
Reasoning About Real-Time Systems in Event-B
Models with Fairness Assumptions

Chenyang Zhu
Computer Science and Artificial Intelligence

Changzhou University
Changzhou, China
zcy@cczu.edu.cn

Michael Butler
Electronics and Computer Science

University of Southampton
Southampton, UK

mjb@ecs.soton.ac.uk

Corina Cirstea
Electronics and Computer Science

University of Southampton
Southampton, UK

cc2@ecs.soton.ac.uk

Thai Son Hoang
Electronics and Computer Science

University of Southampton
Southampton, UK

T.S.Hoang@soton.ac.uk

Abstract—Stepwise-based development supported by the
Event-B formalism has been used in the domain of system design
and verification. This refinement approach guarantees that safety
properties are preserved, while additional reasoning is required
to prove liveness properties. Our previous work proposes to use
real-time trigger-response properties to reason about liveness
properties and timed properties in real-time systems. Conditions
such as weak fairness assumptions, relative deadlock freedom,
and conditional convergence are explored to eliminate Zeno
behavior when modeling real-time systems. In this reasoning
framework, the response events are required not to be disabled
by other events. This paper extends our previous results by using
strong fairness assumptions to relax the constraints on response
events. Refinement rules and strategies are also developed to
refine real-time systems in the form of trace semantics and
LTL operators with fairness assumptions. A simplified bounded
re-transmission protocol case study is used to illustrate the
approach.

Index Terms—Event-B, Formal Specification, Real-time Sys-
tems, Fairness Assumptions, Refinement

I. INTRODUCTION

In recent years, there has been growing recognition of the
vital links between Cyber-Physical Systems (CPS) and time-
dependent functionality. Timing properties should be speci-
fied when developing the system to guarantee that CPS is
interacting with the environment correctly. Some safety-critical
systems must satisfy certain real-time constraints in order to
function as intended. For example, an artificial pacemaker
should deliver therapy according to the misbehavior of the
heart at fixed time intervals. Missing the stimulus deadlines
could be catastrophic. Similarly, the flight control software
must be able to distinguish between different flying environ-
ments and respond to different situations within a specific
timeframe in order to control the aircraft safely. Thus CPS
must fulfill its functional role in a time-regulated manner in
order to avoid unsafe situations.

With the thriving growth of software technology, much
attention has been concentrated on simplifying the design
of software systems while maintaining their usability and

dependability. However, the number of system errors increases
in proportion to the scale and complexity of the whole system.
Formal methods, which include mathematical techniques for
specifying and verifying systems, help the developers to con-
struct reliable software systems despite the design complex-
ity [1]. As one of the formal methods, the Event-B formalism
offers a stepwise development to manage complexity in system
design and verification.

Safety and liveness are two key properties of formal models:
a safety property states that dangerous situations will not
arise while a liveness property ensures that something good
will eventually happen [2]. In real-time systems, time should
progress regardless of what happens in its environment [3].
Thus liveness properties should be reasoned together with
the real-time systems. However, Event-B models are not
concerned with fairness or scheduling specifications [4]. Our
previous work in [5] proposed a reasoning framework to treat
the timed properties and liveness properties formally in Event-
B models. We explored sufficient conditions under which all
the traces of an Event-B model satisfy the real-time trigger-
response properties, in the form of Event-B proof obligations
and weak fairness assumptions. In this reasoning framework,
the response events are required not to be disabled by all the
other events. Then weak fairness assumptions and conditional
convergent intermediate events would lead to the eventually
occurrence of response events. This paper extends the previous
results by allowing response events to be disabled by some
other events. Strong fairness assumptions on response events
could still lead to the eventually occurrence of response events.
Our previous work in [6], [7] also explored weak fairness
assumptions and other conditions to refine the discrete timed
models. In this paper, we extend the work by including the
fairness assumptions in the refinement step. Refinement rules
and strategies are also developed to refine real-time systems in
the form of trace semantics and LTL operators with fairness
assumptions. A simplified bounded re-transmission protocol
(BRP) case study is used to depict the approach.

Thái Sơn Hoàng
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper is structured as follows. Section II describes the
related work that manage timed properties, LTL properties
in Event-B refinement. Section III presents the definition
of trace semantics as well as LTL operators to be used in
this paper. Section IV delivers rules that enforcing real-time
trigger-response properties in Event-B models with fairness
assumptions. The abstract level of the BRP case study is used
to exemplify the rules. Section V provides rules that refine
real-time systems in the form of trace semantics and LTL
operators with fairness assumptions. The concrete level of the
BRP case study is used to depict the approach. Section VI
summarizes the work and describes future work.

II. RELATED WORK

Event-B is a formal method that is usually used for system-
level modelling and analysis with refinement and reasoning
on the model [8]. However, it lacks explicit support for
expressing and verifying timing constraints [9]. Cansell et
al. developed an action-reaction pattern to model the causal
order between events. Time constraints are imposed between
action and reaction events to model real-time properties [10].
Butler and Falampin proposed an approach to modeling and
refining timing properties in classical B, which adds a clock
variable representing the current time and an operation which
advances the clock [11]. Based on this approach, Sarshogh and
Sulskus added explicit support for trigger-response properties
with deadline, delay, expiry and interval timing properties [9],
[12]. However these developments have failed to incorporate
a proper treatment of critical issues in timed systems, namely,
the divergence of intermediate events and infeasible responses
caused by a lack of progress or conflicting timing constraints.
Liveness properties should be specified and verified together
with real-time properties to guarantee the global clock should
always progress.

Work has been done to incorporate liveness properties
in Event-B models. Hoang and Abrial proposed to use the
notion of convergence, divergence and deadlock freedom to
encode some liveness properties such as lead to property,
existence property, progress property and persistence prop-
erty [13]. Schneider et al. proposed to integrate Event-B and
LTL together with several conditions, such as the eventually
convergent new events introduced in the refinement step, the
final machine in the refinement chain must be deadlock-free,
to guarantee that liveness properties are preserved through the
refinement chains [14]. Hoang et al. extended work in [14]
by covering liveness in the context of convergent events and
relaxing constraints between adjacent refinement levels by
using strong deadlock freedom with new events. However,
the proof rules in [13]–[15] have not yet considered fairness
assumptions in the verification step and the refinement step.
There are also work that integrate Event-B with other formal
methods for the verification of liveness properties. Hudon
and Hoang proposed Unit-B that integrate UNITY [16] and
Event-B to verify both safety and liveness properties through
stepwise refinement [17]. They illustrated four approaches for
refining events with scheduling information and preserve the

liveness properties. Abadi and Lamport defined the semantics
of Temporal Logic of Actions (TLA), which uses fairness
properties to handle the requirements of liveness for the digital
clock in real-time systems [18]. Based on this, Méry and
Poppleton proposed to integrate Event-B and TLA to include
fairness assumptions in the refinement proofs to preserve
liveness properties [4].

III. TRACE SEMANTICS AND LTL OPERATORS

An Event-B model that uses mathematical theory to describe
a discrete transition system usually contains two kinds of
components: contexts and machines. Contexts specify the
static part of a model whereas machines specify behavioral
properties of Event-B models [19]. Our previous work ab-
stracted away from the concrete syntax of Event-B and treat
a machine as a form of labeled transition system [5]. In this
paper, we extend the work by introducing fairness assumptions
for the events in the machine. The definition of a machine
is formalized in Definition 1. In the definition, the machine
consists of state set S and initial states init ⊆ S. We use
E to denote a set of event labels of the machine M . The
transition relation K is used as a function from event label set
E to the relation between states. As shown in Equation (1a),
an event labelled e is enabled in state s if s is in the domain
of event e’s transition relation Ke. We use Equation (1b) to
show that set of events is enabled when some event within
this set is enabled.

Definition 1 (Machine [5]). A machine M is a tuple <
S, init, E,K > consisting of
• S: a set of states, each state s is a mapping of variables

of M to their values;
• init: a set of initial states init ⊆ S ∧ init 6= ∅, which

correspond to initial configurations;
• E: a set of event labels of the machine M ;
• K: a transition relation K ∈ E→ (S↔ S) that relates

pairs of states;

en(e, s) , s ∈ dom(Ke) (1a)

en(A, s) , ∃e·e ∈ A ∧ en(e, s) (1b)

Work in [6] also defined traces(M) of machine M to describe
the infinite behavior of the system in terms of the set of pairs of
state trace and event trace (us, ue), which could be presented
as an infinite sequences of alternating states and events of the
form < (us(0), ue(0)), (us(1), ue(1)), ... > in Equation (2).

traces(M) , {(us, ue) | us ∈ N→ S ∧ ue ∈ N→ E ∧ us(0)

∈ init ∧ ∀i·i ≥ 0⇒ us(i) 7→ us(i+ 1) ∈ K(ue(i))}
(2)

Temporal logic is a formalism introduced by Pnueli to express
formal requirements and Linear Temporal Logic (LTL) is one
of the most used temporal logics that model time as a sequence
of states [20]. In this paper, we extend the usage of LTL
operators presented in [21] to show the properties of the

pairs of state trace and event trace (us, ue). The property ϕ
is a Boolean expression over the trace of (us, ue), which is
shown in Equation (3). A machine satisfies the property ϕ if
∀(us, ue) ∈ traces(M)⇒ (us, ue) |= ϕ. We use Definition 2
to show (us, ue) |= ϕ by induction over ϕ.

ϕ ::= true | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 (3)

Definition 2. Given the pair of state trace and event trace
(us, ue) =< (us(0), ue(0)), (us(1), ue(1)), ... >, the position
i ≥ 0, and the property ϕ, (us, ue) |= ϕ, meaning that the
trace (us, ue) satisfies the trace property ϕ at position i, is
defined inductively by the following rules:

(us, ue) |= ϕ⇔(us, ue, 0) |= ϕ

(us, ue, i) |= ϕ⇔(us(i), ue(i)) |= ϕ

(us, ue, i) |=©ϕ⇔(us(i), ue(i), i+ 1) |= ϕ

(us, ue, i) |= ¬ϕ⇔(us, ue, i) 2 ϕ

(us, ue, i) |= ϕ1 ∧ ϕ2 ⇔ (us, ue, i) |= ϕ1 ∧ (us, ue, i) |= ϕ2

(us, ue, i) |= ϕ1 ∨ ϕ2 ⇔ (us, ue, i) |= ϕ1 ∨ (us, ue, i) |= ϕ2

Here we use (us, ue)i to denote the suffix of (us, ue)
without the first i elements of the trace of pairs. For example,
(us, ue) =< (us(0), ue(0)), ..., (us(n − 1), ue(n − 1)) >_

(us, ue)
n. And we use (us, ue)

j to denote the prefix of
(us, ue) of the firth j elements of the trace. For example,
(us, ue)

j =< (us(0), ue(0)), ..., (us(j− 1), ue(j− 1)). Based
on Definition 2, we present the temporal operators always,
denoted �, eventually, denoted ♦ and until, denoted U as
follows:

(us, ue) |= �ϕ⇔ ∀i ≥ 0·(us, ue)i |= ϕ

(us, ue) |= ♦ϕ⇔ ∃i ≥ 0·(us, ue)i |= ϕ

(us, ue) |= ϕ1 U ϕ2 ⇔ ∃k ≥ 0·∀i < k ·(us, ue)i |= ϕ1

∧ (us, ue)k |= ϕ2

The temporal operator � expresses the requirement that prop-
erty ϕ should always be true on the trace. The ♦ operator
denotes that the property ϕ would be held at some point on
the trace. The U operator takes two arguments ϕ1 and ϕ2, so
that there exists a position k such that (us, ue)k satisfies ϕ2

and the sub-trace from 0 to k satisfies ϕ1.
Fairness assumptions could be imposed on machines to

restrict the behavior traces. We use M ∧ Fair to depict the
machine M with fairness assumptions Fair where Fair is
a conjunction of strong fairness assumptions (SF) and weak
fairness assumptions (WF) shown in Equation 4. Definition 3
depicts the traces properties of machine M restricted by
fairness assumptions.

Fair = SF (L1) ∧WF (L2) where L1 ⊆ E ∧ L1 ⊆ E (4)

Definition 3 (Strong and Weak Fairness Assumptions). Given
machine M with strongly fair events L1 and weakly fair events
L2, the traces of pair of state trace and event trace satisfy the
following properties:

SF (L1)⇔ (us, ue) |= �♦ en(L1, us)⇒�♦ue ∈ L1

≡ (us, ue) |= ♦�ue /∈ L1⇒♦�¬en(L1, us)

WF (L2)⇔ (us, ue) |= ♦� en(L2, us)⇒�♦ue ∈ L2

≡ (us, ue) |= �♦¬en(L2, us) ∨�♦ue ∈ L2

The Event-B notion of convergence requires convergent
events to become disabled, eventually without any fairness
assumptions. Our work in [6] extended the notion of conver-
gence to conditional convergence to define a set of events are
converging under certain condition Q(v) in Definition 4.

Definition 4 (Conditional Convergence [6]). A group of events
A is defined to be conditional convergent under the condition
Q as cov(A,Q) when
• V (v) is an integer expression.
• When the group of events is enabled, the variant V (v) is

a natural number.

I(v) ∧GA(v)⇒ V (v) ∈ N

• An execution of each event e ∈ A decreases V (v)
provided Q(v) holds.

I(v) ∧Ge(v) ∧ Se(v, v
′) ∧Q(v)⇒ V (v′) < V (v)

Based on Definition 4, we develop Lemma 1 to show the
trace properties restricted by conditional convergent events.
There are two cases for the trace (us, ue) ∈ traces(M): 1)
Q(v) is infinitely often disabled, and 2) Q(v) is eventually
continuously enabled. Observe that in the first case, the event
set A is not required to be convergent. Moreover, there are two
cases under the condition that Q(v) is eventually continuously
enabled: 3) event e ∈ A infinitely often occurs on the trace,
and 4) event e ∈ A never starts from some point on the
trace. Based on Definition 4, A will eventually continuously
be disabled when Q(v) is enabled in case 3. Based on weak
fairness on A, A should be infinitely often disabled in case 4.
Otherwise, A would occur at some point on the trace.

Lemma 1. Given that machine M is weakly fair towards A,
trace (us, ue) ∈ traces(M) satisfies the conditional conver-
gent property denoted as (us, ue) |= cov(A,Q), formally:

(us, ue) |= cov(A,Q)⇔ �♦(¬en(A) ∨ ¬Q)

Proof.

(us, ue) |= �♦¬Q ∨ ♦�Q

≡�♦¬Q ∨ (♦�Q ∧ (�♦(ue ∈ A) ∨ ♦�(ue /∈ A)))

≡�♦¬Q ∨

{
♦�Q ∧�♦(ue ∈ A)

♦�Q ∧ ♦�(ue /∈ A)

⇒{Convergent event A under condition Q}

�♦¬Q ∨

{
♦�Q ∧�♦(ue ∈ AU ¬en(A, us))

♦�Q ∧ ♦�(ue /∈ A)

⇒{Weak Fairness on A}

�♦¬Q ∨

{
�♦(ue ∈ AU ¬en(A, us))

�♦¬en(A, us)

≡�♦(¬en(A) ∨ ¬Q)

IV. ENFORCING REAL-TIME TRIGGER-RESPONSE
PROPERTIES WITH FAIRNESS ASSUMPTIONS

To model discrete timing properties in Event-B models, our
previous work in [5] provided the syntax of real-time trigger-
response properties as Definition 5 based on a trigger-response
pair (T,R), where T ⊆ E are trigger events, R ⊆ E are
response events, and T ∩ R = ∅. We use Resp(T,R,w, d)
to denote the timing property between trigger events T and
response events R, where w is the delay constraint and d is
the deadline constraint.

Definition 5 (Real-Time Trigger-Response Property [5]). A
real-time trigger-response property Resp(T,R,w, d) of a ma-
chine M with event labels E consists of:
• trigger events T ⊆ E ∧ T 6= ∅;
• response events R ⊆ E ∧R 6= ∅ ∧ T ∩ R = ∅;
• a delay w ∈ N and a deadline d ∈ N.

Figure 1 shows the Event-B syntax that encodes real-time
trigger-response properties. The response event response must
occur within time d of trigger event trigger occurring and
can only occur if the delay period has passed. We use tT
to refer to the time that a trigger event happens, and we
use tR to refer to the time that a response event happens.
Ga(v), Act a and Gb(v), Act b are the guards and actions
of untimed trigger and response events respectively. Invariant
@inv1 and @inv2 specify the delay and deadline timing
property between trigger and response respectively. Guard
@grd3 of the response event guarantees that the response
is disabled when the global clock has not passed the delay
period thus preserving @inv1. Guard @grd1 of the Tick
event constrains the global clock not to tick when the response
event is missing its deadline thus preserving @inv2. @inv3
is needed to prove invariant @inv2. As shown in Figure 1,
the trace (us, ue) that encodes with real-time trigger-response
properties satisfies two properties:1) the response event could
remove the constraints on Tick event and re-enable the Tick
event; 2) The enabledness of Tick event is preserved all the
other events in E, formally presented in Equation 5.

(us, ue) |= �(ue ∈ R ∧© en(Tick, us))

∧�(ue ∈ E \ {Tick} ∧ en(Tick, us) ∧© en(Tick, us))
(5)

To model real-time systems, we introduce a special event
Tick in event traces to represent the progress of time. In a real-
time system, one essential property requires that time should
always progress. The event traces of real-time systems should
always be infinite traces with infinitely many Tick events. A
trace (us, ue) is defined to satisfy Resp(T,R,w, d) provided:

(us, ue) |= Resp(T,R,w, d)⇔ (us, ue) |= �♦ue = Tick

∧ (us, ue) |= �(ue ∈ T ⇒♦ue ∈ R)

∧ (us, ue) |= �(ue ∈ T ⇒¬en(T, us)U ue ∈ R)

In the formalization, the first property is the timed property,
which guarantees an infinite number of Tick events occurring
in the trace. Moreover, only a finite number of non − Tick

invariants
@inv1 tT<tR⇒tR−tT≥ w
@inv2 tR≥ tT⇒tR−tT≤ d
@inv3 t=TRUE∧r=FALSE⇒clk

−tT≤ d
event trigger
where

@grd1 t=FALSE
Ga(v)

then
@act1 t:= TRUE
@act2 tT:= clk
Act a

end

event response
where

@grd1 t=TRUE
@grd2 r=FALSE
@grd3 clk≥ tT+w
Gb(v)

then
@act1 r:= TRUE
@act2 tR:= clk
Act b

end

event Tick
where

@grd1 t=TRUE∧r=FALSE⇒
clk+1−tT≤ d

then
clk:= clk+1

end

Fig. 1. Model Timing Properties of Trigger-Response Events with Delay and
Deadline

events could occur between any two Tick events. The second
property requires that a response event always follows a trigger
event. It is also required that the trigger events are disabled
between the trigger-response pair to avoid the recurring of
trigger events. Our previous work in [5] provided conditions
and proofs for the machine to satisfy Resp(T,R,w, d) in
Theorem 1 under fairness assumptions on intermediate events,
response events and Tick event. In this paper we use temporal
operator to present the conditions needed for the trace to
satisfy Resp(T,R,w, d).

Theorem 1. Let M be an Event-B machine, let
Resp(T,R,w, d) be a real-time trigger-response
property and let H ⊂ E such that T ∩ H = ∅ and
R ∩ H = ∅. If trace (us, ue) ∈ traces(M) satisfies the
conditions 1) to 6), then (us, ue) |= Resp(T,R,w, d) when
M ∧WF (H) ∧WF (R) ∧WF (Tick):

1) (us, ue) |= �((en(H,us) ∨ en(R, us))⇒¬en(T, us));
2) (us, ue) |= �(ue ∈ T ∧©(¬en(T, us) ∧ (en(H,us) ∨

en(R, us))));
3) (us, ue) |= �(ue ∈ E \ (T ∪ R) ∧

en(H,us)©(en(H,us) ∨ en(R, us)));
4) (us, ue) |= �(ue ∈ E \ (T ∪ R) ∧

en(R, us)© en(R, us));
5) (us, ue) |= cov(H,¬en(R));
6) w < d.

In this setting, condition 2 guarantees that the trigger event
enables H ∪ R and disables itself, and H ∪ R would be
kept enabled by condition 3. Condition 1 is used to avoid
the recurring of trigger events between trigger-response pair.
Condition 4 requires that if a response event is enabled, it
cannot be disabled by any event other than a response event
to avoid the scenario that intermediate events and response
events are enabled alternatively but never get executed. In
this paper, we relax this condition by allowing strong fairness
assumptions on response events. Rules and proofs are provided

in Theorem 2.

Theorem 2. Let M be an Event-B machine, let
Resp(T,R,w, d) be a real-time trigger-response property
and let H ⊂ E such that T ∩H = ∅ and R ∩H = ∅. If the
following conditions 1)-5) are true, then traces(M) satisfies
Resp(T,R,w, d) when M ∧WF (H)∧SF (R)∧WF (Tick):

1) (us, ue) |= �((en(H,us) ∨ en(R, us))⇒¬en(T, us));
2) (us, ue) |= �(ue ∈ T ∧©(¬en(T, us) ∧ (en(H,us) ∨

en(R, us))));
3) (us, ue) |= �(ue ∈ E \ (T ∪ R)©(en(H,us) ∨

en(R, us)));
4) (us, ue) |= cov(H,¬en(R));
5) w < d.

Proof. We first prove (us, ue) |= �(ue ∈ T ⇒ ♦ue ∈ R)
by contradiction. Let u ∈ traces(M) and assume ue(i) ∈ T
and (us, ue)i |= �ue /∈ R. Based on condition 3, (us, ue)i |=
�(en(H,us) ∨ en(R, us)).

(us, ue)i |= �ue /∈ R ∧�(en(H,us) ∨ en(R, us))

⇒{SF (R)}
♦�¬en(R, us) ∧�(en(H,us) ∨ en(R, us))

≡�(¬en(R, us) ∧ en(H,us))

Thus (us, ue)i |= �(¬en(R, us) ∧ en(H,us)). Based on
condition 4, (us, ue) |= cov(H,¬en(R)). And Lemma 1
shows that (us, ue) |= �♦(¬en(H) ∨ en(R)), which could
be used to derive a contradiction.

Then we prove (us, ue) |= �(ue ∈ T ⇒¬en(T, us)U ue ∈
R). Based on the previous proof, let ue(i) ∈ T and ue(j) ∈ R.
Then:

(us, ue) |= �(ue ∈ T ⇒¬en(T, us)U ue ∈ R)

≡{ue(i) ∈ T ∧ (us, ue)i |= �(¬en(R, us) ∧ en(H,us))}
(us, ue)

j
i |= �(¬en(T, us))

Based on condition 1 and condition 2, the trigger event would
be kept disabled.

In the last step, we prove that (us, ue) |= �♦ue = Tick.

(us, ue) |= �(ue ∈ T ⇒♦ue ∈ R)

⇒{Equation (5)}
(us, ue) |= �(ue ∈ T ⇒♦� en(Tick, us))

⇒{WF (Tick)}
(us, ue) |= �(ue ∈ T ⇒�♦ue = Tick)

In the cases that trigger event never occurs, then Tick event
is kept enabled. Based on weak fairness assumption, the Tick
would infinitely often occurs on the trace.

V. REFINEMENT OF REAL-TIME PROPERTIES WITH
FAIRNESS ASSUMPTIONS

Abstraction and refinement are usually essential to manage
the complexity of modeling and reasoning about a system.
Refinement of a system usually involves changing the variables
of the system [22]. Data refinement is used to add more details

to the data structure in the model, either by replacing existing
variables or adding new variables to the model. In Event-B
machines, gluing invariants are used to link the variables in
the refined model to the variables in the abstract model.

We use M =< S, S0, E,K > to denote the abstract ma-
chine, which is data-refined to the concrete machine M ′ =<
S′, S′0, F,K

′ >. Syntactically the abstract and concrete state
spaces are represented by the possible values of the variables
v and w respectively. S′0 is defined by a predicate L(w).
The transition relation K ′ of an event e ∈ F is defined
by its guard He(w) and action predicate Re(w). In general,
gluing invariants define a relational mapping between concrete
and abstract states. We assume J ∈ S ↔ S′ as a gluing
relation that relates the states of M and M ′. Syntactically, J
is represented by a predicate J(v, w). Event mapping function
g ∈ F → E ∪ {skip} is a total function from refined event
labels to abstract event labels and skip. The skip events are
mapped from concrete new events in M ′. We define machine
M ′ refines machine M in Equation (6) by showing that
M v M ′ iff for any concrete trace (vs, ve) ∈ traces(M ′),
there exists an abstract trace (us, ue) ∈ traces(M), which
satisfies that vs ∈ J [us] and ue = g(ve) \ {skip}.

M vM ′ ≡ ∀(vs, ve) ∈ traces(M ′)⇒∃(us, ue) ∈ traces(M)

∧ (us, ue) |= (vs ∈ J [us] ∧ ue = g(ve) \ {skip})
(6)

Work in [7] developed rules to prove M vM ′ in Theorem 3.
Based on the theorem, we designed a two-step refinement
strategy to refine the models. In the first step we introduce
intermediate events to the trigger-response pair while preserv-
ing the timing properties. Then in the second step we refine
the timing properties into sub-timing properties. Conditions
such as forward simulation, deadlock freedom and condi-
tional convergence are imposed in the first step to guarantee
the introduction of intermediate still preserves the real-time
trigger-response properties. However, Theorem 3 alone does
not guarantee that real-time trigger-response properties are
preserved in the refinement step. For example, given that
(us, ue) ∈ traces(M) and (us, ue) |= Resp(T,R,w, d). M ′

introduces new events G′ and H ′ where G′ disables R′ but H ′

re-enables R′. In this case the weak fairness assumptions on R′

is not sufficient to prove the eventually occurrence of response
events. And the refined timing property Resp(T ′, R′, w, d)
could not be satisfied by M ′.

Theorem 3. Given M with transition relation K and M ′ with
transition relation K ′. Let F be the set of event labels in M
and N be the introduced new events in M ′. M vM ′ provided
the following conditions hold:

• M forward simulated by M ′.
• M ′ is deadlock free relative to M : J [dom(K)] ⊆

dom(K ′).
• M ′ is weakly (F \ N)-fair.
• Events N in machine M ′ are conditional convergent

under the condition that events F \ N are disabled;

VI. CONCLUSION AND FUTURE WORK

REFERENCES

[1] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” CSUR, vol. 28, no. 4, pp. 626–643, Dec. 1996.
[Online]. Available: https://doi.org/10.1145/242223.242257

[2] L. Lamport, “Proving the correctness of multiprocess programs,” IIEEE
Trans. Software Eng., vol. SE-3, no. 2, pp. 125–143, Mar. 1977.
[Online]. Available: https://doi.org/10.1109/tse.1977.229904

[3] J. S. Ostroff, “Composition and refinement of discrete real-time
systems,” ACM Trans. Softw. Eng. Methodol., vol. 8, no. 1, pp. 1–48,
Jan. 1999. [Online]. Available: https://doi.org/10.1145/295558.295560

[4] D. Méry and M. Poppleton, “Towards an integrated formal method
for verification of liveness properties in distributed systems:
With application to population protocols,” Softw Syst Model,
vol. 16, no. 4, pp. 1083–1115, Dec. 2015. [Online]. Available:
https://doi.org/10.1007/s10270-015-0504-y

[5] C. Zhu, M. Butler, and C. Cirstea, “Semantics of real-time
trigger-response properties in Event-B,” in 2018 International
Symposium on Theoretical Aspects of Software Engineering
(TASE). IEEE, Aug. 2018, pp. 150–155. [Online]. Available:
https://doi.org/10.1109/tase.2018.00028

[6] C. Zhu, M. J. Butler, and C. Cirstea, “Towards refinement semantics of
real-time trigger-response properties in Event-B,” in 2019 International
Symposium on Theoretical Aspects of Software Engineering, TASE 2019,
Guilin, China, July 29-31, 2019, D. Méry and S. Qin, Eds. IEEE, 2019,
pp. 1–8. [Online]. Available: https://doi.org/10.1109/TASE.2019.00-26

[7] C. Zhu, M. Butler, and C. Cirstea, “Trace semantics and refinement
patterns for real-time properties in Event-B models,” Science of
Computer Programming, p. 102513, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642320301210

[8] Event B.org, “Event-B and the Rodin Platform,” 2019, available online
at http://www.event-b.org [Accessed: 9 Mar 2019].

[9] G. Sulskus, M. Poppleton, and A. Rezazadeh, “Modelling
complex timing requirements with refinement,” in 2016 IEEE
17th International Conference on Information Reuse and Integration
(IRI), vol. 9392. IEEE, Jul. 2016, pp. 292–307. [Online]. Available:
https://doi.org/10.1109/iri.2016.23

[10] D. Cansell, D. Méry, and J. Rehm, “Time constraint patterns for Event-B
development,” in International Conference of B Users. Springer, 2007,
pp. 140–154.

[11] M. Butler and J. Falampin, “An approach to modelling and refining
timing properties in b,” in Refinement of Critical Systems (RCS), Jan.
2002. [Online]. Available: https://eprints.soton.ac.uk/256235/

[12] M. R. Sarshogh and M. Butler, “Specification and refinement of discrete
timing properties in Event-B,” in AVoCS 2011, Sep. 2011, event Dates:
September 2011. [Online]. Available: https://eprints.soton.ac.uk/272480/

[13] T. S. Hoang and J.-R. Abrial, “Reasoning about liveness properties in
Event-B,” in International Conference on Formal Engineering Methods.
Springer, 2011, pp. 456–471.

[14] S. Schneider, H. Treharne, H. Wehrheim, and D. M. Williams, “Man-
aging ltl properties in Event-B refinement,” in International Conference
on Integrated Formal Methods. Springer, 2014, pp. 221–237.

[15] T. S. Hoang, S. Schneider, H. Treharne, and D. M. Williams, “Foun-
dations for using linear temporal logic in Event-B refinement,” Formal
Aspects of Computing, vol. 28, no. 6, pp. 909–935, 2016.

[16] C. C. KM and J. Misra, “Parallel program design: a foundation,” 1988.
[17] S. Hudon and T. S. Hoang, “Systems design guided by progress

concerns,” in International Conference on Integrated Formal Methods.
Springer, 2013, pp. 16–30.

[18] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1543–1571, Sep.
1994. [Online]. Available: https://doi.org/10.1145/186025.186058

[19] T. S. Hoang, “How to interpret failed proofs in Event-B,” Technical
report, vol. 672, 2010.

[20] A. Pnueli, “The temporal logic of programs,” in 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977),
IEEE. IEEE, Sep. 1977, pp. 46–57. [Online]. Available:
https://doi.org/10.1109/sfcs.1977.32

[21] D. Plagge and M. Leuschel, “Seven at one stroke: Ltl model checking
for high-level specifications in b, z, csp, and more,” International journal
on software tools for technology transfer, vol. 12, no. 1, pp. 9–21, 2010.

[22] R.-J. Back, “Refinement calculus, part II: Parallel and reactive pro-
grams,” in Workshop/School/Symposium of the REX Project (Research
and Education in Concurrent Systems). Springer, 1989, pp. 67–93.

