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A Perceptually Constrained GSVD-Based Approach
for Enhancing Speech Corrupted by Colored Noise

Gwo-Hwa Ju and Lin-Shan Lee, Fellow, IEEE

Abstract—The singular value decomposition (SVD)-based
method for single-channel speech enhancement has been shown
to be very useful when the additive noise is white. For colored
noise, with this approach, one needs to whiten the noise spectrum
prior to SVD-based approach and perform the inverse whitening
processing afterwards. A truncated quotient SVD (QSVD)-based
approach has been proposed to handle this problem and found
very useful. In this paper, a generalized SVD (GSVD)-based
subspace approach for speech enhancement is first extended from
the concept of the truncated QSVD-based approach, in which
the dimension of the signal subspace can be precisely and auto-
matically determined for each frame of the noisy signal. But with
this new approach some residual noise is still perceivable under
lower signal-to-noise ratio conditions. Therefore a perceptually
constrained GSVD (PCGSVD)-based approach is further pro-
posed to incorporate the masking properties of human auditory
system to make sure the undesired residual noise to be nearly
un-perceivable. Closed-form solutions are obtained for both the
GSVD- and PCGSVD-based enhancement approaches. Very care-
fully performed objective evaluations and subjective listening tests
show that the PCGSVD-based approach proposed here can offer
improved speech quality, intelligibility and recognition accuracy,
whether the noise is stationary or nonstationary, especially when
the additive noise is nonwhite.

Index Terms—Auditory masking thresholds, colored noise, gen-
eralized singular value decomposition (GSVD), signal subspace,
speech enhancement.

I. INTRODUCTION

VOICE quality and intelligibility are always important for
communication systems, either wired or wireless, either

in human-to-human or human-to-machine interactions. In order
to obtain near-transparent speech communications, for example
via mobile phones, speech enhancement techniques have been
employed to improve the quality and intelligibility of the noise-
corrupted speech and/or the speech recognition performance.
The corrupting noise sources are usually classified into addi-
tive and convolutional. The former very often dominates in real-
world applications, and the spectral subtraction (SS) approach
has been a very popular example solution for it [1]–[3]. To sub-
tract the noise components from the input noisy speech, the
SS algorithm has to estimate the statistics of the additive noise
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in frequency domain. Under low signal-to-noise ratio (SNR)
conditions, a spectral flooring process is usually taken to pre-
vent the over-subtraction situation occurred. However, all such
processes very often produce some unnatural residual noise in
the enhanced speech, the so-called musical noise, due to the
inevitable random tone peaks generated in the time-frequency
spectrogram. Previous studies have pointed out that this perceiv-
able residual noise can be effectively alleviated by considering
the masking effect in human auditory system [4]–[8], i.e., the
residual noise will not be perceived if it is under the masking
thresholds in human auditory functions.

The singular value decomposition (SVD)-based subspace ap-
proach has been found useful for noise reduction in recent years
[9]–[12]. With this approach, by diagonalizing the Hankel-form
matrices constructed from the noisy speech samples by the
SVD, we can properly decompose the vector space for the input
speech samples into two orthogonal subspaces. It assumes
that the clean speech is presented only in the signal subspace
whereas the additive noise spans both the signal and noise
subspaces. We can thus discard the noise subspace components
and reconstruct the speech signal from those of the signal
subspace only. This approach was found very effective while
the additive noise is white. But when the noise is not white, a
reasonable approach is to whiten the noise spectrum prior to the
SVD-based approach and perform the inverse whitening pro-
cessing afterwards. To avoid such extra processes, a truncated
quotient SVD (QSVD)-based approach was proposed [12] to
perform the noise whitening with the SVD algorithm together
in an integrated enhancement framework, and found very
useful in handling colored noise. This truncated QSVD-based
approach was then extended in this paper, in which more pre-
cise and flexible determination of the dimensions of the signal
and noise subspaces became possible for each frame of the
noisy signal using well-defined procedures [13]. This extended
speech enhancement algorithm was referred to as generalized
SVD (GSVD [14])-based approach here. In fact, similar con-
cept using Karhunen–Loève transform (KLT)-based subspace
technique have also been proposed recently for enhancing
speech corrupted by colored noise [15]–[17].

Although this GSVD-based speech enhancement approach
has been shown to provide better performance than the pre-
vious SVD-based approach, some musical noise is still per-
ceivable in the enhanced speech under lower SNR conditions
[12], [13]. This is why the auditory masking thresholds (AMTs)
in human auditory functions were further integrated with the
above GSVD-based algorithm to establish an improved frame-
work for speech enhancement in this paper [18], referred to
as the perceptually constrained GSVD (PCGSVD)-based ap-
proach here. Because this PCGSVD-based approach operates in
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the generalized singular domain, whereas the conventional audi-
tory masking thresholds (AMTs) are well defined in frequency
domain, the previously proposed transformation between the
frequency domain and the eigen domain [19] is extended to be
performed between the frequency domain and the generalized
singular domain [18], with which a closed-form solution for
the PCGSVD-based speech enhancement approach is obtained.
Experimental results based on various objective and subjective
tests (e.g., time/frequency domain evaluations, speech recog-
nition accuracies, paired-utterance listening comparison, mean
opinion score (MOS) rating, etc.) show this proposed PCGSVD-
based approach can effectively alleviate the phenomenon of mu-
sical noise in the previous GSVD-based approach, enhance the
quality and intelligibility of the processed speech, and improve
the accuracy of the speech recognition system, regardless of
whether the additive noise is stationary or not, especially when
the noise is nonwhite.

The rest of the paper is organized as follows. The frame-
work for the GSVD-based speech enhancement approach is
first summarized in Section II. The procedures for obtaining
the AMTs and transforming them to the generalized singular
domain, and the proposed PCGSVD-based approach are then
presented in Section III. Experiments, objective/subjective
performance evaluation results, and some discussions are
offered in Section IV, with the conclusions finally given in
Section V. Detailed derivations of the closed-form solutions
for the GSVD- and PCGSVD-based approaches are presented
in the Appendix.

II. SUMMARY OF THE GSVD-BASED SPEECH

ENHANCEMENT APPROACH

Two series of the GSVD-based approach are summarized
here (GSVD-MVE and GSVD-LSE), with the difference from
the previously proposed truncated QSVD-based approach [12]
clearly indicated. Let be the th sample of the input noisy
speech signal , expressed as the sum of the samples and

of the clean speech and the noise :

(1)

and the goal here is to estimate from . Fig. 1 depicts the
framework of the GSVD-based speech enhancement approach,
which includes five phases as described next [13].

A. Phase (I): Framer, Nonspeech Detector, and Buffer

The input speech is first segmented into overlapped frames
with window length , and then the following enhancement

process is repeated for each frame. A voice activity detection
(VAD) algorithm is used to identify and accumulate the non-
speech frames in the input signal.

B. Phase (II): Construction of the Hankel-Form
Sample Matrices

To employ the subspace concept for speech enhancement, two
series of Hankel-form sample matrices of order , as in
Fig. 2, are constructed. for each noisy speech frame and

Fig. 1. Framework of the GSVD-based speech enhancement approach.

Fig. 2. Construction of the Hankel-form sample matricesH andH .

for the latest buffered nonspeech frame , where
equals the frame size and in general is much smaller than

. From (1), it is clear that the matrix can be represented
as the summation of two other Hankel-form sample matrices

and , , which are, respectively, con-
structed from the clean speech frame and the real noise frame.
Under noise-free conditions, the column dimension of the ma-
trix (in this case is a zero matrix with zeros
and thus ) is chosen such that is rank deficient,
i.e., rank [12]. Both and are unknown, yet

can be approximated by , where can be ei-
ther a constant or a time-varying variable. With the GSVD algo-
rithm as described below, we can estimate and thus the clean
speech frame from the matrices and . In other word,
we can apply the GSVD algorithm and the subspace concept to
the rank deficient least squares (LS) problem to estimate clean
speech signal from the noisy observations.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 02:30 from IEEE Xplore.  Restrictions apply.



JU AND LEE: PERCEPTUALLY CONSTRAINED GSVD-BASED APPROACH 121

C. Phase (III): GSVD Algorithm

The GSVD algorithm is useful in several constrained least
squares problems [14]. With GSVD, a nonsingular matrix

and two real matrices and , whose columns
are, respectively, orthonormal vectors, can be found to transform
both and into nonnegative, bounded diagonal matrices

and simultaneously

(2)

(3)

subject to

or (4)

where the superscript “ ” means the transpose, the diagonal el-
ements and , or the transformed components, of the ma-
trices , and are arranged in descending and ascending or-
ders, respectively, and is an identity matrix. The
constraint in (4) is helpful to achieve efficient numerical solu-
tions here [14], [20], and useful in determining the precise di-
mension of the signal subspace of the matrices and
as presented below, which was not discussed at all in the pre-
viously proposed truncated QSVD-based speech enhancement
approach. The values , , and the columns of
the matrix are, respectively, referred to as the generalized sin-
gular values and generalized singular vectors of the matrices
and . The conventional SVD algorithm can be considered as
a special case of the above GSVD algorithm if .

D. Phase (IV): GSVD-MVE- and GSVD-LSE-Based
Subspace Approaches

The diagonal elements of the matrix in (2) can be parti-
tioned into two sets, the principal set [in which the transformed
(or projected) noisy speech components obtained in (2) are dom-
inant (i.e., for those s.t. , , ),
associated with the signal subspace of and ] and the
minor set [in which the transformed noise components obtained
in (3) are dominant (i.e., for those s.t. , ,

), associated with the noise subspace of and
]. The dimensions of the signal subspace and the noise sub-

space are, respectively, denoted as and here, where
the variable is the number of the coefficients or such
that . In other words, because are arranged in de-
scending order and in ascending order, with the constraints
in (4), , we have for and

for , and it can be shown that the
value of is proportional to the instantaneous SNR of each
speech frame. In this way the dimension of the signal subspace

can be precisely, flexibly, and automatically determined for
each Hankel-form matrix and therefore for each frame of
the noisy speech signal. This is the major difference of the newly
extended GSVD-based approach from the previously proposed
truncated QSVD-based approach, in which the dimensions of
the signal and noise subspaces are empirically determined con-
sidering the SNR conditions based on the concept of “parsimo-
nious order” [12], [21]. The signal subspace for and
is then constructed by the first row vectors of the matrix

Fig. 3. Typical example of the computation results of the diagonal elements c
(circle) and s (x-mark) of the matrices C and S, respectively, in (2) and (3) for
a voiced frame with K = 40.

, whereas the rest rows of span the noise sub-
space of and . Fig. 3 illustrates an example of the com-
putation results for respective diagonal elements and of
the matrices and obtained in (2)–(4) for a typical example
of 512-sample voiced frame corrupted by white noise at 5-dB
SNR, with column size for the matrices and . It
can be found that in this frame of noisy speech , because

for but for , so
the first 30 row vectors of the matrix are used to construct
the signal subspace and the rest, , are used to
construct the noise subspace. However, of course can be dif-
ferent for different frames of noisy speech. This is how the di-
mensions and are determined precisely and automat-
ically for each frame of noisy speech. The minimum variance
estimation (MVE) algorithm, a linear estimator with the lowest
residual noise level [9], is then used to estimate the matrix
by finding a transformation matrix which mini-
mizes the Frobenius distance between the two matrices
and (by approximating the rank of by )

(5)

where is the Frobenius norm
square of a matrix , and is an element of the
matrix . is the estimated result of the transfor-
mation matrix . A closed-form solution for estimating
based on (5) can be obtained by weighting the components of
the principal set and nulling those of the minor set of the matrix

[obtained in (2)]

(6)

where the matrices and are those in (2) and (3), the vec-
tors and are the th column and row,

, of the matrices and , respectively. From
(2), (3), and (6), we know that the matrices , , and
can be transformed onto the same vector space (spans by the
row vectors of ). The matrix is diagonal with diagonal
elements given as follows:

(7)

where and , , are those in (2) and (3). The
proof of (6) and (7) is given in the Appendix. Fig. 4 is the same
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Fig. 4. Typical example of the computation results of the diagonal elements c
(circle), s (x-mark), and c (square, for GSVD-MVE) of the matrices C , S,
and C (for GSVD-MVE), respectively, in (2), (3), and (6) and (7) for a voiced
frame with K = 40.

as Fig. 3 for the same example voiced frame, except here what
are plotted in addition are the diagonal elements of the matrix

obtained from (6) and (7). Apparently, it can be found that
decreases monotonically for and becomes zero
for .

The estimated matrix obtained here may not have the
Hankel-form structure. We can simply average the antidiagonal
elements of to recover the Hankel-form sample matrix
and thus the enhanced speech frames, as depicted in Fig. 5 [12].

For comparison purposes, the matrix can also be esti-
mated using the least squares estimation (LSE) algorithm in the
framework of the GSVD-based speech enhancement approach
(GSVD-LSE). The simplest estimate of , or , given ,
is obtained by approximating by a matrix of rank in the
least-squares sense [12], where the value of can be obtained
with the same procedure as mentioned previously in this section

(8)

Again with the GSVD algorithm, the solution for (8) is straight-
forward

(9)

where the diagonal matrix consists of the most
informative diagonal elements of the matrix (principal set)
obtained in (2). The reconstructed Hankel-form sample matrix

and the enhanced speech frames can be similarly obtained.

E. Phase (V): Frame Overlap and Add

Finally, the enhanced speech signal can be obtained by
concatenating the estimated speech frames with the overlap-add
method.

Fig. 5. Evaluation of the Hankel-form sample MatrixH from the matrixH .

III. PCGSVD-BASED APPROACH

Though the GSVD-based approach mentioned previously has
been shown to provide better performance than the other popular
enhancement approaches [13], some musical noise is still per-
ceivable in the enhanced speech under lower SNR conditions.
To obtain better sounding conditions, we further propose to in-
tegrate the masking properties of human auditory system into
the GSVD-based approach to establish an improved framework
for speech enhancement in this paper [18], referred to as the per-
ceptually constrained GSVD (PCGSVD)-based approach here.

In this section, first we briefly summarize the proce-
dure for evaluating the human auditory masking thresholds
(AMTs) in frequency domain, following that we offer two
series of PCGSVD-based approach (PCGSVD-MVE and
PCGSVD-LSE). Furthermore, because the PCGSVD-based
approach operates in the generalized singular domain, a
transformation of AMTs between the frequency domain
and the generalized singular domain is proposed [18], with
which closed-form solutions for the PCGSVD-MVE- and
PCGSVD-LSE-based subspace approaches can be obtained.
Finally, in Section III-F, we discuss the influence of the scaling
factor , as defined in Section II-B for obtaining the matrix ,
on the performance evaluation of the proposed enhancement
approaches.

A. Evaluation of the Auditory Masking Thresholds

Noise masking is a well-known psychoacoustic property of
the human auditory system that has been applied with good
success to speech and audio coding in order to partially or to-
tally mask the distortion introduced in the coding processes [4],
[8]. Masking effect happens when the human auditory system
is incapable of distinguishing two signals close enough in time
or frequency domains. The maximum allowable level of noise
spectrum (or distortion spectrum) below which the distortion is
not discernible by a human listener is referred to as the masking
threshold. This is obtained by the minimum threshold of audi-
bility for a given masker signal. Both temporal and simultaneous
masking properties of human perception have been investigated,
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but here we only use the simultaneous masking properties evalu-
ated in frequency domain in the PCGSVD-based approach pro-
posed in this paper. The evaluation procedure for simultaneous
AMTs is briefly described as follows.

The perceptible frequency range for human auditory system
(20 Hz–20 kHz) is usually modeled by 25 critical bands. The
magnitude square of the discrete Fourier transform (DFT)
components of the clean speech signal can be summed in each
critical band, and then convolved with a spreading function to
consider the cross correlation between the critical bands. This
spread sequence is further divided by a set of relative threshold
values based on the noise-like or tone-like nature for each
critical band of the input speech frame. The AMTs are finally
obtained by renormalizing the above sequence to compensate
for the gain modification of the convolution process, and make
sure they are not below the absolute masking thresholds of
human hearing [4]–[6].

B. Formulation of the PCGSVD-MVE-Based
Subspace Approach

The enhancement framework of the PCGSVD-based sub-
space approach by using MVE algorithm (PCGSVD-MVE)
is almost identical to that of the GSVD-MVE-based approach
as described in the above section, except for the Phase (IV)
in Section II-D. Therefore only the Phase (IV) of the frame-
work of the PCGSVD-MVE-based approach is presented
here. By incorporating the auditory masking effect into the
GSVD-MVE-based subspace approach to further suppress the
perceivable residual noise, the goal here is to find an optimal
transformation matrix for which not only the Frobenius
distance between the two matrices and is minimum,
but under the constraints that the normalized energies are not
greater than the transformed AMTs for the first projections
( is the dimensionality of the signal subspace of the matrices

and here) of the residual noise signal (i.e., ), and
zero for the rest projections. In other words, the residual
noise components cannot be perceived by the human ear

subject to (10)

where the vectors and are, respectively,
the th column and row, , of the matrices and

obtained in (2) and (3), and is the AMTs but transformed
to the generalized singular domain, which can be evaluated by
the procedures present below [18]. Everything else is the same
as the procedures summarized in Section II.

C. Estimating AMTs Projected Onto the Generalized
Singular Domain

Because the PCGSVD-based approach operates in the gen-
eralized singular domain, whereas the conventional AMTs are
well defined in the frequency domain, the previously proposed
transformation between the frequency domain and the eigen
domain [19] is used here to perform the transformation between

the frequency domain and the generalized singular domain [18],
with which closed-form solutions for the PCGSVD-MVE- and
PCGSVD-LSE-based subspace approaches can be obtained.
The power spectrum of the clean speech signal is required
for evaluating the AMTs in frequency domain but the clean
speech is not known here. This power spectrum is estimated by
the Blackman–Tukey frequency estimation technique [22] as
summarized below.

With (6) and (7) in Section II-D, the -dimensional
autocorrelation matrix of the clean speech frame can be
probably obtained from the matrix .

(11)

where is the frame size and is the column dimension of the
Hankel-form sample matrices and . With obtained

in (11), the estimated power spectrum of the clean
speech frame can be approximately obtained by the principal
component version of the Blackman–Tukey frequency estima-
tion with Bartlett window [22, pp. 470–471]

(12)

where the elements and , ( is the dimension
of the signal subspace of the matrices and ), are those in
(2) and (3) respectively, is the vector for the magni-
tude square of the -point DFT ( is the number of the AMTs)
of the th row of the matrix [i.e., in (10)] in (2) and (3),
and the value in the bracket of (12) is in fact the value in (7).
With the estimated power spectrum in (12), the vector for the
AMTs in frequency domain can then be evaluated
from by the procedure as mentioned in Section III-A. With ,
the AMTs projected onto the generalized singular domain can
be obtained with similar process to that proposed by Jabloun
and Champagne [19].

(13)

where is the th element of the vector given as
follows:

(14)

where is a transformation matrix whose th row
is the vector for the magnitude square of the

-point DFT of the th row vector of the matrix in (2) and
(3).

D. Solution for the PCGSVD-MVE-Based Subspace Approach

With the formulations above in (10)–(14), it can be shown
that the estimation of the matrix has a closed-form solution

(15)
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Fig. 6. Typical example of the computation results of the diagonal el-
ements c (circle), s (x-mark), c (square, for GSVD-MVE), and c
(triangle, for PCGSVD-MVE) of the matrices C , S, C (GSVD-MVE), C
(PCGSVD-MVE) and the sequence c (

p

 =s ), 1 � i � K , (diamond),

respectively, in (2), (3), (6), and (7), (15) and (16) for a voiced frame with
K = 40.

where the diagonal elements , , of the nonnega-
tive diagonal matrix are

(16)
respectively for the principal set ( , ) and the minor
set ( , ) of the matrix . The result in (15) and
(16) is derived detailed in the Appendix. From (16), we notice
that for the components of the principal set of the matrix ,
the singular values of the matrix are the smaller value of

and . The former term is in fact the
solution for the GSVD-MVE-based approach as in (7), which
is chosen when the normalized projection of the residual noise
signal onto the signal subspace of the matrices and is
below the value of the corresponding transformed AMT [as de-
scribed in the first constraint of (10)], and thus this projected
residual noise component cannot be perceived. Otherwise, the

term in (16) will be chosen. Note that
is proportional to the square root of the th transformed AMT

, but inversely proportional to which is arranged to be in-
creasing with index as in (3), therefore is more dominant in
this second term for smaller , which corresponds to more in-
formative signal subspace components. This AMT-related term
will be chosen when the th constraint of (10) ac-
tivates [i.e., equal sign of the first constraint of (10) holds]. In
this case, the residual noise component is nearly unperceivable.
Fig. 6 is the same as Figs. 3 and 4 for the same example voiced
frame, except here what are plotted in addition are the sequence

, , in (16) and the diagonal elements
of the matrix for PCGSVD-MVE in (15) and (16). It can
be found that for the diagonal elements for
PCGSVD-MVE are upper bounded by , while for

they are all zero.

E. PCGSVD-LSE-Based Subspace Approach

For comparison purposes, the PCGSVD-LSE-based subspace
approach can be similarly formulated as follows:

subject to (17)

The solution for (17) is similar to (15) and (16)

(18)

where the elements , of the nonnegative diag-
onal matrix are

(19)

F. Estimation of the Scaling Factor

It is well known that the entropy is a metric of uncertainty for
random variables. In the preliminary study, it was found that by
setting the value of the scaling factor , to be used in estimating
the matrix from as specified in Section II-B, to be in-
versely proportional to the spectral entropy of the additive noise
in some sense can improve the performances of the PCGSVD-
MVE- and PCGSVD-LSE-based approaches. The formulation
for the spectral entropy is as follows [23]:

(20)

where is the DFT size and , is the probability
density function obtained by normalizing the spectral energy of
the th frequency component of the estimated noise over
all frequency components

(21)

For the PCGSVD-based approach, with smaller value of
(e.g., ), less signal distortion was observed in the tests for
the estimated speech, especially for the low-energy frequency
components, but that also led to increased residual noise. So,
there is a tradeoff in choosing the value of given the best per-
formance. We found that the best value for has to be inversely
proportioned to the spectral flatness of the additive noise in some
sense, which is reasonably well measured by the spectral en-
tropy as defined above in (20) and (21). Moreover, if the addi-
tive noise is stationary, the evaluation result for the spectral en-
tropy ought to be invariant whether the noise level is high or low.
However, changing the value of does not significantly affect
the performances of the GSVD-MVE- and GSVD-LSE-based
approaches.
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IV. EXPERIMENTS AND PERFORMANCE EVALUATION

The experimental environment was as follows. We randomly
selected 30 clean utterances produced by two females and
two males from the TIMIT speech corpus with sampling rate
16 kHz for testing [24]. Four types of noise source, “White,”
“Volvo-car,” “Babble (speech-like),” and “Factory,” chosen from
NOISEX-92 database [25], were artificially added to the test
speech with resulting SNR ranged from 20 to 10 dB with 5-dB
step size for evaluation. The Babble and Factory noise sources
are nonstationary whereas the Volvo-car noise is stationary; all
of the three are not white. The following parameter settings were
for the GSVD-/PCGSVD-based approaches. The rectangular
window was used for the framer as in Section II-A due to its
better performance. The frame size was 32 ms (512 samples)
with 50% frame overlap. The value of , the number of AMTs
in Section III-A, was the same as the frame size . The value
for the scaling factor as discussed in Section III-F, was set to
1.0 for the GSVD-MVE- and GSVD-LSE-based approaches,
and to 0.6, 1.15, 0.9, and 0.9, respectively, for the White, Volvo,
Babble, and Factory noise cases for the PCGSVD-MVE- and
PCGSVD-LSE-based approaches [ was roughly estimated (via
the spectral entropy method mentioned in Section III-F) from
the first two nonspeech frames of a typical utterance in each
respective case]. The row and column sizes ( and ) of the two
Hankel-form sample matrices and were 473 and 40,
respectively. The column dimension of 40 for the Hankel-form
matrices was sufficient for having the matrix to be rank
deficient under noise-free condition, and it was adequate for us
to choose a boundary for the signal and noise subspaces.

For comparison, we also implemented the conventional spec-
tral subtraction algorithm in the power spectral domain (abbre-
viated as PSS) [2], a modified version of PSS using the audi-
tory masking effect in the enhancement process (abbreviated
as PSS-AMT) [6], and a perceptual subspace approach previ-
ously proposed, in which a transformation from frequency do-
main to eigen domain was used to obtain a perceptual upper
bound for the residual noise to be applied with the subspace
concept (abbreviated as PKLT), which was shown to offer com-
petitive performance as the conventional KLT-based subspace
approach in subjective listening tests [19]. The VAD algorithm
recommended by ETSI-EAFE for frame-dropping (referred to
as ETSI-EAFE VAD here) [26] was employed in all these algo-
rithms under concern for detecting the nonspeech frames and es-
timating the noise statistics. Compared with other popular VAD
algorithms, this algorithm was reported to have low false alarm
rate [27]. We also forced the first two frames of each utterance
as silence frames for estimating the noise statistics initially.

Equation (22) formulates the processes of the PSS and the
PSS-AMT algorithms in frequency domain

otherwise

(22)

where , , is the frequency index, the symbol
“ ” denotes the phase, the value of , or the DFT size, was set
to 512, and are, respectively, the power spec-
trum of the noisy speech and enhanced speech, is
the smoothed power spectrum of the estimated noise, and
and are the weighting factor and flooring coefficient re-
spectively. For PSS, was set to 1.6 and to 0.15,
whereas for PSS-AMT, and are both functions of
AMTs. The input noisy speech signal was segmented into
overlapped frames via Hamming window and transformed to the
frequency domain. The frame size and shift for both the PSS and
PSS-AMT were 32 ms (512 samples) and 16 ms (256 samples),
respectively. Each detected silence frame from the ETSI-EAFE
VAD algorithm was employed to update the noise statistics in
frequency domain

(23)

where is the previously estimated version, and
is the smoothing factor. For both PSS and PSS-AMT, was

set to 0.9. This updating process was carried out whenever a
new silence frame was detected. For PKLT, the frame size and
shift were 32 ms (512 samples) and 2 ms (32 samples), respec-
tively, for computation load reduction. This setting was verified
to behave almost as well as the 16 ms (256 samples) of frame
updating rate in preliminary informal tests. Various objective
and subjective measures were used to evaluate the different ap-
proaches as given next.

A. Segmental Signal-to-Noise Ratio

As it is well known, the segmental SNR (SegSNR) measure is
more accurate in indicating the speech distortion than the global
SNR. The SegSNR is measured by computing the SNR (in deci-
bels) for each of the frames and averaging these SNR values
over the entire utterance [28]. To emphasize the processing ef-
fect of the estimated speech signal, we manually exclude the
nonspeech segments of the test speech in the following SegSNR
and SegLSD evaluations. The SegSNR measure used here had
a segment length of 256. The results are illustrated in Fig. 7, in
which the various abbreviations “Noisy” (original noisy speech),
“PSS” (power spectral subtraction), “PSS-AMT” (modified ver-
sion of PSS with AMTs), “PKLT” (the previously proposed per-
ceptual subspace approach [19]), and “GSVD-LSE,” “GSVD-
MVE,” “PCGSVD-LSE,” and “PCGSVD-MVE” (as proposed in
this paper) are used to denote different tests. From Fig. 7(a) for
the White noise case, we see for almost every case of SNR,
GSVD-MVE obtained the best results. However, for the col-
ored noise cases [Fig. 7(b)–(d)], PCGSVD-MVE outperformed
GSVD-MVE and other approaches in many cases, especially
when the input SNR was low (e.g., 10 dB). We also see that
GSVD-LSE was not as good as that of GSVD-MVE in most
cases, so was that of PCGSVD-LSE as compared with PCGSVD-
MVE. This can be understood from the closed-form solution of
GSVD-LSE (9), in which all the information (including clean
speech and corrupting noise source) were kept in the signal sub-
space of and , and similarly for PCGSVD-LSE versus
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Fig. 7. Segmental SNR measures for (a) White noise, (b) Volvo-car noise,
(c) Babble noise, and (d) Factory noise at different SNR values.

PCGSVD-MVE. This observation remains true for all the fol-
lowing subjective measures and objective listening tests. There-
fore, we excluded the results of GSVD-LSE and PCGSVD-LSE
evaluations in the following experiments.

B. Segmental Log Spectral Distance Measures

The segmental log spectral distance (SegLSD) measure is for-
mulated as follows:

(24)

where and are, respectively, the th spectral
component, , of the th frame (totally nonsi-
lence frames) of clean and enhanced utterances. was set to
512. Fig. 8 depicts the SegLSD measures. From Fig. 8(a) for
the White noise case, GSVD-MVE offered the smallest SegLSD,
whereas PSS-AMT offered satisfactory results as well. However,
for the nonwhite noise cases in Fig. 8(b)–(d), PCGSVD-MVE
actually behaved the best on average. This result indicates the
proposed PCGSVD-based approach algorithm generated rela-
tively less spectral distortion in frequency domain if the additive
noise did not exist across the entire spectrum.

Fig. 8. Segmental log spectral distance measures for (a) White noise, (b)
Volvo-car noise, (c) Babble noise, and (d) Factory noise at different SNR
values.

C. English Phoneme/Digit Recognition Accuracy

The third measure we adopted was the English phonemic ac-
curacy obtained in the free-phoneme decoding (without lexicon
and language model) for the 30 test utterances mentioned previ-
ously in this section, which can be used to test the intelligibility
of the estimated speech. The acoustic model used here consisted
of 48 left-to-right continuous hidden Markov models (CHMMs)
for the 48 context-independent phoneme units [29], trained from
4-h TIMIT speech corpus and most of the CHMMs included five
states with two nonemitting and each emitting state consisted of
eight Gaussian mixtures. The total number of Gaussian mixtures
was about 1100. The dimension of acoustic feature vectors was
39; including 12 mel-frequency cepstrum coefficients (MFCCs)
and the normalized log energy, plus the first and second deriva-
tives. The frame size for obtaining the acoustic features was 30
ms (480 samples) with 10 ms (160 samples) of shift. The HTK
[30] was used for feature extraction, acoustic model training,
and recognizer in this experiment. Without dropping the silence
frames in the recognition phase, the baseline phoneme accuracy
for clean speech for the 30 test sentences was 54.48%.

Fig. 9 shows the accuracy results of the phoneme recog-
nition. In Fig. 9(a), all of the six approaches improved the
recognition accuracy for the White noise case. For the colored
and/or nonstationary noise situations in Fig. 9(b)–(d); however,
again PCGSVD-MVE outperformed the other enhancement
algorithms in most cases, especially for the Volvo-car and
Factory noise cases. Extra tests verified that the recognition
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Fig. 9. TIMIT phoneme recognition accuracies for (a) White noise, (b)
Volvo-car noise, (c) babble noise, and (d) factory noise at different SNR values.

performance could be further improved if the training speech
corpus for the acoustic model can be similarly processed a
priori, but not reported here to save the space.

We also carried out the English digit recognition under
AURORA2 testing environment [31]. We adopted the first 200
shortest utterances out of the total of 1001 for test sets A and
B of AURORA2 corpus under the clean training condition. We
excluded test set C here because it includes channel distortion
which is not handled here. The experimental setup was identical
to those mentioned previously, except here the sampling rate
for the AURORA2 task was 8 kHz and the CHMMs consisted
of 11 digit units (0–9 plus OH) and a silence model, each digit
HMM contained 16 emitting states and each state comprised
two Gaussian mixtures. The value for the scaling factor for
obtaining the matrix mentioned in Section II-B was fixed
as 0.9 for PCGSVD-based approach (because most of the noise
sources in the test sets are nonstationary, the average of the

values obtained as mentioned above for all different types
of noise in test sets A and B was specified). Fig. 10(a)-(b)
reveals the recognition results for different SNR values (but
averaged over all noise types) and different types of noise
(but averaged over all SNR values), respectively. Similar to
that of recognition accuracy measures on TIMIT for colored
noise cases in Fig. 9(b)–(d), PCGSVD-MVE outperformed the
other enhancement algorithms almost in every case. Compared
with Noisy, on average 24.61% and 30.66% word error rate
reduction were achieved by the PCGSVD-MVE approach for
test sets A and B, respectively. The above results indicate the

Fig. 10. AURORA2 word accuracies for clean condition training and test sets A
and B for (a) different SNR values but averaged over all noise types. (b) Different
types of noise but averaged over all SNR values.

Fig. 11. Spectrogram plots for a typical utterance corrupted by White noise at
10 dB SNR. (a) Clean. (b) Noisy (10-dB White). (c) PSS. (d) PSS-AMT.
(e) PKLT. (f) GSVD-MVE. (g) PCGSVD-MVE.

proposed PCGSVD-MVE could be useful as a noise removal
preprocessor for a speech recognition system.

D. Spectrogram and Time Domain Waveform Plots

Figs. 11 and 12 are, respectively, the time-frequency domain
spectrogram plots and the time domain waveforms for the var-
ious versions of a test utterance, “To many experts, this trend
was inevitable.”, produced by a male speaker, corrupted by the
White noise at 10-dB SNR. From Fig. 11(c), we can see in
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Fig. 12. Waveforms for a typical utterance contaminated by White noise at
10-dB SNR. (a) Clean. (b) Noisy (10-dB White). (c) PSS. (d) PSS-AMT.
(e) PKLT. (f) GSVD-MVE. (g) PCGSVD-MVE.

the spectrogram of the PSS processed speech some undesired
random tone peaks present in the nonspeech regions (e.g., re-
gion A) and low-energy, noise-like speech segments (e.g., seg-
ments B, C, D, and E), compared with the clean speech version
in Fig. 11(a), which are perceivable musical noise. This phe-
nomenon was improved in the version of PSS-AMT, PKLT, and
GSVD-MVE processed utterances as shown in Fig. 11(d)–(f), re-
spectively, although it was found in parallel informal listening
tests that the residual noise was still quite perceivable. It is fur-
ther evident in Fig. 11(g) that almost the same detailed informa-
tion of the speech spectrum were recovered by PCGSVD-MVE
as compared to that in Fig. 11(f) by GSVD-MVE, but with much
less random tone peaks present in the silence segments and
low-energy speech regions. Though some residual noise still oc-
curred in the PCGSVD-MVE processed speech for the White
noise case, this is due to the de-emphasis of the estimated noise
constructed Hankel-form matrix by the parameter (0.6 in
this case). However, by the parallel informally subjective listing
tests, in which many subjects agreed that the musical noise was
less perceivable for the utterances processed by PCGSVD-MVE
than those by GSVD-MVE and other approaches of interest.
Another test utterance, “The small boy put the worm on the
hook.”, produced by a female speaker was repeated in the same
tests, except the additive noise signal was the Volvo-car noise
at 10-dB SNR, and the results are in Figs. 13 and 14. Again,
PCGSVD-MVE kept most of the original speech information
and can eliminate most of the residual noise existing in the spec-
trogram of the enhanced speech of PSS and PSS-AMT processed
speech. Furthermore, from Figs. 13 and 14, we can see that the
high-frequency components in the spectrogram of PKLT pro-
cessed utterance are seriously attenuated, and the waveform is

Fig. 13. Spectrogram plots for a typical utterance corrupted by Volvo-car noise
at�10-dB SNR. (a) Clean. (b) Noisy (�10 dB Volvo). (c) PSS. (d) PSS-AMT.
(e) PKLT. (f) GSVD-MVE. (g) PCGSVD-MVE.

Fig. 14. Waveforms for a typical utterance contaminated by Volvo-car noise at
�10-dB SNR. (a) Clean. (b) Noisy (�10-dB Volvo). (c) PSS. (d) PSS-AMT.
(e) PKLT. (f) GSVD-MVE. (g) PCGSVD-MVE.

quite different from the original speech, which means under
highly noisy environments, PKLT not only eliminates the noise
signal but hurts the signal itself as well.
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TABLE I
PERCENTAGE (%) OF SUBJECTS WHO PREFERRED THE UTTERANCES

PROCESSED BY PCGSVD-MVE AS COMPARED TO NOISY AND THOSE

PROCESSED BY PSS, PSS-AMT, PKLT, AND GSVD-MVE, RESPECTIVELY,
FOR DIFFERENT NOISY CONDITIONS

E. Subjective Listening Tests

Two sets of subjective listening tests were performed and re-
ported here.

1) Listening Preference Comparison: As shown in the first
two columns of Table I, the White, Volvo-car, Babble, and Fac-
tory noises were artificially added to the test speech at some
SNR values (10 to 10 dB) with corresponding input SegSNR
values. For each case of noise type and SNR values, five test ut-
terance pairs were generated. For each pair, one was processed
by the proposed PCGSVD-MVE approach and the other was one
of the Noisy or PSS, PSS-AMT, PKLT, GSVD-MVE processed
utterances. The first two rows for the White noise at SNR values
of 10 and 0 dB targeted at the moderate and highly noisy condi-
tions, respectively. The next two rows of the Volvo-car noise at
SNR values of 0 and 10 dB were for the situation of car trav-
eling in the city at a speed of 40 to 50 km/h, and on the highway
at a speed of about 100 km/h, respectively. The other two cases
for the Babble and Factory noises at 5-dB SNR were also close
to the real-world situation. A total of 26 subjects, 8 females and
18 males between 20 and 45 years of age, participated in the
test. Each subject was asked to evaluate four different sets of
utterances (totally 20 test utterance pairs) with ordinary head-
phones and chose the one they preferred without knowing which
one was which, and on average each utterance pair was evalu-
ated by 17 subjects. From the evaluation results in Table I, it is
clear that the PCGSVD-MVE approach proposed in this paper
outperformed the other approaches for almost all cases of noise
types and SNR values. On average, 69.32% to 83.61% of sub-
jects preferred the PCGSVD-MVE processed speech than other
approaches under concern.

2) MOS Comparison: Mean opinion score (MOS) rating
is the most widely used measure for subjective quality tests,
in which the subjects rate the test speech from 5 to 1 scales
for “Excellent,” “Good,” “Fair,” “Poor,” and “Unsatisfactory,”

Fig. 15. Mean opinion score rating results for different types of noisy
environment.

respectively, [28]. The same group of 26 subjects as mentioned
above participated in this MOS rating, using exactly the same
noisy and enhanced test utterances as those in Section IV-E1,
plus two clean utterances for the purpose of referenced MOS
rating. Fig. 15 depicted the rating results. The averaged MOS
rating for the two clean utterances was 4.39. It is clear that
the proposed PCGSVD-MVE approach received the highest
MOS rating, whether the noise is white or not, stationary, or
nonstationary.

F. Discussions

For the objective measures in Sections IV-A–IV-C,
GSVD-MVE roughly offered the best performance in the
White noise case. This is apparently because GSVD-MVE ac-
tually optimized the estimated speech in the signal processing
sense. PCGSVD-MVE behaved not so well in those objective
evaluations for the White noise situation, in that the spectral
components of noise-like speech usually have lower energy, but
the White noise distribution is flat. For such wide-band noise
cases, in order to mask the residual frequency components
based on the auditory masking effect, PCGSVD-MVE tended
to attenuate the high-frequency components (which very often
cannot be masked by speech signal under adverse conditions)
to make sure the residual noise is nearly unperceivable, which
may cause some distortion in the estimated speech. Though
PSS-AMT also utilized the human auditory effect; however, it
only applied the AMTs to figure out the bounded weighting
factor and flooring coefficient in the spectral subtraction
algorithm in order to achieve a good tradeoff between the per-
ceivable residual noise and the signal distortion [6]; therefore,
PSS-AMT may introduce less distortion in the high frequency
parts than PCGSVD-MVE in the White noise case. To reduce
the signal distortion of the PCGSVD-processed speech for
such broad-band noise situations, we may de-emphasize the
Hankel-form matrix by setting the scaling factor , as
specified in Sections II-B and III-F, less than unity. Moreover,
from the subjective listening tests in Section IV-E, the proposed
PCGSVD-MVE approach indeed offered the best speech quality
for this broad-band noise case. In fact, during the tests most
of the subjects reported that the musical noise induced by
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PCGSVD-MVE was less perceivable than that by GSVD-MVE,
PSS, PSS-AMT, and PKLT.

As for the colored noise cases, it is evident from both the objec-
tive and subjective evaluations, PCGSVD-MVE actually offered
the best performance on average for Volvo-car, Babble, and Fac-
tory noises, whether the SNR was high or low. In other words,
such real-world noise may be narrow-band and low-passed, so
oftenmaskedby thevoicedspeech(butusuallynot true for theun-
voiced speech), and therefore PCGSVD-MVE may behave better
than GSVD-MVE and the other approaches for human percep-
tion.Anespeciallyworthmentioningcaseis that for theVolvo-car
noise at 0 dB SNR, the MOS rating for PCGSVD-MVE in Fig. 15
was even almost as good as that of the clean speech. This is be-
cause the Volvo-car noise is low-passed and narrow-band, easily
masked by the voiced segments of input speech. Besides, from
the evaluation results for the listening preference comparison as
in Table I, it is interested to point out that many subjects disliked
GSVD-MVE processed utterances more than those by PSS-AMT
andPKLT, especiallywhen theadditivenoisewaswhite.Because
the artificially generated residual noises were quite different for
variousenhancementalgorithms,subjectsmaypreferredonekind
of residual noise than the others in the listening preference com-
parison,andhenceweobtained theremarkable resultas inTableI.

We also evaluated the performance of SegSNR and SegLSD
without silence detection error (i.e., using manually labeled
silence frames). Experimental results showed that the differ-
ence was in general insignificant for stationary types of noise,
whether white or not. On the other hand, for nonstationary
noise cases, correct detection of noise segments could improve
the performance.

Finally, we also estimated the computational complexity of
the different enhancement algorithms discussed here. The pri-
mary CPU load of PSS is the DFT and inverse DFT operations.
For PSS-AMT, extra computations are for the AMTs, which are
relatively limited compared with the DFT operation. PKLT re-
quires performing the KLT on the autocorrelation matrix of each
speech frame with complexity proportional to , where is
the dimension of the autocorrelation matrix of the speech frame.
However, there existed a recursive algorithm to approximate the
KLT which can roughly reduce one order computation load of
the KLT algorithm [32]. The GSVD algorithm, on the other
hand, requires roughly operations per frame [33],
where and are, respectively, the row and column sizes of the
Hankel-form matrices and as in Section II-B, which is
roughly more than one order of computational complexity than
that of PSS. Accordingly, PCGSVD-MVE needs to figure out
the AMTs in frequency domain, and the AMTs have to be trans-
formed to the generalized singular domain and thus extra opera-
tions are needed. Besides, some special techniques for reducing
the computations of the GSVD algorithm have been developed
as well [34], in which the complexity of one GSVD-update can
be reduced to and thus the real-time implementation of
the GSVD- and PCGSVD-based approaches on the commercial
communication products is achievable.

G. Summary of the Performance Evaluation

All the above results are briefly summarized here. Compared
with the noisy speech not enhanced, the proposed GSVD-

and PCGSVD-based approaches achieved, respectively, for
different types of noise sources on average 6.62 and 6.67 dB
improvements in SegSNR evaluations, 1.60 and 1.31 dB re-
ductions in SegLSD measures, and 7.59% and 7.81% absolute
phoneme recognition accuracy improvements for the TIMIT
test utterances and 4.83% and 13.96% absolute word accuracy
improvements for the AURORA2 digit recognition task. In
subjective listening tests, on average 69.32% to 83.61% of
subjects preferred the PCGSVD-MVE processed speech than
other approaches being considered. In particular, the good
performance for the proposed approach with respect to colored
noise is quite clear.

V. CONCLUSION

In this paper, we first proposed a GSVD-based speech en-
hancement approach, which was extended from the concept of
the truncated QSVD-based approach. Based on this algorithm,
a new PCGSVD-based approach by integrating the auditory
masking thresholds transformed onto the generalized singular
domain has been presented. Closed-form solutions for both
the GSVD- and PCGSVD-based enhancement approaches
were obtained. Objective measures including time and fre-
quency domain evaluations and speech recognition accuracy
measures were used as compared to three other transforma-
tion-based speech enhancement algorithms under different
noisy environments. The results indicated that the new pro-
posed PCGSVD-based approach can effectively alleviate the
perceivable residual noise introduced by the enhancement pro-
cesses, retain the features of the original speech, and improve
the accuracy of the speech recognition system, whether the
additive noise is stationary or nonstationary, especially when
the noise is nonwhite.

APPENDIX

The proof of (15) and (16) [referred to here as the solution for
the constrained optimization problem (10) of PCGSVD-MVE] is
given here. It will be shown later on that (6) and (7) [referred to
here as the solution for the unconstrained optimization problem
(5) of GSVD-MVE] turn out to be a special case of (15) and
(16). For the constrained optimization problem of (10), an object
function together with the Kuhn–Tucker conditions can
be introduced to convert this constrained optimization problem
into an unconstrained one [35], in which two Lagrange multi-
plier vectors and are introduced
such that

(25)

condition on

(26)
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where is the trace of a matrix, , ,
and , , are the Lagrange multipliers
or the components of the vectors and , respectively. The
condition described in (26) is the complementarity condition,
i.e., the value of is zero when the corresponding th constraint
is inactive; otherwise, it should be a positive value. Therefore,
the constrained PCGSVD-MVE optimization problem defined
by (10) can be transformed to the unconstrained GSVD-MVE
problem defined by (5) by assigning all the Lagrange multipliers
( and ) to zero. We take the gradient operation of with
respect to to obtain the estimate result

(27)

such that

(28)

We further define a diagonal matrix whose diagonal
elements are exactly the Lagrange multipliers , ,
and ,

...
...

. . .

...
...

. . .
...

(29)

Equation (28) can then be written in matrix form using the ma-
trix defined in (29)

(30)

The matrices and in (30) can be further decomposed
via the GSVD algorithm [see (2) and (3)] and leading to the
following result:

(31)
For further developing purposes, with the GSVD algorithm,

we can whiten the matrix by multiplying it by a transfor-
mation matrix

(32)

where denotes the whitened version of , and the ma-
trices , , and are given in (2) and (3). The autocorrelation
matrix for the whitened version of the estimated noise can be
approximated by , the identity
autocorrelation matrix indicates that it is completely whitened.

From Section II-B, we have .
In order to whiten the noise component in the noisy speech

signal as in (32), we can multiply the matrix with
accordingly

(33)

where the extra subscript for the matrices and
again denotes the version of and with noise component
whitened. Again with the GSVD algorithm, the matrix
can be factorized as follows:

(34)

where the matrices and , re-
spectively, consist of the first orthonormal column vectors
and the rest orthonormal columns of the matrix . The
diagonal matrices and , re-
spectively, comprise the preceding diagonal elements and the
rest diagonal elements of the matrix , and
and can be similarly obtained from the
matrix . In a similar way, with the SVD algorithm, the matrix

can be decomposed as follows:

(35)

where each column of the matrices or
is orthonormal, is a diagonal matrix whose rank is
not known a priori, but can be reasonably approximated as the
dimension of the signal subspace of the matrices and
(i.e., ), the diagonal matrix consists of the
nonzero diagonal elements of the matrix , and

consist of the first columns and the rest
columns of the matrix , respectively, and

(whose columns span the signal subspace of ) and
(whose columns span the noise subspace of )

are similarly obtained from the matrix . Substituting (34) and
(35) into (33) with the relation ,
we have

(36)

The association of the matrices , , , , , and others
in (36) can be obtained as follows:

(37)

(38)
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(39)

(40)

(41)

where the matrix consists of the first or-
thonormal column vectors of the matrix . Moreover, from
(39) and (40) it is evident that

(42)

With the derivation from (35)–(42), the matrix can be
written as follows:

(43)

Substituting (43) into (31), we have

(44)

Based on the assumption that the clean speech is uncorrelated
with the additive noise, the matrices and (reconstructed
from the signal subspace of the matrix ) are thus uncorre-
lated accordingly. Afterwards we substitute the result of (44)
into (31) with the assumption that the equal sign of (31) still
applies

(45)

or

(46)

where the matrices , , and are those defined in (29) and
(34), respectively. We then define a matrix ,

, and from (46) we know that the matrix is
diagonal with its last diagonal elements being zero, i.e.,
the rank of is . Equation (46) can be rearranged as follows:

(47)

and thus

(48)

or

(49)

where the diagonal matrices and
consist of the first diagonal elements of the matrices and

, respectively. Thus the diagonal elements of the matrix ,
, , are as follows:

(50)

where , , and are those defined in (2), (3), and (25), re-
spectively. Because the last diagonal elements of the
matrix are zero, the equality part of the constraints of (10)
are always guaranteed. For the inequality part of the constraints,
the energy of the transformed residual noise components as in
(10) can be evaluated as follows:

(51)

(52)

(53)

(54)

(55)

which leads to

(56)
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or

(57)

where the vectors and , , are, respectively,
the th column and row of a -dimensional identity matrix and
the matrix , and denotes the norm operation. From
(51), with the Kuhn–Tucker conditions, the Lagrange multi-
pliers , , can be classified according to the fol-
lowing two cases:

Constraint-inactivated case

(58)

and

Constraint-activated case

(59)

For the case of constraint-inactivated, we set , ,
to zero and having the result [referred to (50) and (57)]

(60)

where

(61)

For the constraint-activated case, on the other hand, the equal
sign of (57) holds, and therefore the th diagonal element of the
matrix , , , in (50) has the form

(62)

With (50)–(62), the diagonal elements , , of the
transformation matrix are

(63)

Hence, the estimated matrix for the clean speech frame
can be expressed as follows:

(64)

where is a diagonal matrix with its diagonal
elements being those in (16). For the unconstrained optimization
problem for GSVD-MVE as formulated in (5), it is easy to verify
its solution as given in (6) and (7) by assigning all the Lagrange
multipliers , , of (50) to zero. This concludes
the proof for (15) and (16) for the solution of the constrained
optimization problem of PCGSVD-MVE, and (6) and (7) for the
solution of the unconstrained optimization problem of GSVD-
MVE.
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