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Abstract—This paper proposes a novel pitch determination
algorithm (PDA) based on the newly introduced concept of a
generalized correlation function called correntropy. Correntropy
is a positive definite kernel function which implicitly transforms
the original signal into a high-dimensional reproducing kernel
Hilbert space (RKHS) in a nonlinear way, and calculates very
efficiently the generalized correlation in that RKHS. By incorpo-
rating the kernel function, correntropy is able to utilize higher
order statistics to enhance the resolution of pitch estimation. The
proposed PDA computes the summary of correntropy functions
from the outputs of an equivalent rectangular bandwidth (ERB)
filter bank. We present simulations on pitch determination for
a single vowel, double vowels, and a benchmark database test.
Simulations show that correntropy exhibits much better resolu-
tion than conventional autocorrelation in pitch determination and
outperforms other PDAs in the benchmark database test.

Index Terms—Correntropy, pitch determination, reproducing
kernel Hilbert space (RKHS).

I. INTRODUCTION

P ITCH, or the fundamental frequency , is an important
parameter in speech signal analysis. Accurate determina-

tion of pitch plays a vital role in acoustical signal processing and
has a wide range of applications in related areas such as coding,
synthesis, speech recognition, and others. Numerous pitch de-
termination algorithms (PDAs) have been proposed in the liter-
ature [2]. In general, they can be categorized into three classes:
time-domain, frequency-domain, and time–frequency domain
algorithms.

Time-domain PDAs operate directly on the signal temporal
structure. These include but are not limited to zero-crossing rate,
peak and valley positions, and autocorrelation. The autocorre-
lation model appears to be one of the most popular PDAs for
its simplicity, explanatory power, and physiological plausibility.
For a given signal with samples, the autocorrelation func-
tion is defined as

(1)

where is the delay parameter. For dynamical signals with
changing periodicities, a short-time window can be included
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to compute the periodicities of the signal within the window
ending at time as

where is an arbitrary causal window that confines the au-
tocorrelation function into a neighborhood of the current time.
Other similar models can be obtained by replacing the multipli-
cation by subtraction (or excitatory by inhibitory neural interac-
tion) in the autocorrelation function such as the average magni-
tude difference function (AMDF) [3]. Cheveigné proposed the
squared difference function (SDF) in [4] as

SDF (2)

The weighted autocorrelation uses an autocorrelation function
weighted by the inverse of an AMDF to extract pitch from noisy
speech [5]. All these PDAs based on the autocorrelation func-
tion suffer from at least one unsatisfactory fact: the peak corre-
sponding to the period for a pure tone is rather wide [6], [7]. This
imposes a greater challenge for multiple estimation since
mutual overlap between voices weakens their pitch cues, and
cues further compete with cues of other voices. The low resolu-
tion in pitch estimation results from the fundamental time–fre-
quency uncertainty principle [8]. To overcome this drawback,
Brown et al. presented a “narrowed” autocorrelation function to
improve the resolution of the autocorrelation function for mu-
sical pitch extraction [9]. The “narrowed” autocorrelation func-
tion includes terms corresponding to delays at , , etc., in
addition to the usual term with delay as

(3)

However, it requires an increase in the length of the signal and
less precision in time. It also requires the a priori selection of
the number of delay terms .

Frequency-domain PDAs estimate pitch by using the har-
monic structure in the short-time spectrum. Frequency-domain
methodologies include component frequency ratios, filter-based
methods, cepstrum analysis, and multiresolution methods. Pitch
determination algorithms such as harmonic sieve [10], harmonic
product spectrum [11], subharmonic summation [12], and sub-
harmonic-to-harmonic ratio [13] fall into this category. Most
frequency-domain pitch determination methods apply pattern
matching [14]. Others use nonlinear or filtering preprocessing to
generate or improve interpartial spacing and fundamental com-
ponent cues. The frequency-domain PDAs have the advantage
of efficient implementation with fast Fourier transform and the-
oretical strength of Fourier analysis. However, one weakness is
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that they rely on the shape and size of the analysis window. Se-
lection and adjustment of analysis windows remain a problem
in estimation.

The time–frequency approach splits the signal over a filter-
bank, applies time-domain methods to each channel waveform,
and the results are aggregated over channels. The summary, or
“pooled,” autocorrelation functions across all channels provides
pitch information of the signal. Licklider first presented this idea
as a pitch perception model [15]. Later, Lyon and Slaney further
developed the methodology and called it correlogram [16], [17].
The correlogram is often the first-stage processor in a computa-
tional auditory scene analysis (CASA) system [18]. It has also
been incorporated into a neural oscillator to segregate double
vowels and multipitch tracking [7], [19]. The strength of correl-
ogram in pitch estimation is that different frequency channels
corresponding to different signal sources of different pitches
can be separated, which makes it useful in multipitch estimation
[7], [20]. Also individual channel weighting can be adapted to
compensate for amplitude mismatches between spectral regions
[21].

On the other hand, autocorrelation and power spectrum-based
pitch determination algorithms only characterizes second-order
statistics. In many applications where non-Gaussianities
and nonlinearities are present, these second-order statistical
methodologies might fail to provide all the information about
the signals under study. Higher order statistics have been used
in pitch determination. Moreno et al. applied higher order
statistics to extract pitch from noisy speech [22], but only
diagonal third-order cumulants were used for simplicity and
computational efficiency which is given by

and pitch is found by applying autocorrelation function to the
cumulants

(4)

In this paper, we propose a new pitch determination algo-
rithm based on a generalized autocorrelation function which
is called correntropy [1]. Correntropy uses a positive definite
kernel function to nonlinearly project the original signal into
a high dimensional reproducing kernel Hilbert space (RKHS),
and calculates “a generalized correlation function” in that space.
This implicit nonlinear transformation preserves the periodic
signal characteristics because periodicity information is not dis-
turbed by most instantaneous nonlinear transformations even if
the bandwidth, amplitude, and phase information might change
[17]. Correntropy is a function of two arguments with similar
properties as the conventional correlation function, but contains
a weighted combination of higher order statistical information
of the input through the kernel function. Preliminary results
have shown that it produces very peaky estimations of similarity
and much narrower peaks corresponding to the pitch period than
the conventional correlation function. Moreover, correntropy of-
fers much smaller time–frequency bandwidth than the corre-
lation function. Therefore, it improves the accuracy in deter-
mining the pitch period. Correntropy has also been successfully
applied to various signal processing and machine learning prob-
lems such as blind equalization [1], minimum average correla-

tion energy filter [23], principal component analysis [24], and
others. The proposed PDA method is applied after the acous-
tical signal is processed by an equivalent rectangular bandwidth
filter bank in the time domain. The equivalent rectangular band-
width (ERB) filter bank acts as a cochlear model to transform a
one-dimensional acoustical signal into a two-dimensional map
of neural firing rate as a function of time and place [17]. The
correntropy function for each channel is calculated and the sum-
mation across all the channels provides the pitch information.
Therefore, correntropy is simple and readily integrated in the
mainstream of PDA methods, only at a slightly higher compu-
tational cost. As a novel PDA, correntropy is able to offer much
better resolution than the conventional autocorrelation function
in pitch estimation. Moreover, our pitch determination algo-
rithm can segregate double vowels without applying any com-
plex model such as a neural oscillator [7].

This paper is organized as follows. In Section II, we briefly
introduce the concept of correntropy and its relevant proper-
ties. The proposed PDA is presented in Section III. We applied
our method in determining pitches for one-vowel and double-
vowels cases, and a benchmark database in Section IV. Some
specific issues are addressed in Section V, and we conclude our
work in Section VI.

II. CORRENTROPY FUNCTION

Definitions: Given a random process with typ-
ically denoting time and being an index set of interest, the gen-
eralized correlation function, called the correntropy function, is
defined as [1]

(5)

and the generalized covariance function, called the centered cor-
rentropy function is defined as

(6)

for each and in , where denotes the statistical expecta-
tion operator and is a symmetric positive definite kernel
function. Notice that the correntropy is the joint expectation of

, while the centered correntropy is the difference be-
tween the joint expectation and product of marginal expecta-
tions of .

In functional analysis, a symmetric positive definite kernel
is a special type of bivariate function. In the literature, the sig-
moidal, Gaussian, polynomial and spline kernels are among the
mostly used symmetric positive definite kernel functions in the
area of machine learning, function approximation, density es-
timation, support vector machine, and others [25]. The widely
used Gaussian kernel function is given by

(7)

where is the variance, called the kernel width parameter (or
kernel size). We will apply the Gaussian kernel throughout the
paper without loss of generality. Applying the Taylor series ex-
pansion to the Gaussian kernel, we can rewrite the correntropy
function as

(8)
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Fig. 1. Autocorrelation, narrowed autocorrelation with � � ��, and corren-
tropy functions of a sinusoid signal.

Fig. 2. Correntropy functions of a sinusoid signal with white noise at different
SNR levels.

which contains all the even-order moments of the random
variable . Obviously different kernel functions would
yield different expansions, but all the kernel functions men-
tioned above are nonlinear and therefore include higher order
statistical information about the input random process. There-
fore, the correntropy function partially characterizes higher
order statistics of random processes with a compact bivariate
kernel function. Note that the emphasis given to the higher
order moments versus the second moment is controlled by the
kernel size, which is a free parameter introduced by the method
and must be selected by the user from the data.

Fig. 1 shows the application of correntropy to a sinusoidal
signal of period 1 s with 100-Hz sampling frequency. The kernel
size for this example is selected by the Silverman’s rule (15)
as 0.04. As can be observed, the information about periodicity
given by correntropy is much peakier and decays faster than the
one given by correlation and even the narrowed correlation. This
result can be understood from first principles due to the effect
of the nonlinear (Gaussian) kernel. Indeed, since the sample dif-
ference appears in the argument of the exponent, larger differ-

Fig. 3. Fourier transform of autocorrelation, narrowed autocorrelation with
� � ��, and correntropy functions of a sinusoid signal.

ences are exponentially attenuated. This means that only when
the two versions of the sine wave align perfectly their corren-
tropy is large. Minor time delays between and will produce
an exponential decay in the similarity producing the very peaky
appearance of correntropy across the lags. Of course, noise in
the signal will also create values further away from zero even
when the two signals are aligned, so it tends to decrease the peak
as shown in Fig. 2 for three different signal-to-noise ratio (SNR)
levels of white noise of 20, 10, and 1 dB, respectively. Note that
the high noise case makes correntropy approach correlation. In
Fig. 3, we present the Fourier transform of each function. The
ordinary autocorrelation function only exhibits one harmonic
and the narrowed autocorrelation produces ten harmonics which
is equal to the number of terms used in (3). The correntropy
function places even more energy at higher harmonics in fre-
quency due to the embedded nonlinearity which is controlled
by the kernel size. The narrowness of correntropy function in
the time domain anticipates the rich harmonics present in the
frequency domain. For this reason, the lag domain seems the
most interesting domain to apply correntropy.

It should also be noticed that there is a connection between the
correntropy function (5) and the square difference function (2).
The correntropy function also uses inhibitory neural interaction
model instead of excitatory one with a Gaussian kernel function
(7), but it nonlinearly transforms the subtraction of the signals
by the exponential function. From another perspective, the cor-
rentropy function includes the scaled square different function
as an individual term for in the summation of (8). How-
ever, it contains more information with other higher order mo-
ment terms.

In the context of pitch determination, the correntropy function
might as well estimate the pitch information of the signal similar
to the autocorrelation function. However, compared to the auto-
correlation function model, our pitch determination algorithm
based on the correntropy function offers much better resolution
and enhances the capacity of estimating multiple pitches. Since
correntropy creates many different harmonics of each resonance
present in the original time series due to the nonlinearity of the
kernel function, it may also be useful for perceptual pitch deter-
mination. Finally, the structure of the correntropy definition may
translate in a biologically plausible way some of the known sen-
sitivity features of neurons as a function of synchrony in their
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excitation. Its argument is sensitive to differences in time in-
stances as correlation, but instead of being linear across differ-
ences, it gives more emphasis to values that are closer together
in time. Neurons are also known to be very sensitive to time dif-
ferences, and their highly nonlinear response also favors syn-
chrony.

For completeness, we present below some of the most impor-
tant properties of the correntropy function.

Property 1: The correntropy function is positive definite.
Given a positive definite kernel function , for any pos-

itive integer , any points in , and any not all zero
real numbers , by definition we have

Certainly, the expectation of any positive definite function is
always positive definite. Thus, we have

This equals to

(9)

Property 2: is symmetric: .
This is the direct consequence of the symmetric kernel func-

tion used in the definition of the correntropy function.
Property 3: .
Since by the positive definiteness of kernel

function, accordingly, .
Property 4: .
Let in (9), the expression reduces to

(10)

We can substitute

and

into (10) to obtain the property above.
These properties are very similar to those of conventional cor-

relation function. From the geometrical perspective, correntropy
can be viewed as an inner product in the RKHS induced by the
correntropy function; therefore, it preserves the geometrical in-
terpretation of “correlation.”

In order to obtain a univariate correntropy function, we see
from (8) that all the even-order moments should be time shift
invariant. This is a much stronger condition than the wide sense
stationarity required by the conventional correlation function.
More specifically, the sufficient condition to have

(11)

for all in the index set , is that the random process is strictly
stationary on the even moments when the Gaussian kernel is
used in the correntropy function.

Similar to the conventional (power) spectral density function
defined for a wide-sense stationary random processes, we can

Fig. 4. Time–frequency bandwidth of autocorrelation, narrowed autocorrela-
tion with � � ��� ����� and correntropy functions of a sinusoid signal.

also define a correntropy spectral density function for a strict
stationary random processes.

Definition: Given a strict stationary random process
with univariate centered correntropy function , the cor-

rentropy spectral density function is defined by

It is nothing but the Fourier transform of the univariate cen-
tered correntropy function. Therefore, we can also define the
time–frequency bandwidth for the correntropy function.

Definition: Let ,
and define the time bandwidth and frequency bandwidth as

and

where and are the normalized variances of the magni-
tude-squared of the univariate centered correntropy function in,
respectively, the time and frequency domain. Then the time–fre-
quency bandwidth product for the correntropy function is de-
fined as .

For a finite duration signal, we estimate the time–frequency
bandwidth product for the correntropy function by estimating
the integrals in the definition. Because pitch determination
is about pitch period localization in time or fundamental
frequency localization in frequency, the smaller the time–fre-
quency bandwidth product for the employed function is, the
more accurate the pitch determination. In Fig. 4, we plot
the time–frequency bandwidth product for the correlation,
narrowed correlation, and correntropy functions for the same
sinusoidal signal with respect to the kernel size. As expected,
the narrowed correlation function generates smaller time–fre-
quency bandwidth product than the correlation function. The
figure clearly demonstrates that correntropy function achieves
much smaller time–frequency bandwidth product than the
correlation and narrowed correlation functions by choosing a
suitable kernel size. The kernel sizes chosen in the experiments
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are all fallen into the such range that the correntropy time–fre-
quency bandwidth product is smaller than that of correlation
and narrowed correlation functions. As the kernel size becomes
larger, the time–frequency bandwidth product for the corren-
tropy function approaches to that of the correlation function.
This fact can be inferred from (11) because for large kernel
sizes correntropy approaches correlation. However, we can
no longer associate the concept of “power” to the correntropy
spectral density. We will discuss the effect of kernel size on the
correntropy function in Section V.

Since the kernel function appears in the definition of the cor-
rentropy, an analysis from the kernel point of view provides
a different perspective. Any symmetric positive definite kernel
function can induce a reproducing kernel Hilbert space whose
bases can be expanded from the eigen-decomposition of the
kernel function. Mercer’s theorem [26] provides the theoret-
ical foundation of eigen-decomposition of the kernel function,
which states

where are the eigenvalues, are the corresponding eigen-
functions, is the dimensionality of the reproducing kernel
Hilbert space induced by the kernel function, and denotes
the inner product between two vectors. The nonlinear mapping

transforms the original random process from the input space
into a high-dimensional RKHS, called feature space, induced
by the kernel function. Each vector in the RKHS consists
of all the eigenvalues and corresponding eigenfunctions evalu-
ated at different instants. Accordingly, we can rewrite the cor-
rentropy function as

The correntropy function for any random process can be viewed
as a “standard” correlation function for transformed random
process. Kernel-based learning algorithms employ the nonlinear
mapping to treat nonlinear algorithms in a linear way if the
problems can be expressed in terms of inner product [27]. This
suggests that we can deal with nonlinear systems efficiently
and elegantly in a linear fashion when applying the correntropy
function. In fact, all the previous properties of the correntropy
function can be derived in a kernel framework. For example,
property 2 can be shown that which
means that is nothing but the expectation of the norm
square of transformed random process. Property 3 is the gen-
eralized Cauchy–Schwarz inequality in the reproducing kernel
Hilbert space

The correntropy function also has an intriguing connection
to information theory [1]. This is the direct consequence of
its higher order statistics characterization of random processes.

Given a pair-wise independent random process ,
the correntropy function can be computed as

(12)

We have used the sample mean to estimate the statistical ex-
pectation and the independence property in the computation
above, where is one realization of the random
process. The quantity (12) is called information potential and
corresponds to the argument of the logarithm of the quadratic
Renyi’s entropy when a Parzen window estimator is used [28].
In fact, for a strict stationary random process, the univariate
correntropy function (11) asymptotically approaches the infor-
mation potential. This clearly demonstrates the relationship be-
tween the correntropy function and quadratic Renyi’s entropy.
Hence, we coined the name correntropy to show that
includes both time structure and higher order statistical descrip-
tion of the random processes [1].

III. PDA BASED ON CORRENTROPY

Our pitch determination algorithm first uses cochlear filtering
to peripherally process the speech signal. This is achieved by a
bank of 64 gammatone filters which are distributed in frequency
according to their bandwidths [29]. The impulse response of a
gammatone filter is defined as

where is the filter order with center frequency at Hz,
is phase, and is the bandwidth parameter. The bandwidth
increases quasi-logarithmically with respect to the center fre-
quency. The center frequencies of each filter are equally spaced
on the equivalent rectangular bandwidth scale between 80 and
4000 Hz [30]. This creates a cochleagram, which is a function
of time lag along the horizontal axis and cochlear place, or
frequency, along the vertical axis. The cochlear separates a
sound into broad frequency channels while still containing the
time structure of the original sound. It has served as a peripheral
preprocess in the CASA model [18], and used extensively in
pitch determination [7], [31].

The analysis is done by computing the correntropy function
at the output of each cochlear frequency channel

(13)

where stands for channel number and is the cochlear
output. The kernel bandwidth is determined using Silverman’s
rule [32]. The time lag is chosen long enough to include
the lowest expected pitch. Generally it is set at least 10 ms
throughout the paper. In this way, a picture is formed by grey
coding the correntropy values (white high, black low) with
horizontal axis as correntropy lags and vertical axis as cochlear
frequency. We name it correntropy-gram, which literally means
“pictures of correntropy.” If a signal is periodic, strong vertical
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lines at certain correntropy lags appear in the correntropy-gram
indicating times when a large number of cochlear channels
display synchronous oscillations in correntropy. The horizontal
bands signify different amounts of energy across frequency
regions. The correntropy-gram is similar to the correlogram
in structure but different in content since it does not display
power, but “instantaneous” information potential. In order to
reduce the dynamic range for display in the correntropy-gram,
the correntropy function should be normalized such that the
zero lag value is one as given by the following formula:

(14)
where is the value of correntropy when lag . The
numerator is called the centered correntropy which takes out
the mean value of the transformed signal in the RKHS. is
also called correntropy coefficient that has been applied to detect
nonlinear dependence among multichannel biomedical signals
[33].

In order to emphasize pitch related structure in the corren-
tropy-gram, the correntropy functions are summed up across
all the channels to form a “pooled” or “summary” correntropy-
gram

The summary correntropy-gram measures how likely the pitch
would be perceived at a certain time lag. The pitch frequency
can be obtained by inverting the time delay lag. In our exper-
iment, the summary of correntropy functions is first normal-
ized by subtracting the mean and dividing by the maximum ab-
solute value. The position of pitch can be picked by various
peak-picking algorithms to identify local maximum above the
predefined threshold. Here we calculate the first derivative and
mark the position when the value changes from positive to neg-
ative as a local maximum.

Compared to the conventional correlogram model [7], [31],
[34], our pitch detector is able to locate the same period in-
formation as the correlogram, but has much narrower peaks.
Hence, the proposed method enhances the resolution of pitch
determination. Furthermore, since the correlogram estimates
the likelihood that a pitch exists at a certain time delay, the
summary correlogram may generate other “erroneous” peaks
besides the one corresponding to the pitch period [17]. while
the summary correntropy-gram suppresses values that are dis-
similar at all other time delays by the exponential decay of the
Gaussian function and only peaks at the one corresponding to
the pitch period. For mixtures of concurrent sound sources with
different fundamental frequencies, the summary correlogram
usually fails to detect multiple pitches without further nonlinear
postprocessing. However, the summary correntropy-gram is
able to show peaks at different periods of each source. These
characteristics of the proposed method suggest a superiority of
the correntropy function over the autocorrelation function in
pitch determination.

Moreover, the computational complexity of our method,
whether the correntropy function (13) or the correntropy co-
efficient (14), remains similar to the correlogram. Although

Fig. 5. Correlogram (top) and the summary (bottom) for vowel /a/ with 100-Hz
fundamental frequency.

there are double summations in the correntropy coefficient,
the computational complexity can be reduced to
using the fast-Gauss transform [35]. However, the “narrowed”
autocorrelation function increases computational complexity
by including more delay terms.

IV. EXPERIMENTS

In this section, we present three experiments to validate our
method. In the first two simulations, we compare our method
with the conventional autocorrelation function [31], the third-
order cumulants function [22], and the arrowed autocorrela-
tion function [9] in determining pitches for a single speaker
and two combined speakers uttering different vowels. The syn-
thetic vowels are produced by Slaney’s Auditory Toolbox [36].
For a fair comparison, we did not apply any postprocessing on
the correlogram as was used in [31]. The conventional autocor-
relation function (1), autocorrelation of third-order cumulants
functions (4), narrowed autocorrelation functions (3), and cor-
rentropy functions (13) are presented after the same cochlear
model. In the third experiment, the proposed method is tested
using Bagshaw’s database which is a benchmark for testing
PDAs [37].

A. Single Pitch Determination

Figs. 5– 8 present the pitch determination results for a single
synthetic vowel /a/ with 100-Hz fundamental frequency. The
upper plots are the images of correlation functions, autocor-
relations of third-order cumulants, narrowed autocorrelations,
and correntropy functions after the same cochlear model, re-
spectively. The bottom figures are the summaries of those four
images. The kernel size in the Gaussian kernel (7) has been
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Fig. 6. Autocorrelation functions of third-order cumulants (top) and the sum-
mary (bottom) for the vowel /a/ with 100-Hz fundamental frequency.

Fig. 7. Narrowed autocorrelation functions (top) and the summary for vowel
/a/ with 100-Hz fundamental frequency.

Fig. 8. Correntropy-gram (top) and the summary (bottom) for vowel /a/ with
100-Hz fundamental frequency.

chosen to be 0.01 (we will discuss further kernel size selec-
tion in Section V) and in the narrowed autocorrela-
tion function (3). The conventional autocorrelation, third-order
cumulants and narrowed autocorrelation are all able to produce
peaks at 10 ms corresponding to the pitch of the vowel. How-
ever, they also generate other erroneous peaks which might con-
fuse pitch determination. On the contrary, the summary of cor-
rentropy-gram provides only one single and narrow peak at 10
ms which is the pitch period of the vowel sound, and the peak
is much narrower than those obtained from other methods. The
correntropy-gram clearly shows a single narrow stripe across
all the frequency channels which concentrates most of the en-
ergy, including the low-frequency channels where all the other
methods are weak.

The fine structure of hyperbolic contours can also be clearly
seen in the correntropy-gram. Particularly, the second har-
monic shows two peaks during the time interval when the
fundamental frequency exhibits one. The contour results from
the gamma shape cochleagram. The autocorrelation of the
third-order cumulants fail to present such structures. All other
three methods are able to produce hyperbolic contours. How-
ever, the correntropy-gram shows the finest structure due to its
ability to generate all the harmonics of signal because of its
nonlinear structure. The image of the narrowed autocorrelation
functions is able to show some hyperbolic contours, the white
vertical stripe at the fundamental frequency is much wider
than that of the correntropy-gram and there are other large
values in the high-frequency channels. These result in the wide
peak at 10 ms and other erroneous peaks in the summary of
the narrowed autocorrelation functions. Our proposed method
clearly outperforms the conventional autocorrelation function,
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Fig. 9. Correlogram (top) and the summary (bottom) for a mixture of vowels
/a/ and /u/ with fundamental frequencies at 100 and 126 Hz, respectively.

third-order cumulants method, and narrowed autocorrelation
function in single pitch determination case.

B. Double Pitch Determination

In this example, we consider pitch determination for a mix-
ture of two concurrent synthetic vowels with /a/ Hz
and /u/ Hz which are separated by four semi-
tones. The difference in power at the pitch between /u/ and /a/
complicates further the segregation. We compare the same four
methods of the previous experiment to demonstrate that the cor-
rentropy function is able to determine two pitches presented in
the mixture of two vowels.

Figs. 9– 12 present the simulation results. The correlogram
method result of Fig. 9 only shows one peak corresponding to
the pitch of the vowel /a/ while no indication of the other vowel
/u/ at time of 7.9 ms is provided. The summary of correlogram
resembles that of single vowel case in Fig. 5. The third-order
cumulants method in Fig. 10 fails to detect two pitches in the
mixture signal. Although there are two small peaks at 10 and
7.9 ms which correspond to the two pitch periods, respectively,
their amplitudes are not large enough to be reliably detected.
In Fig. 11, the summary of narrowed autocorrelation functions
with is able to produce only one peak at 10 ms corre-
sponding to the pitch period of vowel /a/, but there is no peak at
7.9 ms. There are white streaks in the low-frequency channels
in the narrowed autocorrelation functions which are the indica-
tions of the second vowel /u/, where the one at 7.9 ms corre-
sponds to the pitch period of vowel /u/. However, the amplitude
is too small compared with that of vowel /a/ and the information
is lost in the summary plot. A complex neural network oscillator
has been used to separate the channels dominated by different

Fig. 10. Autocorrelations of third-order cumulants (top) and the summary
(bottom) for a mixture of vowels /a/ and /u/ with fundamental frequencies at
100 and 126 Hz, respectively.

voices, and the summaries of individual channels are able to pro-
duce peaks corresponding to different vowels [7].

On the other hand, our method is able to exhibit two reason-
able peaks from the mixture of two vowels. The kernel size

is set to 0.07 in this experiment. The correntropy-gram in
Fig. 12 shows a white narrow stripe across high-frequency chan-
nels at 10 ms corresponding to the pitch period of the vowel /a/.
These channels have center frequencies close to the three for-
mant frequencies of vowel /a/ ( Hz, Hz,

Hz). The hyperbolic structure can still be seen in the
high-frequency channels, but the lower frequency channels have
been altered by the presence of the vowel /u/. The three high-en-
ergy white bars appear along the frequency channels centered at
300 Hz which is the first formant of vowel /u/. The second white
streak is located at 7.9 ms and matches the pitch period of vowel
/u/. The positions of white streaks match to those of in Fig. 11
for the narrowed correlation function. In the correntropy-gram
summary, the first peak at 10 ms corresponds to the pitch period
of vowel /a/. It is as narrow as the one in the single-vowel case
in Fig. 8. The second peak appears at 8.2 ms which is only 4 Hz
off the true pitch frequency (126 Hz). It is much less than the
20% gross error pitch determination evaluation criterion [38]
or 10-Hz gross error [5]. The second peak is also much wider
than the one at 10 ms. The amplitude for the peak at 8.2 ms is
also smaller than that of peak at 10 ms since the energy ratio is
5.2 times higher for vowel /a/. The pitch shift and peak broad-
ening phenomenon is due to the fact that vowel /a/ dominates
the mixture signal and it generates spurious peaks which blur
that of vowel /u/. However, it is remarkable that our method,
with the proper kernel size, is able to detect two pitches while
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Fig. 11. Narrowed autocorrelations (top) and the summary (bottom) for a mix-
ture of vowels /a/ and /u/ with fundamental frequencies at 100 and 126 Hz, re-
spectively.

all other algorithms fail in this experiment. The visual assess-
ment clearly demonstrates the features of the proposed corren-
tropy-based methodology and is an indicator for superior per-
formance over the conventional correlogram, third-order cumu-
lants, and narrowed correlation approaches for multipitch deter-
mination.

C. Double Vowel Segregation

To further investigate the performance of the proposed PDA,
we generate a set of three vowels: /a/, /u/, and /i/ using Slaney’s
Auditory Toolbox. Each vowel is synthesized at five pitches cor-
responding to differences of 0.25, 0.5, 1, 2, and 4 semitones from
100 Hz, and the duration is 1 s each. For every mixture of double
vowels, one is always with the fundamental frequency at 100 Hz,
and the other constituent can be any vowel at any pitch value. In
total, we have 45 mixtures of different combinations of vowels
with different pitch values vowels vowels pitches .
The detection functions from each of the four methods discussed
above have been normalized to 0 and 1. A threshold is varied
between 0 and 1 to decide the peak locations across a range of
lags from 7.5 to 11 ms that covers the range of the pitches. If the
difference between the detected pitch and reference is within a
certain tolerance, the right pitch is detected. Since the minimum
distance in this experiment is 0.25 semitone from 100 Hz, which
is 1.45 Hz, we select the tolerance to be 0.725 Hz. Fig. 13 plots
the receiver operating characteristic (ROC) curves for the four
pitch determination algorithms based on correntropy function,
autocorrelation, narrowed autocorrelation, and autocorrelation
of third-order cumulants. It clearly shows that our method out-
performs the other three in double-vowel pitch detection. How-

Fig. 12. Correntropy-gram (top) and the summary (bottom) for a mixture of
vowels /a/ and /u/ with fundamental frequencies at 100 and 126 Hz, respectively.

Fig. 13. ROC curves for the four PDAs based on correntropy, narrowed auto-
correlation �� � ���, autocorrelation, and autocorrelation of third-order cu-
mulants in double vowels segregation experiment.

ever, none is able to get 100% detection. Notice that the ROC
curve for correntropy function has an abrupt increase at zero
probability of false alarm, corresponding to 45% of correct de-
tection. This is due to the fact that correntropy function is able to
suppress other erroneous peaks which are away from pitch po-
sitions and concentrate energy around the fundamental frequen-
cies. The performance of autocorrelation and third-order cumu-
lants are below 50% detection rate, irrespective of the number of

Authorized licensed use limited to: University of Florida. Downloaded on April 26,2010 at 20:39:27 UTC from IEEE Xplore.  Restrictions apply. 



XU AND PRINCIPE: PITCH DETECTOR BASED ON A GENERALIZED CORRELATION FUNCTION 1429

Fig. 14. ROC curves for the three PDAs based on correntropy, narrowed auto-
correlation �� � ���, and autocorrelation in double vowels with additive white
noise segregation experiment.

false alarms generated, which means that most often the second
largest peak is an harmonic of the highest pitch. This is not sur-
prising since both functions fail to present two peaks for most
mixtures in this experiment.

Fig. 14 plots the ROC curves for the PDAs based on the cor-
rentropy and correlation functions for the double vowel segre-
gation experiment where the vowels are corrupted by a white
Gaussian noise of different SNR levels. The results show that
the proposed PDA is fairly robust against white noise and per-
form better than the PDA based on the narrowed correlation and
correlation function in three different SNR level of white noises.

We also present the vowel identification performance to ex-
amine the discriminating ability of correntropy function at dif-
ferent semitones for the mixture of double vowels. In the experi-
ment, the threshold is chosen such that the first two peaks are de-
tected. We compare our results with a CASA model with a net-
work of neural oscillators [7] in Fig. 15. The CASA model out-
performs our method at 0.25, 0.5, and 0.5 semitones of dif-
ferences since it uses a sophisticated network of neural oscilla-
tors to assign different channels from ERB filter bank outputs to
different vowels. Our method is just based on the simple summa-
rized correntropy-gram. The closer the fundamental frequencies
of the two vowel become, the harder is for correntropy to pro-
duce two distinct peaks corresponding to different pitches. How-
ever, our method obtains comparable results to CASA model at
2 and 4 semitones of differences. It suggests that our simple
model is able to produce similar results for double vowel segre-
gation of 2 and 4 semitones of differences compared to the
sophisticated CASA model. This certainly shows our technique
is very attractive in compromising between simplicity and per-
formance.

D. Benchmark Database Test

We test our pitch determination algorithm in Bagshaw’s
database [37]. It contains 7298 male and 16 948 female speech
samples. The groundtruth pitch is estimated at reference points
based on laryngograph data. These estimates are assumed to
be equal to the perceived pitch. The signal is segmented into

Fig. 15. Percentage performance of correctly determining pitches for both
vowels for proposed PDA based on correntropy function and a network of
neural oscillators model.

TABLE I
GROSS ERROR PERCENTAGE OF PDAS EVALUATION

38.4-ms duration centered at the reference points in order
to make the comparisons between different PDAs fair. The
sampling frequency is 20 kHz. The kernel size is selected
according to Silverman’s rule (15) for different segments. We
use (14) to calculate the normalized correntropy function to
yield unit at zero lag. Since the pitch range for male speaker
is 50–250 Hz and 120–400 Hz for female speaker, the PDA
searches local maxima from 2.5 to 20 ms in the summary
correntropy function. We set the threshold to be 0.3 by trial and
error so that every local maximum which exceeds 0.3 will be
detected as a pitch candidate.

Table I summarizes the performance of various PDAs which
are taken from [38]–[40]. The performance criterion is the
relative number of gross errors. A gross error occurs when the
estimated fundamental frequency is more than 20% off the
true pitch value. This relatively loose criterion has been used
in many studies, particularly in this benchmark dataset. The
percent gross errors by gender and by lower or higher pitch
estimates with respect to the reference are given in Table I. The
weighted gross error is calculated by taking into account the
number of pitch samples for each gender. It clearly shows that
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Fig. 16. ROC curves for PDA based on correntropy function with different
kernel sizes in double vowels segregation experiment.

Fig. 17. Summary of correntropy functions with different kernel sizes for a
single vowel /a/ with fundamental frequency at 100 Hz.

for this particular database correntropy-based PDA outperforms
others.

V. DISCUSSIONS

Correntropy introduces a free parameter that needs to be set
by the user from the data. Actually, the kernel size plays an
important role in the performance of our method since it de-
termines the scale at which the similarity is going to be mea-
sured. It has been shown that kernel size controls the metric of
the transformed signal in the RKHS [1]. If the kernel size is
set too large, the correntropy function approaches the conven-
tional correlation function and fails to detect any nonlinearity
and higher order statistics intrinsic to the data; on the other hand,
if the kernel size is too small, the correntropy function loses its
discrimination ability. If the problem was supervised, cross val-
idation [27] could be easily applied to help set the kernel size
as done in classification. However, in pitch detection, we do not
have the luxury to use such methodology. One practical way to

Fig. 18. Summary of correntropy functions with different kernel sizes for a
mixture of vowels /a/ and /u/ with fundamental frequencies at 100 and 126 Hz,
respectively.

select the kernel size is given by the Silverman’s rule of density
estimation [32]

(15)

where is the smaller value between standard deviation of data
samples and data interquartile range scaled by 1.34, and is the
number of data samples. Since in this case the signals are scalar,
this technique is simple and provides a reasonable initial value.
However, it does not always provide the best performance and
therefore the kernel size remains an open problem. Perhaps the
kernel size should be considered as a scale parameter as in the
wavelet transform and a priori knowledge about the signals of
interest or multi scale analysis should be used to find the proper
scale.

To illustrate the effect of different kernel sizes, we simulate
the summary of correntropy functions for the same experiments
setup in Section IV with different kernel sizes in Figs. 17 and
18. The Silverman’s rule for this data is for the single
vowel /a/ case and for a mixture of /a/ and /u/m, re-
spectively. It can be seen that if the kernel size is large, chosen
from to here, the summaries of correntropy functions
approach those of correlation functions shown in Figs. 5 and
9. As the kernel size approaches the one given by Silverman’s
rule, the summary of correntropy functions starts to present a
large and narrow peak corresponding to the pitch of vowel /a/
and show the other vowel /u/. If the kernel size is too small,

set from 10 to 10 for the mixture of two vowels, the
summary of correntropy functions loses its ability to represent
the two pitches. For different speech mixtures the kernel size
very likely will be different. Finally, Fig. 16 shows the ROC
curves for the double vowel segregation with different kernel
sizes used in the correntropy function, where denotes the
kernel size selected through the Silverman’s rule for each mix-
ture and others are different deviations away from the . As
can be observed, there is a large range of values of kernel size
around the Silverman’s rule of thumb that the proposed PDA
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performs similarly, which shows that the sensitivity to this pa-
rameter is not high.

VI. CONCLUSION

A novel pitch determination algorithm is proposed based on
the correntropy function. Its foremost characteristic is simplicity
and the immediate integration in conventional PDA and CASA
methods. The pitch estimator computes the correntropy func-
tions for each channel of an ERB filter bank, and adds across
all the channels. Simulations on single and double-vowel cases
show that the proposed method exhibits much better resolu-
tion than the conventional correlation function, third-order cu-
mulants method, and narrowed correlation function in single
and double pitches determination. This suggests that corren-
tropy can discriminate better pitch when two different speakers
speak in the same microphone. This is essential in the computa-
tional auditory scene analysis. Moreover, a benchmark database
test for various PDAs shows that the correntropy PDA outper-
forms a collection of alternative algorithms tested in the same
dataset without further processing besides normalization. Al-
though these results are preliminary with synthetic sounds and
much further work is needed to evaluate the methods, this tech-
nique seems promising for CASA, and warrants further analysis
with real speech in different SNR environments. The automatic
selection of the kernel size or of a multiple kernel size analysis
needs to be further investigated to automate the pitch determina-
tion algorithm. This remains the main theoretical challenge of
the approach. The future work also includes incorporating cor-
rentropy-gram channel selection to enhance the discriminating
ability of proposed method in multiple pitches determination.
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