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Abstract—Speech recognition performance degrades signifi-
cantly in distant-talking environments, where the speech signals
can be severely distorted by additive noise and reverberation.
In such environments, the use of microphone arrays has been
proposed as a means of improving the quality of captured speech
signals. Currently, microphone-array-based speech recognition
is performed in two independent stages: array processing and
then recognition. Array processing algorithms, designed for signal
enhancement, are applied in order to reduce the distortion in the
speech waveform prior to feature extraction and recognition. This
approach assumes that improving the quality of the speech wave-
form will necessarily result in improved recognition performance
and ignores the manner in which speech recognition systems
operate. In this paper a new approach to microphone-array
processing is proposed in which the goal of the array processing
is not to generate an enhanced output waveform but rather to
generate a sequence of features which maximizes the likelihood
of generating the correct hypothesis. In this approach, called
likelihood-maximizing beamforming, information from the speech
recognition system itself is used to optimize a filter-and-sum
beamformer. Speech recognition experiments performed in a real
distant-talking environment confirm the efficacy of the proposed
approach.

Index Terms—Adaptive filtering, beamforming, distant-talking
environments, microphone array processing, robust speech recog-
nition.

I. INTRODUCTION

STATE-OF-THE-ART automatic speech recognition (ASR)
systems are known to perform reasonably well when the

speech signals are captured using a close-talking microphone
worn near the mouth of the speaker. However, there are many
environments where the use of such a microphone is undesir-
able for reasons of safety or convenience. In these settings, such
as vehicles, meeting rooms, and information kiosks, a fixed mi-
crophone can be placed at some distance from the user. Unfor-
tunately, as the distance between the user and the microphone
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grows, the speech signal becomes increasingly degraded by the
effects of additive noise and reverberation, which in turn de-
grades speech recognition accuracy. The use of an array of mi-
crophones, rather than a single microphone, can compensate
for this distortion in these distant-talking environments by pro-
viding spatial filtering to the sound field, effectively focusing
attention in a desired direction.

Many microphone array processing techniques which
improve the quality of the output signal and increase the
signal-to-noise ratio (SNR) have been proposed in research.
The simplest and most common method is called delay-and-sum
beamforming [1]. In this approach, the signals received by the
microphones in the array are time-aligned with respect to
each other in order to adjust for the path-length differences
between the speech source and each of the microphones. The
time-aligned signals are then weighted and added together.
Any interfering signals that are not coincident with the speech
source remain misaligned and are thus attenuated when the
signals are combined. A natural extension of delay-and-sum
beamforming is filter-and-sum beamforming, in which each
microphone signal has an associated filter and the captured
signals are filtered before they are combined.

In adaptive beamforming schemes, such as the generalized
sidelobe canceller (GSC) [2], the array parameters are updated
on a sample-by-sample or frame-by-frame basis according to
a specified criterion. Typical criteria used in adaptive beam-
forming include a distortionless response in the look direction
and/or the minimization of the energy from all directions not
considered the look direction. In some cases, the array param-
eters can be calibrated to a particular environment or user prior
to use, e.g., [3].

Adaptive filtering methods such as these generally assume
that the target and jammer signals are uncorrelated. When this
assumption is violated, as is the case for speech in a reverberant
environment, the methods suffer from signal cancellation be-
cause reflected copies of the target signal appear as unwanted
jammer signals. While various methods have been proposed to
mitigate this undesirable effect, e.g., [4] and [5], signal can-
cellation nevertheless still arises in reverberant environments.
As a result, conventional adaptive filtering approaches have not
gained widespread acceptance for most speech recognition ap-
plications.

A great deal of recent research has focused specifically on
compensating for the effects of reverberation. One obvious way
to perform dereverberation is to invert the room impulse re-
sponse. However, methods based on this approach have largely
been unsuccessful because room impulse responses are gen-
erally nonminimum phase which causes instability in the in-
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Fig. 1. (a) Conventional architecture used for speech recognition with a
microphone array front-end. The objective of the array processor is to estimate
the clean waveform. (b) An architecture for array processing optimized for
speech recognition. The array processor and the speech recognizer are fully
connected, allowing information from the recognizer to be used in the array
processing. Note that the system no longer attempts to estimate the clean
waveform.

verse filters [6]. Rather than performing deconvolution, some re-
searchers take a matched filter approach to dereverberation, e.g.,
[7], [8]. While there are theoretical benefits to such an approach
in terms of improved SNR, matched filtering has been shown
to provide only minimal improvement in speech recognition ac-
curacy over conventional delay-and-sum processing, even if the
room impulse responses are known a priori [9].

All of these microphone array processing methods were
designed for signal enhancement, and as such, process in-
coming signals according to various signal-level criteria, e.g.,
minimizing the signal error, maximizing the SNR, or im-
proving the perceptual quality as judged by human listeners.
Conventional microphone-array-based speech recognition is
performed by utilizing one of these algorithms to generate the
best output waveform possible, which then gets treated as a
single-channel input to a recognition system. This approach,
shown in Fig. 1(a), implicitly assumes that generating a higher
quality output waveform will necessarily result in improved
recognition performance. By making such an assumption, the
manner in which speech recognition systems operate is ignored.

A speech recognition system does not interpret waveform-
level information directly. It is a statistical pattern classifier that
operates on a sequence of features derived from the waveform.
We believe that this discrepancy between the waveform-based
objective criteria used by conventional array processing algo-
rithms and the feature-based objective criteria used by speech
recognition systems is the key reason why sophisticated array
processing methods fail to produce significant improvements in
recognition accuracy over far simpler methods such as delay-
and-sum beamforming. Speech recognition systems generate
hypotheses by finding the word string that has the maximum-
likelihood of generating the observed sequence of feature vec-
tors, as measured by statistical models of speech sound units.
Therefore, an array processing scheme can only be expected to
improve recognition performance if it generates a sequence of
features which maximizes, or at least increases, the likelihood
of the correct transcription, relative to other hypotheses.

In this paper, we present a new array processing algorithm
called likelihood-maximizing beamforming (LIMABEAM), in
which the microphone array processing problem is recast as
one of finding the set of array parameters that maximizes the
likelihood of the correct recognition hypothesis. The array pro-
cessor and the speech recognizer are no longer considered two
independent entities cascaded together, but rather two intercon-
nected components of a single system, with the common goal of
improved speech recognition accuracy, as shown in Fig. 1(b). In
LIMABEAM, the manner in which speech recognition systems
process incoming speech is explicitly considered and pertinent
information from the recognition engine itself is used to opti-
mize the parameters of a filter-and-sum beamformer.

LIMABEAM has several advantages over current array
processing methods. First, by incorporating the statistical
models of the recognizer into the array processing stage, we
ensure that the processing enhances those signal components
important for recognition accuracy without undue emphasis on
less important components. Second, in contrast to conventional
adaptive filtering methods, no assumptions about the interfering
signals are made. Third, the proposed approach requires no a
priori knowledge of the room configuration, array geometry,
or source-to-sensor room impulse responses. These properties
enable us to overcome the drawbacks of previously-proposed
array processing methods and achieve better recognition accu-
racy in distant-talking environments.

The remainder of this paper is organized as follows. In
Section II, filter-and-sum beamforming is briefly reviewed.
The LIMABEAM approach to microphone-array-based speech
recognition is then described in detail in Section III. In Sec-
tion IV, two implementations of LIMABEAM are presented,
one for use in situations in which the environmental conditions
are stationary or slowly varying and one for use in time-varying
environments. The performance of these two algorithms is eval-
uated in Section V through a series of experiments performed
using a microphone-array-equipped personal digital assistant
(PDA). Some additional considerations for these algorithms are
presented in Section VI. Finally, we present a summary of this
work and some conclusions in Section VII.

II. FILTER-AND-SUM BEAMFORMING

In this paper, we assume that filter-and-sum array processing
can effectively compensate for the distortion induced by addi-
tive noise and reverberation. Assuming the filters have a finite
impulse response (FIR), filter-and-sum processing is expressed
mathematically as

(1)

where is the th tap of the filter associated with micro-
phone , is the signal received by microphone , is
the steering delay induced in the signal received by microphone

to align it to the other array channels, and is the output
signal generated by the processing. is the number of micro-
phones in the array and is the length of the FIR filters.
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For notational convenience, we define to be the vector of all
filter coefficients for all microphones, as

(2)

III. LIKELIHOOD-MAXIMIZING BEAMFORMING (LIMABEAM)

Conventionally, parameters of a filter-and-sum beamformer
are chosen according to criteria designed according to the notion
of a desired signal. In contrast, we consider the output wave-
form to be incidental and seek the filter parameters that
optimize recognition accuracy. Therefore, we forgo the notion
of a desired signal, and instead focus on a desired hypothesis.
In order to so, we must consider both 1) the manner in which
speech is input to the recognition system, i.e., the feature ex-
traction process, and 2) the manner in which these features are
processed by the recognizer in order to generate a hypothesis.

Speech recognition systems operate by finding the word
string most likely to generate the observed sequence of
feature vectors , as measured by the
statistical models of the recognition system. When the speech
is captured by a microphone array, the feature vectors are a
function of both the incoming speech and the array processing
parameters. Recognition hypotheses are generated according to
Bayes optimal classification as

(3)

where the dependence of the feature vectors on the array pro-
cessing parameters is explicitly shown. The acoustic score

is computed using the statistical models of the rec-
ognizer and the language score is computed from a lan-
guage model.

Our goal is to find the parameter vector for optimal recogni-
tion performance. One logical approach to doing so is to choose
the array parameters that maximize the likelihood of the correct
transcription of the utterance that was spoken. This will increase
the difference between the likelihood score of the correct tran-
scription and the scores of competing incorrect hypotheses, and
thus, increase the probability that the correct transcription will
be hypothesized.

For the time being, let us assume that the correct transcrip-
tion of the utterance, which we notate as , is known. We
can then maximize (3) for the array parameters . Because the
transcription is assumed to be known a priori, the language

score can be neglected. The maximum-likelihood (ML)
estimate of the array parameters can now be defined as the
vector that maximizes the acoustic log-likelihood of the given
sequence of words, expressed as

(4)

In an HMM-based speech recognition system, the acoustic
likelihood is computed as the total likelihood of
all possible state sequences through the HMM for the sequence
of words in the transcription . However, many of these se-
quences are highly unlikely. For computational efficiency, we
assume that the likelihood of a given transcription is largely rep-
resented by the single most likely HMM state sequence. If
represents the set of all possible state sequences through this
HMM and represents one such state sequence, then the ML
estimate of can be written as (5), shown at the bottom of the
page.

According to (5), in order to find , the likelihood of the cor-
rect transcription must be jointly optimized with respect to both
the array parameters and the state sequence. This joint opti-
mization can be performed by alternately optimizing the state
sequence and the array processing parameters in an iterative
manner.

A. Optimizing the State Sequence

Given a set of array parameters , the speech can be processed
by the array and a sequence of feature vectors produced.
Using the features vectors and the transcription , we want to
find the state sequence [see (6), shown at
the bottom of the page]. This state sequence can be easily de-
termined by forced alignment using the Viterbi algorithm [10].

B. Optimizing the Array Parameters

Given a state sequence, , we are interested in finding such
that

(7)

This acoustic likelihood expression cannot be directly max-
imized with respect to the array parameters for two reasons.
First, the state distributions used in most HMM-based speech
recognition systems are complicated density functions, i.e.,
mixtures of Gaussians. Second, the acoustic likelihood of an
utterance and the parameter vector are related through a series

(5)

(6)
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of linear and nonlinear mathematical operations performed
to convert a waveform into a sequence of feature vectors.
Therefore, for a given HMM state sequence, no closed-form
solution for the optimal value of exists. As a result, nonlinear
optimization methods must be used.

We employ a gradient-based approach to finding the optimal
value of . For convenience, we define to be the total log
likelihood of the observation vectors given an HMM state se-
quence. Thus

(8)

Using the definition of given by (2), we define the gradient
vector as

(9)

Clearly, the computation of the gradient vector is dependent
on the form of the HMM state distributions used by the recog-
nition system and the features used for recognition. In Sec-
tion III-C and D, we derive the gradient expressions when the
state distributions are modeled as Gaussian distributions or mix-
tures of Gaussians. In both cases, the features are assumed to be
mel frequency cepstral coefficients (MFCC) or log mel spectra.

1) Gaussian State Output Distributions: We now derive the
expression for for the case where the HMM state dis-
tributions are multivariate Gaussian distributions with diagonal
covariance matrices. If we define and to be the mean
vector and covariance matrix, respectively, of the pdf of the most
likely HMM state at frame , the total log likelihood for an ut-
terance can be expressed as

(10)
where is a normalizing constant. Using the chain rule, the
gradient of with respect to can be expressed as

(11)

where is the Jacobian matrix, composed of the par-
tial derivatives of each element of the feature vector at frame
with respect to each of the array parameters. The Jacobian is of
dimension where is the number of microphones,

is the number of parameters per microphone, and is the di-
mension of the feature vector.

It can be shown that for log mel spectral feature vectors, the
elements of the Jacobian matrix can be expressed as

(12)

where is the discrete fourier transform (DFT) of frame
of the output signal , is the DFT of the signal cap-
tured by microphone , beginning samples prior to the start of
frame , is the value of the th mel filter applied to DFT bin

, and is the th mel spectral component in frame . The size
of the DFT is and denotes complex conjugation. Note that in
(12), we have assumed that time-delay compensation (TDC) has
already been performed and that the microphone signals
have already been time-aligned.

If optimization of the filter parameters is performed using
MFCC features rather than log mel spectra, (12) must be mod-
ified slightly to account for the additional discrete cosine trans-
form (DCT) operation. The full derivation of the Jacobian ma-
trix for log mel spectral or cepstral features can be found in [11].

2) Mixture of Gaussians State Output Distributions: Most
state-of-the-art recognizers do not model the state output distri-
butions as single Gaussians but rather as mixtures of Gaussians.
It can be shown [11] that when the HMM state distributions are
modeled as mixtures of Gaussians, the gradient expression can
be expressed as

(13)

where represents the a posteriori probability of the th
mixture component of state , given .

Comparing (11) and (13), it is clear that the gradient expres-
sion in the Gaussian mixture case is simply a weighted sum of
the gradients of each of the Gaussian components in the mix-
ture, where the weight on each mixture component represents
its a posteriori probability of generating the observed feature
vector.

C. Optimizing Log Mel Spectra Versus Cepstra

Array parameter optimization is performed in the log mel
spectral domain, rather than the cepstral domain. Because the
log mel spectra are derived from the energy using a series of tri-
angular weighting functions of unit area, all components of the
vectors have approximately the same magnitude. In contrast, the
magnitude of cepstral coefficients decreases significantly with
increasing cepstral order. When there is a large disparity in the
magnitudes of the components of a vector, the larger compo-
nents dominate the objective function and tend to be optimized
at the expense of smaller components in gradient-descent-based
optimization methods. Using log mel spectra avoids this poten-
tial problem.

In order to perform the array parameter optimization in the
log mel spectral domain but still perform decoding using mel
frequency cepstral coefficients (MFCC), we employ a parallel
set of HMMs trained on log mel spectra, rather than cepstra. To
obtain parallel models, we employed the statistical re-estima-
tion (STAR) algorithm [12], which ensures that the two sets of
models have identical frame-to-state alignments.

These parallel log mel spectral models were trained without
feature mean normalization, since mean normalization is not
incorporated into the optimization framework (we will revisit
this issue in Section VI).

D. Gradient-Based Array Parameter Optimization

Using the gradient vector defined in either (11) or (13), the
array parameters can be optimized using conventional gradient
descent [13]. However, improved convergence performance can
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(a) (b)

Fig. 2. Flowcharts of (a) Calibrated LIMABEAM and (b) Unsupervised LIMABEAM. In Calibrated LIMABEAM, the parameters of the filter-and-sum
beamformer are optimized using a calibration utterance with a known transcription and then fixed for future processing. In Unsupervised LIMABEAM, the
parameters are optimized for each utterance independently using hypothesized transcriptions.

be achieved by other methods, e.g., those which utilize estimates
of the Hessian. In this work, we perform optimization using the
method of conjugate gradients [14], using the software package
found in [15]. In this method, the step size varies with each
iteration and is determined by the optimization algorithm itself.

IV. LIMABEAM IN PRACTICE

In Section III, a new approach to microphone array pro-
cessing was presented in which the array processing parameters
are optimized specifically for speech recognition performance
using information from the speech recognition system itself.
Specifically, we showed how the parameters of a filter-and-sum
beamformer can be optimized to maximize the likelihood of a
known transcription. Clearly, we are faced with a paradox: prior
knowledge of the correct transcription, is required in order to
maximize its likelihood, but if we had such knowledge, there
would be no need for recognition in the first place. In this sec-
tion we present two different implementations of LIMABEAM
as solutions to this paradox. The first method is appropriate for
situations in which the environment and the user’s position do
not vary significantly over time, such as in a vehicle or in front
of a desktop computer terminal, while the second method is
more appropriate for time-varying environments.

A. Calibrated LIMABEAM

In this approach, the LIMABEAM algorithm is cast as a
method of microphone array calibration. In the calibration
scenario, the user is asked to speak an enrollment utterance
with a known transcription. An estimate of the most likely state
sequence corresponding to the enrollment transcription is made
via forced alignment using the features derived from the array

signals. These features can be generated using an initial set
of filters, e.g., from a previous calibration session or a simple
delay-and-sum configuration.

Using this estimated state sequence, the filter parameters can
be optimized. Using the optimized filter parameters, a second
iteration of calibration can be performed. An improved set of
features for the calibration utterance is generated and used to
re-estimate the state sequence. The filter optimization process
can then be repeated using the updated state sequence. The cali-
bration process continues in an iterative manner until the overall
likelihood converges. Once convergence occurs, the calibration
process is complete. The resulting filters are now fixed and used
to process future incoming speech to the array. Because the
array parameters are calibrated to maximize the likelihood of
the enrollment utterance, we refer to this method as Calibrated
LIMABEAM. A flowchart of the calibration algorithm is shown
in Fig. 2(a).

B. Unsupervised LIMABEAM

In order for the proposed calibration algorithm to be effective,
the array parameters learned during calibration must be valid for
future incoming speech. This implies that there will not be any
significant changes over time to the environment or the user’s
position. While this is a reasonable assumption for several sit-
uations, there are several applications in which either the envi-
ronment or the position of the user do vary over time. In these
cases, filters obtained from calibration may no longer be valid.
Furthermore, there may be situations in which requiring the user
to speak a calibration utterance is undesirable. For example, a
typical interaction at an information kiosk is relatively brief and
requiring the user to calibrate the system will significantly in-
crease the time it takes for the user to complete a task.
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Fig. 3. Four-microphone PDA mockup used to record the CMU WSJ PDA
corpus.

In these situations, it is more appropriate to optimize the array
parameters more frequently, i.e., on an utterance-by-utterance
basis. However, we are again faced with the paradox discussed
earlier. In order to maximize the likelihood of the correct tran-
scription of the test utterances, we require a priori knowledge of
the very transcriptions that we desire to recognize. In this case,
where the use of a calibration utterance is no longer appropriate,
we solve this dilemma by estimating the transcriptions and using
them in an Unsupervised manner to perform the array parameter
optimization.

In Unsupervised LIMABEAM, the filter parameters are opti-
mized on the basis of a hypothesized transcription, generated
from an initial estimate of the filter parameters. Thus, this algo-
rithm is a multi-pass algorithm. For each utterance or series of
utterances, the current set of filter parameters are used to gen-
erate a set of features for recognition which in turn, are used
to generate a hypothesized transcription. Using the hypothe-
sized transcription and the associated feature vectors, the most
likely state sequence is estimated using Viterbi alignment as be-
fore. The filters are then optimized using the estimated state
sequence, and a second pass of recognition is performed. This
process can be iterated until the likelihood converges. A flow-
chart of the algorithm is shown in Fig. 2(b).

V. EXPERIMENTAL EVALUATION

In order to evaluate the proposed Calibrated LIMABEAM
and Unsupervised LIMABEAM algorithms, we employed the
CMU WSJ PDA corpus, recorded at CMU. This corpus was
recorded using a PDA mockup, created with a Compaq iPaq
outfitted with four microphones using a custom-made frame at-
tached to the PDA. The microphones were placed in a 5.5 cm

14.6 cm rectangular configuration, as shown in Fig. 3. The
four microphones plus a close-talking microphone worn by the
user were connected to a digital audio multitrack recorder. The
speech data was recorded at a sampling rate of 16 kHz.

Recordings were made in a room approximately 6.0 m
3.7 m 2.8 m. The room contained several desks, computers

and a printer. The reverberation time of the room was measured
to be approximately 270 ms. Users read utterances from the
Wall Street Journal (WSJ0) test set [16] which were displayed
on the PDA screen. All users sat in a chair in the same location
in the room and held the PDA in whichever hand was most
comfortable. No instructions were given to the user about how
to hold the PDA. Depending on the preference or habits of the

user, the position of the PDA could vary from utterance-to-ut-
terance or during a single utterance.

Two separate recordings of the WSJ0 test set were made with
8 different speakers in each set. In the first set, referred to as
PDA-A, the average SNR of the array channels is approximately
21 dB. In the second recording session, a humidifier was placed
near the user to create a noisier environment. The SNR of the
second set, referred to as PDA-B, is approximately 13 dB.

Speech recognition was performed using Sphinx-3, a large-
vocabulary HMM-based speech recognition system [17]. Con-
text-dependent three-state left-to-right HMM’s with no skips
(8 Gaussians/state) were trained using the speaker-independent
WSJ training set, consisting of 7000 utterances. The system
was trained with 39-dimensional feature vectors consisting of
13-dimensional MFCC parameters, along with their delta and
delta-delta parameters. A 25-ms window length and a 10-ms
frame shift were used. Cepstral mean normalization (CMN) was
performed in both training and testing.

A. Experiments Using Calibrated LIMABEAM

The first series of experiments were performed to evaluate the
performance of Calibrated LIMABEAM algorithm. In these ex-
periments, a single calibration utterance for each speaker was
chosen at random from utterances at least 10 s in duration. For
each speaker, delay-and-sum beamforming was performed on
the calibration utterance and recognition features were gener-
ated from the delay-and-sum output signal. These features and
the known transcription of the calibration utterance were used
to estimate the most likely state sequence via forced alignment.
Using this state sequence, a filter-and-sum beamformer with 20
taps per filter was optimized. In all cases, the steering delays
were estimated using the PHAT method [18] and the filters were
initialized to a delay-and-sum configuration for optimization.
The filters obtained were then used to process all remaining ut-
terances for that speaker.

Experiments were performed using both 1 Gaussian per state
and 8 Gaussians per state in the log-likelihood expression used
for filter optimization. The results of these experiments are
shown in Fig. 4(a) and (b) for the PDA-A and PDA-B test sets,
respectively. For comparison, the results obtained using only
a single microphone from the array and using conventional
delay-and-sum beamforming are also shown. The GSC algo-
rithm ([2]) with parameter adaptation during the nonspeech
regions only (as per [4]) was also performed on the PDA data.
The recognition performance was significantly worse than
delay-and-sum beamforming and, therefore, the results are not
reported here.

As the figures show, the calibration approach is, in gen-
eral, successful at improving the recognition accuracy over
delay-and-sum beamforming. On the less noisy PDA-A test
data, using mixtures of Gaussians in the likelihood expres-
sion to be optimized resulted in a significant improvement
over conventional delay-and-sum processing, whereas the
improvement using single Gaussians is negligible. On the other
hand, the improvements obtained in the noisier PDA-B set are
substantial in both cases and the performance is basically the
same. While it is difficult to compare results across the two
test sets directly because the speakers are different in each set,
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Fig. 4. Word error rate obtained using Calibrated LIMABEAM on the CMU WSJ (a) PDA-A and (b) PDA-B corpora. The figures show the performance obtained
using a single microphone, delay-and-sum beamforming, and the proposed Calibrated LIMABEAM method with 1 Gaussian/state or 8 Gaussians/state in the
optimization. The performance obtained using a close-talking microphone is also shown.

Fig. 5. Word error rate obtained using Unsupervised LIMABEAM on the CMU WSJ (a) PDA-A and (b) PDA-B corpora. The figures show the performance
obtained using a single microphone, delay-and-sum beamforming, and the proposed Unsupervised LIMABEAM method with 1 Gaussian per state or 8 Gaussians
per state in the optimization. The performance obtained using a close-talking microphone is also shown.

the results obtained using single Gaussians versus mixtures of
Gaussians generally agree with intuition. When the test data
are well matched to the training data, i.e., same domain and
distortion, using more descriptive models is beneficial. As the
mismatch between the training and test data increases, e.g., the
SNR decreases, more general models give better performance.

Comparing Fig. 4(a) and (b), there is a significant disparity in
the relative improvement obtained on the PDA-A test set com-
pared with the PDA-B test set. A 12.7% relative improvement
over delay-and-sum beamforming was obtained in the PDA-A
test set, while the improvement on PDA-B was 24.6%. As de-
scribed above, the users were not told to keep the PDA in the
same position from utterance to utterance. The users in this
corpus each read approximately 40 utterances while holding the
PDA in their hand. Therefore, we can expect some movement
will naturally occur. As a result, the filter parameters obtained
from calibration using an utterance chosen at random may not
be valid for many of the utterances from that user. We re-ex-
amine this hypothesis in Section V.B, where the parameters are
adjusted for each utterance individually using the unsupervised
approach.

Finally, the experimental procedure described constitutes a
single iteration of the calibrated LIMABEAM algorithm. Per-
forming additional iterations did not result in any further im-
provement.

B. Experiments Using Unsupervised LIMABEAM

A second series of experiments was performed to evaluate
the performance of the Unsupervised LIMABEAM algorithm.
In this case, the filter parameters were optimized for each ut-

terance individually in the following manner. Delay-and-sum
beamforming was used to process the array signals in order to
generate an initial hypothesized transcription. Using this hy-
pothesized transcription and the features derived from the delay-
and-sum output, the state sequence was estimated via forced
alignment. Using this state sequence, the filter parameters were
optimized. As in the calibrated case, 20 taps were estimated per
filter and the filters were initialized to a delay-and-sum config-
uration. We again compared the recognition accuracy obtained
when optimization is performed using HMM state output dis-
tributions modeled as Gaussians or mixtures of Gaussians. The
results are shown in Fig. 5(a) and (b) for PDA-A and PDA-B,
respectively.

There is sizable improvement in recognition accuracy
over conventional delay-and-sum beamforming in both test
sets. Using Unsupervised LIMABEAM, an average relative
improvement of 31.4% was obtained over delay-and-sum
beamforming over both test sets. It is interesting to note that by
comparing Fig. 4(a) and 5(a), we can see a dramatic improve-
ment in performance using the unsupervised method, compared
to that obtained using the calibration algorithm. This confirms
our earlier conjecture that the utterance used for calibration was
not representative of the data in the rest of the test set, possibly
because the position of the PDA with respect to the user varied
over the course of the test set.

Additionally, we can also see that the effect of optimizing
using Gaussian mixtures versus single Gaussians in the unsu-
pervised case is similar to that seen in the calibration experi-
ments. As the mismatch between training and testing conditions
increases, better performance is obtained from the more gen-
eral single Gaussian models. As in the calibration case, these
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TABLE I
WER OBTAINED ON PDA-A USING UNSUPERVISED LIMABEAM

AND AN OPTIMIZED SINGLE-CHANNEL POST-FILTER APPLIED TO THE

OUTPUT OF A DELAY-AND-SUM BEAMFORMER

results were obtained from only a single iteration of Unsuper-
vised LIMABEAM, and additional iterations did not improve
the performance further.

C. LIMABEAM Versus Sum-and-Filter Processing

There is another class of methods for microphone array pro-
cessing which can be referred to as sum-and-filter methods. In
such methods, the array signals are processed using conven-
tional delay-and-sum beamforming or another array processing
algorithm and the single-channel output signal is then passed
through a post-filter for additional spectral shaping and noise
removal [19], [20].

We performed a series of experiments to compare the per-
formance of the proposed maximum-likelihood filter-and-sum
beamformer to that of a single-channel post-filter optimized
according to the same maximum-likelihood criterion and
applied to the output of a delay-and-sum beamformer. For
these experiments, the parameters of both the filter-and-sum
beamformer and the single-channel post-filter were optimized
using Unsupervised LIMABEAM with single-Gaussian HMM
state output distributions. For the filter-and-sum beamformer,
20-tap filters were estimated as before. For the post-filtering,
filters with 20 taps and 80 taps were estimated, the latter being
the same number of total parameters used in the filter-and-sum
case.

The results of these experiments are shown in Table I.
As the table shows, jointly optimizing the parameters of a
filter-and-sum beamformer provides significantly better speech
recognition performance compared to optimizing the parame-
ters of a single-channel post-filter.

D. Incorporating TDC Into LIMABEAM

In the filter-and-sum equation shown in (1), the steering
delays were shown explicitly as and in the experiments per-
formed thus far, we estimated those delays and performed TDC
prior to optimizing the filter parameters of the beamformer.
Thus, at the start of LIMABEAM, the microphone array signals
are all in phase. However, because TDC is simply a time-shift
of the input signals, it can theoretically be incorporated into the
filter optimization process. Therefore it is possible that we can
do away with the TDC step and simply let the LIMABEAM
algorithm implicitly learn the steering delays as part of the filter
optimization process.

To test this, we repeated the Calibrated LIMABEAM and Un-
supervised LIMABEAM experiments on the PDA-B test set. We
compared the performance of both algorithms with and without

TABLE II
WER OBTAINED ON PDA-B USING BOTH LIMABEAM METHODS

WITH AND WITHOUT TIME-DELAY COMPENSATION (TDC) PRIOR TO

BEAMFORMER OPTIMIZATION

TDC performed prior to filter parameter optimization. In the
case where TDC was not performed, the initial set of features
required by LIMABEAM for state-sequence estimation was ob-
tained by simply averaging the array signals together without
any time alignment. The results of these experiments are shown
in Table II.

As the results in the table show, there is very little degradation
in performance when the TDC is incorporated into the filter op-
timization process. It should be noted that in these experiments,
because the users held the PDA, they were never significantly
off-axis to the array. Therefore, there was not a significant differ-
ence between the initial features obtained from delay-and-sum
and those obtained from averaging the unaligned signals to-
gether. In situations where the user is significantly off-axis, ini-
tial features obtained from simple averaging without TDC may
be noisier than those obtained after TDC. This may degrade the
quality of the state-sequence estimation, which may, in turn, de-
grade the performance of the algorithm. In these situations, per-
forming TDC prior to filter parameter optimization is preferable.

VI. OTHER CONSIDERATIONS

A. Combining the LIMABEAM Implementations

In situations where Calibrated LIMABEAM is expected
to generate improved recognition accuracy, the overall per-
formance can be improved further by performing Calibrated
LIMABEAM and Unsupervised LIMABEAM sequentially. As
is the case with all unsupervised processing algorithms, the
performance of Unsupervised LIMABEAM is dependent on
the accuracy of the data used for adaptation. By performing
Calibrated LIMABEAM prior to Unsupervised LIMABEAM,
we can use the calibration method as a means of obtaining
more accurate state sequences to use in the unsupervised
optimization.

To demonstrate the efficacy of this approach, we performed
Unsupervised LIMABEAM on the PDA-B test set using
state sequences estimated from the features and transcrip-
tions produced by Calibrated LIMABEAM, rather than by
delay-and-sum beamforming as before. Recalling Fig. 4(b),
Calibrated LIMABEAM generated a 24.6% relative improve-
ment over delay-and-sum processing on the PDA-B test set.
By performing Unsupervised LIMABEAM using the tran-
scriptions generated by the calibrated beamformer rather than
by delay-and-sum beamforming, the word error rate (WER)
was reduced from 42.8% to 37.9%. For comparison, the WER
obtained from delay-and-sum beamforming was 58.9%.
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B. Data Sufficiency for LIMABEAM

One important factor to consider when using either of the
two LIMABEAM implementations described is the amount of
speech data used in the filter optimization process. If too little
data are used for optimization or the data are unreliable, then the
filters produced by the optimization process will be sub-optimal
and could potentially degrade recognition accuracy.

In Calibrated LIMABEAM, we are attempting to obtain
filters that generalize to future utterances using a very small
amount of data (only a single utterance). As a result, if the
beamformer contains too many parameters, the likelihood of
overfitting is quite high. For example, experiments performed
on an eight-channel microphone array in [11] showed that a
20-tap filter-and-sum beamformer can be reliably calibrated
with only 3–4 s of speech. However, when the filter length
is increased to 50 taps, overfitting occurs and recognition
performance degrades. When 8–10 s of speech data are used,
the 50-tap filters can be calibrated successfully and generate
better performance than the 20-tap filters calibrated on the same
amount of data.

For Unsupervised LIMABEAM to be successful, there has
to be a sufficient number of correctly labeled frames in the ut-
terance. Performing unsupervised optimization on an utterance
with too few correctly hypothesized labels will only degrade
performance, propagating the recognition errors further.

C. Incorporating Feature Mean Normalization

Speech recognition systems usually perform better when
mean normalization is performed on the features prior to being
processed by the recognizer, both in training and decoding.
Mean normalization can easily be incorporated into the filter
parameter optimization scheme by performing mean normal-
ization on both the features and the Jacobian matrix in the
likelihood expression and its gradient.

However, we found no additional benefit to incorporating fea-
ture mean normalization into the array parameter optimization
process. We believe this is because the array processing algo-
rithm is already attempting to perform some degree of channel
compensation for both the room response and the microphone
channel, as it is impossible to separate the two.

D. Applying Additional Robustness Techniques

There is a vast literature of techniques designed to improve
speech recognition accuracy under adverse conditions, such as
additive noise and/or channel distortion. These algorithms typ-
ically operate in the feature space, e.g., codeword-dependent
cepstral normalization (CDCN) [21], or the model space, e.g.,
maximum-likelihood linear regression (MLLR) [22].

We have found that applying such techniques after
LIMABEAM results in further improvements in perfor-
mance. For example, Table III shows the WER obtained when
batch-mode unsupervised MLLR with a single regression
class is applied after delay-and-sum beamforming and after
Calibrated LIMABEAM for the PDA-B test set.

As the table shows, performing unsupervised MLLR after
delay-and-sum beamforming results in recognition accuracy

TABLE III
WER OBTAINED BY APPLYING UNSUPERVISED MLLR AFTER ARRAY

PROCESSING ON THE PDA-B TEST SET

that is almost as good as Calibrated LIMABEAM alone. How-
ever, when MLLR is applied after Calibrated LIMABEAM, an
additional 10% reduction in WER is obtained. It should also be
noted that in this experiment, the MLLR parameters were esti-
mated using the entire test set, while the parameters estimated
by Calibrated LIMABEAM were estimated from only a single
utterance. Furthermore, by comparing these results to those
shown in Table II, we can see that the performance obtained by
applying MLLR to the output of delay-and-sum beamforming
is still significantly worse than that obtained by Unsupervised
LIMABEAM alone.

VII. SUMMARY AND CONCLUSIONS

In this paper, we introduced LIMABEAM, a novel approach
to microphone array processing designed specifically for im-
proved speech recognition performance. This method differs
from previous array processing algorithms in that no waveform-
level criteria are used to optimize the array parameters. Instead,
the array parameters are chosen to maximize the likelihood of
the correct transcription of the utterance, as measured by the
statistical models used by the recognizer itself. We showed that
finding a solution to this problem involves jointly optimizing
the array parameters and the most likely state sequence for the
given transcription and described a method for doing so.

We then developed two implementations of LIMABEAM
which optimized the parameters of a filter-and-sum beam-
former. In the first method, called Calibrated LIMABEAM,
an enrollment utterance with a known transcription is spoken
by the user and used to optimize the filter parameters. These
filter parameters are then fixed and used to process future
utterances. This algorithm is appropriate for situations in
which the environment and the user’s position do not vary
significantly over time. For time-varying environments, we
developed an algorithm for optimizing the filter parameters in
an unsupervised manner. In Unsupervised LIMABEAM, the
optimization is performed on each utterance independently
using a hypothesized transcription obtained from an initial pass
of recognition.

The performance of these two LIMABEAM methods was
demonstrated using a microphone-array-equipped PDA. In
the Calibrated LIMABEAM method, we were able to obtain
an average relative improvement of 18.6% over conventional
beamforming, while the average relative improvement obtained
using Unsupervised LIMABEAM was 31.4%. We were able
to improve performance further still by performing Calibrated
LIMABEAM and Unsupervised LIMABEAM in succession,
and also by applying HMM adaptation after LIMABEAM.
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The experiments performed in this paper showed that we
can obtain significant improvements in recognition accuracy
over conventional microphone array processing approaches
in environments with moderate reverberation over a range
of SNRs. However, in highly reverberant environments, an
increased number of parameters is needed in the filter-and-sum
beamformer to effectively compensate for the reverberation. As
the number of parameters to optimize increases, the data insuf-
ficiency issues discussed in Section VI begin to emerge more
significantly, and the performance of LIMABEAM suffers. To
address these issues and improve speech recognition accuracy
in highly reverberant environments, we have begun developing
a subband filtering implementation of LIMABEAM.
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