IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2007 661

Pronunciation Modeling With Reduced Confusion for
Mandarin Chinese Using a Three-Stage Framework
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Abstract—Multiple-pronunciation dictionaries have been found
to be useful in pronunciation modeling for speech recognition.
However, the extra pronunciation variants added in the dictionary
inevitably increase the confusion among different words during
recognition, and consequently limit the achievable improvements
in the recognition performance. This paper proposes a three-stage
framework for Mandarin Chinese to construct automatically the
multiple-pronunciation dictionary while reducing the possible
confusion caused. The proposed framework includes pronuncia-
tion generation (Stage 1), ranking (Stage 2) and pruning (Stage 3).
New measures of confusability for multiple-pronunciation dictio-
naries were developed and shown to have a very strong correlation
with recognition performance. With the proposed framework, it
was shown that the confusability as measured can be reduced and
recognition performance improved stage by stage. All of the above
findings were verified by a series of experiments performed on
both planned (LDC HUB-4NE) and spontaneous (LDC CALL-
HOME) Mandarin Chinese speech corpora.

Index Terms—Confusability, confusion, multiple-pronunciation
dictionary, pronunciation modeling, pronunciation variation,
speech recognition.

1. INTRODUCTION

T IS well known that the pronunciation variation that is
I present in natural speech is one of the major sources of
errors in automatic speech recognition (ASR). To capture such
variation, many ASR systems have employed multiple-pro-
nunciation dictionaries that include pronunciation variants in
addition to the canonical pronunciations of words. The con-
struction of a good multiple-pronunciation dictionary is thus
critical to favorable ASR performance.

A variety of methods have been utilized to obtain the mul-
tiple-pronunciation dictionaries, and such approaches have
been comprehensively surveyed [1]. Most of these methods
acquire the pronunciation variation information by automati-
cally transcribing the surface forms from speech corpora with
speech recognizers [2]-[16] rather than by manual transcription
for better efficiency and consistency with the later recognition
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processes. However, automatically extracting reliable surface
forms that faithfully reflect what has actually been pronounced
is very challenging because recognition errors are inevitable.
Such transcription errors may increase the confusion of the con-
structed dictionary since “incorrect” variants may be added and
shared by different words. In order to reduce the transcription
errors and the confusion, phone-bigram recognizers [2], [3],
[10], [11], [15], [16] or decision trees [2], [7], [9]-[11], [16]
have been adopted for the transcription. Some experimental
investigations have shown that the dictionaries obtained using
phone-bigram recognizers significantly improves recognition
performance, while decision trees offer less, or even insignif-
icant improvement over the baseline dictionary [2]. However,
phone-bigram recognizers still produce many recognition errors
and introduce extra confusion into the constructed dictionary.

Once obtained, the pronunciation variation information can
be incorporated into dictionaries either explicitly or implicitly.
In an explicit approach, the pronunciations of words observed
in surface transcriptions are enumerated in a table, which are
later selected in the dictionary [2], [7]-[12], [14], [15]. In an im-
plicit approach, phonological rules [5], [6], [13], [16]-[19], de-
cision trees [2], [7], [9]-[11], artificial neural networks [20], or
a phone confusion table [4] are applied to baseforms of words to
generate their surface pronunciations. Although having the po-
tential to generate surface pronunciations of unseen words, such
implicit approaches may under- or over-generate the pronunci-
ations of words that share the same phonotactic context, and so
have been found to result in comparable [7], [9] or sometimes
worse [16] recognition performance than explicit approaches.
Therefore, in this paper, the multiple-pronunciation dictionaries
were explicitly obtained.

Regardless of whether pronunciation variants in a dictio-
nary are obtained implicitly or explicitly, the added variants
inevitably introduce extra lexical confusion in the dictionary by
increasing the number of words that share identical or similar
pronunciations. Such increased confusion seriously limits the
achievable improvement in recognition performance when
multiple pronunciations are considered. Many methods have
been proposed to avoid such confusion. One straightforward
scheme is to prune the variants based on their frequencies
[2], [9], [13]-[15], [21]. Phonological rules for generating
the variants can also be pruned based on acoustic likelihood
[22] or the pronunciation entropy of phones [23], [24]. Word
frequencies [10], word pronunciation entropy [14], and the
ratio of pronunciation probabilities [17] have also been used
to select the variants. However, none of these approaches ac-
tually measured or decreased the confusability directly. Direct
methods, such as inverted finite-state transducers, have been
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adopted to estimate explicitly the lexical confusion, but they
have not yet practically been integrated into pronunciation
modeling process to prevent confusion [25]. Another approach
is to measure directly the confusability between a pair of words
by calculating the similarity between their pronunciations using
a phone confusion table. Such measured confusability has been
used as a criterion to reject pronunciation variants for a specific
word when they are phonetically similar to variants of other
words [4]. However, this criterion does not include pronun-
ciation frequencies or word frequencies in the consideration
of the confusability. The relationship between the estimated
confusability and the recognition performance is also not
clear. Yet another approach is to estimate the confusability of
individual variants by matching them with time-aligned phone
sequences of utterances obtained from forced recognition. This
confusability metric has also been used to reject confusing
variants. Experiments have shown that the confusability of a
dictionary, thus evaluated, is not very closely correlated with
recognition performance [16].

In this paper, two different measures of the confusability of
a dictionary were explicitly defined based on pronunciations
that are shared by at least two distinct words in the dictionary.
When pronunciation variants are introduced into a multiple-
pronunciation dictionary, the confusability as measured by the
proposed metric are inevitably increased. Therefore, a major
purpose of this paper is to reduce such extra confusability when
constructing a multiple-pronunciation dictionary. Our experi-
ments show that the confusability measured by either of the
proposed metrics is very strongly correlated with recognition
performance, at least for Mandarin Chinese. The eligibility of
a pronunciation variant to be included for a given word was
thus estimated by both the prior probability of the variant for
the word and the potential of the variant to increase the con-
fusability in the dictionary. Accordingly, the eligibility is less
under- or over-estimated than it would be when only pronun-
ciation frequencies or confusability was considered alone. The
potential of variants to increase the confusability of a dictionary
was further analyzed in various aspects.

Based on the aforementioned strategies, a three-stage frame-
work for constructing a multiple-pronunciation dictionary for
Mandarin Chinese was proposed, with a focus on reducing the
increased confusability that is caused by adding pronunciation
variants. In Stage 1, pronunciation generation, an automatic
procedure was proposed to generate surface transcriptions
with less confusion. In Stage 2, pronunciation ranking, the
pronunciation variants of each word observed in the surface
transcriptions are ranked by their eligibility to be included for
the word, considering not only the pronunciation frequencies
of the variants, but also their potential to increase confus-
ability. In Stage 3, pronunciation pruning, the less eligible
(or lower-ranked) pronunciations are pruned by some measure
based on the estimated eligibility. The confusability of the
constructed dictionaries can be maximally reduced by con-
sidering various aspects of the extra confusion added in the
three stages. The approaches were tested in large-vocabulary
continuous speech recognition (LVCSR) experiments on both
planned (LDC HUB-4NE) and spontaneous (LDC CALL-
HOME) speech in Mandarin Chinese. During the recognition,

| Stage 1 Stage 2. Stage 3 Multu')le'-
Training [+ Pronunciati .| Pronunciation | Pronunciation Propupmanon
Corpus ||| generation ranking pruning Dictionary

Fig. 1. Three-stage framework for constructing multiple-pronunciation
dictionaries.
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Fig. 2. Proposed automatic surface form generation procedure.

the pronunciation probability weight used in the process was
also tuned to observe its effect on confusability. The interac-
tions among the pronunciation, acoustic and language models
were also analyzed with additional experiments. Although the
proposed approaches were verified to be useful for Mandarin
Chinese, it is not known at all whether they can be used for
other languages, because no such tests were ever performed. In
particular, very possibly these approaches may not be useful for
western alphabetic languages due to the significant difference
between the linguistic and phonetic structures of Chinese and
western alphabetic languages. However, these concerns are out
of the scope of this paper.

The rest of this paper is organized as follows. Section II in-
troduces in detail the three-stage framework. Section III then
describes the corpora and experimental configurations. Next,
Section IV defines the two proposed confusability measures,
and presents, analyzes, and discusses the experimental results
to verify the concepts mentioned here. A conclusion is finally
drawn in Section V.

II. THREE-STAGE FRAMEWORK FOR CONSTRUCTING
MULTIPLE-PRONUNCIATION DICTIONARIES

This section presents the three-stage framework for au-
tomatically constructing multiple-pronunciation dictionaries
for Mandarin Chinese. Fig. 1 presents the framework. In the
first stage (pronunciation generation), surface transcriptions
of words from a training corpus were generated; these gener-
ated pronunciations were then ranked for each word by their
eligibility for inclusion in the dictionary in the second stage
(pronunciation ranking). Finally, the higher-ranked pronun-
ciations were selected in the dictionary in the pronunciation
pruning stage.

A. Stage 1—Pronunciation Generation

An automatic surface form generation procedure for Man-
darin Chinese [14], [15] was proposed in this stage to generate
surface forms. This procedure utilizes phone-level forced recog-
nition following a free phone recognizer, so as to introduce less
lexical confusion into the compiled dictionary.

The upper arm in Fig. 2 demonstrates that this procedure
firstly utilizes a free phone recognizer (without any constraint
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of word dictionaries or language models) to produce a “noisy”
surface transcription from the corpus. This transcription is then
aligned with the canonical transcription of the same corpus by
dynamic programming. Phonetic similarity is taken into account
as an additional score in the dynamic programming. A phone-
level pronunciation confusion table is obtained from the align-
ment and converted into a multiple-pronunciation phone dic-
tionary in the upper right-hand corner of this figure. It consists
of pronunciation variants, with prior probabilities, observed for
each phone. This phone dictionary accommodates both phone-
level substitutions and deletions. The deleted phones are mod-
eled using a special hidden Markov model with a single state
which took only one speech frame, and then the next frame
is transited automatically to the next model with a probability
of unity. The insertions, however, are simply removed from
this phone dictionary for the following reasons. First, most in-
serted phones observed are not actually produced in the acoustic
signal, but are very often simply incorrectly recognized. Second,
the number of such inserted phones is relatively very small,
as compared to the number of phone deletion or substitution.
Third, modeling such inserted phones accurately in a multiple-
pronunciation phone dictionary is very difficult.

The phone dictionary obtained above is then used in the fol-
lowing phone-level forced recognition on the same corpus as
in the lower arm of Fig. 2. This forced recognition chooses
for each individual canonical phone, the pronunciation that best
matched the acoustic signal among the variants provided by the
dictionary. The “phone-level,” instead of “word-level,” forced
recognition is used here because pronunciation variation can
be accommodated much more efficiently at phone-level repre-
sentation, given the fact that such variation is commonly de-
scribed by the symbolic change of “phones.” For instance, con-
sidering a word with five phones in its canonical transcription,
four variants for each of the five phones (a total of 20 entries in
phone-level representation) may need 1024 variants (or entries)
to present the same information in word-level representation.

Additionally, a pronunciation probability weight (denoted as
ar) is used during the phone-level forced recognition, and can
be tuned to control how conservatively the surface forms will be
transcribed. In other words, the best phone sequence S obtained
during the forced recognition is the one that maximized the fol-
lowing probability:

§ = argmax [P(A|S)P(S5]5)*"] M

where S, is a canonical phone sequence, S is any possible cor-
responding pronunciation sequence provided in the dictionary,
and A is the acoustic signal. Clearly, the larger the ap is, the
more conservatively the surface forms are transcribed, because
in this case only those pronunciations with relatively higher
prior probabilities (the canonical pronunciations in most cases)
would be considered in the forced recognition. Hence, infre-
quent pronunciation variants are very often rejected, and only
those speech segments that are pronounced very frequently and
differently from the canonical pronunciations would be tran-
scribed. The resulting “refined” transcription is then aligned
with the canonical transcription to obtain the pronunciation vari-
ants of words. These variants, excluding those with occurrence

frequencies of less than a predetermined threshold, are finally
explicitly enumerated in a word-level pronunciation frequency
table obtained in the lower right-hand corner of Fig. 2. They are
ranked in the following stage.

Notably, in this paper, the variants were obtained explicitly
from the transcription alignment rather than implicitly by ex-
panding the baseforms of words, because, as mentioned previ-
ously, implicit approaches have been shown to offer comparable
[71, [9] or worse [16] recognition performance than explicit ap-
proaches. Clearly, the explicit approach is not able to generate
pronunciations of unseen words, and should be adopted only
when a sufficiently large training corpus is available. As will
become clear later on, more than 97% of the word tokens in the
test data in this paper appeared in the training set, so choosing
an explicit approach to generate the pronunciations herein was
reasonable.

Both the free phone recognition and the phone-level forced
recognition mentioned previously were performed with a set
of intrasyllable right-context-dependent acoustic models which
has been found to be very useful for Mandarin Chinese, and the
same set of models was also used in the recognition performance
tests that are reported below. Although the literature [8] has sug-
gested that monophone models with fewer Gaussian mixtures
can be used for the automatic transcription of surface forms for
ensuring that the models do not become “overly exposed” to
the canonical transcriptions, it was also reported [7] that using
the same set of acoustic models in both the automatic transcrip-
tion of surface forms and the recognition performance tests im-
proved the consistency. Certainly, it is also a good choice to use
more sophisticated acoustic models, such as the cross-word tri-
phone models, in the final recognition performance tests. In this
case, the use of a separate set of monophone models to obtain
pronunciation variants and then expand them into context-de-
pendent triphones for later recognition may be preferred to avoid
the explosion of the search space during the forced recognition.
On the other hand, the simple use of the same set of acoustic
models in the forced recognition with a relatively smaller search
beam width may also be considered for better consistency.

In this paper, the quality of the surface transcriptions and
the pronunciation variants generated by the approach proposed
above, including the use of different pronunciation probability
weights ap in (1) in the forced recognition, was investigated.
They were compared with those generated by a free phone rec-
ognizer [4] or a phone bigram [2] in terms of the confusability
of the constructed dictionaries and the resulting recognition
performance.

B. Stage 2—Pronunciation Ranking

In this stage, the pronunciation variants generated in Stage 1
are ranked by their eligibility for inclusion in the dictionary.
This paper proposes to use a p f —iw f score which not only con-
siders how frequently the pronunciation is realized for the word
[the pronunciation frequency (pf)], but also how much extra
confusability would be introduced by including this pronuncia-
tion in the dictionary [the inverse word frequency (iw f)] [14].
The number of higher-ranked pronunciations to be included in
the dictionary is then determined by the pruning criteria in the
next stage. The proposed p f —iw f score, integrating the p f and
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the 4w f, is analogous to the term frequency (¢f) and the inverse
document frequency (idf), tf—idf scores, for indexing terms
used in information retrieval [26], as explained next.

1) Pronunciation Frequency (pf): Conventionally, the eligi-
bility of pronunciation v; for word w; is measured by its p f

oy
Pfij = =d— = P(v;|w) @)
! Zallj Cij !

where c;; is the count of word w; being pronounced as v;, and
P(v;|w;) is the prior probability that w; is pronounced as v;.
This pf is analogous to the ¢ f in information retrieval, for which
an indexing term (or a pronunciation herein) that is observed
more frequently in a document (or a word herein) typically im-
plies a higher correlation with the document (or the word).

2) Inverse Word Frequency (iwf): While the pf described
above concerns various pronunciations within a word, the
1w f proposed herein concerns a pronunciation across different
words. A pronunciation that is frequently realized for many
different words may introduce extra confusion during recog-
nition, so such a pronunciation is less eligible for inclusion in
the dictionary. The 4w f for a pronunciation v; can therefore be
defined as

iwf = log 12

ww f; = log %] 3)
where (1 is the vocabulary of words, €2; is the set of words whose
pronunciation variants include v;, and | e | is the number of el-
ements in a set. This definition is almost identical to that of the
inverse document frequency (idf) in information retrieval, in
which an indexing term (or a pronunciation herein) that is fre-
quently observed in many different documents (or words herein)
typically implies relatively low discriminability in identifying
relevant documents (or words). Hence, the importance of an in-
dexing term (or pronunciation) is related to the inverse of its fre-
quency of appearance in different documents (or words), which
is the ¢df (or jwf).

Based on the definition in (3), all of the words with pronuncia-
tion v; are treated equally, but the confusion caused undoubtedly
also depends on both the frequencies of the confused words and
the probabilities that those words are pronounced as v;. There-
fore, the inverse word frequency (w f)is redefined as follows:

1 1
qw fs — — 4
= o Pl P~ Py P

where P(wy,) and P(v;) are the prior probabilities of the word
wy, and the pronunciation v; in the corpus. The inverse word
frequency for pronunciation v;, 4w f; is thus higher when v; is
more frequently realized for commonly used words.

3) Pronunciation Frequency and Inverse Word Frequency
(pf—iwf): The pf—iwf score, obtained by integrating the
pronunciation frequency and inverse word frequency as defined
above, is proposed to evaluate the eligibility of a pronunciation
v; to be included for a word w; in the dictionary

bij = pfij - (fwf;)7 &)

TABLE 1
PRONUNCIATION VARIANTS WITH OCCURRENCE FREQUENCIES OF THE WORD

29
“;ﬁ (“have,” WITH CANONICAL PRONUNCIATION /#+i iou/) RANKED BY pf
OR pf—twf SCORES

by pf score by pf-iwf score
(1) /#+iiow/ 670 | (1) /#+iiow 670
2) /iow 137 | (2) /iow/ 137
(3) /M+Uiaw/ 66 | (3) /#+Uiow/ 20
4)  /j+iiouw/ 64 | (4) /#+i ou/ 25
(5) /#+ ow/ 251 (5) /ntuiow/ 4
(6) /#ti iau/ 24 | (6) /#tiuo/ 11

where ~y is an adjustable weight parameter for the iw f score.
When 1 is set to zero, ;; is reduced to the original convention-
ally used pronunciation frequency pf;;. When v equals unity,
0;; turns out to be the mutual information between pronuncia-
tion v; and word w;

~_ P(jlwi)  P(yj,wi)  Pwi|vy)
= Py T PPy T Pw) ©

which expresses how much the likelihood is increased once
the pronunciation v; is known. In this case, the pronunciations
having higher mutual information with a particular word tend
to have higher p f —iw f scores. The weight -y can also be an ar-
bitrary number other than zero or unity. The p f—iw f score 6;;
is generally higher if v; occurs more frequently for the word
w;, and lower if v; appears more frequently in many other com-
monly used words.

Table I presents an example of the pronunciation variants
(together with the respective frequencies in the training corpus)
ranked either by the conventional pf score alone or by the
pf—iwf score proposed herein (with v = 0.8) for a commonly
used Chinese word ““H” (“have,” with canonical pronunciation
/#+1 iou/, where #+i is an Mandarin Initiall with right context
of phone i and iou is a Mandarin Final! that consists of three
phones i, 0, and u). The left column of this table ranks the vari-
ants by the pf alone, and two of the six top-ranked variants are
shared by other frequently used words—item (4), /j+i iou/ (the
frequently used function word “¥L”, occurring 798 times in the
training data) and item (6), /#+i iau/ (another frequently used
function word “Z&” occurring 709 times). However, among the
variants ranked by the pf—iwf scores in the right column of
the table, these two confusing variants are ranked below six
and so are not shown in the table. Moreover, even if item (3)
in the left column, /#+U iau/, is not identical to any canonical
pronunciation of other words, it is ranked below six by the
pf—iwf score and so is not shown in this column, because
some other frequently used words (such as “Z” /#+i iau/) have
this pronunciation as a noncanonical variant, and so greatly
reduced the pf—iwf score. In other words, a pronunciation

IConventionally, a Mandarin syllable is decomposed into an Initial and a
Final. The Initial is the way in which a syllable begins, normally with a con-
sonant. However, a small number of syllables do not begin with a consonant
and are referred to as beginning with a zero Initial. The Final of a syllable is the
syllable minus the Initial. The longest Final consists of three parts—an optional
medial, or a semivowel; a main vowel, or a head vowel, and an optional ending.
Mandarin has a total of 21 Initials and 36 Finals.
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is given a lower pf—iw f score if it is often realized for some
other frequently used words. Furthermore, reductions occur
often in frequently used words (with some phones missing).
Such partial pronunciations of frequently used words are also
given lower pf—iwf scores and thus are more likely to be
removed from the dictionary.

C. Stage 3—Pronunciation Pruning

With the pronunciation variants as ranked above, the pro-
nunciation pruning stage determines the number N (w;) of top-
ranked variants of each word w; to be included in the dictionary.
Four pruning approaches are presented and will be tested next.

1) Fixed Pruning: Simply keeping a fixed number Ny of
top-ranked variants for each word, or keeping all of a word’s
variants if the number of available variants is fewer than Ng.

2) Count-Based Pruning: Frequently spoken words typically
have widely spread pronunciation variation, so the number of
pronunciations to be included for each word w;has been sug-
gested to be determined based on the occurrence count of the
word [10]

Nc(w;) = |pc - log ¢ @)

where ““| #]” is a flooring function, or the largest integer less than
or equal to the argument, ¢; is the occurrence count of the word
w; in the corpus, and pc is an empirically tuned parameter.

3) Entropy-Based Pruning: The pronunciation entropy for a
word w; has been shown to be a good measure of the spread or
variability of the pronunciations of the word [23], [24]

H; == P(v;w;)log P(v;lw;) ®)
j

S0 more pronunciations are reasonably included for a word with
a higher pronunciation entropy [14]

Ng(wi) = |up - Hi) ©)

where p g is an empirically tuned parameter.

4) Score-Based Pruning: It has also been proposed that a
pronunciation v; should be included for a word w; only if the
prior probability P(v;|w;) is large enough compared to that of
the most probable pronunciation of the word [17]

P(vjlw;) > ps - max P(vg|w;) (10)
where pg is an empirically tuned parameter.

This approach is further generalized herein by replacing the
probability P(v|w;) in (10) with the p f —iw f score ¢;; defined
in (5), referred to as score-based pruning: a pronunciation v; is
included for a word w; only if the p f —iw f score is large enough
compared to that of the top-ranked pronunciation of the word

(11)

0ij > Its -max Oik-

Notably, the value of the pf—iwf score ¢;; of the top-ranked
pronunciation for a word w; differs considerably for words with
different pronunciation spreads. Inequality (11) therefore makes
better sense than using a single threshold (such as 6;; > ps).
This finding was also verified in preliminary tests. This gener-
alized form in (11) is reduced to the original form in (10) when
the weight parameter -y in (5) is set to zero.

III. SPEECH CORPORA AND EXPERIMENTAL SETUP

A. Speech Corpora

Two styles of Mandarin Chinese speech, planned and spon-
taneous, were used to investigate the various approaches pre-
sented in this paper.

1) Planned Speech: The LDC 1997 Mandarin Broadcast
News corpus (HUB-4NE), comprising 41 hours of recordings,
was used as the training set in the planned speech task. Ap-
proximately 700K word tokens from the corpus were used to
train the word-bigram language model. The task vocabulary
comprises 23 779 words, covering all of the words appearing in
the training set. The single canonical pronunciations of these
words are included in the canonical dictionary. In the canonical
dictionary, the 23 779 words are described with 15 334 distinct
pronunciations. Of the 23779 words, 10455 words are con-
fusable, or have pronunciations that are shared by at lest two
words. Therefore, the “intrinsic confusability” of the canonical
dictionary is 10455/23 779 = 44.0%.2 These 10455 confusable
words are described with 2010 distinct pronunciations.

After discarding those parts of laughters, filled pauses, cor-
ruptive background and channel noise, and words in other lan-
guages, 28 h of speech data were actually used to train the
acoustic models; 1.5 h was used as the development set, and one
hour of speech from the 1997 HUB-4 Broadcast News Eval-
uation Non English Test Material was used as the evaluation
data. The acoustic training data covers 58 speakers, 34, 445
utterances, 271 174 word tokens or 452777 character tokens.
The evaluation data covers 28 speakers, 1077 utterances, 8405
word tokens or 13 987 character tokens. The 23 779 words in the
canonical dictionary cover 97.8% of the evaluation data. Only
pronunciations that occur at least three times in the training data
were considered in the approaches proposed, and words with
at least one such pronunciation (canonical or not) that occur at
least three times cover 84.0% of the evaluation data.

2) Spontaneous Speech: The LDC CALLHOME Mandarin
Chinese Speech corpus plus the LDC CALLFRIEND Mandarin
Chinese-Mainland Dialect corpus, comprising about 30 h of
telephone conversations without prespecified topics, were used
as the training set in the spontaneous speech task. Approxi-
mately 400K word tokens from the training set were used to
train the word-bigram language model. The task vocabulary
comprises 14 590 distinct words, covering all of the words in
the training data. The single canonical pronunciations of these

2All the confusability measures mentioned in this paper consider only pho-
netic confusability, disregarding variants that are differentiated by prosodic fea-
tures, such as tones in Mandarin Chinese. Clearly, in Mandarin, tones also carry
lexical meanings. If tonal information is considered, some of the 10455 words
that share the same pronunciations are differentiated by tones, and the “intrinsic
confusability” of the canonical dictionary is reduced from 44.0% to 30.9%.
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words are included in the canonical dictionary. In the canon-
ical dictionary, the 14 590 words are described with 7596 dis-
tinct pronunciations. Of the 14 590 words, 7947 words are con-
fusable, or have pronunciations that are shared by at lest two
words. Therefore, the “intrinsic confusability” is 7947/14 590 =
54.5%.3 These 7947 confusable words are described with 953
distinct pronunciations.

After discarding those parts of laughters, filled pauses, cor-
ruptive background and channel noise, and words in other lan-
guages, 18 h of speech data were actually used to train the
acoustic models. One hour of data from the CALLHOME de-
velopment set was used as development data, and 2 h of data
from the CALLHOME Evaluation Set were used as the evalu-
ation data. Therefore, this task is referred to as CALLHOME
throughout this paper, even though CALLFRIEND was also
used in training. The acoustic training data covers 120 speakers,
38 374 utterances, 241 137 word tokens, or 320 550 character to-
kens. The evaluation data covers 22 speakers, 2672 utterances,
16771 word tokens, or 23487 character tokens. The 14 590
words in the canonical dictionary cover 99.0% of the evalua-
tion data. The words with at least one pronunciation that occur
at least three times in the acoustic training cover 89.8% of the
evaluation data.

B. Experimental Setup

All of the experiments reported in this paper were per-
formed using HTK tools [27]. The HTK toolkit was used to
train acoustic and language models and to perform recognition
tests or forced recognition. The acoustic models consist of
150 gender-dependent, intrasyllable right-context-dependent
HMMs for Mandarin Initial/Finals, or right-context-dependent
Initials and context-independent Finals, together with one si-
lence and one short-pause HMM. Each Initial HMM con-
sists of three left-to-right states and each Final HMM consists
of four states, each state with 24 Gaussian mixtures. The
acoustic features were 12 MFCCs plus energy, their delta and
acceleration for 32-ms frames with a 10-ms frame shift. The
Initial/Finals play the role of phones in all of the experiments
reported below. The same set of acoustic models was used
in both acquiring the surface pronunciations from the training
data and in performing the recognition performance evalua-
tion. All recognition processes were performed by exhaustive
search with an insertion penalty of zero and a language model
weight of seven, both of which were empirically tuned on the
development set.

In recognition performance evaluation for Chinese, character
error rates* are commonly used instead of the word error rates
usually used for other languages. These character error rates
were adopted in this paper, because the segmentation of a Chi-
nese sentence into words is usually not unique due to the lack
of word boundary marks (such as the blanks in alphabetic lan-
guages) in Chinese.

3The “intrinsic confusability” is reduced to 46.1% when the tonal information
is considered.

4A Chinese word is composed of one to several characters. Most of characters
are morphemes (or monocharacter words). All Chinese characters are always
pronounced as monosyllables.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The planned speech corpus (HUB-4NE) was first employed
for primary analysis. Then, the key experiments were repeated
and analyzed using the spontaneous speech corpus (CALL-
HOME).

A. Stage I—Pronunciation Generation

In this part, surface transcriptions were automatically gener-
ated from the training corpus using the following approaches—
a free phone’ recognizer [4] (Free), a phone recognizer con-
strained by a phone# bigram [2] (Bigram) and the proposed auto-
matic surface form generation procedure, as shown in Fig. 2, and
using different values of the pronunciation probability weight,
ap, in the forced recognition as in (1) (Proposed).

The degree of phonetic discrepancy (actually Initial/Final dis-
crepancy ratio) of the surface transcriptions generated with the
respective approaches mentioned above to the canonical tran-
scription is depicted as the solid curve on the first right scale of
Fig. 3. This curve shows that the transcription generated by free
phone recognition (Free) differs most from the canonical tran-
scription, but using a phone bigram for transcription (Bigram)
can greatly reduce this discrepancy. The Proposed transcription
approach, on the other hand, not only further reduces this dis-
crepancy but can also properly adjust the discrepancy by tuning
the value of ar, which actually specifies the degree of the con-
straints imposed in the phone-level forced recognition process.
Using a larger value of oy implies that the transcription is gen-
erated more conservatively, and resulting in a lower discrepancy
ratio.

Although the discrepancy ratio reveals how conservatively
the transcriptions were generated, it does not necessarily indi-
cate the quality of the transcriptions for recognition purposes.
To analyze the latter, an additional set of experiments was
conducted with the multiple-pronunciation dictionaries that
had been constructed from these transcriptions. Each of these
dictionaries had been compiled in exactly the same way, using
the conventionally used pronunciation frequency (pf) score
(or v = 0) in Stage 2 to rank the pronunciation variants ob-
tained from these surface transcriptions, and using score-based
pruning criterion in Stage 3 to determine the number of pro-
nunciations included for each word in the dictionary.6 For
a fair comparison, the parameter pg in inequality (11) was
empirically adjusted, resulting in an empirical average of 1.14
pronunciations per word, or about 3300 pronunciation variants
were added to each dictionary.

The recognition performance of the compiled dictionaries in
terms of Character Error Rate (CER) is illustrated as the ver-
tical bars on the left scale in Fig. 3, together with the base-
line character error rate of the canonical dictionary (37.02%)
for comparison. These bars show that the dictionaries obtained
from the Proposed transcriptions results in lower recognition

5The notation phone is kept for the generality of presentation, although the
Mandarin Initial/Finals were actually used in all of the experiments playing the
role of phones.

6Other values of 7 will be considered below when Stage 2 is analyzed. The
score-based criterion is chosen here for Stage 3 because it outperforms the other
criteria, as will also be showed later on.
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Fig. 3. Initial/final discrepancy ratio (solid curve) between the surface and canonical transcriptions on the first right scale, character error rates (CERs), (vertical
bars) on the left scale, and the added confusability for added pronunciations (dotted curve) on the second right scale obtained with the different versions of tran-

scriptions.

error rates than those from the Free and the Bigram transcrip-
tions and the baseline (p-value? <0.001). Notable, the Free and
Bigram transcriptions could not improve the recognition per-
formance from the baseline. Another interesting finding is that
the Bigram transcription gives much poorer recognition perfor-
mance than the Free transcription, despite the lower Initial/Final
discrepancy ratio of the Bigram. This observation is inconsistent
with that reported for tasks in English [2], probably because of
the special characteristics of the Chinese language. Mandarin
Chinese has only about 400 phonologically allowed syllables
disregarding tones, which restrains the canonical combinations
of Initials and Finals. Therefore, using an Initial/Final bigram
trained with canonical transcriptions to generate surface forms
tends to confine most of the surface transcriptions to the very
limited number of allowed phonological patterns. Consequently,
adding these canonical combinations of Initial/Finals, which are
very often shared by other words, introduces a great lexical
confusion in the dictionary, leading to poor recognition perfor-
mance. This assertion is confirmed below by explicitly evalu-
ating the confusability of the dictionaries.

As the conclusion of this subsection, the Proposed approach
does generate better dictionaries giving relatively lower char-
acter error rates. However, although the phonetic discrepancy
between the generated surface transcriptions and the canonical
transcription indicates how conservatively the transcription is
generated, this ratio is not necessarily correlated with the recog-
nition performance. Better measures of the confusability of the
dictionaries are thus needed, as will be discussed in the next
part.

TThe level of significance, the p-value, is based on hypothesis testing and
defined as the risk or probability of rejecting the null hypothesis when it is in
fact true. Differences are considered significant if the p-value is less than 0.05.
All p-values reported in this paper were based on the standard Wilcoxon Signed-
Rank Test [28]

B. Confusability Measures for the Dictionaries

Fig. 3 indicates that the recognition performance of the com-
piled dictionaries apparently is not closely correlated with the
phonetic discrepancy of the corresponding surface transcrip-
tions to the canonical transcription. In order to find better mea-
sures for the dictionary quality that are more correlated to the
recognition performance, five sets of statistical measures each
for the different dictionaries discussed above are listed in the
five rows in Table II. These are: (1) the percentage of words
that retain their canonical pronunciations; (2) the percentage
of words that include noncanonical pronunciations; (3) the per-
centage of words that have at least two pronunciations; (4) the
percentage of words that have confusing pronunciations (shared
by at least two distinct words); and (5) the percentage of added
pronunciations that are confusing (shared by at least two distinct
words). For comparison, the last row in this table also lists the
recognition performance (CER) of the dictionaries as shown in
Fig. 3. Table II shows that the Proposed dictionaries (ap = 5, 6,
7, and 8) have more words that retain their canonical pronuncia-
tions [row (1)] than the Free and the Bigram, apparently because
of the lower phonetic discrepancies with the canonical transcrip-
tion. On the other hand, the Free dictionary has the smallest per-
centages of words that have non-canonical [row (2)] or at least
two pronunciations [row (3)], since for the Free transcription,
which has many transcription errors, only those words that ap-
pear frequently enough would have surface pronunciations with
sufficient frequencies and thus could be well transcribed.

A more important observation, however, is that both of the
two measures in rows (4) and (5) in Table II are found to be
strongly correlated with the recognition performance in row (6)
(with correlation coefficients8 R = 0.952 and 0.977, respec-

8The correlation coefficient is also known as the product-moment coefficient
of correlation or Pearson’s correlation.
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TABLE II
STATISTICAL MEASURES OF THE DICIONARIES COMPILED WITH pf SCORE
Can. . Proposed
Dic. Free | Bigram ap=5 | ap=6 | ap=7 | ap=8
(1) | Percentages of words retaining 1000 | 989 | 983 | 996 | 997 | 997 | 99.8
canonical pronunciations (%)
(2) | Percentages of words with 00| 73 92| 89| 89| 88| 87
non-canonical pronunciations (%)
percentages of words with
&) at least two pronunciations (%) 00 6.7 83 56 8.7 36 8.3
percentages of words with
(4) | confusing pronunciations (%) 44.0 | 478 54.4 47.8 47.7 47.7 47.8
— “confusability of a dictionary”
percentages of added pronunciations
(5) | which are confusing (%) — “added - 24.7 57.0 22.0 21.6 21.6 21.9
confusability for added pronunciations”
(6) | Character Error Rate (%) 37.02 | 37.21 39.63 | 36.31 | 36.03 | 36.00 | 36.23
tively). The measure in row (4) is thus referred to as the “con- “r Cdy=0 [y=0s5
13 gl I s M NNy=06 EEEy=07
fusability of a dictionary.” It has the advantage that it is actuall N\ i
y y g y . I y=08 EEEy=09

reduced to the “intrinsic confusability” of a canonical dictio-
nary, as mentioned in Section III. However, this measure counts
the percentage of words that are confusing, and so it may un-
derestimate the “confusability of a dictionary” if serious confu-
sion occurs among a few very frequently used words with many
shared variants. This is actually the case for the Free dictionary
here. The measure in row (5), however, counts the percentage
of added pronunciations that are confusing, and thus avoids the
above problem. This fact may explain why the correlation coef-
ficient with the recognition performance of the measure in row
(5) (0.977) is higher than that in row (4) (0.952). The measure
in row (5) is thus referred to as the “added confusability for
added pronunciations.” Fig. 3 plots the “added confusability for
added pronunciations” as the dotted curve on the second right
scale. This figure clearly shows the very high correlation of this
measure with the character error rate (vertical bars on the left
scale). On the other hand, rows (4) and (5) in Table II indi-
cate that the Bigram dictionary has much higher confusability
than the others dictionaries, confirming the previous explana-
tion that the bigram constraints of Mandarin Initial/Finals in-
troduce more confusion and hence degrade the recognition per-
formance. The dictionary with o = 8 has a slightly higher
confusability and character error rate than that with ap = 6
or 7 in rows (4)—(6) (p-value = 0.04). The higher confusability
of the dictionary with ap = 8 may follow from the fact that
its transcription was generated so conservatively that many less
frequently used words are simply transcribed in their canonical
forms. Consequently, most of the added pronunciations are vari-
ants of frequently used words including those ranked lower, and
therefore are more likely to increase confusability.

As the conclusion of this section, the two confusability mea-
sures defined properly indicate the quality of a dictionary and
are shown to be strongly correlated with the recognition perfor-
mance of a dictionary.

C. Stage 2—Pronunciation Ranking

The multiple-pronunciation dictionaries investigated above
were all compiled using the p f score alone [ory = 0ininequality
(5)] to rank the pronunciation variants obtained from the sur-
face transcriptions. Another set of dictionaries was compiled in
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Fig. 4. CERs for the dictionaries obtained from different versions of transcrip-

tions and, for each version of the transcriptions, using the p f —iwf score with
different values of v (y = 0 equivalent to the pf score alone).

exactly the same way, except in that the pronunciation variants
were ranked by the pf —iw f score, as the weight y for the 1w f
score in inequality (5) is varied from O to 0.9. Fig. 4 presents the
resulting recognition performance of these dictionaries in terms
of character error rates. The left-most bars labeled “y = 0”
correspond to the vertical bars in Fig. 3, for the dictionaries
compiled using the pf score alone, while the other bars are for
v = 0.5uptoy = 0.9. A trend can be observed from Fig. 4 that
-y values that exceed zero generally improve recognition perfor-
mance by reducing the confusion. However, the performance
may also be degraded when the v values are too large, such that
the pronunciation frequency (pf) is excessively de-emphasized.
In most cases, y values from 0.6 to 0.8 give the best recognition
performance. Notably, the differences among the character error
rates in the many cases in Fig. 4 may not be statistically significant
and so it may not make much sense to consider the recognition
performance for this specific given task alone. However, the
relationships and the trend implied by these results are actually
clear, and believed to be valuable as references in considering
other recognition tasks. For simplicity, v = 0.8 will be used in
compiling all of the dictionaries in the following discussions. Of
course, in practice, the value of ~y should be tuned on a proper
development set, as will be done later in the final recognition
tests.
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TABLE III
STATISTICAL MEASURES OF THE DICIONARIES COMPILED WITH pf—iwf (y = 0.8) SCORE

Can. y . Proposed
Dic. Free | Bigram ap=5 | ap=6 | ap=7 | ap=8
) percentages of words retaining 1000 | 992 08.1 99.2 99.4 995 99.6
canonical pronunciations (%) ' ' ’ ' ' ’ '
percentages of words with
@ non-canonical pronunciations (%) 0.0 33 8.5 8.4 8.4 8.2 8.1
percentages of words with
3) at least two pronunciations (%) 0.0 47 70 78 79 78 78
percentages of words with
(4) | confusing pronunciations (%) 44.0 | 457 48.5 44.8 45.0 44.9 45.2
— “confusability of a dictionary”
percentages of added pronunciations
(5) | which are confusing (%) — “added — 11.3 22.5 6.8 7.3 6.5 7.4
confusability for added pronunciations”
(6) | Character Error Rate (%) 37.02 | 36.78 37.55 | 35.51 | 35.65 | 35.47 | 35.92
or I CER (pf) 60 by using the pf—iw f score as compared to using the pf score
I CER (pf-iwf, y=0.8) {55 alone (such as for ap = 8§, p-value = 0.005). The improve-
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Fig. 5. Confusability (curves) on the right scale and CERs (bars) on the left
scale for the dicitonaries obtained with p f (upper curve and left bars) and with
pf—iwf (lower curve and right bars) scores, respectively.

Table III presents exactly the same information of dictio-
naries, as is presented in Table II, for the newly compiled dic-
tionaries with v = 0.8. From this table, again a strong correla-
tion between the recognition performance in row (6) and the two
confusability measures in rows (4) and (5) can be found (with
correlation coefficient R = 0.922 and 0.931, respectively). In
particular the “added confusability for added pronunciations” in
row (5) is very strongly correlated with the recognition perfor-
mance. The confusability measure in row (5) and the recognition
performance in row (6) of Table III are therefore plotted as the
lower curve on the right scale and the right bars on the left scale
in Fig. 5. These are compared to the upper curve and left bars
for v = 0 (labeled with “pf”), as discussed above and copied
from Fig. 3. Fig. 5 shows that the correlation between the bars
(recognition performance) and the curves (the confusability) is
evident for both sets of dictionaries compiled using pf (7 = 0)
and the pf —iw f scores (v = 0.8). Note that although the “con-
fusability” measured may substantially affect the recognition re-
sults, it is certainly not the only dominator for the recognition
performance. The results in Fig. 5 also show that both the con-
fusability and the character error rates are significantly reduced

ments provided by the pf—iwf score are most remarkable in
the case of the Bigram transcription, which has the highest con-
fusability. Furthermore, the lowest confusability and character
error rates are obtained when the proposed pronunciation gener-
ation procedure was used in Stage 1 and the pf—iw f was used
in Stage 2.

The proposed approach using pf—iw f score with v = 0.8,
as discussed above, was also compared to an approach based on
another criterion, previously proposed [4], to reduce the confu-
sion directly. In the latter approach, the variants for a specific
word are rejected when they are phonetically similar to the vari-
ants of any other words, without considering the corresponding
pronunciation frequencies and word frequencies. Based on ex-
actly the same surface transcription (Proposed with ap = 5),
the parameters used in compiling both dictionaries were em-
pirically tuned to have the same average of 1.14 pronuncia-
tions per word. The experimental results show that the p f —iw f
score yields both lower “added confusability for added pronun-
ciations” (6.8% versus 10.4%) and lower character error rates
(35.5% versus 36.1%, with p-value <0.001).

As the conclusion of this subsection, the pf—iwf score
ranking with an optimized value of the parameter y in Stage 2
can both reduce the confusability as measured and improve
the recognition performance. Moreover, the two proposed
confusability measures again show a very strong correlation
with recognition performance.

D. Effect of Weighting the Pronunciation Probabilities in
Recognition

During the recognition process, the a posteriori probability
for a word sequence W is maximized

W = arg max max [P(AV)P(VIW)*:P(W)P]  (12)
where A is the acoustic signal and V' is the pronunciation se-
quence, and ar and [ are the weight parameters for the pro-
nunciation probabilities and the language model scores, respec-
tively. In all of the experiments reported previously, ap = 1
was used or the pronunciation probabilities were not specially
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Fig. 6. Confusability (curve) on the right scale for the different versions of
dictionaries and, for each version of the dictionaries, the CER (bars) on the left
scale obtained with different values of pronunciation probability weight (« g
from 1 to 7) in the recognition process.

weighted. However, in fact, this weight parameter can be ad-
justed depending on the importance of the pronunciation proba-
bilities considered in the recognition. Therefore, this subsection
investigates the influence of different values of g, and its in-
teractive relationship with the confusability of the dictionaries.

The investigation employs exactly the same set of dictionaries
compiled using the pf—iw f score (v = 0.8) in Fig. 5. The ver-
tical bars on the left scale in Fig. 6 plot the character error rates
of these dictionaries, but with the value of the weight parameter
ap from 1 to 7. The left-most bars for ar = 1 in Fig. 6 are
exactly those labeled as CER(p f —iw f,y = 0.8) in Fig. 5. The
“added confusability for added pronunciations” of these dictio-
naries, represented by the lower curve in Fig. 5, is also plotted
in this figure for reference. Fig. 6 reveals a trend that ap > 1
generally offers better recognition performance than ap = 1 (in
almost all cases). This is reasonable. The less reliable pronunci-
ation variants usually possess lower probabilities in the dictio-
nary, so increasing the weight can help differentiate them from
the reliable variants. This effect is therefore more significant for
dictionaries with higher “added confusability for added pronun-
ciations,” such as those obtained from the “Free,” the “Bigram”
or the Proposed (ap = 8) transcriptions. However, when the
value of ap is too large, those variants associated with lower
probabilities may be excessively suppressed and the recogni-
tion performance may be degraded. Therefore, each dictionary
in Fig. 6 has a favorable value of ap. However, the achieved
recognition performance of dictionaries with lower “added con-
fusability for added pronunciations” (Proposed with ap = 5, 6,
and 7) are less influenced by the value of ar. Again, the differ-
ences among the character error rates in the many cases of the
Proposed approach with ap = 5, 6, 7, and 8 in Fig. 6 may not
be statistically significant, and so it may not make much sense
to consider recognition performance for this specific given task
alone. However, the relationships and the trend implied by these
results are actually clear, and believed to be valuable as refer-
ences for other recognition tasks.

As the conclusion of this section, an optimized value of the
pronunciation probability weight o in the recognition process

can improve the recognition performance by properly reducing
the confusion during recognition. Of course, in practice, the
value of ap should be tuned on a proper development set, as
will be done later in the final recognition tests.

E. Stage 3—Pronunciation Pruning

All of the dictionaries mentioned above were compiled using
the score-based method in Stage 3 of pronunciation pruning. In
this section, all four of the pruning criteria discussed in Sec-
tion II-C—the fixed, count-, entropy-, and score-based, were
compared. This comparison was made with four dictionaries
that were compiled using the Proposed pronunciation genera-
tion approach with ap = 5 in Stage 1, the pf—tw f score with
v = 0.8 in Stage 2, and one of the four pruning criteria for
pruning pronunciation variants in Stage 3.

Table IV lists exactly the same set of information about dic-
tionaries, as those in Table II and III, for the four dictionaries
obtained here. In Table IV, comparison with the score-based
method shows that the dictionaries compiled with the other three
criteria not only has fewer words with non-canonical pronun-
ciations [row (2)] or with more than one pronunciation [row
(3)1, but also exhibits much higher confusability as measured
in rows (4) and (5) and much worse recognition performance
(with g = 1) in row (6).

Properly adjusting the weight parameter ar for the pro-
nunciation probability in the recognition process may help in
differentiating the confusing pronunciations, as was mentioned
above. Therefore, the pruning criteria discussed are reason-
ably believed to have to do with the choice of the value of
ap. Another set of experiments was thus performed on the
four dictionaries, obtained with different pruning criteria as
discussed above, with ap ranging from 1 to 9 for recognition.
The resulting recognition performance is illustrated by the four
solid curves in Fig. 7. This figure shows that the score-based
method outperforms the other three, at lower values of ap from
1 to 3 (p—value < 0.001), particularly at «g = 1. However,
the relatively poor recognition performance by the other three
criteria can be alleviated to a great extent using an appropriate
value of ar during the recognition process to differentiate
the confusing pronunciations. In fact, higher ar values would
make the various dictionaries more similar. Therefore, when
sufficiently large values of a.r are employed in the recognition
(such as ar = 7 or 9), the performance obtained using the
other three criteria become more comparable to each other
and closer to the score-based performance. However, Fig. 7
also shows that the best performance is only achieved using
the score-based criterion with ag = 3 or 5. Therefore, a good
pruning criterion is still important, even if the choice of ap is
helpful. Moreover, the score-based criterion is the least influ-
enced by the values of ag. Also, simply increasing the value
of ar is not always helpful, as shown in Fig. 7. The extreme
case of using an excessively high value of ar corresponds
to using a single-pronunciation dictionary that contains only
the top-ranked variant (with the highest pf—iwf score) of
each word for the recognition. An additional experiment was
conducted with such a specially designed single-pronunciation
dictionary, which included 380 words with noncanonical pro-
nunciations, 42 of which are confusing, being shared by at least
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TABLE 1V
STATISTICAL MEASURES OF THE DICTIONARIES COMPILED WITH DIFFERENT PRUNING CRITERIA

Can. Proposed, aop = 5
Dic. | Fized | Count | Entropy | Score
) percentages of words retaining 100 99.3 993 993 99.2
canonical pronunciations (%) ’ ’ ) ’
percentages of words with
@ non-canonical pronunciations (%) 0.0 78 78 78 8.4
percentages of words with
) at least two pronunciations (%) 0.0 72 7.2 72 78
percentages of words with
(4) | confusing pronunciations (%) 44.0 48.5 48.3 479 44.8
— “confusability of a dictionary”
percentages of added pronunciations
(5) | which are confusing (%) — “added - 26.2 26.4 22.1 6.8
confusability for added pronunciations”
(6) | Character Error Rate (%) with agp =1 | 37.02 | 37.96 | 38.01 37.10 | 35.51
“9 —0— fixed —2— count-based TABLE V
—0O— entropy-based —&= score-based LOG LIKELIHOODS AND CERS TO ANALYZE THE INTERACTIONS
39 & score-based, re-scaled AMONG ACOUSTIC, PRONUNCIATION, AND LANGUAGE MODELS
g Acoustic Models (AM) AM, AM,
S \ Dictionaries CanD | MPD | MPD
- b 1' . .
s 374 O aseline Forced Rec. training data | (a) | LLaar | -65.44 | -65.35 | -65.28
A \ testdata | (b) | LLap | -67.15 | -67.06 | -67.02
o
9 36 (©) | LLsm | -66.89 | -66.86 | -66.81
.§ Rec. test data (d) | LLpy | -44.64 | -44.15 | -44.11
Q
354 (e) | CER(%) | 37.02 | 35.10 | 35.46
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Fig. 7. Recognition performance with different pronunciation pruning criteria
in Stage 3 and with re-scaled pronunciation probabilities, using different pro-
nunciation probability weights a r.

two distinct words. This dictionary did not result in significant
change in the character error rate (37.37% versus 37.02% for
the baseline canonical dictionary, p-value = 0.08). This result
indicates that the pronunciations further to the top-ranked
pronunciations are important in improving the recognition
performance over that of the canonical dictionary.

As the conclusion of this section, the score-based pruning cri-
terion outperforms the other three criteria in both reducing the
confusability as measured and improving the recognition perfor-
mance. It is also the least influenced by the pronunciation prob-
ability weight ap. Using an optimized value of ag in recogni-
tion improves recognition performance and makes these criteria
more comparable to each other.

F. Scaling the Pronunciation Probabilities

Summing the likelihoods associated with multiple pronun-
ciations during the recognition is difficult, so a maximum
approximation is usually employed in the Viterbi search. It
has been pointed out [2], [9] that such an approximation may
penalize a word that has multiple pronunciations by splitting
its pronunciation probabilities among different pronunciations
during the recognition, in case the pronunciation probabilities
in the dictionary are normalized to have a sum of unity for each

word. It has been proposed that the pronunciation probabilities
of each word can be re-scaled so that the top-ranked pronuncia-
tion has a probability of unity to solve this problem [2], [9]. This
rescaling scheme was applied in the dictionary that had been
compiled using the score-based criterion, labeled “score-based”
in Fig. 7. The recognition performance of this re-scaled dic-
tionary is plotted as the dotted curve labeled “score-based,
re-scaled” in Fig. 7. Fig. 7 shows that this re-scaling approach
causes slight improvements when larger g values are used
in recognition (for example, p—value = 0.03 for agp = 5),
apparently because a larger value of ar emphasizes the penalty
of splitting the probabilities among different variants.

G. Interactions Among Acoustic, Pronunciation, and
Language Models

Pronunciation models can be considered as the interface
between acoustic and language models, so recognition perfor-
mance undoubtedly depends on the interactions among these
models. To analyze the influence of such interactions on the
recognition performance, Table V presents averaged log likeli-
hood (decimal logarithms) of the acoustic models (LL 4ps) or
the word-bigram language model (L Lz, /) in forced recogni-
tion (Forced Rec.) on the training and test data [rows (a) and
(b)] and in the recognition (Rec.) on the test data [rows (c) and
(d)]. The CER in row (e) is used as the recognition performance
indicator. The forced recognition or recognition employed
either the canonical acoustic models (AM,) that were trained
with canonical transcription (used in all the experiments above)
or the retrained acoustic models (AM,.) trained with the surface
transcription of the same training data. Two dictionaries were
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used in this analysis: the canonical dictionary (CanD, used
above in the baseline experiment), and the multiple-pronunci-
ation dictionary (M PD) that was compiled previously using
the Proposed procedure in Stage 1, the pf—iw f score in Stage
2, and score-based pruning in Stage 3.

The results in the first two rows (a) and (b) in Table V show
that, in forced recognition on the training and test data, M PD
increases the acoustic likelihood L L 4 over that of the CanD
(from —65.44 to —65.35 and from —67.15 to —67.06). LL 4/
is further increased by the retrained acoustic models AM,. (from
—65.35 to —65.28 and from —67.06 to 67.02). These findings
imply that both the pronunciation variants offered by the mul-
tiple-pronunciation dictionary and the retrained acoustic models
better match the acoustic signals than the canonical pronuncia-
tions and models. In contrast, the LL 45, increment made by
the M PD and the AM, in the recognition on test data in row
(c) is relatively limited (from —66.89 to —66.86 and to —66.81).
This result may be explained as follows. Unlike in forced recog-
nition, in which only the pronunciations of a particular word
can be chosen for matching a particular acoustic segment, the
recognizer in recognition can chose among the pronunciations
of different words that are permitted by the language model.
In other words, the recognizer can find some other word hy-
potheses whose pronunciations give a higher acoustic likeli-
hood than the reference word in this case, even with a canonical
dictionary.

Unlike the acoustic likelihood LL 45/, the language model
likelihood LLj s in recognition, as shown in row (d), is con-
siderably increased by the M PD (from —44.64 to —44.15),
since the pronunciation variants enable the language model to
retrieve the words that are more likely. Therefore, the character
error rate, as shown in row (e), could be significantly improved
(from 37.02% to 35.10%). On the other hand, the retrained
acoustic models (AM,.) only slightly improve both the LL 4/
and the LLy s (from —66.86 to —66.81 and from —44.15 to
—44.11, respectively, in the last column). The retrained models
AM,. even degrade the recognition performance from that of
the canonical acoustic models AM,. (from 35.10% to 35.46%,
p-value = 0.04), which finding is consistent with other works
[9], [29] on the very limited or even the negative improvement
achievable by retraining the acoustic models.

In order to further look into the interaction between the
pronunciation model and the language model, another ex-
periment was conducted using a cheating language model
LM, that was trained with the test data and was regarded
more adequate in recognition. A comparison was made with
the fair language model LMy, that was trained with the
training data and was used in all of the above experiments.
In addition to using the multiple-pronunciation dictionary
MPD(1.14) used above (with an average of 1.14 pronunci-
ations per word), the experiment also employed a different
multiple-pronunciation dictionary M P D(1.25) which includes
more pronunciations (with an arbitrarily predetermined average
of 1.25 pronunciations per word), constructed using exactly
the same approaches as was M PD(1.14). Table VI presents
the recognition performance of the different language models
and dictionaries in terms of character error rates. The first
row in this table shows that including more pronunciations in

TABLE VI
CERS (%) WITH DIFFERENT MULTIPLE-PRONUNCIATION DICTIONARIES
WITH DIFFERENT NUMBERS OF VARIANTS AND “FAIR” AND
“CHEATING” LANGUAGE MODELS

language MPD | MPD

modets | “"P | (1.14) | (1.25)

CER(%) LMy, 37.02 | 35.10 | 35.32
(Rec. on test data) | LMy 14.24 | 12.27 | 11.58

the M PD(1.25) dictionary results in insignificant change in
the recognition performance, as compared to M PD(1.14),
when the fair language model LMy, is used (from 35.10%
to 35.32% with p-value = 0.5). However, when the cheating
language model LM, is used, the M PD(1.25) dictionary
significantly decreases the character error rate (from 12.27%
to 11.58%, p-value < 0.001), apparently because the LM,
better distinguishes among the confusing words caused by the
extra pronunciation variants in the test data. In other words, the
additional variants offer more opportunities to better match the
acoustic signal with correct as well as with incorrect words,
depending on the strength of the language model. A language
model that can tell the linguistic context more precisely can
more effectively prevent the lexical confusion introduced by
the variants that appear in different linguistic contexts.

The above analysis shows that both the pronunciation vari-
ants included in the dictionary and the retrained acoustic models
match the acoustic signals better than do the canonical pronun-
ciations and models. The pronunciation variants offer more op-
portunities for the recognizer to retrieve both correct and incor-
rect words during the recognition, depending on the strength of
the language model. A strong language model that can identify
the linguistic context more precisely may be able to prevent the
introduced confusion or incorrect words.

H. Summary With Further Analysis

This section summaries the key experimental results dis-
cussed above for the planned speech task (HUB-4NE).

Table VII lists the results for the planned speech recognition
task performed with the dictionaries that were compiled using
the key approaches discussed previously. The recognition per-
formance is represented by the CERs in this table. The “con-
fusability of a dictionary (Conf. of Dic.)” and the “added con-
fusability for added pronunciations (Added Conf.)” in rows (4)
and (5) of the previous tables are also listed here. Moreover, the
last three columns of the table list the numbers of characters that
have previously been incorrectly recognized with the canonical
dictionary but are correctly recognized with the compiled dic-
tionary (No. Char. Corrected), the numbers of characters that
have previously been recognized correctly with the canonical
dictionary but incorrectly recognized with the compiled dictio-
nary (No. Char. Incorr.), and the number of extra character in-
sertion errors over those obtained using the canonical dictionary
(No. Extra Char. Ins.), respectively.

Row (a) in Table VII shows the results obtained using the
canonical dictionary baseline. Row (b) presents those obtained
using the dictionary that was constructed using free phone
recognition (Free) for Stage 1 and the pf score for Stage 2,
and by imposing ag = 1 in the recognition. All experiments
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TABLE VII
RECOGNITION RESULTS FOR THE PLANNED SPEECH TASK (HUB-4NE)
Stage 1 : Stage 2 : Conf. | Added No. No. No.
Pron. Pron. Weight | CER | of Dic. | Conf. Char. Char. Extra
Gen. Rank. in Rec. (%) (%) (%) Corrected | Incorr. | Char. Ins.
(a) | Baseline: canonical dictionary | ap =1 | 37.02 | 44.0 — 0 0 0
(b) Free of ap=1 13721 47.8 24.7 553 457 123
(¢) | Proposed(acp =5) of ap =11 36.21 47.8 22.0 504 410 20
(d) | Proposed(ap = 5) pl-iwf ap =11 3551 44.8 6.8 553 360 4
(e) | Proposed(ap =5) pf-iwf ap=>5 | 3518 | 448 6.8 464 221 -8
*Score-based pruning was used in Stage 3 in rows (b)-(e).
TABLE VIII
RECOGNITION RESULTS FOR THE SPONTANEOUS SPEECH TASK (CALLHOME)
Stage 1 : Stage 2 : Conf. | Added No. No. No.
Pron. Pron. Weight | CER | of Dic. | Conf. Char. Char. Extra
Gen. Rank. in Rec. (%) (%) (%) Corrected | Incorr. | Char. Ins.
(a) | Baseline: canonical dictionary | agr =1 | 60.88 | 54.5 — 0 0 0
(b) Free of arp=1164.65| 628 50.8 2080 1896 1068
(c) | Proposed(ar = 6) of agp=1|6141| 608 35.8 1748 1330 542
(d) | Proposed(ar = 6) pfiwf ar=11|6007| 559 9.3 1813 1321 296
(e) | Proposed(ar = 6) pf-iwf ar=5|5896| 559 9.3 1339 853 61

*Score-based pruning was used in Stage 3 in rows (b)-(e).

summarized used score-based pruning for Stage 3. In row (b),
553 incorrectly recognized characters are corrected with refer-
ence to the canonical dictionary baseline, but 457 previously
correctly recognized characters are recognized incorrectly with
the compiled dictionary. The overall character error rate is
slightly increased (from 37.02% to 37.21%, p-value = 0.05)
because of an additional 123 insertion errors, mostly caused by
the reduced forms that are taken from the transcription errors
as the pronunciation variants. Then, the Proposed procedure
with «p = 5 was used in Stage 1 in row (c), the pf —iw f score
with v = 0.8 was used in Stage 2 in row (d), and ag = 5 was
used in the recognition in row (e). Unlike in the experiments
reported previously, these parameters were tuned empirically
using the development set, but the values of these parameters
obtained with the development set are almost identical to those
found previously from the test set. The character error rates
monotonically decrease from 37.02% in row (a) to 35.18% in
row (e), while the “the confusability of a dictionary (Conf. of
Dic.)” and the “added confusability for added pronunciations
(Added Conf.)” of the compiled dictionaries also decrease from
47.8% and 24.7% in row (b) to 44.8% and 6.8% in row (d). The
data in row (e) are obtained using exactly the same dictionary
that is used in row (d), except in that a different value of ag
is used in recognition. Additionally, the number of characters
previously correctly recognized but incorrectly recognized by
these compiled dictionaries monotonically decreases from 457
in row (b) to 221 in row (e), and the number of additional char-
acters inserted also decreases from 123 to almost zero. These
improvements were achieved using the approaches discussed
above.

1. Parallel Results for Spontaneous Speech

A set of parallel experiments, like those summarized in
Table VII, for the spontaneous speech task (CALLHOME) was
conducted with dictionaries that were compiled in exactly the
same way, in which the development set mentioned in Sec-

tion III was used to determine ap = 6 for Stage 1, v = 0.8 for
Stage 2 and the average of 1.16 pronunciations per word in each
dictionary. The results presented in Table VIII demonstrate
very similar trends as those in Table VII for planned speech:
recognition performance is monotonically improved and the
“confusability of a dictionary” and the “added confusability for
added pronunciations” is monotonically reduced from row (b)
to row (e) and so on. However, the dictionary compiled from
the Free transcription here results in much poorer recognition
performance than dose the canonical baseline [64.65% in row
(b) versus 60.88% in row (a)] and much higher “confusability
of a dictionary” than does the canonical baseline (62.8% versus
54.5%). This result may follow from the fact that the surface
transcription was generated by much poorer baseline acoustic
models (telephone speech, with channel noise and a lower
sampling rate as compared to the broadcast news data) and
hence contains many more transcription errors. Therefore,
the character error rate in row (c) is significantly lower than
that in row (b) (61.41% versus 64.45%), and it is still slightly
higher than that of the baseline in row (a) (60.88%). Comparing
Table VIII with Table VII shows that the compiled dictionaries
used in the spontaneous speech task has much higher “con-
fusability of a dictionary” and “added confusability for added
pronunciations” than do those used in the planned speech task.
Besides, the spontaneous speech task also has much higher
“intrinsic confusability” or “Confusability of a dictionary” of
the canonical dictionary than that of the planned speech task
(54.5% versus 44.0%).

Similar to that for planned speech, an experiment on the spon-
taneous speech was conducted using a cheating language model
LM, trained with the test data and regarded as more adequate
for the recognition task than the fair language model LM, that
was trained with the training data and was used above. An addi-
tional dictionary, M P D(1.24), which includes more pronuncia-
tions (with an arbitrarily predetermined average of 1.24 pronun-
ciations per word) was compared to the dictionary M PD(1.16)
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TABLE IX
CERS (%) WITH DIFFERENT MULTIPLE-PRONUNCIATION DICTIONARIES WITH
DIFFERENT NUMBERS OF VARIANTS AND “FAIR” AND “CHEATING” LANGUAGE
MODELS FOR THE SPONTANEOUS SPEECH TASK (CALLHOME)

language MPD | MPD

models | €™ | (1.16) | (1.24)

CER(%) LMy, | 60.88 | 58.96 | 58.78
(Rec. on test data) LM, 42.81 | 39.04 | 38.52

used above. Table IX presents the results in terms of character
error rates. The table shows a very similar trend to that revealed
by Table VI. Including more pronunciations in the M PD(1.24)
dictionary results in insignificant change in the recognition per-
formance from that obtained using M PD(1.16), when the fair
language model LMy, is used (from 58.96% to 58.78% with
p-value = 0.28). When the cheating language model LM, is
used, the M P D(1.24) dictionary reasonably improves recogni-
tion performance (from 39.04% to 38.52%, p-value < 0.001),
apparently because LM, can better distinguish among the con-
fusing words caused by the extra pronunciation variants.

Tables VIII and VII show that the compiled multiple-pronun-
ciation dictionaries yield more character error reduction in the
planned speech task (4.97%, from 37.02% to 35.18%) than in
the spontaneous speech task (3.15%, from 60.88% to 58.96%).
This observation seems to be contrary to the expectation that
multiple-pronunciation dictionaries should be more helpful
in the spontaneous speech task than in the planned speech
task. Possible reasons for the relatively less improvement in
the spontaneous speech task may include the relatively poor
baseline acoustic models used to acquire pronunciation variants
(as indicated by the much poorer CER of 64.65% in row (b)
in Table VIII) and the higher “intrinsic confusability” of the
canonical dictionary (54.5% versus 44.0%).

V. CONCLUSION

This paper studies pronunciation modeling for Mandarin Chi-
nese. New measures of the confusability of multiple-pronunci-
ation dictionaries were proposed and were shown to be strongly
correlated with recognition performance. A three-stage frame-
work for constructing automatically the multiple-pronunciation
dictionary was proposed. Experiments with both planned and
spontaneous speech tasks show that the confusability as mea-
sured by the proposed metrics can be reduced stage by stage,
and the recognition performance is improved accordingly.

In Stage 1, pronunciation generation, the proposed surface
form generation procedure with an optimized value of the pro-
nunciation probability weight a r in the forced recognition sig-
nificantly reduces the extra confusion introduced by the surface
transcriptions. In Stage 2, pronunciation ranking, the proposed
pf—iwf score both reduces the confusability as measured and
improves the recognition performance as compared to either the
conventionally used p f score or a previously proposed criterion
[4]. In Stage 3, pronunciation pruning, the score-based criterion
outperforms the others, although all four criteria perform simi-
larly when an optimized value of the pronunciation probability
weight ap is also applied in the recognition process to reduce
the confusion. In all three stages, the reduction in the measured

confusability was shown to be in parallel with the improvements
in recognition performance.

The proposed approach may be further improved by inte-
grating some implicit approaches, such as the use of phonolog-
ical rules or decision trees to generate pronunciation variants for
only those words that are less frequently used or absent from
the training data, while explicitly enumerating the variants for
relatively frequently used words, as proposed in this paper. Ac-
cordingly, the under- or over-generated pronunciation variants
are fewer and the pronunciation variation of most of the words
can still be better modeled with reduced confusion, indicating a
possible direction for future work.
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