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Abstract—This work presents a reinforcement learning-based
switching control mechanism to autonomously move a ferromag-
netic object (representing a milliscale robot) around obstacles
within a constrained environment in the presence of distur-
bances. This mechanism can be used to navigate objects (e.g.,
capsule endoscopy, swarms of drug particles) through complex
environments when active control is a necessity but where direct
manipulation can be hazardous. The proposed control scheme
consists of a switching control architecture implemented by two
sub-controllers. The first sub-controller is designed to employ the
robot’s inverse kinematic solutions to do an environment search
for the to-be-carried ferromagnetic particle while being robust
to disturbances. The second sub-controller uses a customized
rainbow algorithm to control a robotic arm, i.e., the UR5 robot,
to carry a ferromagnetic particle to a desired position through a
constrained environment. For the customized Rainbow algorithm,
Quantile Huber loss from the Implicit Quantile Networks (IQN)
algorithm and ResNet are employed. The proposed controller is
first trained and tested in a real-time physics simulation engine
(PyBullet). Afterward, the trained controller is transferred to
a UR5 robot to remotely transport a ferromagnetic particle in
a real-world scenario to demonstrate the applicability of the
proposed approach. The experimental results on the UR5 robot
show an average success rate of 98.86% over 30 episodes for
randomly generated trajectories, demonstrating the viability of
the proposed approach for real-life applications. In addition, two
classical path finding approaches, Attractor Dynamics and the
execution extended Rapidly-Exploring Random Trees (ERRT),
are also investigated and compared to the RL-based method. The
proposed RL-based algorithm is shown to achieve performance
comparable to that of the tested classical path planners whilst
being more robust to deploy in dynamical environments.

Note to Practitioners—Deep reinforcement learning methods
have been widely applied in computer games and simulations.
However, employing these algorithms for practical, real-world
applications such as robotics becomes challenging due to the dif-
ficulty of obtaining training samples. This paper predominantly
focuses on bridging the gap between simulations and the real-
world implementation of a reinforcement learning algorithm for
a robotic application in the context of miniaturized drug delivery
robots and robotic capsule endoscopes. This paper presents
the derivation and experimental validation of a reinforcement
learning-based algorithm for controlling a magnetically-actuated
small-scale robot within a simplified model of the large intestine
in the presence of disturbances. We demonstrate the possibility
of training a high-fidelity reinforcement learning algorithm fully
within a simulated environment before deploying it as-is in
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a real-world scenario by carrying out different experiments
and simulations. Implementing the presented control framework
complements a large body of this work, and the results offer a
feasibility study of using reinforcement learning algorithms in
practice.

Index Terms—Magnetic Manipulation, Reinforcement Learn-
ing, Rapidly-Exploring Random Trees, Attractor Dynamics,
ERRT, Switching Control, Targeted Drug Delivery

I. INTRODUCTION

EFFICIENT drug delivery is a difficult task in the medical
industry [1], and traditional approaches such as pills

and intravenous therapy have been the primary method of
drug delivery for decades [2], [3]. One drawback of these
traditional administration methods is that a drug cannot be
transported directly to targeted tissues/organs to produce a
marked effect. On the other hand, carrier-based drug delivery
systems (e.g., small-scale delivery robots) could be better
suited to accomplish such precisely targeted delivery task [4].

In recent years, there have been substantial efforts to de-
velop soft miniaturized robots capable of navigating the human
body and delivering drugs directly to a tumor or other disease
sites precisely and non-invasively.

One of the barriers to small-scale drugs moving toward
diseased tissues in the bloodstream is the blood vessel’s
lining [5], [6]. Therefore, manual delivery processes might
still not be as effective as it needs to be [4], [7]. To overcome
this barrier, a promising approach is to actively manipulate
drugs or swarms of drugs to reach disease sites and push
the particles out of the bloodstream and into target sites [6].
One potential solution to address this issue and increase the
efficiency of the delivery process is to robotize the process
combined with a remote magnetic actuation mechanism [7].
This allows surgeons to have better control over the navigation
of drugs even when faced with biophysical barriers, which
would otherwise prevent the circulation of drugs.

The miniaturization of conventional robots is limited mainly
by the mechanical structures required to allow them to navi-
gate. By contrast, magnetic actuation is a mechanism that can
remotely and wirelessly actuate robots without necessitating
specialized structures directly in the robots, thus substantially
reducing their size and complexity. Reducing the size of
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robots enables them to move to difficult-to-reach areas inside
biological bodies by applying an external magnetic field that
harmlessly penetrates patients’ body and applies wrenches on
the robots.

Magnetic manipulation of micro/milliscale robots with an
application such as magnetic drug delivery has been an
increasingly popular approach where drug particles in the
body are carried and manipulated by external magnetic fields
to reach a targeted location [8]–[11]. Moreover, small-scale
robots/particles can essentially be seen as magnetic actua-
tion points for continuum manipulators [12], [13]. In other
words, devising control and path planning algorithms for
micro/milliscale robots can eventually contribute to making
magnetic continuum manipulators operational in a (semi-
)autonomous mode [14].

Remote and robotic-assisted particle or micro/milli-robots
manipulation by external magnetic fields has been investigated
through traditional control methods, which are reviewed. The
work in [15] proposes PID controls and an adaptive control
law to remotely operate a microrobot with 3 DOF in an
enclosed environment. The designing of classical proportional
controllers for controlling two micro-scale magnetic particles
in two dimensions while considering interaction wrenches
between the particles has been investigated in [16]. Driller
et al. in [17] propose a vision-based proportional feedback
controller for motion control and path following a set of
two microrobots in three dimensions using magnetic gradient
pulling. In the work [15]–[17], particles move in an obstacle
and disturbance-free space, and the proposed controllers are
not capable of dealing with uncertainties in the case of consid-
ering a complex environment. Zarrouk et al. [18] address an
open-loop control of a particle by using an array of permanent
magnets mounted on a robotic arm end-effector. This work
does not consider a localization system to recover the actual
position of the particle, and therefore, the proposed open-
loop method cannot efficiently accomplish a task such as drug
delivery within a noisy environment like the human body.
The previous work [19] used a configuration of three rotating
permanent magnets and employed a vision-based proportional
control strategy in which gain coefficients are tuned by multi-
ple trials. Although a vision-based localization sensor is used
and the magnitude and direction of the applied magnetic field
are controllable in this work, it lacks the ability to reject
disturbances. In addition, if an obstacle blocks the particle, the
considered task cannot be accomplished. Keller et al. in [20]
propose a human-in-the-loop navigation method to control
positions and orientations of a magnetically guided capsule
endoscopy. The presented method in [20] includes a human
in the control loop to manually navigate a capsule endoscope
for stomach examinations with multiple functionalities tilting
and jumping etc. The work in [21] investigates two open-loop
control methods for positioning two and three microrobots
in two-dimensional space. The microrobots are geometrically
designed to respond uniquely to the same applied magnetic
fields. Therefore, individuals and subgroups of microrobots
can locomote to desired positions by controlling the magnetic
field. The method in [21] is applied to micro-scale particles
(all dimensions under 1 mm), and the global positioning of

particles is done in 2-D space using an offline parameter fitting
method. Pieters et al. in [22] propose a model-free vision-
based kinematic controller for a microrobot constrained to
non-holonomic motions. Kim et al. [23] considers a vision-
based closed-loop control of an array of magnets on an
arbitrary predefined path in three dimensions. The authors in
[24] propose and compare both open and closed-loop vision-

based controllers for steering a helical microswimmer. The
approaches described in [21]–[24] are not equipped to cope
with undersecretaries (obstacles and perturbations) within the
workspace. Although the modern optimal and reinforcement
learning control methods for robots have attracted particular
attention of scholars in the field of robotics in recent years
[25]–[27], real-world implementation of high-fidelity optimal

control and RL strategies have not been the point of focus.
An RL-based model-free control of drug dosing for cancer

treatment is presented in [28]. The authors use a Q-learning
method to schedule the dosing to maximize immune cells for
patients. Nevertheless, the presented method is not categorized
among targeted drug delivery approaches. In the paper [29],
a Q-learning method with the actor-critic architecture and the
deep deterministic policy gradient algorithm is investigated
to navigate a particle within an undisturbed 2-D space. The
approach uses a linearized model of the system around an
equilibrium point to prepare the necessary feedback signals
for the controller. However, the approach is not tested in the
presence of perturbations. Xu et al. in [30] proposes an RL
control of a flexible magnetically actuated joint. The study
focuses primarily on the tilt motion control for the tip of the
instrument, rather than the navigation of the entire joint, as
the primary objective.

Reinforcement learning algorithms have also been used in a
variety of applications, including collaborative assembly tasks
[31], space capture missions [32], and 3D navigation in

cluttered environments [33]. Zhang et al. in [31] employ
a deep deterministic policy gradient algorithm for the task
allocation problem in human-robot collaborative assembly
tasks. Jiang et al. in [32] also modify a deep deterministic
policy gradient algorithm to develop an adaptive tracking
controller based on a highly nonlinear dynamic model of a
three-module cable-driven continuum robot. Furthermore, Hu
et al. in [33] propose a reinforcement learning-based point-
to-point navigation algorithm for a mobile robot in a 3D
constrained terrain environment.

By investigating the existing results on magnetic control of
small-scale robots (as were reviewed earlier), the following
issues are noteworthy: The existing studies mainly employ
open-loop or closed-loop control mechanisms that are inca-
pable of accomplishing a given task in uncertain environments.
In other words, in practice, the methods are not robust in the
presence of disturbances. In addition, the existing studies do
not take into account any obstacles in the design of controllers
or trajectory planners, so these methods are not suitable for
realistic scenarios.

It is worth mentioning that coping with disturbances and
uncertain environments, together with tracking trajectories or
set-point regulations, are the primary factors in controller
design and trajectory planners. An interesting point in the
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magnetic control of milliscale robots is that the mechanism
allows teleoperating particles wirelessly. Usually, remote con-
trol mechanisms are used when working in an environment
that is hazardous or not feasible due to confined or difficult-
to-reach areas. This makes the control of magnetic particles
more prone to uncertainties.

The general motivation behind the presented method is
bridging the gap between simulations and the real-world
implementation of a reinforcement learning algorithm for a
robotic application. When it comes to obstacle avoidance
and perturbation handling scenarios, many approaches have
been proposed to solve the challenges. Some methods such
as [34]–[36] achieve local optima and therefore can not
guarantee a feasible obstacle-free path. Some others [37]–[39]
do global searches for a feasible, valid path, yet the heavy
computational costs prevent them from reacting properly to
pop-up obstacles.

RL-based methods can offer a hybrid behavior by learning a
dynamic, time-varying environment. These approaches do re-
planning and path deformation on-the-fly to avoid suddenly ap-
pearing obstacles and find a valid global path to a determined
target. In addition, compared to those methods in which global
explorations happen online, the training of RL methods is
offline; hence, they are reactive during the execution of a task.
In other words, if the deformation of a path does not result in a
valid trajectory toward a target, a new valid path is calculated.
It is worth mentioning that the quality of the behavior is highly
dependent on the samples used for offline training. Also, the
system’s performance can only be guaranteed statistically. At
the same time, it is feasible to generalize and implement the
approach for different environments with varying forms of
obstacles and perturbations, provided that more samples of
environments are used for offline training and proper tweaking
of the controller’s hyperparameters is considered.

To evaluate results of the RL-based mechanism, two clas-
sical approaches, Attractor Dynamics [40] and execution ex-
tended Rapidly-exploring Random Trees (ERRT) [41] are
tested through conducting simulations and experiments in
which the results confirm that the RL-based method achieves
comparable performance while being a more robust and
generic solution to deploy in dynamical, complex environ-
ments.

Based on the abovementioned issues, more practical ap-
proaches to magnetic control of small-scale robots require
investigation. Although designing online path planners with
appropriate robust controllers is a problem-specific approach,
deep Reinforcement Learning (RL) methods can handle both
the trajectory planning and control tasks simultaneously and
can be generalized to be used in various workspaces. This
paper proposes to employ a deep RL algorithm for magnetic
position control of an object in a constrained environment. To
the best of the authors’ knowledge, this is the first time that
magnetic control of milli-sized (ferro)magnetic particles using
an RL algorithm capable of avoiding obstacles and rejecting
disturbances is addressed. Therefore, the main contribution of
this work are as follows.

• Implementing an RL-based switching framework for dy-
namic control of a particle in the presence of obstacles in

two dimensions with visual feedback and using a robotic
arm in a real-world scenario.

• Through simulations and experiments, the results of the
proposed RL-based algorithm and classical approaches
such as Attractor Dynamics, and execution extended
Rapidly-exploring Random Trees (ERRT) are compared,
revealing the practical efficacy of the proposed method-
ology.

This paper is organized as follows: The problem statement
is given in Section II. Preliminaries on the RL and Rainbow
algorithms are provided in Section III. Section IV thoroughly
describes our proposed RL-based, Attractor dynamics-based,
and ERRT-based switching controllers. Section V is devoted
to explaining the simulation and experiment setups, and the
results from the simulations and real-world scenarios, while
their associated discussion is presented in Section VI.

II. PROBLEM STATEMENT

Inspired by the literature on small-scale robot control and
to address more practical problems (e.g., scenarios in the
presence of obstacles and disturbances), this paper aims to
propose and implement an RL-based switching framework for
dynamic control of a particle in a constrained environment
using a robotic arm and visual feedback. In this work, we have
employed an RL algorithm in a switching control framework
such that the first sub-controller is responsible for finding and
tracking the magnetic particle through a camera mounted on
the end-effector of a robotic arm. This sub-controller makes
the whole system robust against disturbances. A second sub-
controller makes the robot arm carry the particle through a
constrained environment toward a target position. In addition,
a simplified model of the large intestine in two dimensions
has been employed as a constrained environment in which a
milliscale robot is being carried remotely using an external
magnetic field generated by a permanent magnet mounted on
a robotic arm.

The strength and direction of a magnetic field produced
by an attached permanent magnet on the end-effector are not
considered to be adjustable, and due to interference introduced
by the environment, a magnetic particle may not respond to
the field and be carried within the environment. To guarantee
that the particle responds to the external field, we assume that
an external magnetic field is effective on a magnetic particle,
i.e., a milliscale robot, provided that the particle is within a
specific distance from the end-effector of the robotic arm.

As disturbances, we physically draw the magnetic particle
away from the magnetic control zone during active control
within the constrained environment —a simplified model of
the large intestine—. In other words, disturbances are dis-
placements in 2-D space. We assume that disturbances do
not occur too quickly and/or with large accelerations. It is
worth mentioning that in real-world scenarios such as the drug
delivery application, disturbances such as movement of the GI
tract or a fluid current running into a vessel or the tract might
hold the particle back from a region where the wrenches of
the end-effector’s magnet are effective.
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III. PRELIMINARIES

RL deals with learning the behavior (policy) of an agent,
which in this work is a robot that interacts with its envi-
ronment to perform a task. It is an approach for solving
control problems in which a control policy is learned through
repeated trial-and-error interactions between the robot and its
environment. In RL, the behavior of the robot is learned
to maximize the expected sum of rewards provided by its
environment through feedback signals. Assuming discrete time
steps t, the robot performs an action at ∈ Rn, n ∈ {1, 2, · · · }
that depends on the current state of the system st ∈ Rn and is
also considered as a control action. This action result in a new
state st+1, and the robot receives a reward rt+1. This process
is repeated, and the robot’s goal is to learn the optimal policy
π, which maximizes the expected cumulative rewards.

The traditional Q-Learning [42] is concerned with learning
Q-values. Q-values are the expected accumulated rewards the
robot receives when following a given policy starting from
the state-action pair (st, at). In the traditional Q-learning
algorithm, we construct a Q-value table containing all the Q-
values mapping between the possible states a robot can get by
moving between the different states. This basic algorithm can
be inefficient in sampling the state space and may get stuck
in a local optima [43]. Deep Q-Networks (DQN) algorithm
has been an important milestone introduced by [43]. The
difference between DQN and its table version is that instead
of having all the Q-values stored in a look-up table, they are
represented as a multi-layered neural network such that, for a
given state s, outputs a vector of action values Q(s, θ), where
θ are the parameters of the network. Also, by approximating
these Q-values via a neural network, one can consider action
and state space that could not realistically be fitted in memory
(mainly for embedded applications). This results in more
significant generalization attributes and richer representation.

Despite its usefulness, several limitations of the DQN
algorithm are now known, and many extensions have been
proposed so far to enhance its speed or stability. Some
limitations are as follows: Because of a max operator in the
Q-learning equation, DQN may overestimate Q-values and
then choose sub-optimal actions in some states. In addition,
uniformly sampling from a replay memory in the experience
replay mechanism is not optimal [44]. In other words, prior-
itizing samples in a replay memory based on some criteria,
such as the error of the estimated Q-values and the actual
Q-values, can help mitigate the estimation deviations [45].
Furthermore, by introducing a function (i.e., the advantage
function) to DQN, comparing the goodness of actions can
be done [46]. Moreover, unlike the DQN algorithm that
finds out about the mean or max of Q-values, learning their
distributions has shown a better performance [47]. In noisy
networks, weight parameters are modeled as distributions.
In other words, weight parameters are sampled from some
distributions. However, in noisy networks, predicted actions
are covered by distributions, and then finding the best action
is more challenging which can be done by reducing the size of
sampling distributions or data uncertainty over time [48]. The
deep reinforcement learning community has made gradually

several improvements to the DQN algorithm [43] to cope with
its shortages, for example, Double Deep Q-learning Networks
(DDQN) [44], Prioritized DQN [45], Dueling DQN [46],
Distributional DQN [47], Noisy DQN [48]. Finally, Rainbow
[49] combines the improvements as mentioned above.

The main characteristics of the Rainbow algorithm are
as follows: an experience replay memory is introduced, in
which experiences are stored consecutively. Uniformly random
sampling from this buffer removes correlation between the
observations to some extent. In the employed Rainbow algo-
rithm, an N -step replay buffer is implemented where the most
recent N observations are stored. The N -step replay buffer is
used in the N -step learning method [50]. Prioritized replay
buffer [45] is another crucial feature used in Rainbow, where
a criterion is used to measure how unexpected a transition is,
and based on this, the most unexpected transition is replayed
from memory, and weight and bias parameters are updated
accordingly. Noisy networks are an alternative for the ε-greedy
method used in DQN. In noisy layers, deterministic weight and
bias parameters are replaced by a unit Gaussian distribution,
and the applied noises to weight and bias parameters are
independent. In Dueling architecture [46], there is a possibility
to compare the goodness of all actions in a specific state
by introducing advantage and value layers. Also, in [47], the
authors discuss a method known as Categorical DQN, which
learns the distribution of returns instead of the expected return,
and using the proposed method, returns distributions satisfy a
variant of Bellman’s equation. In the implemented Rainbow,
a Dueling architecture is integrated with the Categorical DQN
method, and the last two layers of advantage and value are
replaced by the noisy layers.

IV. METHODS: REINFORCEMENT LEARNING, ATTRACTOR
DYNAMICS, AND ERRT-BASED SWITCHING CONTROLLERS

This section primarily discusses the proposed control archi-
tecture in which a switching control architecture comprises
two controllers, i.e., Sub-controllers 1 and 2, and a switching
law. Sub-controller 1 consists of the inverse kinematic of the
robot and keeps the magnetic particle within the immediate
vicinity of the robotic arm end-effector. Once the particle is
far enough from the end-effector, Sub-controller 1 takes the
robotic arm to the particle position, which is feedbacked into
Sub-controller 1 from an optical tracking system. As soon
as the particle is again close enough to the end-effector, an
appropriate switching law makes Sub-controller 2 control the
robot arm to carry the particle toward an objective inside the
environment using a magnetic field produced by an attached
permanent magnet on the end-effector.

A. Reinforcement Learning-based Approach

In the RL-based method, Sub-controller 2 is trained be-
forehand both as a trajectory planner to prevent the robot
from crashing into obstacles and also as a controller, which
makes the robot globally stable by generating trajectories that
always carry the particle toward a target for an arbitrary initial
position. Sub-controllers 1 and 2 and the switching law are
shown in Figure 1.
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Fig. 1. The switching controller architecture consists of Sub-controllers 1 and 2 and a switching law (SL). SL is a supervisory algorithm that controls
the switching between the various controllers. The observations or feedback signals are: the magnetic particle position obtained through the optical tracking
system (Pp), partial information (I) of the constrained environment captured by an RGB camera on the end-effector, i.e., the RGB camera only covers a
portion of the environment for the Sub-controller 2. s represents a derivative filter. In Sub-controller 1, K1 represents a proportional gain for adjusting the
asymptotic convergence of the controller, and in Sub-controller 2, K2 represents a positive definite 3-by-3 matrix for adjusting the asymptotic convergence
of the controller. K2 is a simple model for the internal control of the robot. Joints are modeled as a single integrator which is represented by 1

s
. Inverse

kinematic and kinematic of the robot is denoted by J−1(p) and J(q), respectively. q and q̇ represent joint positions and angular velocities. V (p) models the
unknown magnetic interaction dynamic between the external magnet on the end-effector and the particle with the input Pee and output Pp.

1) Sub-controller 1: Since there is no control on the
strength and direction of a magnetic field produced by an
attached permanent magnet on the end-effector and due to
uncertainties and disturbances induced by the environment,
the control system should be robust to losing the particle
(when the particle is not responding to the field) and able
to be automatically retrieved if such an event occurs. Sub-
controller 1 is responsible for keeping the magnetic particle
within the vicinity of the end-effector through the information
it gets from an optical tracking system. In other words,
the robotic arm should be capable of finding the magnetic
particle or tracking the particle starting from an arbitrary initial
position. When Sub-controller 1 is activated, the control-loop
mechanism is depicted in Figure 2.

IKFast, The Robot Kinematics Compiler ( [51], [52]),
which analytically solves the inverse kinematics equations
of the robotic arm, UR5 in this work, is employed as Sub-
controller 1 to map Cartesian space of the end-effector to the
joint space of the UR5. Furthermore, the locus of the end-
effector remains parallel to the plane where the particle is
manipulated, i.e., the angle between the plane of work and
the z-axis should remain unchanged.

When a disturbance occurs, Sub-controller 1 will be acti-
vated and the robot basically employs a kinematic control.
Therefore, performance can be very satisfactory, provided that
inserted disturbances are not too fast and/or do not require
large accelerations. Also it should be noted that one of the

Fig. 2. The control scheme employs analytical inverse kinematic solutions
when Sub-controller 1 is activated: The feedback coming from the optical
tracking system consists of the particle position, and by employing the
analytical inverse kinematic solutions, the robotic arm will locate the particle.

issues for using a kinematic control method is singularities.
This implies that the robotic arm needs to be singularity-
free within the workspace where the simplified structure of
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Fig. 3. The blue area shows the singularity-free workspace of the UR5 with
the wrist orientation: [2.182,−2.182, 0]. Considering the locus of the end-
effector when UR5 manipulates the particle within the working environment,
the manipulator will not encounter a singularity (red-colored volume).

the large intestine is located. Outside of the workspace, the
RL algorithm will assure that the arm does not get stretched
too beyond the region of interest. The singularity analysis
of the employed robotic arm (UR5) should be taken into
consideration. As the locus of the end-effector remains parallel
to the plane where the particle is manipulated, Figure 3 shows
that the arm will not encounter singularities.

In the presented scenario, switching between different sub-
controllers essentially implies altering desired joints angles
—calculated from desired values in Cartesian space— and a
closed control architecture within industrial robots or cobots
(collaborative robots) such as UR5 has the responsibility
of regulating joint angles to desired values (sometimes for
simplicity each joint of an industrial arm might be seen as
a simple integrator, which is being controlled internally). It
should be noted that the due to the nature of tasks considered
in this work which are set-points regulations —kinematics-
based when Sub-controller 1 is active, or based on simpli-
fied dynamics (single integrators) when Sub-controller 2 is
active—, disturbances do not occur too fast and/or with large
accelerations.

2) Sub-controller 2: Once the robotic arm locates the
magnetic particle, Sub-controller 2 steers the robotic arm
to carry the particle to a desired location in a constrained
(intestine-like) environment. Importantly, feedback of the op-
tical tracking system is not used in this controller (Pee is in
the vicinity if Pp), and the robots only use the end-effector
RGB camera to perceive the environment partially. When
Sub-controller 2 is activated, the control-loop mechanism —
depicted in Figure 4— is as follows: The RL algorithm takes
the particle toward a user-determined target position within
the environment. This sub-controller is active as long as the
particle is responsive to the external magnetic field of the

Fig. 4. The control scheme that trains a customized Rainbow algorithm to
navigate through a constrained workspace when Sub-controller 2 is activated:
Sub-controller 2 steers the robotic arm to carry the particle to a desired
location in the environment.

Fig. 5. Observations to train Sub-controller 2: Two-channel images 84× 84,
i.e., 2×84×84. The first channel includes a gray-scale image obtained from
the end-effector RGB camera, and the second channel is an augmentation of
two matrices with a size of 42 × 84 which are populated with the goal and
robot current positions. The average of the pixel values in the center of each
gray-scale image is used for obstacle detection.

magnet attached to the end-effector, in other words, the particle
is within a specific threshold from the end-effector.

For Sub-controller 2, inspired by [49], a customized
Rainbow algorithm with Quantile Huber loss from Implicit
Quantile Networks (IQN) algorithm [53] and ResNet [54] are
employed. The Huber loss is traditionally used to train the
family of DQN RL algorithms since the introduction of DQN
by Mnih et al. in [55]. A comparative study by Obando-Ceron
et al. in [56] showed the superior performance of the Huber
loss over the more straightforward mean-squared error loss.

Observations which are fed to Sub-controller 2 are two-
channels images with dimension 84× 84, i.e., 2× 84× 84. It
is worth mentioning that images are downsampled from 480×
480 to 84× 84. The first channel includes a gray-scale image
obtained from the end-effector RGB camera, and the second
channel is built by augmentation of two matrices with the
size 42 × 84, which are populated with the goal and current
positions of the robot, respectively (Figure 5). It should be
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Fig. 6. The switching controller architecture consists of Sub-controllers 1 and 2 and a switching law (SL). SL is a supervisory algorithm that controls
the switching between the various controllers. The observations or feedback signals are: the magnetic particle position obtained through the optical tracking
system (Pp), partial information (I) of the constrained environment captured by an RGB camera on the end-effector, i.e., the RGB camera only covers a
portion of the environment for the Sub-controller 2. K is the gain of the state feedback controller, B2×2, and A2×2 are the identity matrices (Id2×2).

Furthermore, G2×2=[K Id]
[
A B
Id 0

]−1
[ 0
Id ]. The symbol s represents a derivative filter. In Sub-controller 1, K1 represents a proportional gain for

adjusting the asymptotic convergence of the controller. Joints are modeled as a single integrator which is represented by 1
s

. Inverse kinematic and kinematic
of the robot is denoted by J−1(p) and J(q), respectively. q and q̇ represent joint positions and angular velocities. V (p) models the unknown magnetic
interaction dynamic between the external magnet on the end-effector and the particle with the input Pee and output Pp.

noted that a simple segmentation process is done on each RGB
camera to detect obstacles. A square of pixels of size 15-
by-15 in the center of each image is considered, and then
the mean of the pixel values in that square is calculated and
used to detect obstacles. An obstacle is detected when the
pixels’ average is <150. Four discrete actions are considered
for controlling the robotic arm end-effector in the xy-plane in
two dimensions by setting a new position for the end-effector
with a small change with respect to the end-effector current
position. Figure 5 shows details of the training.

Furthermore, as a reward function employed in the training
of Sub-controller 2, an episode is terminated with a negative
reward if there is no answer for the inverse kinematic or num-
ber of steps in each episode exceeds 150 or it is detected that
the end-effector would force the particle inside an obstacle. In
addition, an episode is terminated with a positive reward if a
goal is detected by the end-effector-camera within 2 cm in the
xy-plane. In precise terms, if the Norm-2 of the error between
a current position of the robotic arm and a goal position is <=
2 cm, that target is reached. It should be added that during
training, goals are spawns randomly at different locations in
each episode.

3) Switching Signal: In the switching control architecture,
the updating law for activating the sub-controllers is as fol-
lows:

SL =
1

2

(
3 + sgn(T− e)

)
(1)

where SL is the index of to-be-active Sub-controller, e =
‖Pee− Pp‖ and Pee is the current position of the robotic arm,
Pp is the position of the particle, and T is an arbitrary threshold
set to 10 cm for the experiment. Although T is an arbitrary
threshold, it is dependent on the step size of the manipulator,
transporting the particle and also the particle’s size. In other
words, the reduced threshold is allowed by using the smaller
step or particle sizes.

It should be noted that sgn(arg) = 1, if arg >= 0, otherwise
sgn(arg) = −1. In other words, Sub-controller 2 is activated
unless the euclidean distance between end-effector and particle
positions is more than or equal T.

B. Attractor Dynamics-based Approach
In the Attractor Dynamics-based method, a state

feedback controller together with a dynamic modulator
[40, Section 3.2] are designed to ensures that the robot will

not hit convex obstacles while carrying the particle toward
a goal. The block diagram of the algorithm is shown in
Figure 6. Sub-controller 1 and Switching law are the same
as what is discussed in Section IV-A1. For Sub-controller
2, each joint of the manipulator is modeled as a continuous
single integrator:



8

ṗ(t) = Ap(t) + Bu(t),

o(t) = p(t)
(2)

where p(t) =

[
x
y

]
∈ R2×1 is Cartesian position of the end-

effector in a 2-D space (xy-plane), B2×2, state matrix and
A2×2, input matrix, are the identity matrices (Id2×2). Further-
more, u(t) ∈ R2×1 is a 2-by-1 control input. Let Pg denotes
the desired constant 2-by-1 vector for the output o(t) to track
asymptotically.

The control goal of Sub-controller 2 is to design a state
feedback controller in which u(t) depends on p(t) and Pg so
that the regulation error e(t) = Pg − o(t) goes to zero when
t → ∞. It can be shown ( [57], [58]) that the state feedback
control law:

u(t) = GPg −Kp(t) (3)

makes System 2 a globally asymptotically stable system,

where G2×2 = [K Id]2×4

[
A B
Id 0

]−1

4×4

[
0
Id

]
4×2

.

Although the control law 3 makes the manipulator stable,
it cannot prevent the robot from colliding with obstacles.
Therefore, a real-time obstacle avoidance strategy should be
considered together with the law 3. To design the obstacle
avoidance protocol, we follow the same line of ideas as in
[40]. In this work, we consider rectangular 2-D obstacles

based on superellipse curves, where Γ(p) : ‖x−xo

a ‖
n +

‖y−yo

b ‖
n = 1 represents the boundary points of an obstacle

with the center point [xo, yo], furthermore a and b are called
the semi-diameters of the curve. In other words, the curve Γ(p)
is confined in the rectangle ‖x−xo‖ <= a and ‖y−yo‖ <= b.
The similarity of the curve to a rectangle is adjustable with the
parameter n, and with n > 2, the curve looks like a rectangle
with rounded corners.

The dynamic modulator matrix M (designed in
[40, Section 3.2]) propagates the influence of the obstacle on

the motion flow with the maximum effect at the boundaries
of the obstacle, and vanishes for points far from it. Applying
the dynamic modulator, on the linear system 2 yields:

ṗ(t) = M
(
Ap(t) + Bu(t)

)
(4)

where u(t) is given in Equation 3. Details of design, stability
and convergence analysis of the system with a modulation
matrix can be found in [40]. Here we skip the analysis for
brevity.

For the computer implementation of 4, a simple way is to
replace the derivative by a difference

p(tk+1) = M
(
Ap(tk) + BGPg −Kp(tk)

)
h+ p(tk)h

where tk is the sampling instant and h = tk+1 − tk is the
sampling period.

C. ERRT-based Approach

To better contextualize the proposed RL-based control al-
gorithm, this work additionally proposes employing an ERRT-
based algorithm, the specifics of which is detailed in [41] as
a path planner within the Sub-controller 2.

ERRT is a sampling-based planning method for a contin-
uous domain. Its two extensions compared to RRT method
[59] —the waypoint cache and adaptive cost penalty search—

enable the method to explore the environment and plan an
obstacle-free path on the fly. However, the quality of the
generated path and efficient replanning heavily depends on
the processing of the received obstacles images from the en-
vironment. Therefore, to be able to use this algorithm to solve
the presented problem in this paper, we develop a technique to
optimally allocate obstacles in rectangular shapes to be used in
the ERRT algorithm. In addition, the applicability of algorithm
in real-time heavily depends on how much the environment
is polluted by obstacles, the complexity of obstacle shapes,
and also whether obstacles are static or dynamic and how fast
obstacles are changing.

The block diagram of the switching controller based on
this approach is presented in Figure 7. Sub-controller 1 and
Switching law are the same as what was mentioned in Sec-
tion IV-A1. However, in Sub-controller 2, ERRT, instead of
the RL-based algorithm, is used as a path planner in Cartesian
space and the output is fed to the inverse kinematic function
to generate joint angles.

In the obstacle processor, a quadtree [60] as a tree data
structure is used for spatial 2-D searching to optimally parti-
tion obstacles into minimum number of rectangular obstacles
within a grayscale image respecting a user-defined threshold
for height and width of acceptable smallest rectangle, as
depicted in Figure 8. As it is shown, there exist regions with
different shades of gray and the contrast ranges from black —
pixel value 0— at the weakest intensity to white —pixel value
255— at the strongest. To reduce the cont of computation in
the ERRT algorithm, only regions with color intensity of 50
or less. These rectangular obstacles can be used efficiently by
the ERRT method.

D. A Discussion on Stability

For the stability of this Sub-controller 1 in RL, Attractor
dynamics, and ERRT-based methods, it can be shown that

e1 = Pp −Pee,

ė1 = Ṗp − Ṗee,

ė1 = Ṗp − J(q)q̇,

ė1 = Ṗp − J(q)J−1(q)
(
Ṗp +K1(Pp −Pee)

)
,

ė1 = −K1e1

(5)

where K1 is a 3-by-3 diagonal positive define matrix, then it
is guaranteed that Cartesian vector-valued e1 converges to 0
asymptotically for any initial values.

As it is discussed in Section IV-A1, a closed control
architecture within industrial robots or cobots (collaborative
robots) such as UR5 has the responsibility of regulating joint
angles to desired values (sometimes for simplicity each joint of
an industrial arm might be seen as a simple integrator, which
is being controlled internally). For the stability of this Sub-
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Fig. 7. The switching controller architecture consists of Sub-controllers 1 and 2 and a switching law (SL). SL is a supervisory algorithm that controls
the switching between the various controllers. The observations or feedback signals are: the magnetic particle position obtained through the optical tracking
system (Pp), partial information (I) of the constrained environment captured by an RGB camera on the end-effector, i.e., The RGB camera only covers a
portion of the environment for the Sub-controller 2. I is fed to the obstacle processing unit which optimally partitions obstacles into minimum number of
rectangular obstacles. The ERRT unit generates an obstacle-free path based on the given feedback information. The symbol s represents a derivative filter.
In Sub-controller 1, K1 represents a proportional gain for adjusting the asymptotic convergence of the controller, and in Sub-controller 2, K2 represents a
positive definite 3-by-3 matrix for adjusting the asymptotic convergence of the controller. K2 is a simple model for the internal control of the robot. Joints are
modeled as a single integrator which is represented by 1

s
. Inverse kinematic and kinematic of the robot is denoted by J−1(p) and J(q), respectively. q and

q̇ represent joint positions and angular velocities. V (p) models the unknown magnetic interaction dynamic between the external magnet on the end-effector
and the particle with the input Pee and output Pp.

controller 2 in RL and ERRT-based methods , it can be shown
that

e2 = Pref −Pee,

ė2 = Ṗref − Ṗee,

ė2 = Ṗref − J(q)q̇,

ė2 = Ṗref − J(q)J−1(q)
(
Ṗp +K1(Pref −Pee)

)
,

ė2 = −K2e2

(6)

where K2 is a 3-by-3 diagonal positive define matrix, then it
is guaranteed that Cartesian vector-valued e2 converges to 0
asymptotically for any initial values.

Both RL and ERRT algorithms acts as path planner and
it can be seen that robot’s internal controller stabilizes the
system, as long as an obstacle-free path within workspace
of the robot is generated. This is determined by how Sub-
controller 2 is well trained in RL algorithm or how good
the quality of a path is in ERRT method. Furthermore, in
the Attractor dynamic-based method, the global asymptotic
stability of Sub-controller 2 is guaranteed as it is discussed
earlier in Section IV-B.

It should be noted that, each control loop has different set-
points and the loops are entirely separated in that sense. In
other words the switching between those two stable control

loop does not introduce insatiability to the system and the
loops accomplish separated sub-tasks with different set-points.
Therefore, this question may raise that whether or not there
is a possibility of having only one controller to accomplish
the task. Since there is no need to have collision avoidance
strategy when the manipulator is moving to the location of
disturbed particle, so two different controllers are considered.

V. SIMULATIONS, EXPERIMENTS, AND RESULTS

For simulations and real-world experiments, we use the
UR5 robotic arm from Universal Robots. The UR5 robot is a
collaborative robot with six joints. Built-in safety mechanisms
remove the need for safety guards between humans and the
robot, and this opens possibilities for using the robot in
medical applications where the robot is in direct contact with
a patient [61]. It has a low-level controller called URControl,
and it can be programmed by communicating over a TCP/IP
connection. To control the robot at the script level, a pro-
gramming language called URScript can be used. URScript
programs can be sent from a computer to the robot controller
(URControl) as strings over the socket once the connection
with the robot is established. The URControl runs programs
in real-time and sends information at a maximum frequency
of 125Hz. The output of the URControl contains all the
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(a)

(b)

(c)

Fig. 8. Examples of inputs and outputs for the obstacle processing unit.
(a)-(c): the most left images are the inputs to the unit. The input images
are converted to grayscale images first, then a quadtree algorithm is used to
optimally partition obstacles within a grayscale images into minimum number
of rectangular obstacles respecting an user-defined threshold for height and
width of acceptable smallest rectangle. In these figures, the threshold is 50
for both height and width.

information the robot needs to perform a movement, including
angular positions, velocities, target accelerations, and currents
for all joints. In this work, the movel command, which offers a
position control interface in tool-space, is used to control the
UR5 [62]. It should be noted that achieving high-frequency
real-time performance for a control loop is limited by the
bandwidths of employed sensors and also the computational
time required to calculate the control input.

The UR5 manipulator is equipped with the Robotiq 2F-85
adaptive gripper, holding a neodymium block magnet in a fixed
position. The experiment setup is shown in Figure 9, where
images from the end-effector camera are used to detect the
magnet and identify obstacles in the environment.

We use a sphere NdFeb magnet with grade N42 and
diameter 5 mm as a magnetic particle. Besides, a neodymium
block magnet with dimensions 50 × 25 × 10 mm with grade
N35 is attached to the UR5’s end-effector to produce enough
magnetic field strength to carry the magnetic particle. The
magnets are shown in Figure 10. To avoid a collision between
two magnets, the UR5 moves in an imaginary plane with a 10
cm distance from the surface of the table.

A. Simulations, Experiments, and Results: Reinforcement
Learning-based Approach

Training a policy in the real world can be costly. Simulations
can speed up the learning process and help avoid potentially
unwanted actions that can damage the robot or the surrounding
environment. OpenAI Gym and PyBullet [63] are used for this

Fig. 9. The experimental setup: a UR5, a permanent magnet, and an RGB
camera mounted on the end-effector; the constrained 2D workspace; and the
object (a sphere magnet).

(a) (b)

Fig. 10. (a): A neodymium block magnet with dimensions of 50× 25× 10
mm and grade N35. (b): A sphere NdFeb magnet with grade N42 and diameter
5 mm as a magnetic particle.

purpose. However, modeling a complex environment or robots
can be challenging, and this may introduce a simulation-reality
gap [64]. To minimize this gap, the UR5 swept and imaged the
whole real-world environment using the mounted RGB camera
(with step = 1 cm in both x and y-axes). As discussed, the
UR5 end-effector was kept in an imaginary plane with a 10
cm distance from the surface of the table during the imaging
process. Samples of these images are shown in Figure 5. The
images are fed to the algorithm in the training phase.

An overview of the environment used for training Sub-
controller 2 is shown in Figure 11. The customized Rainbow
algorithm, as previously explained, is employed, where we add
images from the end-effector RGB camera together with goal
and end-effector positions to the observation space. Image-
based observations are used to avoid collisions with obstacles
in the environment. Figure 5 shows details of the training.

As mentioned, OpenAI Gym and PyBullet are employed
to train the customized Rainbow algorithm for Sub-controller
2, and Figure 12 represents the learning performance of the
employed RL algorithm over the training episodes. It is worth
mentioning that in the simulation, the magnetic particle is
not considered, and therefore the whole switching control
architecture is not implemented. After training, the average
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Fig. 11. The simulation environment used to train the Rainbow controller:
Images taken from the real-world environment are used as observations. The
robot gets a negative reward for hitting obstacles and not finding an inverse
kinematic solution. It gets positive rewards for reaching the target.

success rate for the learned policy is 100% for randomly
generated initial and goal positions (calculated over 30 random
restarts).

Fig. 12. The mean and standard deviation of loss and rewards over each
training episode for 5 rounds of training. At the beginning of training, the
system’s performance is poor, as there is a high standard deviation for the
losses and rewards. Eventually, the average and standard deviation of the
rewards and losses will improve, meaning that the system will become more
reliable and, statistically speaking, will accomplish the task.

Afterward, we consider the magnetic particle in the loop,
and the full controller structure is implemented. In the real
world, the magnetic particle is consistently carried to a ran-
domly placed target starting from a random position. We
repeated undisturbed scenarios for arbitrary initial and goal
positions for 30 episodes, and the average success rate is
100% with the mean tracking error 0.02 (m) in both axes,
the average maximum error 0.08 (m) and 0.09 (m) in x,

Fig. 13. A scenario of set-point regulation without disturbances in one
episode. (a,b): Cartesian positions of the end-effector and the magnetic particle
are depicted in both x and y-axes. (c,d): Tracking Errors (T.E.) in each axis
are shown. Errors in each axis increase when there is motion in that axis. (e):
The Euclidean norm of errors in both axes at each step number is shown. (f):
The locus of the particle and end-effector in the 2-D workspace is depicted.

and y-axes, respectively. Figure 13 represents a set-point
regulation scenario without any disturbances. In this specific
scenario, the particle is supposed to reach the goal position
[0.21,−0.40, 0.10] within the constrained environment.

Finally, the robustness of the system to deal with external
disturbances which could result from real-world uncertainties
is studied. As disturbances, we physically draw the magnetic
particle away from the magnetic control zone during active
control. As a demonstration case, Figure 14 depicts the particle
and end-effector trajectories through the environment in the
presence of disturbances where the particle is supposed to
reach the goal position [0.21,−0.40, 0.10]. We repeated the
disturbed scenarios for random disturbances, initial, and target
positions for 30 episodes, and the average success rate was
96.6%.

In Figure 12, we run 5 rounds of training, and each training
consists of multiple episodes (more than 90 thousand). In each
episode, initial positions and goals are set randomly. In the
initial episodes (for all 5 rounds of training), the robot most
likely fails to accomplish the task, which is why the average
of the rewards for the initial episodes considering 5 rounds
of training is a negative number and there is a relatively high
loss as well. In addition, it can be seen that at the beginning
of training, the system’s performance is poor as there is a high
standard deviation for the losses and rewards considering the
5 rounds of training. After some more episodes, the average
and standard deviation of the rewards and losses, considering
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Fig. 14. A scenario of set-point regulation with three disturbances in one
episode. Disturbances happen at step numbers 29, 98, and 154 (a,b): Cartesian
positions of the end-effector and the magnetic particle are depicted in both
x and y-axes. In (a), disturbances at step numbers 98 and 154, and in (b),
a disturbance at step number 98 is visible. (c,d): Tracking Errors (T.E.) in
each axis are shown. Errors in each axis increase when there is motion in
that axis or when a disturbance happens. The magnitude of disturbances at
step numbers 98 and 154 and step number 29 can be seen in (c) and (d),
respectively. (e): The Euclidean norm of errors in both axes at each step
number is shown. (f): The locus of the particle and end-effector in the 2-D
workspace is depicted.

all rounds of training, get better, and this means that the
system gets more reliable and, statistically speaking, it will
accomplish the task. After 90 thousand episodes, the time to
reach a random target position from a random initial position
will differ. Figures 13 and 14 only show two episodes after
the controller is trained (after 90 thousand episodes).

B. Simulations and Results: Attractor Dynamics-based Ap-
proach

The following example illustrates the Attractor Dynamic-
based method without any disturbance applied.

Example 1. Consider a 2-D shape of the constrained en-
vironment with the manipulator’s initial Cartesian position
[−0.78, 0.73, 0.10] and target position [0.77, 0.19, 0.10]. An
overview of the simulation is shown in Figure 15. It should be
noted that the manipulator can sense an obstacle partially with
a maximum height and width of 2 cm. The system employs
the state feedbaack control law given in (3). Since there is
no perturbation is assumed, Sub-controller 1 (as shown in
Figure 6) is not active.

An advantage of the considered conventional method is
that there is no need for offline training or parameter tuning;
however, the method cannot handle concave or connected

(a) (b)

(c) (d)

(e) (f)

Fig. 15. Online obstacle avoidance of UR5 carrying an undisturbed particle
through a 2-D environment as discussed in Example 1. Information from a part
of the obstacle seen by the robot is used to make the particle go around the
obstacle. Since there is no perturbation, Sub-controller 2 carries the particle
toward the target position.

obstacles. Since the method requires analytical modeling of
the obstacles boundary, we consider a rectangle around the
part of the obstacle detected by the robot’s sensor — we fit the
point cloud with a rectangle—. However, the actual shape of
obstacle(s) may not be necessarily a rectangle. In other words,
the approach might be conservative in some scenarios.

In the following examples, a disturbance is introduced to
the motion of the particle.

Example 2. Suppose the same 2-D space as Example 1
is employed. The manipulator’s initial Cartesian position
[0.72, 0.76, 0.10] and target position [−0.77, 0.12, 0.10]. An
overview of the simulation is shown in Figure 16. Furthermore,
a perturbation in x-axis with magnitude 0.63 m is applied to
the particle when the particle is at the position [−0.21, 0.55, 0]
or at step number 50 where Sub-controller 1 (as shown Fig-
ure 6) is active and takes the manipulator to the new position of
particle. When the manipulators in the place, Sub-controller 2
has the responsibility of carrying the particle toward the target
position. Also in this example, the manipulator can partially
sense an obstacle with a maximum height and width of 2 cm.
As shown in Figure 16, the particle passes the obstacles based
on received information from the obstacles (part of obstacle
seen by the robot), its direction, and relative position to the
obstacles.
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(a) (b)

(c) (d)

(e) (f)

Fig. 16. Online obstacle avoidance of UR5 carrying a disturbed particle
through a 2-D environment as discussed in Example 2. A disturbance in x-
axis with magnitude 0.63 m is applied to the particle when the particle is at
the position [−0.21, 0.55, 0], as shown in Figure 16d. When the disturbance
occurs, Sub-controller 1 directs the manipulator to the new position of the
particle. When the manipulator reaches the position, Sub-controller 2 has the
responsibility of carrying the particle toward the target position (the path
shown in red). Information from a part of the obstacle seen by the robot is
used to make the particle go around the obstacle.

C. Simulations and Results: ERRT-based Approach

The following example illustrates the performance of ERRT-
based method with disturbances applied to the particle.

Example 3. Consider a 2-D environment as depicted in
Figure 17 with the manipulator’s initial Cartesian position
[−0.24,−0.27, 0.10] and target position [0.19,−0.28, 0.10].

In the next scenario, two disturbances happen at loca-
tions [0.21,−0.34, 0.10] and [0.20,−0.47, 0.10] where the
particle is displace to new positions [−0.19,−0.48, 0.10]
and [−0.24,−0.28, 0.10], respectively as shown in Figure 18
where initial, target, and disturbance positions, explored area
and selected path are depicted. In addition, it should be noted
that the ERRT algorithm senses obstacles through received
images from the environment depending on the robot’s end-
effector current position (obstacles are partially seen by the
camera mounted on robot).

Figure 19 depicts the particle and end-effector trajectories
together with Tracking Error (T.E.) in both axes x and y and
mean of T.E., through the environment in the presence of
disturbances where the particle is supposed to reach the goal
position [0.21,−0.40, 0.10].

(a)

(b)

Fig. 17. (a): The initial environment provided for the robot with boundary
obstacles to limit the search space. (b): The initial planned path by ERRT-
based path planner from the initial position to the goal position together with
the explored and selected paths and boundary obstacles to limit the search
space. No obstacle is detected by the camera.

VI. DISCUSSIONS

In this paper, we examine the feasibility of implementing the
Rainbow algorithm [49] customized with Quantile Huber loss
from Implicit Quantile Networks (IQN) algorithm [53] and
ResNet [54] to accomplish set-point regulation tasks within a
constrained environment in the presence of disturbances. Our
results suggest that deep RL methods as a trajectory planner
prevent the robot from encountering singularities and guide the
particle toward a goal while avoiding obstacles. Furthermore,
the results show that it is possible to train the RL algorithm
fully within a simulation environment and deploy it as-is in a
real-world scenario for remote magnetic control with reliable
behavior in the presence of disturbances and uncertainties.
Although traditional control approaches may ensure some
performance levels under restricted assumptions, their design
is challenging, especially when only partial information from
the environment is available at each time step. Also, in many
traditional path planning and control design approaches, an
exact analytical model of the robot and its interaction with
the surrounding environment is a necessity; contrastingly, RL
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(a)

(b)

(c)

Fig. 18. The initial, target, and disturbance locations, explored area and
selected path. (a): The initial position before the first disturbance is at
[−0.24,−0.27, 0.10], target position is at [0.19,−0.28, 0.1], and the first
disturbance occurs at [0.21,−0.34, 0.1]. (b): The initial position after the
first disturbance is at [−0.19,−0.48, 0.1], the target position is the same
as before, and the second disturbance occurs at [0.20,−0.47, 0.1]. (c): The
initial position after the second disturbance is at [−0.24,−0.28, 0.1], the
target position is kept the same as before, and no disturbance occurs.

Fig. 19. A scenario of set-point regulation with three disturbances in one
episode. Disturbances happen at step numbers 72 and 90 (a,b): Cartesian
positions of the end-effector and the magnetic particle are depicted in both x
and y-axes. In (a), a disturbance at step numbers 72, and in (b), a disturbance
at step number 90 are visible. (c,d): Tracking Errors (T.E.) in each axis are
shown. Errors in each axis increase when there is motion in that axis or when
a disturbance happens. The magnitude of disturbances at step numbers 72 and
step number 90 can be seen in (c) and (d), respectively. (e): The Euclidean
norm of errors in both axes at each step number is shown. (f): The locus of
the particle and end-effector in the 2-D workspace is depicted.

methods do not rely on pre-existing knowledge or models.
The drug delivery example is a futuristic, potential appli-

cation in which the human intervascular system is a 3-D,
time-varying, and dynamic environment. However, compared
to traditional methods, the strength of RL-based methods is
that they are applicable to the more complex environment
without a need to re-design the controller structure —which
is based on neural networks—. Yet, there might be a need for
more samples in the offline training and proper tweaking of
the controller’s hyperparameters.

A simple image segmentation algorithm was employed in
this work; however, equipping the RL method with a high-
fidelity segmentation algorithm would help in better under-
standing the environment, thereby reducing the simulation-
reality gap and augmenting the generalization of the learning
algorithm to be used in a different environment. We expe-
rienced that learning performance is also sensitive to the
choice and format of observation space; therefore, learning
parameters must be chosen carefully.

It should be noted that as a first step to evaluate the
feasibility of the proposed approach, we considered an optical
tracking system to detect and guarantee the presence of a
magnet in the immediate vicinity of the UR5 end-effector and
an RGB camera to detect the constrained workspace. However,
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for more practical uses, all the imaging modalities are better
integrated at the end-effector and replaced by more relevant
radiography methods, which are considered safe procedures,
and can be used to see through the body.

It is worth mentioning that the presented Attractor
Dynamics-based conventional method can only be used where
obstacle(s) are convex and are not connected. The method
requires analytical modeling of the obstacle’s boundary. To this
end, we consider a rectangle around the part of the obstacle
detected by the robot’s sensor —we fit the point cloud with a
rectangle—. However, the actual shape of the obstacle(s) may
not necessarily be a rectangle. In other words, the approach
might be conservative in some scenarios. Also, integration
errors can cause issues in the discrete implementation of the
approach in a way that the next computed point falls inside an
obstacle boundary due to the integration error, and trajectories
tend to stay inside the obstacle (as no trajectory can enter or
leave obstacles).

To highlight the benefits of the proposed RL-based al-
gorithm, an ERRT-based approach is also employed to ac-
complish the same task. ERRT is a sampling-based planning
method that explores the environment and plans an obstacle-
free path on the fly.

In order to handle feeding the algorithm with varying
obstacle shapes, a technique is developed to optimally partition
obstacles into rectangular shapes that can be processed by
the ERRT algorithm. This is the first difference between RL
and ERRT-based methods. In the RL-based approach, there is
no need to be concerned about the shape of obstacles as the
whole obstacle image will be taken into account. Therefore,
by approximating obstacles, the available workspace for gen-
erating an obstacle-free path might be reduced. At the same
time, this approximation will also increase the computation
loads to some extent, which eventually will lead to decreased
bandwidth for the control loop.

In the proposed RL-based algorithm, training or exploring
the environment takes place offline, yet in the ERRT method,
environment exploration happens on the fly, and this directly
affects whether the method can be used in real-time. If the
environment is filled with complex and/or dynamic obstacles,
the ERRT algorithm might not be responsive to the changes
due to computational loads. However, this is not the case in the
RL-based algorithm. In the presented scenario in this paper,
the environment is static so it was feasible to employ ERRT
method.

In the ERRT method, there is a need for calibration of
the environment with respect to the robot to keep track of
the obstacles’ positions. Yet, in the RL-based approach, the
current pose of the robot will be assigned to the received
obstacle image, and this will be preserved in the neural
network, which will enable employing the RL-based method
in dynamic 3-D environments without being concerned about
the calibration. The calibration constraint prevents ERRT from
being implemented in 3-D environments.

VII. CONCLUSION

This article derives and validates a customized Rainbow RL
method for online trajectory planning and remote control of

a ferromagnetic particle. Using magnetic actuation, the robot
learned to robustly carry a small ferromagnetic object in a
constrained environment. Furthermore, the trained network is
integrated with the two-module controller, which is deployed
as-is in a validation experiment in the real world, where the ex-
periment showed the robustness of the approach against distur-
bances. Also, a conventional controller based on the Attractor
Dynamics-based approach is designed. Afterward, simulations
were carried out using more complex environments, and the
shortcomings of the proposed method were also discussed.
Finally, the experiment results from the ERRT-based method
highlight the improved robustness to dynamic environments
offered by the proposed RL-based algorithm in this work.
For future work, a three-dimensional environment can be
investigated. Also, in this work, the constrained environment
is static, meaning it does not change over time. However, by
training the RL algorithm in dynamic environments, there is
a possibility of considering time-varying workspaces.
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Ulysse Côté-Allard received the Ph.D. degree
in electrical engineering from Université Laval,
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