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Data-Driven Virtual Sensing for Probabilistic
Condition Monitoring of Solenoid Valves
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Abstract— There is an emerging industrial demand for predic-
tive maintenance algorithms that exhibit high levels of predictive
accuracy. Such condition monitoring tools must estimate dynamic
quantities, such as Remaining Useful Lifetime (RUL) and the
State of Health (SOH), based on a, typically, restricted set of
measurements that can be obtained in an operational setting.
These quantities exhibit inherent stochasticity and can only be
approximately determined a posteriori to system failure. This
paper proposes a generic prognostic tool for probabilistic condi-
tion monitoring of mechatronic systems, with the aim to improve
the probabilistic prediction of condition metrics, specifically RUL
and SOH. Therefore we propose to identify a Hidden Markov
Model (HMM) from a fully instrumented measurement set, that
is only available for a restricted set of run-to-failure experiments,
typically gathered in an R&D setting. Although being artificial
and retrospectively constructed metrics, we interpret RUL and
SOH as physical measurements with the purpose to identify
accurate degradation dynamics. Once the degradation model
is identified, we practice the mathematical flexibility of the
HMM framework to estimate several of the no longer available
dynamic quantities of interest in real-time, from the limited set
of measurements that are available in an operational setting.
This modelling paradigm is known as virtual sensing. Predictive
performance and computational efficiency are further improved
by domain knowledge based pre-processing of the measurements.
We apply our methodology to solenoid valves (SV), a widely
used and often critical component in many industrial systems,
which display a large variation in useful lifetime. Benchmark
results show that the predictive capabilities of the presented
methodology compares with prognostic techniques that are more
computationally and memory demanding.

Note to Practitioners—The motivation for this research is
twofold. First there is a pending industrial need for improved
diagnostic and prognostic tools. Second there is the observation
that lifetime tests usually take place in an R&D setting and that
expert labelling of Remaining Useful Lifetime (RUL) or State
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of Health (SOH) of a component or system is often based on
measurement data that is not available in the industrial setting
where the prognostic tools are to be deployed in the end. These
two observations suggest that there is large potential in methods
that can correlate the expert labelling, in particular RUL &
SOH signals, with measurement data that is available in the
industrial setting. Our approach has been tested in detail on
the case of Solenoid Valves, which are widely used in industry
and that are often safety critical. Our experiments demonstrate
that the method compares with brute force approaches that
overpower ours both in terms of computational as well as memory
requirements. The method is furthermore generic and there is
no reason to assume it would not work for other applications.

Index Terms— Predictive maintenance, condition monitoring.

NOMENCLATURE

Acronyms
AC Alternating Current.
BCNN Bayesian Convolutional Neural Network.
CNN Convolutional Neural Network.
DL Deep Learning.
EM Expectation-Maximization.
EOL End Of Life.
HGMM Hidden Gaussian Markov Model.
HMM Hidden Markov Model.
L2R Left-to-right.
MAE Mean absolute error.
MAP Maximum A Posteriori.
MLE Maximum Likelihood Estimation.
MSD Mass-spring-damper.
NRUL Normalized Remaining Useful Lifetime.
R&D Research and Development.
RUL Remaining Useful Lifetime.
SOH State of Health.
SV Solenoid valve.
UQ Uncertainty Quantification.
Symbols
1 Time span.
ϵ Arbitrary threshold value.
D Dataset.
T Similarity transformation matrix.
Y Data sequences of y.
Z Data sequences of z.
µt State mean vector at time t .
6t state covariance matrix at time t .
Q(·, ·) Evidence Lower Bound.
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θ Model parameters.
A State transition matrix.
C Emission matrix.
I Identity matrix.
Im, f und Impedance spectrum magnitude at the funda-

mental AC-source frequency.
Id, f und Inductance spectrum magnitude at the funda-

mental AC-source frequency.
K Total number of data sequences.
l Health label.
ny Dimension of the vector y.
nz Dimension of the vector z.
nx Dimension of the vector x .
Q System covariance matrix.
qleak Leakage flow during solenoid off-phase.
qout Outlet flow during solenoid on-phase.
R Emission covariance matrix.
T Length of data sequence.
Td Failure kick-in time instant.
T f Deterioration kick-in time instant.
th Time of first hit during valve opening.
Tsurf Plunger surface temperature.
x Latent state vector.
y Measurements assumed to be always available.
z Measurement available for restricted set of

experiments.

Operators
H(·) Entropy.
N (·, ·) Normal distribution.
Q(·, ·) Evidence Lower Bound.
p(·|·) Conditional probability density function.
p(·) Probability density function.
p(·) Probability density function.

Subscripts
t Time index.

Superscripts
∗ Optimal value.
i i-th iteration.
k k-th data sequence.

Notations
·t Given sequence until time t .

I. INTRODUCTION

THE operational efficiency of industrial processes can
drastically benefit from the integration and optimization

of maintenance strategies in the logistic decision making
process. The practice of maintenance strategies allows for
maximized operation time of equipment, avoidance of unex-
pected machine failure and reduction of overall operational
costs [1]. In today’s industry, it is already common practice
to rely on domain knowledge based approaches, such as
Fault Tree Analysis (FTA) [2] and Failure Modes and Effect
Analysis (FMEA) [3], for reliability engineering. Though,
such rule-based methods require a priori knowledge about

the degradation dynamics, they cannot cope with temporal
dependencies and effects, and rely heavily on the actual
expertise of practitioners [4].

Meanwhile, industry is undergoing the Fourth Industrial
Revolution, which is characterised by the increased integration
of digital systems in physical production environments. This
evolution, in combination with the steady price drop of sensory
equipment, is accompanied by increased instrumentation and
data logging. Subsequently, measurement data has become
abundantly available for (real-time) statistical analysis and
(post-)processing [5]. In turn this has increased the expecta-
tions and requirements that industrial practitioners have with
regard to monitoring and estimation procedures in the context
of maintenance, better known as Predictive Maintenance [6].

A central objective of predictive maintenance algorithms is
to predict the Remaining Useful Lifetime (RUL) of a machine
(component) [7] or to estimate its State of Health (SOH). The
RUL of a machine is the expected usage time remaining before
the machine requires repair or replacement. The SOH on the
other hand is an artificial metric related to the condition of the
system compared to ideal conditions, often the conditions at
the time of manufacturing or when it was first commissioned.
Both physics-based and data-driven approaches can be pursued
to estimate RUL and SOH.1

Classical physics-based approaches rely on a comprehensive
understanding of the system’s behavior and potential failure
mechanisms to predict the time evolution of critical states,
which can be used to indirectly deduce the RUL [8]. However,
such physics-based approaches rely on intimate knowledge
of the process as well as how systems can degrade or fail.
There is furthermore a limit on the extent that long hori-
zon forecasts can be trusted [19]. So instead of relying on
exact physical models and probabilistic simulations, rather one
emulates the degradation dynamics directly using a discrete
HMMs (dHMMs) where the latent state-space occupies a
discrete set. For the purpose of RUL and SOH estimation,
one imposes a so called left-to-right structure on the dHMM
where the latent states represent degrading states of the
system with the left most state(s) representing healthier and
the right most state(s) faultier states. The RUL is estimated
by calculating the remaining time of absorption conditioned
onto the observation sequence up to the present time instant
t . Whilst the computational procedure resembles that of a
physics based approach, no true physical meaning can be
attributed to the latent space. Useful references in this line
of work are [20], [21], [22], [23], [24], [25], [26], [27], and
[28]. In conclusion we may note that lifetime tests are required
to fit the imposed model structure making the distinction with
data driven approaches more ambiguous.

Data-driven approaches, on the other hand, typically rely
on a set of lifetime tests and associated condition monitoring
data to estimate the RUL directly. These rely exclusively on
a (limited) set of (accelerated or historical) lifetime tests and
associated condition monitoring data. This library is then used
to detect and compare trends in the real-time measurements,

1The following overview is non-exhaustive as we limit here to a number
of approaches that are closest related, in spirit, or computationally, to ours.
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and, process the time series data into a direct estimate of
the RUL. Similarity and survival models are two families of
methods that rely on historical lifetime tests to predict sta-
tistical estimates with associated uncertainty [9], [10]. These
methods however do not involve an offline pre-processing
step and generate an online RUL estimate based on a sim-
ilarity assessment of the present time signals with recorded
signals. More recently, the use of Deep Learning (DL) tech-
niques has also been proposed [29]. It is argued that DL
approaches are well positioned to automate the pre-processing
and extraction of useful features to a high degree [11]. The
information from the library is captured in a single purpose
model, mapping the input into a deterministic RUL esti-
mate. Extensions have been made that capture uncertainties,
mostly by relying on Bayesian Neural Networks (BNNs),
and thus are able to express their confidence in the esti-
mate [12]. Convolutional (BCNNs) architectures can be used
to treat high-dimensional time series data, capturing both
spatial and temporal features, representing the sensor signals
as images. These approaches however yield no insight in
the complex mechanisms underlying the process; and, once
learned, the model cannot be repurposed. Important references
are [12], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], and [41].

To overcome some of the deficiencies of strictly DL
approaches whilst exploiting the principles and well under-
stood theory of physics-based modelling, in this work we
propose a data-driven virtual sensing2 approach tailored to
RUL and SOH estimation. Our data-driven virtual sensing
approach assumes access to a highly instrumented time series
data set from dedicated run-to-failure experiments, which may
only be obtained in an R&D setting. In agreement with the
virtual sensing paradigm, we aim to estimate several of the
measurements that are impractical or impossible in an indus-
trial setting, from a limited set of measurements that can be
obtained. We therefore rely on Hidden Markov Model (HMM)
theory as an explanatory causal framework, interpreting the
data as (artificial) measurements from a dynamic latent state.
A HMM is identified using a regularized implementation of
the Expectation-Maximization algorithm. The learned HMM
is then deployed in a model-based state estimation frame-
work. By reinterpretation of the RUL and SOH as physical
measurements –which are only available once the system has
failed– this strategy can be repurposed to produce probabilis-
tic estimates of both these quantities of interest. Moreover,
we obtain a figure of the uncertainty as a silent feature
originating from the HMM framework. To the best of our
knowledge this is the first publication to address predictive
maintenance by repurposing the virtual sensing paradigm.
We consider the SOH and RUL as metrics that are a function
of latent variables. This enables closer correspondence with
the physical reality of the machine or component degradation
mechanism that demands monitoring. This to ultimately reach
for higher levels of predictive accuracies.

We validate our approach to predict the RUL and SOH with
uncertainty quantification of Solenoid Valves (SVs). SVs are

2Sometimes also referred to as “soft sensing”.

commonly used components in many industrial processes and
often perform safety critical tasks. Accelerated lifetime tests
show that there is a large variation in their lifetime. We aim
to base the RUL prediction solely on the measurement of the
AC current of the SVs, as to come up with a noninvasive
prognostics tool whilst only relying on industrially available
sensory equipment. Given the arbitrary linear character of the
RUL and SOH over time, in this preliminary study we used a
linear state-space model to model the deterioration dynamics
of the SVs and make prediction about their lifetime and
health. Furthermore, expert domain knowledge is leveraged
to pre-process the time-series data in the form of useful
feature extraction. Our goal with this case study is to show
that by leveraging a limited amount of domain knowledge to
replace the automatic pre-processing and feature extraction a
much simpler linear time-invariant model is able to perform
at similar level or above the BCNN approach from [12].

The contributions of this paper are: (1) repurposing Hid-
den Gaussian Markov Models (HGMM) in the context of
condition monitoring by interpreting posterior RUL estimates
of a historical dataset as measurement variables and treating
the problem as a probabilistic system identification problem,
(2) demonstrating the advantage of using multiple measure-
ment variables during training which need not be reconstructed
during real-time monitoring, apart from those that are of
interest at that time, (3) validating and analyzing our proposed
method in terms of predictive capabilities about the remaining
useful lifetime of solenoid valves.

II. METHODOLOGY

A. Mathematical Problem Formulation
First let us specify the distinction between the two types of

measurements mentioned in the introduction. Measurements
in general will be denoted with the symbol y ∈ Rny or
z ∈ Rnz , when a time label is available, a subscript is
added, for example zt . For brevity we introduce the format
y

t
= {y1, . . . , yt } for leading subsequences of temporal data.

We silently assume that all sequences start at discrete time t =

1. Finally, we emphasize that the concept of a measurement
is used in a broad sense, meaning that measurements can
represent unprocessed sensory outputs but can also represent
processed information or so called feature variables.

The first type of measurements, y, are assumed to be
available always, meaning that whatever the circumstances
and time of the experiment are, a value for the measurement
is available. For the second type of measurements, z, this
assumption is no longer valid, meaning that the corresponding
measurement values are only available for a restricted set
of experiments, for example the type of experiments that
can be (and were) conducted in a research and development
(R&D) facility but that cannot be replicated in an industrial
environment for one reason or the other. The combination of
these two measurements determine the complete measurement,
{y, z}. It is further assumed that the complete measurement is
available in a restricted set of experiments so that correlations
can be drawn between y and z.

As stated before, for many applications of practical interest
it would be considered highly purposeful if we could somehow
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estimate the measurements that are inaccessible in an industrial
experimental setting; equivalently, that are only available in
the R&D setting, based on the measurements values that are
available in an industrial setting. More specifically, if we were
able to construct a function that maps, y, into, z.

Provided the stochastic nature of measurements and sys-
tem behaviour per se (aleatoric) and the uncertain reasoning
inherent to modelling from data (epistemic), we adopt a
probabilistic framework, and replace the deterministic function
described above by a probabilistic model, providing a descrip-
tion of the probability density of z rather than a point estimate;
all in all, yielding a more informative description of z. For-
mally such an estimate could be expressed as the probability of
measuring, z, conditioned on the known measurement value, y,
that would be p(z|y). Now, when a measurement sequence is
available, meaning we have multiple measurements of the first
category, e.g. y

t
, taken at different time instants in the (near)

past preceding our current estimate about zt we can extend
our probabilistic model accordingly. Of course, we could
store all of these measurements, notation-wise, in a single
measurement, y; though making the dynamic nature explicit
will turn out to be very useful for computational purposes.
In summary, the goal of this work is to compute the following
probability from data.

p(zt |yt
) (1)

B. Definition of RUL and SOH Signals

In this work we focus on the case where z represents some
abstract monitoring metrics, in particular Remaining Useful
Lifetime (RUL) and State of Health (SOH) signals. We aim to
estimate RUL or SOH from measurements, y, that are easily
accessed on the system when deployed in practice. Such are
highly application specific and are not specified further here.

The RUL is a subjective estimate of the remaining time
that an item, component, or system is able to function
in accordance with its intended purpose before warranting
replacement. In the ideal case the RUL can be associated to
some physical quantity that exceeds some limit. One could
then estimate a value for that quantity and calculate the
probability that it exceeds the limit or even calculate the
probability of that estimate exceeding the prescribed numerical
limit within a certain period of time, the latter being the closest
to the objective definition of RUL.

RUL(t) = arg max
T

T

s.t. P( f (xt+T ) < ϵ f |yt
) > ϵP (2)

Here xt represents a physical variable describing the full state
of the system, f denotes a function of that state that if
exceeding a value ϵ f implies the system has failed and finally
P( f (xt+T ) < ϵ f |yt

) denotes the probability of the predicted
value f (xt+T ) exceeding ϵ f conditioned on the measurements
y

t
and on its turn must exceed a threshold value ϵP .
Unfortunately such intimate knowledge of the system is

rare. In practice such an explicit physical definition of the
end of life is usually absent. Therefore we may exploit the
benefit of hindsight. For experiments that we know to have

failed, we can calculate an RUL signal retrospectively, defining
its value simply as the remaining time between its present
evaluation and the moment that the system has failed.3

RUL(t) = max{T f − t, 0}, t > 0, T f > 0 (3)

where the time instant T f refers to the first time failure is
observed. Because this implies large variability in the initial
RUL value, RUL(0), instead we use here the normalized RUL
(NRUL). Consequently, any prognostics model should only
predict the slope of degradation and no longer the initial bias.

NRUL(t) =
RUL(t)

T f
(4)

From the NRUL we can still compute the RUL

RUL(t) =
NRUL(t)

1 − NRUL(t)
t, NRUL ∈ [0, 1) (5)

The SOH is a subjective estimate of the health index
or condition of the system compared to the ideal situation.
As opposed to the RUL it is difficult to determine a physical
definition for the SOH other than the observation that the sys-
tem finally broke down. To highlight correspondence with the
(N)RUL signals we adopt a similar approach, yet recognize a
healthy section in the system’s lifetime before degradation and
ultimately failure kick in. In retrospect, the NRUL predictor
in (4) thus assumes the system instantly starts degrading from
the onset of first commissioning.

SOH(t) =


1, t < Td

max
{

T f − t
T f − Td

, 0
}
, t ≥ Td

(6)

Here Td refers to the time instant where deterioration kicks in.
Now assume that we have access to a limited set of lifetime
tests consisting of a set of measurements y(t) that can also
be accessed in practice and a set of auxiliary measurements
z(t). Using the approach described above we can then extend
the auxiliary measurement set with signals RUL(t) and/or
SOH(t). Corresponding to the formulation in section II-A we
are interested in identifying a probabilistic model that can
estimate the RUL/SOH signal from on-site measurements, y

t
.

This approach circumvents the need for a physical cause of
failure or a definition of the health of the system elegantly.

C. Virtual Sensing Using HMMs as an
Explanatory Framework

The question that remains unanswered is how to compute
this relation efficiently? Probabilistically we are trying to
model the correlation between two (a primary and a secondary)
measurement sequences, y and z respectively. The computa-
tional complexity of such a model is heavily influenced by the
conditional independencies that are imposed on the variables
that constitute the model. To foster further insight, it helps to
visualize the conditional dependencies that govern the model

3Remark that, in the absence of uncertainty, if f , in the example above, is a
monotonically increasing function of time - which is a reasonable assumption
provided that degradation is a progressive process that cannot reverse it
action - the RUL in definition (2) coincides with the definition provided in
(3). That is RUL(t) = {T (t)| f (t + T ) = ϵ f } = f −1(ϵ f ) − t = T f − t .
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Fig. 1. Graphical representation of probabilistic models for virtual sensing
applications. Dotted lines represent an undefined number of repititions of the
same graphical structure.

graphically [13]. In Fig. 1a a graphical representation of the
most straightforward probabilistic model implied by (1) is
illustrated. Here arrows indicate a conditional dependency
between the child and parent variables. Hence, the secondary
measurement zt is thought to be conditionally dependent on
the primary measurement sequence of the (exemplary) length
t . This model seems to suggest a causal relation between the
variables in y

t
and the variable zt . Under the assumption

that the relation is stationary and that a sequence of length
t contains all the required information to predict zt from the
secondary measurement sequence, indeed the most straight-
forward way is to model the function p(zt |yt

) directly and
shift the argument one time instant to compute zt+1 and so
on [12]. Though, clearly this is not the only way of modelling
the correlation between to two measurement sequences y and
z and certainly not the one with the most computationally rich
structure. As an example, assume that we become interested
in computing the probability p(zt+1|yt

) or p(zt+1|y
t
), 1 ∈ N

for that matter? Extending the previous modelling approach
would then imply learning separate forward models for each
of these distributions, not being able to lean on conditional
independencies and associated factorization properties to sim-
plify the calculations [13].

Therefore we propose another way of modelling the corre-
lation between the two measurement sequences. We assume
that there exists a single underlying process characterised by
the latent state, xt ∈ Rnx , that spawns both measurement
sequences independently. The probabilistic graph correspond-
ing with this point of view is represented in Fig. 1b. This
model is known as a Hidden Markov Model (HMM) [14], [15].
As suggested by the arrows, characterisation of the HMM
requires specification of the following local probability
models.

• initial probability p(x1)

• transition model p(xt+1|xt )

• measurement models p(yt |xt ) and p(zt |xt )

Relying on the HMM imposed on the dynamics of the
experiments, our estimate, p(zt |yt

), can now be decomposed
by means of the latent state, xt , which circumvents many
of the conditional dependencies that made the direct

modelling approach complicated and computationally
unattractive. Instead, the HMM offers a practical
computational procedure. Specifically, the prediction of
zt+1, 1 ∈ N by conditioning on y

t
, then becomes trivial once

we have calculated p(xt+1|y
t
).

p(zt+1|y
t
) =

∫
p(zt+1|x t+1)p(xt+1|y

t
)dxt+1 (7)

So why bother with estimating the second class of mea-
surements, z, if we can also access a state estimate? The
answer is related to the means by which we shall arrive
at a model to practice the probabilistic inferences described
above. Within this work, we assume that such a model is not
existent and cannot be constructed in any meaningful sense
by a team of experts. Especially this is the case when the
measurements represent processed sensory output or features.
The causality of the process and hence the temporal causality
of the sensory output will be transferred to the features but
the underlying physical phenomena will be obscured by the
operations wielded to construct those features. Thus, instead
we assume only to have access to a set of experimental data,
{Y,Z}, existing out of K measurements sequences, y

T
and zT ,

i.e. Y = {yk
T
}k and Z = {zk

T }k . From those measurements we
shall identify a HMM. As we will come to explain later, in this
case the state may be uninterpretable and therefore useless
for any practical purpose other than calculation. In summary,
we exploit the structure of the HMM only to have a more
insightful model of the correlation between y and z, rather
than we hope to extract any useful information from x itself.

D. Filtering & Predicting of Latent Variables

In the previous subsection, we boasted the computational
flexibility of the HMM, demonstrating how p(zt+1|y

t
) could

be computed efficiently once we had calculated p(xt+1|y
t
).

Here we explain how to compute the probability p(xt+1|y
t
).

In HMM theory, the probability p(xt |yt
) is known as the

filtering distribution and can be calculated recursively [16]

p(xt+1|yt+1
) ∝ p(yt+1|xt+1)

∫
p(xt+1|xt )p(xt |yt

)dxt (8)

The probability p(xt+1|y
t
), 1 > 0 is known as the

predictive distribution and can be calculated recursively once
the filtering distribution has been calculated.

p(xt+1+1|yt
) =

∫
p(xt+1+1|xt+1)p(xt+1|y

t
)dxt+1 (9)

E. Identification of H(G)MMs

Before we can practice the inferences described above,
we require a probabilistic model, say M, capturing the
conditional probabilities that govern the HMM. Such is
usually obtained by parametrising the probabilities with a
parameter θ . Formally, we write p(·|·, θ), more in par-
ticular, we search quantitative local probabilistic models,
p(xt+1|xt , θ), p(yt |xt , θ) and p(zt |xt , θ). In this section we
further treat the question of how to characterize a HMM given
the data, D = {Y,Z}.
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A fully Bayesian approach would imply calculation of the
a posterior probability over the parameters θ conditioned on
the data D, i.e. p(θ |D). Assuming that we can evaluate
the probability p(θ |D), the model is then determined by
expressing the joint probability p(θ, ·|·,D) = p(·|·, θ)p(θ |D)

and marginalizing out the parametric dependency, rendering
the model p(xt+1|xt ,D), p(yt |xt ,D) and p(zt |xt ,D). This
approach captures both aleatoric uncertainty about the system
itself (as governed by p(·|·, θ)) and epistemic uncertainty
about the true parameters. Unfortunately the marginalization
and hence the approach in general is intractable but for
a handful of toy problems. Alternatively, a Maximum A
Posteriori (MAP) estimate, θ∗, can be made by maximizing
the probability of the parameters conditioned on the data, i.e.
θ∗

= arg maxθ log p(θ |D). The MAP estimate can then be
substituted into the model p(·|·, θ∗) so to obtain an estimate
of the true Bayesian model. This approach still requires that
we evaluate p(θ |D) which, using Bayes’ rule, can be rewritten
as p(D|θ)p(θ). Application of the MAP modelling approach,
thus requires us to define a prior probability for θ , which,
in most cases, cannot be established in any meaningful way so
that the the uniform is chosen. The MAP modelling approach
with uniform prior collapses onto a Maximum Likelihood
Estimation (MLE). The MLE parameter is estimated as θ∗

=

arg maxθ log p(D|θ). This objective expresses the likelihood
of the measurements as a function of the parameters.

Applying the MLE approach to the model in Fig. 1b, thus
requires to solve the following optimization problem

max
θ

log p(Y,Z|θ) = max
θ

∑
k

log p
(
{y, z}k

T

∣∣∣θ)
(10)

where

p
(
{y, z}k

T

∣∣∣θ)
=

∫
p
(

xT , {y, z}k
T

∣∣∣θ)
dxT (11)

It is cumbersome to treat this optimization problem directly.
Instead, the Expectation-Maximization (EM) algorithm esti-
mates the parameters iteratively by considering a surrogate
objective Q(θ, θ ′), updating the parameters as follows

θ i+1
= arg max

θ
Q(θ, θ i ) (12)

The objective, Q(θ, θ ′), is often referred to as the Evidence
Lower Bound (ELBO). A brief overview of the EM algorithm
is given in and Appendix B. For details we refer to [14], [15].

Q(θ, θ ′) =∑
k

∫
p
(

xT

∣∣∣{y, z}k
T ; θ ′

)
log p(xT , {y, z}k

T ; θ)dxT

(13)

It can be shown that the series in (12) converges monotoni-
cally to the solution, θ∗, of problem (10). The surrogate ELBO
objective and the original MLE objective are then related as

log p(Y,Z|θ∗) = Q(θ∗, θ∗) +

∑
k
H

[
p
(

xT

∣∣∣{y, z}k
T ; θ∗

)]
(14)

1) Hidden Gauss-Markov Models: Solving (12) for arbi-
trary probabilistic state-space models remains intractable or
requires the introduction of additional approximations. For
linear state-space models however, (12) can be solved explic-
itly. A linear continuous HMM is referred to as a Hidden
Gauss-Markov Model (HGMM). Characterisation of a time
invariant HGMM requires specification of the following local
probabilities.

The parameter θ is thus determined by {µ1, 61, A, Q, C, R}.

p(x1) = N (x1; µ1, 61)

p(xt+1|xt ) = N (xt+1; Axt , Q)

p({y, z}t |xt ) = N ({y, z}t ; Cxt , R) (15)

Solution of (12) for given θ i then yields the required
parameter updates. The solution of this problem for HGMMs
is well studied in for example [16], [17], and [18]. In particular
the parameters {µ1, 61, A, Q, C, R} can be expressed as a
function of the smoothing distribution parameters which are
also Gaussian, p(xt |{y, z}k

T ) = N (xt ; µk
t , 6

k
t ). Similar to the

filtering distributions (see sec. II-D), the smoothing distribu-
tions can be computed efficiently. We refer to Appendix C
for computational details regarding the parameter updates.

2) Regularization: The measurement likelihood,
p(Y,Z|θ), of a time invariant HGMM is subject to an
important parameter invariance structure that may impact
convergence [17]. It is well known that the latent space can be
determined up to a similarity transform, x ′

= T x , where T is
a non-singular square matrix. One verifies that the parameter
set θ can be transformed in an equivalent parameter set
θ ′ without affecting the value of (11). Therefore, the EM
algorithm may converge to any member of this manifold,
depending on the initial values for the parameter estimates.
Theoretically one cannot express any preference to any of
these members, however, for numerical reasons it is advised
to constrain the model family in (12) by imposing restrictions
on θ .

In this work we imposed the following constraints.
• The covariance matrices Q and R are constrained to the

diagonal set. The update is performed as per usual but
only the diagonal elements are maintained in Q′ and R′.

• After each standard update, the transformation T is
chosen so that C′

= CT −1
= I. In case that nx > ny +nz ,

the leading ny + nz latent states are selected out. The
case where nx < ny + nz was not considered since this
would imply that ny + nz − nx measurements are linearly
depend of the other nx . Finally, it is worth mentioning
that determining the transformation matrix every update,
generally yielded better results than fixing C = I.

If these constraints are satisfied, the local probability models,
p(yt |xt ), and, p(zt |xt ), are in fact uncorrelated, so that

p(yt |xt ) = N
(
yt ; xt,{1,ny}, R{1,ny}

2

)
p(zt |xt ) = N

(
zt ; xt,{ny+1,ny+nz}, R{ny+1,nz+ny}

2

)
(16)

We list here also our solution initialization procedures.
• We initialize the elements of A and C uniformly in [0, 1).
• The covariance matrix 61 is determined as 61 = PP⊤

where P is initialized similar to A and C.
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• The covariance matrices Q and R are initialised with
diagonal elements uniformly in [0, 10−2).

F. Comparison to State-of-the-Art
Now that we presented our approach to calculate the

probability (1), we can revisit some of the other modeling
formalism’s that address similar purposes, in the particular
case where z contains RUL and SOH signals. There-
fore we recall from the introduction the work on discrete
HMMs [20], [21], [22], [23], [24], [25], [26], [27], [28]
and on data driven black-box approaches [12], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41]. Our
presented data-driven virtual sensing methodology for proba-
bilistic condition monitoring can be positioned with respect to
the above state-of-the-art as follows.

First we may note that the expressiveness of a discrete
HMM is limited. In a left-to-right dHMM it is assumed that
each state relates to some level of degradation of the associated
object. Hence this implies that the associated observations
can only depend on the degradation level of the object, i.e.
the hidden state, which s by virtue of the HMM modelling
assumptions. As a result either the range of measurement asso-
ciated to a degradation state is limited or the variance of the
emission model is large. Secondly, the brute force data-driven
approaches aim to recognise patterns between the data and
the new experiment excluding the possibility to exploit any
physical insight nor allow any physical interpretation.

Our approach is hence situated in between either lines of
work discussed above. Strictly speaking, the HMM structure
simply offers a computational structure to calculate the proba-
bility (1) efficiently. Therewith our approach closely resembles
the strictly data driven approaches. On the other hand, the
HMM structure can also be compared with a state-space model
that governs the physical dynamics of the system. So although
it is difficult to attribute a physical interpretation to the
identified latent state space, it does cover the dynamics of the
latent physical system dynamics. In that sense our approach is
closest related with the first line of work. With the exception
that in our approach the internal state of the degrading object
is represented by n continuous state variables, significantly
improving the expressiveness of the model. The observations
need not to depend exclusively on the degradation state but
can rely on any combination of the latent state variables.
In conclusion we emphasize that we know of no other works
that can and do consider the use of other measurements signals
in the vector z to stimulate the discovery of a physical latent
space; which, as we will show with our experiments, turns out
to be highly purposeful.

III. SOLENOID VALVE DATASET

We tested the approach from sec. II on a data set containing
accelerated lifetime tests of Solenoid Valves (SVs). SVs are
commonly used components in many industrial processes,
often performing safety critical tasks. These tests show large
variation in SV lifetime. Development of predictive main-
tenance algorithms for SVs could significantly benefit SV
reliant applications. In this section we discuss earlier work
on diagnostics and prognostics of SVs. Further we provide
details regarding the set-up and data that we used in sec. IV.

A. Related Work on SV Diagnostics & Prognostics

Model-based approaches have been proposed by [42],
[43], and [44]. These works focus on deterministic fault
detection and diagnosis. Data-driven approaches have been
proposed for SOH diagnostics of SVs and were successful in
anomaly detection and failure clustering. All of these methods,
however, fail to give an indication of the End of (useful)
Life (EOL). Tod et al. [45] presents a hybrid physics-based
data-driven tool that is capable of diagnosing failure modes
using a physically interpretable model. Mazeav et al. [11]
proposed a Deep Learning method using an ensemble of
Convolutional Neural Networks (CNNs) to construct a health
index of SVs, which can be extrapolated to a determinis-
tic RUL prediction, based on current measurements in the
power electronics circuit feeding the SVs. Later this work
was continued and expanded [12] by combining Bayesian
CNNs with physical features as described in [45], as to be
the first and to our knowledge the only, to obtain accurate
RUL predictions with uncertainty quantification (UQ). These
approaches obtain accurate results but tend to rely on computa-
tionally demanding learning methods and memory demanding
models.

B. Set-up
An experimental test set-up, as shown in Fig. 2, was used to

perform accelerated lifetime tests of 48 solenoid valves under
realistic conditions. The tested valves are direct acting 3/2 way
normally closed AC solenoid valves. The SVs are switched on
and off at a rate of 1Hz by an AC voltage of 110V at 50Hz.
During the open or “ON” state, fluidum can flow through the
valve for approximately 0.5 seconds, followed by a transition
to the closed or “OFF” state, during which fluidum is blocked
for another 0.5 seconds during each cycle. The time-series data
of one on/off cycle was captured every hour over the span of
6 weeks (∼ 1150h). All solenoids were supplied by a line
pressure of 8bar and the tests were conducted at an ambient
temperature of ∼ 25◦C.

These tests were performed in an R&D setting so that apart
from easily accessible measurements, such as SV currents and
ambient temperature. The currents are easily extracted from
the power electronics circuit. Yet, the data set also contains
less convenient measurement data that would not be available
during normal operation, such as air supply temperature and
pressure, valve surface temperatures and air flows at the outlet
ports and ventholes (blow-off holes). The ground truth of the
lifetime is measured in number of on/off cycles.

C. Solenoid Valve Degradation & Detection
There is a clear physical difference between a new valve,

that is before operation, and a used valve at the end of its useful
lifetime. The used valve shows signs of wear at its plunger
and deformation of its valve seal, as can be seen on Fig. 3a
and Fig. 3b respectively. Although, clearly, SV degradation
is physically detectable we aim to develop a method that is
practical for SVs during normal deployment. Therefore, our
prognostics model will, in the end, solely rely on the current
measurements that were mentioned above. Any prognostics
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Fig. 2. Test set-up for the accelerated lifetime tests of 48 solenoid valves.
The figure on the rights depicts the CAD model of a SV.

Fig. 3. New (left) versus used (right) solenoid valve. The used valve shows
signs of wear at its plunger and valve seals.

can be realised in a noninvasive manner and without the need
for inconvenient sensors. Temperature and flow measurement
are required to determine the exact moment of EOL of the
SVs in our R&D data set.

Three stages in the lifetime of a SV can be identified. The
SVs are given a label, l ∈ {healthy, degrading, faulty}, by an
expert based on all measurements mentioned above. There is
no one clear criterion to determine these labels. Fig. 4 shows
the measured signal of the outlet flow and current signal during
the switch-on and the outlet flow during the switch-off of an
on/off cycle for each of these three stages. Luckily, pronounced
differences emerge from the visual comparison of these signals
from the three different lifetime stages.

The ‘outlet flow - ON’ plot shows the outlet flow of the
fluidum through the valve starting at the beginning of the
open state, i.e. from the moment the plunger is being opened.
The plunger is opened by applying the AC current signal
as depicted by the ‘current - ON’ plot. The ‘outlet flow -
OFF’ plot shows the outlet flow from the moment the plunger
is being closed. The spring loaded plunger is closed from
the moment the AC current signal is no longer applied and
typically occurs faster than the opening.

In the healthy operating condition, there is no leakage when
the valve is closed and throughflow steadily starts rising from
the moment the valve is opened. When the valve is closed, the
throughflow steadily decreases back to zero.4 As mentioned

4The outlet flow is measured using a hot wire anemometer principle. This
type of sensor is prone to laggy measurements resulting from the thermal
stabilization process of the wire, explaining why the outlet flow does not
immediately rises to nominal throughflow when opening the valve and does
not drop back to zero after closing the valve.

Fig. 4. Evolution of a SV outlet flow during both on- and off-phase and the
current signal during on-phase for three cycles over the course of a lifetime.
The first cycle (blue) is during healthy operation, the second cycle (green) is
during the degrading phase of the solenoid and the third cycle (red) is at the
end of useful life of the SV.

before, faulty behaviour can express itself in various forms
(fauling, other blockages, plunger blocked in end position . . . ).
The valve in its faulty operating condition used for Fig. 4 for
example shows no sign of leaking air when it is closed, but
on the contrary completely blocks throughflow of air when it
should be opened. The opposite behaviour or an intermediate
form would be classified as equally faulty behavior, demon-
strating the non-trivial character of the problem.

A solid opening of a healthy SV corresponds to a single
hit of the plunger, which translates to a single notch in the
current measurement. A degrading plunger has a more bumpy
movement of the plunger during opening, resulting a multitude
of these notches during opening. Finally, the plunger at its
EOL is stuck in this case and therefore displays none of these
notches. Apart from that the sinusoidal-like waveform of the
current signals clearly varies over the three lifetime stages.

Although described measurement sets are highly indicative
for the SV degradation and general SOH, these are usually not
available in an industrial setting, necessitating the development
or indentification of alternative features.

D. Domain Knowledge Based Features

These time-series data carry information that can be more
conveniently summarized in a number of features. From the
discussion above, two crucial features related to the flow
measurements can be determined

• the measured flow when the valve is still closed just
before opening, hence the first point in the ‘outlet
flow - ON’ measurements qleak ,

• the measured flow when the valve is still open just before
closing, hence the first value in the ‘outlet flow - OFF’
measurements qout .

The first one indicates whether the supposed closed valve
is leaking fluidum, the second one indicates whether the
supposed open valve is hindered in supplying fluidum.

From this, three current features were extracted
• The position of the (first) characteristic notch in the

current signal (corresponding to the first hit),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



VANTILBORGH et al.: DATA-DRIVEN VIRTUAL SENSING FOR PROBABILISTIC CONDITION MONITORING OF SV 9

• The impedance spectrum magnitude at the fundamental
AC-source frequency Im,fund,

• The inductance spectrum magnitude at the fundamental
AC-source frequency Id,fund.

Finally, The valve surface temperature can be reduced to
the average value over one on/off cycle, as it merely varies
over this short timespan. A strong increase of the valve
surface temperature over a longer time period also indicates
deterioration.

IV. RESULTS

A. Mass-Spring-Damper System
In order to verify the proposed methodology in sec. II,

we treat a mechanical example first. The system, as schemat-
ically depicted in Fig. 5, consist of two connected masses of
which the first mass is also connected to a fixed reference.
Both connections are established by a parallel spring and
damper. The corresponding parameter values used in the
simulation are listed in Table II. Its state is characterized by
the positions x1 and x2 of both masses and their respective
velocities v1 and v2. The system is described by a linear
time-invariant model which exactly fits the aforementioned
HGMM framework and can thus be used to validate our
method. The mode and model parameters used for simulation
is detailed in Appendix A.

A HGMM was learned from K = 20 experiments assuming
full yet noisy state observations and according the approach
detailed in sec. II-E. To validate the virtual sensing framework
we then aim to estimate the position and velocity of both
masses whilst only having access to measurements for the first
mass. More formally, y = {x1, v1}, z = {x2, v2}.

First, we assess the performance of the model identification
procedure. For this simple mechanical example, we know that
the state that completely describes the systems’ dynamics is
4 dimensional. However, for a practical use case, the dimen-
sionality of the latent state is often unknown. Therefore, it is
required to do a search over a range of latent state dimensions,
as depicted in Fig. 6. Given that the 4 observed variables
are independent, it is senseless to assess lower dimensions of
the latent state, as these could never yield all the information
contained in the complete observation (recall the discussion in
sec. II-E2). We consider a range between 4 and 15. Clearly,
a latent state dimension of 4 is most consistent and on average
obtains the best maximization of the objective function (13).
Second, we validate the filtering framework tailored to virtual
sensing. Fig. 7 depicts filtered and predicted measurement
sequences for both masses. Clearly, the state measurement of
the second mass are successfully reconstructed from the state
measurements of the first mass.

B. Solenoid Valves
Here we will deploy the virtual sensing strategy on the

industrial problem of RUL and SOH prediction for SVs.
It is recommended to comment on the following issue before

we address the estimation problem itself. It is anticipated that
the supporting linear theory will produce artefacts that defy the
definition of the RUL and SOH (recall sec. II-B). Specifically,
the estimated values, and in particular the associated coinfi-
dence interval, may adopt values in the set (−∞, 0)∪(1, +∞).

Fig. 5. Schematic representation of the mass-spring-damper system.

Fig. 6. Comparison of the maximum ELBO value, Q(θ∗, θ∗), for different
latent state dimensions for the MSD system.

Fig. 7. Comparison of the estimated trajectory to the true underlying
trajectory for the mass-spring-damper system based only on the measurement
of the position and velocity of first mass.

This is an insurmountable byproduct of the linear theory used
to embed the degradation or failure dynamics. Resolving this
issue by intrinsically adapting the emission distribution would
destroy the linear context. The only workable resolution would
be to post-process the output distribution by means of e.g. clip-
ping or truncating the distribution. However then this would
be an aesthetic intervention rather than an intrinsic property of
the approach. So rather we accept these non-physical artefacts
as a compromise to the computational efficiency.

With this final issue clarified, we can present out results.
Recall that we aim to obtain a noninvasive RUL/SOH
prognostics tool for condition monitoring of these valves.
As discussed, therefore we only want to rely on current
measurements as inputs for the operational model. How-
ever, for the system identification, multiple other features
from the R&D data can be used. More formally, y =

{Id,fund, Im,fund, notch} and z can be any combination of the
following features

RUL Remaining Useful Lifetime
SOH State of Health
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Fig. 8. Comparison of the RUL estimate, log p(RUL|y), for dif-
ferent latent state dimensions on the SV data set for the case where
y = {Id,fund, Im,fund, notch} and z = {RUL}.

Fig. 9. Comparison of the loglikelihood, log p(Y = y|y), for dif-
ferent latent state dimensions on the SV data set for the case where
y = {Id,fund, Im,fund, notch} and z = {RUL}.

qout outlet flow during on-phase
qleak leakage flow during off-phase

th time of first hit during valve opening
Tsurf plunger surface temperature
All results discussed below are obtained with 5-fold cross

validation [15].
1) Latent State Dimensionality Study: As for the spring-

mass-damper system, in order to guarantee that we will
eventually obtain the best possible model feasible within
our proposed framework, we first have to perform a search
for the optimal latent state dimensionality. Fig. 8 shows the
complete-data loglikelihood for different latent state dimen-
sionalities in case z = {RUL}. All dimensionalities were
assessed 50 times. Again, we see that increasing the latent state
dimension above the number of observations during training,
4 in this case, results in decreased performance on average.
Although some outliers seem to be able to exploit the increased
model complexity. However, if we consider Fig. 9 and Fig. 10,
which respectively show the loglikelihood of observing Y = y
and RUL during operation, given only y, the model only seems
to be able to properly fulfill its function as a filter for the
measured observations and fails at estimating the RUL. The
ability to increase the model complexity could have its benefits
in case the presented set of features are a lower dimensional
embedding of a higher dimensional physical manifold. The
fact that the RUL/SOH features lack physical interpretability
could explain why this opportunity is not exploited.

2) Feature Analysis: A key idea of our framework is that
we can include information during the system identification
procedure that is not observable during operation. This has the

Fig. 10. Comparison of the RUL estimate, log p(RUL|y), for dif-
ferent latent state dimensions on the SV data set for the case where
y = {Id,fund, Im,fund, notch} and z = {RUL}.

Fig. 11. Comparison of RUL models for including additional features in z
apart from RUL and SOH. The optimal latent state dimension was determined
using the procedure described in sec. IV-B1.

Fig. 12. Comparison of MAE for RUL predictions averaged over the entire
lifetime per solenoid valve. The optimal latent state dimension was determined
using the procedure described in sec. IV-B1.

advantage that a more accurate dynamics model can be learned
and deployed with fewer inputs during the filtering phase.
Fig. 11 shows the comparison of models deployed on test
SVs, that were trained with different features combinations.
The base case is always y = {Id,fund, Im,fund, notch}, z contains
at least RUL/SOH. For each of these combinations of model
inputs we first performed a latent state dimensionality study as
discussed in the previous section. However, a general tendency
could be observed to choose the dimension equal to the input
dimensionality. Each combination was assessed 50 times.

Clearly, including either one of the other four available
features from the R&D dataset has an impact on the model
performance. The optimal features combination turns out to
be {qout, qleak, Tsurf}. Fig. 12 shows that including additional
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Fig. 13. Comparison of SOH and/or RUL predictions for three different SVs. The upper figures show the RUL predictions of a model trained without
observability of the SOH labels, the middle figures show SOH predictions in the opposite case and the lower figures show both RUL and SOH predictions
in case both labels are available during the model learning phase.

features during model learning outperforms the base case.
We hypothesize that a superior underlying dynamic model
can be identified, including the temporal dependencies of
the various features included, whilst, on the other hand, the
3 current features remain sufficient to estimate the underlying
state and thus the quantities of interest such as the RUL
and SOH.

3) RUL Prediction: Some examples of both RUL and
SOH predictions and the corresponding the 95% confidence
intervals are shown in Fig. 13, for three different SVs. These
predictions are obtained with the best possible model, resulting
from the analysis in the previous section. The RUL predictions
are relative values, with the ground truth scaled between 0 and
1. On top of the figure, RUL predictions, given by a model
that was trained without the SOH labels, are shown. In the

middle, SOH predictions, given by a model trained with SOH
and without the RUL labels, are shown and the bottom row
shows the results for a model where both labels were available
during the model identification phase.

Even in case the model has never seen SOH labels,
the behavior of the RUL estimate typically consists out of
3 phases: a rather constant RUL estimate around the value
of 1 at the beginning of the valves’ lifetime, followed by
a phase of accelerated detorioration and finally a correct
estimation of no remaining useful lifetime when the SV has
failed. Naturally, the RUL predictions clearly tends towards
the shape of the SOH characteristic. The behavior of these
RUL predictions could be summarised as an underestimation
of the SOH characteristic up to the point of EOL, forced by the
learned monotonically decreasing RUL character. This learned
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TABLE I
MAE AVERAGED PER VALVE, AT 70% AND AT 90% DEGRADATION

monotonically decreasing character also result in predictions
below 0 for the last solenoid, to only correct to zero once the
model is confident that the system has failed.

For the second case, the model is clearly much more capable
of correctly identifying the SOH dynamics, conforming our
hypothesis. Although the variance on the prediction is not
significantly smaller, the model seems much more robust as
the prediction is less noisy compared to the previous case.

Finally, in case both labels are available during training,
the RUL and SOH estimates are clearly highly correlated.
Again, the RUL predictions tend to better approximate the
SOH than the actual RUL characteristic. However, towards the
end of the useful lifetime, the RUL predictions are accurate
and more stable than in the first case.

One could argue that our model fails to capture the behavior
of the RUL characteristic. However, as stated before, these
empirical RUL signals are artificial constructs and are sup-
ported by little physical insights other than the observation that
the system finally broke down. Reconstructing the correspond-
ing RUL value as a signal that decays linearly with time is an
arbitrary choice and any other decaying carrier signal would
have been just as valid. Despite the forced bias of having
to put forth a monotonically decreasing estimate of the RUL
over the lifetime of a SV, the model persists in predicting a
relatively constant value of the RUL, and thus deviating from
the true RUL characteristic, in the early stage of the lifetime
until it observes actual signs of deterioration. It can thus be
stated that the model successfully identifies the true underlying
degradation dynamics, to a certain extent, even given a poor
indication of those dynamics.

Table I summarizes and compares our methodology to the
results of closest related state-of-the-art methods, in terms
of the mean absolute error (MAE) between the predicted
RUL and the true RUL of the solenoid valves until failure.
We compare the mean and standard deviation of the average
MAE, the MAE at 70% and at 90% degradation per solenoid
valve. This degradation corresponds to the respective 70%
and 90% of the useful lifetime of the solenoid valve, which
has been retrospectively determined for each solenoid valve.
The raw current signals refers to the high frequency current
measurements before extraction of any features as depicted
in Fig. 4, current features refers to the extracted current
features based on expert knowledge as described in III-C, the

optimal feature set refers to the optimal features combination
is described in IV-B2. The implementation of the similarity
model is based on [9] and [47]. The results from the frequen-
tist CNN (FCNN) and Bayesian CNN (BCNN) are by [12]
Mazaev et al. It is important to mention that the FCNN and
BCNN automatically extract features from the raw current
measurement, while the similarity model and the HGMM
model use preprocessed current features. Furthermore, it is
important to mention that additional improved results are
obtained by [12] as they include two physical forces as input
to the model, identified by Tod et al. [45] by leveraging a
detailed physical model of the solenoid valves.

We can observe that our HGMM approach in combination
with the current features outperforms the similarity model and
performs in terms of predictive capabilities at a similar level
as the end-to-end CNN models that deduce RUL estimates
directly from the raw current signals. The possibility of
including additional features during the identification of the
degradation model clearly enables the HGMM to outperform
all other models during deployment.

V. CONCLUSION

In this article we proposed a data-driven framework for
probabilistic condition monitoring. Our aim is to model the
correlations between two measurement sequences based on
time series data from dedicated run-to-failure experiments, that
are obtained in a R&D setting. This means the system is fully
instrumented and measurements are logged that are impractical
or even unachievable in a practical and/or industrial setting.
Based on this model it is then possible to estimate the
unfeasible measurements from the limited set of available
measurements, a concept known as virtual sensing. This allows
for real-time estimation of the unfeasible measurements in
an industrial setting. Specifically, our approach identifies a
Hidden Gauss-Markov Model from the complete measurement
set and uses Bayes filtering techniques to reconstruct the
unfeasible measurements in practice.

We showed that, although the RUL/SOH signals are not
objectively physical quantities, our framework is capable
of estimating these artificial signals with high precision.
By default a measure of uncertainty is obtained as an inherited
property of the Hidden Markov Model theory. The uncer-
tainty on the RUL/SOH measurements can be interpreted
as epistemic uncertainty on the prediction, which represents,
according to the Bayesian interpretation, our belief about the
RUL/SOH.

Two practical tendencies were observed. First it is useful
to include additional features during training other than the
available measurements and the features that we want to
predict. This is unsurprising given that the more information
that we grant to the training process about the underlying
dynamics, the better the final identified model. Though it was
also observed that certain features destabilize the training pro-
cedure, as measured in terms of prediction accuracy, possibly
on account of the assumed linearity of the model. Second,
we observed that for most but a few feature combinations, the
optimal latent state dimension equals the number of features.
This implies that the optimal underlying dynamics should
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TABLE II
THE SPRING-MASS-DAMPER’S PARAMETERS

be as complex as the measurements and adding additional
complexity does not result in improved predictive capabilities.

Future work may include extension to forecasting rather
than filtering.

APPENDIX A
MASS-SPRING-DAMPER MODEL

The equations describing the mass-spring-damper system
dynamics, with the variables defined as in Fig. 5, are given by
the following continuous-time state space model

ẋ(t) = Ax(t) + w(t)

y(t) = Cx(t) + v(t) (17)

where

A =


0 0 1 0
0 0 0 1

−
k1+k2

m1

k1
m1

−
c1+c2

m1

c1
m1

k2
m2

−
k2
m2

c2
m2

−
c2
m2


C = I4

w(t) ∼ N (0, σwI4)

v(t) ∼ N (0, σvI4) (18)

To be able to calculate the filtering and smoothing densities,
this model is discretized as described in [46]. The simulations
with the discretized linear state-space model where performed
with a sample time Ts = 0.01s.

APPENDIX B
EXPECTATION-MAXIMIZATION

Consider a parametric probabilistic model existing of the
two variable sets, Z , and, X . The model is described by the
local probabilities, p(X |θ), and, p(Z |X, θ). Then the marginal
distribution, p(Z |θ), can be decomposed as

p(Z |θ) =

∫
p(Z |X, θ)p(X |θ)dX (19)

Ad hoc, we can express the logarithm of p(Z |θ) by intro-
ducing an auxiliary inference distribution, q(X).

log p(Z |θ) =

∫
q(X) log

p(X, Z |θ)

q(X)
dX

+

∫
q(X) log

q(X)

p(X |Z , θ)
dX (20)

The second term equals the non-negative relative entropy
between the inference distribution, q(X), and, the a posteriori
distribution, p(X |Z , θ). As a result log p(Z |θ) is always

greater than the first term. This observation implies that if we
were to maximize the first term with respect to θ rather than
log p(Z |θ), the associated parameter update is also an ascent
direction for the true objective. Consequently, the first term,
often referred to as the Evidence Lower Bound (ELBO), can
be used as a surrogate objective, and, the inference distribution
can be chosen so to minimize the approximation error, equiv-
alently, to minimize the relative entropy. The relative entropy
is zero only between equivalent distributions, so that

q∗(X) = p(X |Z , θ) (21)

Substituting the optimal inference distribution in the ELBO,
omitting the denominator, yields the surrogate objective from
sec. II-E. Note that the inference distribution does not depend
on the parameter. Thus, the former parameter estimate is used
to determine the inference distribution, the present parameter
estimate follows from optimizing the ELBO; hence, suggesting
an iterative procedure which is known as the EM algorithm.

It is well know that the EM algorithm converges to the
solution of the reciprocal MLE problem. Once the paremeter
has reached its final value, therefore we have that

log p(Z |θ∗)

=

∫
p(X |Z , θ∗) log

p(X, Z |θ∗)

p(X |Z , θ∗)
dX

= Q(θ∗, θ∗) −

∫
p(X |Z , θ∗) log p(X |Z , θ∗)dX

= Q(θ∗, θ∗) + H
[
log p(X |Z , θ∗)

]
(22)

APPENDIX C
PARAMETER UPDATES FOR HGMMS

From [16, Theorem 12.4] and [17], we adopt the following
expression for Q(θ, θ ′), which applies to time invariant Hidden
Gauss-Markov Models

Q = Q1 + Q X + QY,Z (23)

where

Q1 = −
K
2 log |2π61|

−
1
2

K∑
k=1

tr
(
6−1

1

(
6

k
1 + (µ1 − µk

1)(µ1 − µk
1)

⊤

))
Q X = −

T K
2 log |2πQ|

−
1
2 tr

(
Q−1(AV⊤

X + VX A⊤
− AUX A⊤

− UX
))

UX =

K∑
k=1

T∑
t=1

6
k
t + µk

t µ
k,⊤
t

VX =

K∑
k=1

T∑
t=2

6
k
t,t−1 + µk

t µ
k,⊤
t−1

Q Z = −
T K

2 log |2πR|

−
1
2 tr

(
R−1(CV⊤

Z + VZ C⊤
− CUZ C⊤

− UZ
))

UZ =

K∑
k=1

T∑
t=1

{y, z}k
t {y, z}k,⊤

t

VZ =

K∑
k=1

T∑
t=1

{y, z}k
t µ

k,⊤
t (24)
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where µk
t and 6

k
t denote the smoothing distribution parame-

ters. The smoothing distributions are defined as [16]

p(xt |{y, z}k
T ) = N (xt ; µk

t , 6
k
t ) (25)

The parameters are governed by efficient recursive procedures.
We refer to [16] for details.

From the expressions above one easily verifies that the
surrogate Q is maximized for the following parameter updates

µ1 =
1
K

K∑
k=1

µk
1

61 =
1
K

K∑
k=1

6k
1 + (µ1 − µk

1
)(µ1 − µk

1
)⊤

A = VX U−1
X

Q =
1
K

(
UX − VX U−1

X V⊤

X

)
C = VZ U−1

Z

R =
1
K

(
UZ − VZ U−1

X V⊤

Z

)
(26)
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