guaran-
tee.
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Fig. 4: The overall structure of the neural network sampler for informed sampling.

We use a mean-squared-error (MSE) loss between the
predicted state @;,; and the label next state x;y; for both
the encoder £ and inference network Z during training, i.e.,

N Lp—1

1 . 2
U(Be, 0;) = A Z Z [Zp.g+1 = Tp g1l

P ¢=0

(14)

where NN, is a positive averaging constant, N is the total
number of training paths in an environment, and L, is the
length of p-th path, respectively.

Therefore, the NNS is recursively called to make the newly
generated state #;y; become the robot’s current state x;
in the next time step, leading the searching tree to expand
incrementally.

C. Online Path Planning

This section introduces the key components of NR-RRT, a
bidirectional neural risk-aware path planning algorithm. The
procedures of NR-RRT are summarized in Algorithm 1.

Now, the neural network sampler in Section IV-B can
prompt the tree to expand efficiently. The algorithm still needs
a Risk Assessor (RA) to verify that the risk of collision is
bounded during the expansion. RA is used to verify a vertex
or edge whether lies in the safe zone, and it returns True if
so or False if not. Given a vertex, we substitute its states and
predefined risk level A into the inner approximation of risk
contour CTA. As we did to decide which area is the safe zone,
the vertex is risk bounded if the inequalities in (6) hold. On
the other hand, an edge between two vertices is a straight
line segment and can be rewritten as a linear polynomial
trajectory such as {(x,y),x = a1t + b1,y = ast + b}, given
the two endpoint states. The sum of squares (SOS) form as
(10) will be verified for the edge using the Spotless package
[41]. As a result, the collision probability along this edge is
smaller than or equal to A if it satisfies the SOS condition.
Moreover, we use a hybrid replanning strategy [15] to speed
up the algorithm further and guarantee its completeness.

In principle, given the original planning problem, NR-RRT
performs bidirectional neural planning at first (described later)
and outputs a coarse global path. Then, if any edge between
two contiguous vertices lies in the risk or dangerous zone,
we call Replan to replan this edge. This function takes the
non-connectable nodes as a start and goal pair and utilizes the
bidirectional neural planning again to recursively generate a
local path for them. If there is no solution available yet, in
case some problems are hard, we employ the standby planner
that exhibits probability completeness to find it. Since the
primary solution is usually not optimal, we implement the
shortcutting process, Lazy States Contraction (LSC) [42], to
eliminate the useless vertices in it. With Replan and LSC, the
algorithm keeps finding possible critical connectable vertices
and removing the unconnectable nodes.

As shown in Algorithm 1, NR-RRT takes the start and goal
states, ®inic and Tgoal, Uncertain obstacles Xgy,s,, and user-
specified risk level A as inputs. The encoder £ encodes the
image-based risk contours map [/ into a latent feature map
Z (Line 1). We initialize two trees, ie., Ty = (Vy, Ey)
to grow forwards from start to goal and 7, = (V;, Ep) to
grow backwards from goal to start, respectively, and an empty
path solution 7 (Line 2). Each tree comprises a vertex set
V C Xsate and an edge set £ C V x V. We expand trees in an
alternating manner and repeat this manner for a fixed number
of iterations N. We take the expansion step for forward path
s (Lines 5-14) as an example here. Our method uses NNS
to generate a sample Tg,mple, given the latent encoding Z,
and the top nodes, w‘}"d and 4. Then, Tsample is verified
through RA, and if the collision risk is bounded, it will be
adjusted to Zew and added to the vertex set V. It and its
nearest vertex in the tree Tpearest are inputted into Steer (Line
9). In Steer, we connect two vertices with a straight line and
perform RA to assess the collision risk for their edge. If risk
bounded, it is added to the edge set Ey. After each expansion
step, the algorithm tries to connect both trees by calling Steer
again (Line 11). Once the connection is successful, we obtain a
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coarse tree 7 containing the vertices from 7; and 7, and have
a primary path solution 7 = {@init, ..., Tgoa1} Dy querying
the tree 7. If the connection fails, we swap 7; with 7, and
keep expanding (Line 15). If a solution 7r is found, we refine
it with LCS. The LCS function will return critical vertices
regarding the optimal path. RA is then utilized to check the
collision risk of every edge in the global path. Suppose there
is a local path crossing either the dangerous or risk zone.
In that case, we input the failed global path into Replan,
followed by LSC, to generate a near-optimal solution until
the number of iterations reaches the threshold N; (Lines 20-
24). In case the strategy using bidirectional neural planning
fails after IV; attempts, the algorithm employs the standby
planner, RRT-SOS, which samples from a uniform sampler.
By adjusting the non-connectable nodes as new start and
goal states, RRT-SOS attempts to find a path solution while
maintaining the theoretical probabilistic completeness (Lines
30-32). Eventually, the resulting path is optimized through
LSC and the collision risk of it is verified through RA again
(Lines 35-36).

V. SIMULATION EXPERIMENTS

In this section, we conduct several simulation experiments
to demonstrate NR-RRT’s distinguishing performance and
generality. We describe the collection of data and the imple-
mentation details of our neural network sampler in Section
V-A. Then, we compare our algorithm with RRT-SOS in
uncertain environments with different acceptable risk levels
in Section V-B. In Section V-C, we further demonstrate that
NR-RRT outperforms RRT-SOS in seen and unseen cluttered
uncertain environments.

A. Implementation Details

All experiments are conducted on the same system with
3.60 GHz x 8 Intel Core 19-9900KF processor, 64GB RAM.
Neural network models were trained with the PyTorch Python
API on NVIDIA RTX 2080Ti. The Adam optimizer [43] is
utilized with default parameters for training. To ensure that
our experiment is fair, we load the trained neural network
model across the same CPUs as used in RRT-SOS algorithm.
The neural network only takes about 40ms to predict the next
state, which is a benefit to expanding the searching tree.

RRT-SOS algorithm is utilized to obtain expert demonstra-
tion paths. Every expert path comprises several 2D points
associated with the cost-to-go values with regard to their next
points. The 90% of data is used for training, and the others
become the validation dataset. Besides, experiment maps are
obtained by processing the risk contours map into images with
the size of 256 x 256 pixels. The batch size is 64, and the
learning rate is fixed at n = 0.0004.

B. Path Planning in Uncertain Environments with Different
Risk Levels

Although NR-RRT can handle diverse uncertainties, i.e.,
location, size, and geometry with various probability distribu-
tions, by constructing a risk contours map, we need to further

Algorlthm 1: NR-RRT (winit» Lgoals Xobsia A)
1 S(I(Xobs;)) — 4

2 Ty = (Vi Ey), Ty = (Vi, By), ™ < @

3 Vf «— {winit}’ Vb — {wgoal};

4 fori=0,...,N do

5 msample «— NNS (Z) V;nd’ ‘/E)end>;
6 while RA(msamp1e7 A) = False do
7 L Tsample < NNS (Z7 ernd7 ‘/E)end);

8 Vf — Vf U Tnews

9 if Steer(Tpnearest; Tnew) then

10 L Ef — Ef U (wncarcstvwncw);
u | if Steer(Vi", Vie™?) then

12 T « concatenate(Tt, Tp);
13 T = {@init, - - -, mgoal};
14 Break;

15 | SWAP(T;, Tp);
16 ™+ LSC(m);

17 if RA(w,A) then
18 L return ;

19 else

20 for j =0,...,N; do

21 7 < Replan(w, Z);

22 7 < LSC(m);

23 if RA(w,A) then

24 L return 7;

25 Thew <— 9

26 | fori=0,...,size(w)—1do

27 if Steer(m;,m;+1) then

28 L Thew € Tnew U {ﬂ-iy 71‘1'_._1}
29 else

30 Tocal < RRT-SOS(TK’,’, Ti41, Xobs;);
31 if Tocal is not None then
32 L Thew <~ Tlocal U Tnews
33 else

34 L Thew = &

35 7 < LSC(mhew);

36 | if RA(w,A) then

37 L return 7;

38 return w = J;

prove its generality to different risk levels. Thus, the objective
of the following experiments is to find a near-optimal risk
bounded path between a start and goal states in an uncertain
environment with different risk levels A.

We create two uncertain environments; one is convex and
the other is nonconvex. The circle-shaped convex obstacle
shown in Fig. 5(a) is denoted as Xops, (w) = {(z,y) : w? —
2?2 —y? > 0}, where (z,y) € [~1,1]x[~1,1], and the radius w
has a uniform probability distribution w ~ #£(0.3,0.4). Note
that this setup is the same as the illustrative example 3 in



JOURNAL OF KTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

A= 30%

()

——RRT-S0S
Ours

A=50% A=70%

1
(E[P?] - E*[P))/E[PY < A
e E[P] < 0

@,

terr-sos = 64525, Cpgrsos = 2. 18 terr-sos = 29- 32, Cpgrsos = 1.46 trrr-sos = 60. 425, eCpprgos = 1. 83 torr-sos = 15.77s, Cppr-sos = 2. 39
tours = 1. 27s, Cours= 2. 71 tours = 0. 24s, Cours= 1.55 tours = 0.22s, Gours= 1.87 tours = 0.24s, Cours= 2.40
(a) Planning Results in Uncertain Convex Environments with Different Risk Levels
A= 30% A= 50% A=70%

trrr-sos = 1815.30s, cCprrsos = 5. 27
tous = 1.35s, Cours= 5. 39

torr-sos = 1218.50s, Gpprgos = 3.79
tous = 0.92s, Cours = 4. 03

trar-sos = 983.0s, cppr_gos = 4. 31
o = 1.075,  Coue = 4.06

trrrsos = 1162. 20s, Cgpr_gos = 3. 76
tous = 1. 24s, Cours = 3.80

(b) Planning Results in Uncertain Nonconvex Environments with Different Risk Levels

Fig. 5: Figs. (a) and (b) are the comparisons of the planning results in uncertain convex and nonconvex environments with different risk
levels, respectively. Given a risk-aware convex or nonconvex planning problem with some risk levels A, NR-RRT (red) and RRT-SOS (blue)
can find risk bounded low-cost path solutions that entirely do not lie in the dangerous and risk zone (brown and gray areas). NR-RRT uses
extremely less time (t) than RRT-SOS takes to plan paths with comparable cost (c).

[6] for comparison. X,ps,(w) = {(z,y) : —0.352° — zty —
0.5z + 0.223y% — 0.52%y + 0.3123 — 0.52%y3 + 0.222y% +
1.722y+0.262% +0.7zxy* — 0.12y% — 1.52y% — 0. 12y + 0.1+
0.02y° — 0.1y* — 0.04y% — 0.1y% + 0.28y + 0.89 — 0.7w}
represents the heart-shaped nonconvex obstacle with uncer-
tain parameter w ~ Beta(9,0.5), as shown in Fig. 5(b),
where (x,y) € [—2,2] x [-2,2]. We set ten risk levels
A = {10%,20%,...,100%} for each environment. After
choosing the risk level one by one for each environment, we
randomly generate 1000 different valid start and goal pairs
(Tinit, Tgoa1) for training, and randomly sample 200 pairs for
testing. Hence, we have 10000 training data and 2000 test data
for every environment.

The run-time to find the near-optimal solutions and their
lengths are compared between two methods: RRT-SOS [6]
and NR-RRT. Table I reports the total mean planning times
and path lengths with standard deviations when the near-
optimal trajectories are founded in uncertain environments
with ten risk levels. We can see that our algorithm can generate
near-optimal solutions with significantly less computation time
than using RRT-SOS whether in the uncertain convex or
nonconvex environment. The medians of planning times are
27.12s and 0.25s by RRT-SOS and NR-RRT in the convex
environment, respectively, while 1667.85s by RRT-SOS and
0.93s by NR-RRT in the nonconvex environment. NR-RRT’s
smaller standard deviations and medians of the computation
time imply it has a better stability. Note that RA takes about
0.09 seconds to verify the safety of every edge, which demon-
strates that NR-RRT can be used in real-world applications.
Our method sometimes generates slightly shorter paths than
the demonstrations generated by RRT-SOS because the expert
paths are not always optimal, which will be discussed in

Section VI. Therefore, no matter the risk level specified for
an encountered uncertain obstacle, NR-RRT achieves a better
performance than RRT-SOS by a large margin, thanks to the
informative state sampling and bidirectional search strategy.

C. Path Planning in Uncertain Cluttered Nonconvex Environ-
ments

In this section, we evaluate the performance of NR-RRT in
seen and unseen uncertain cluttered nonconvex environments.
Twelve environments are created by random placement of
seven uncertain obstacles. Five are convex, i.e., three are
circle-shaped and two are ellipse-shaped, and two are noncon-
vex and calabash-shaped. The acceptable chance of collisions
is set as A = 10%. We select ten of them as the seen
environments for training and the remaining two as unseen
scenarios only for the testing. The range of the states is
[z,y] € [-5,5] X [-5,5]. We randomly sample 1000 different
valid start and goal pairs in each seen environment. As a
result, we have 10000 training data belonging to ten seen
environments. On the other hand, we randomly create 200
start and goal pairs in every seen environment and 1000 pairs
in every unseen environment. Consequently, there are a total
of 4000 data for the testing. Half of them are different pairs
in the seen environments, while the others are new pairs
in the unseen environments. Figs. 6 (a) and (b) show the
planned trajectories in one seen and one unseen environment,
respectively.

Table II presents the comparisons of the total mean planning
times and path lengths with standard deviations between NR-
RRT and RRT-SOS [6] when the near-optimal trajectories are
founded in the ten seen and two unseen cluttered environ-
ments. It can be seen that compared to RRT-SOS, NR-RRT
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TABLE I: Comparisons of the Total Mean Planning Times and Path Lengths with Standard Deviations in Uncertain Convex

and Nonconvex Environments With Ten Risk Levels

Convex Env.

Nonconvex Env.

Time(s) Length Time(s) Length
Ours 0.26 £0.11 2.17+£0.88 2.15 £ 2.58 4.65+1.44
[6] 26.08 £42.40 1.60+0.78 1614.60 +714.90 4.22+1.23

TABLE II: Comparisons of the Total Mean Planning Times and Path Lengths with Standard Deviations in Seen and Unseen

Uncertain Cluttered Nonconvex Environments

Seen Cluttered Env.

Unseen Cluttered Env.

Time(s)

Length

Time(s) Length

Ours 2.69 +0.28
[6] 313.48 £ 669.53

7.40 +2.40
6.49 + 2.26

2.01+£0.16
237.90 £ 518.50

6.82 £ 2.51
6.31 1+ 2.18

= RRT-SOS
o Start A= 10%
¢ Goal

e Ours

(E[P?) - E*(P)/E[P") < A O °Q
e [£[P] < 0 .

Crrr-sos = 9- 43

temrsos = 938. 83s,
2 Coure= 9. 97

tOurs

(a) Path solutions in a Seen Cluttered Scenario

A= 10%

trrr-sos = 605.01s, cCppyogos = 8. 3246
tours = 2. 38s, Cours= 9. 67

(b) Path solutions in an Unseen Cluttered Scenario

Fig. 6: Comparisons of planning times (t) and path qualities
(¢) in seen (a) and unseen (b) uncertain cluttered nonconvex
scenarios between NR-RRT (red) and RRT-SOS (blue) [6].

takes a much shorter amount of time to look for similar quality
trajectories in the seen and unseen environments. Furthermore,
Fig. 7 displays the box-plot of the planning times and path
lengths that results from NR-RRT (for the sake of the large
order of magnitudes, the box-plot for RRT-SOS is omitted).
The green triangle of the boxes refers to the average value,
the orange line in the middle of the boxes is the median, and
the height of the boxes refers to variance. We can tell that
NR-RRT achieves high performance on the two indexes from
this figure. The effectiveness of NR-RRT is also obvious on
unseen tasks. Besides, in the given finite time interval, RRT-
SOS and NR-RRT success rates are 100%. The small variance
of computation time indicates the robustness of NR-RRT in
finding a near-optimal path in a short time.

127 [1Seen

[ Unseen
10 4

o

24 ==l

Planning Time (s) Path Length

Fig. 7: The interquartile ranges of planning times and path
solution lengths for NR-RRT in seen and unseen uncertain
cluttered nonconvex environments.

VI. DISCUSSION

In this section, NR-RRT’s probabilistic completeness and
optimality are analyzed.

1) Probabilistic Completeness: We first discuss the proba-
bilistic completeness of NR-RRT, proposed as below:
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Proposition 1. Given a risk-aware path planning problem
{Zinit, Tgoal; Xobs, A}, and a risk assessor, NR-RRT can find
a solution : [0,T], if one exits, such that wy = Tinit, T €
Xiarget, and Prob(x(t) € Xops, (w;)) < A2,

Proposition 1 indicates that NR-RRT will find a risk
bounded path, if one exists, where the probability of collision
is no greater than A. Note that RRT-SOS is used as our
standby SBMP that has probabilistic completeness. Based on
the assumptions and Lemma as follows, we propose Theorem
1, which proves that the worst-case completeness guarantees
of NR-RRT. Therefore, the algorithm has probabilistic com-
pleteness as its standby planner RRT-SOS.

Assumption 1. The given start and goal states (Ziniy, Tgoal)
are in safe space, i.e., Tiniy € Xsafe and Tgoal € Xiarget C
Xsate- There exits at least one risk bounded path solution 7
that contains @ini; and Teoa1, and ™ ¢ X1, by using a planner
to find a risk bounded solution.

Lemma 1. [15] In a certain environment, if the start
and goal pairs (Tiniy, Teoal) is feasible, and there exists a
collision-free path that connects them, for a planning prob-
lem {Tinit, Tgoal, Xovs |, the probability of finding a solution
approaches one as the underlying RRT* will be allowed to
perform until infinity if needed for a iterative and recursive
learning-based path planner.

Theorem 1. If Assumption 1 holds, for a risk-aware path
planning problem {®init, goal, Xobs, A}, and a standby path
planner whose sampler is with uniform distribution, NR-RRT
will always find a risk bounded solution, if one exists. Because
the planner that guarantees completeness is employed as
a standby planner to run until infinity if NR-RRT fails to
conclude a solution by using the neural network sampler for
a fixed number of trials.

Sketch of Proof: Lemma 1 indicates that a neural planning
method exhibits probabilistic completeness, which is with an
underlying oracle planner, e.g., RRT* that guarantees com-
pleteness if one solution and a competent collision checker
exist in an environment of certainty. Similarly, assumption 1
states a condition that the risk-aware path planning problem
is resolvable in our case. Namely, at least one solution can be
found by a planner that guarantees probabilistic completeness.
NR-RRT first obtains a coarse solution 7r that might contain
non-connectable consecutive vertices. Then, the algorithm tries
to connect them via replanning. These vertices lie in a safe
space since each of them is evaluated by a risk assessor RA
before adding it to the vertex set of the solution 7r. During
hybrid replanning, we aim to refine the coarse solution 7 by
performing neural replanning. Suppose there still exists any
vertex that cannot be connected to conclude a final solution.
In that case, we use RRT-SOS to connect the remaining non-
connectable vertices afterward. The non-connectable vertices
and the uncertain obstacles form a new risk-aware path
planning problem and can be solved by RRT-SOS because
of its probabilistic completeness. Therefore, if Assumption 1
holds for the non-connectable vertices, NR-RRT guarantees
the convergence of a solution inherited from the standby
planner RRT-SOS. NR-RRT with a standby planner RRT-SOS
has probabilistic completeness in an uncertain environment.

2) Optimality: RRT-SOS is employed to generate expert
demonstrations. It also performs in the hybrid replanning and
as a baseline against our NR-RRT. However, the resulting
paths using RRT-SOS are often non-optimal because the graph
constructed by PRM only has a limited number of nodes
in a map, and querying such a graph results in a non-
global shortest solution. In other words, RRT-SOS does not
guarantee asymptotic optimality. Since our resulting paths’
quality cannot be the same as the training data, there is a
situation where NR-RRT can find solutions with lower costs
than the expert but non-optimal solutions. Note that the ability
to learn informed sampling distribution is more important than
learning the exact positions of the labeled data for us.

In contrast, the number of samples in RRT* approaches
infinity to obtain a graph covering the whole map area. For
RRT#, the probability of finding the optimal solution, if one
exists, approaches one as the number of iterations increases to
infinity. It gets asymptotic optimality from ChooseParent and
Rewire processes that incrementally update the tree connec-
tions such that the shortest path is ensured. Whenever RRT*
attempts to connect Xpearest from the xyey, it selects the best
parent of x,. in terms of the cost-to-come by searching the
nodes in a certain radius in the ChooseParent. After adding a
new edge about &,y to the edge set, RRT* removes tree edges
through ., with relatively higher costs, which is called
Rewire. For more information, please refer to [7]. Because
our algorithm can naturally inherit asymptotic optimality from
the standby planner, RRT-SOS, if it has, as proved in [15],
it is doable to modify the original RRT-SOS with these two
processes to generate the optimal path. However, there is no
need to do this since the ability to find the optimal solution
is not our contribution. The resulting solutions found by NR-
RRT have been near-optimal with little computational costs,
which is more important in practice. On the contrary, those
modifications will significantly increase the computational
time but offer inconspicuous improvement for the path quality,
resulting in a low input-output ratio.

VII. CONCLUSIONS AND FUTURE WORKS

This article provides a learning-based bidirectional risk-
aware path planning algorithm, NR-RRT, for quickly finding
a risk bounded near-optimal solution in seen and unseen
uncertain nonconvex environments where the obstacles may
have probabilistic locations, sizes, and geometries. The infor-
mation of probabilistic nonconvex obstacles can be captured
by constructing the risk contours map and further embedded in
a deterministic latent feature map. A proposed neural network
sampler predicts the most-promising safe vertices after learn-
ing the past experiences. An informed bidirectional-search
sampling strategy accelerates the convergence to a solution.
Our experiments show that our method can find comparable
near-optimal solutions to the baseline but takes significantly
less planning time in uncertain nonconvex environments.

In our future research directions, we will consider kinody-
namic constraints (kinematics and differential constraints) [44]
to make the planned trajectories easier to be tracked. Besides,
it is interesting to investigate path planning for robots under
motion uncertainties [10].
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