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Optimized Sinusoid Synthesis via Inverse Truncated
Fourier Transform

Rade Kutil

Abstract—It was shown that sinusoid synthesis can be imple-
mented efficiently by an inverse Fourier transform on consecutive
frames where all but a small number of coefficients per oscillator
are dropped. This leads to a compromise between computational
complexity and approximation accuracy. The method can be
improved by two approaches. First, optimal coefficients can be
found by minimizing the average approximation error. Second,
the optimal window function can be found through an iterative
process. The gain in signal-to-noise ratio (SNR) is between 10
and 40 dB and can be used to reduce computational complexity
while satisfying required synthesis quality.

I. INTRODUCTION

IN sound synthesis based on spectral modelling [1], [2], [3],
[4], large arrays of oscillators must be implemented. Each

oscillator generates a signal

x(t) = A sin(2πft + ϕ) , (1)

where A is the amplitude, f is the frequency and ϕ the phase.
The final signal is the sum of all oscillator’s output signals.

A time-domain method to generate sinusoids as in (1) is by
means of the finite difference scheme (digital resonator)

x(t + 1) = 2 cos(2πf)x(t)− x(t− 1) . (2)

Thus, each oscillator only requires one multiplication and
one subtraction per sample point. Nevertheless, high sampling
rates and large numbers of oscillators often impose prohibitive
computational demands, although the number of oscillators
can be reduced due to psychoacoustics [5]. Moreover, there
are problems with numerical stability [6], [7] because (2)
represents an IIR filter with two poles on the unit circle at
e±i2πf .

To reduce the overall complexity, several methods have been
developed to make complexity less dependent on the number
of oscillators. A recent approach uses a polynomial generator
[8]. More conventional approaches use the inverse Fourier
transform, which is still popular in recent applications [9],
[10]. The idea is to split the signal into frames of fixed length
N which are modelled in the Fourier transform domain. For
each oscillator only a few frequency bins should have to be
set, since the oscillator operates at a single frequency.

More precisely, the synthesized signal is represented by
Fourier coefficients Y (k), where k = M0, . . . ,M1. Of course,
mirrored coefficients Ȳ (−k) must also be accounted for. The
used bandwidth M = M1 − M0 + 1 should be as small as
possible to minimize computational demands. It cannot be
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arbitrarily small, though, because aliasing and border effect
problems arise when the oscillator frequency does not corre-
spond exactly to a single frequency bin.

The calculation of the Y (k) during synthesis is done by
pre-computed coefficients that are relocated in the Fourier
domain and modified in amplitude and phase by complex
multiplication. This requires a number of operations, i.e.
complex multiplications and additions, that is proportional to
the bandwidth M . These operations have to be performed
once for a whole frame, whereas in the finite-difference
implementation, operations are needed for each sample point.
Thus, the method amounts to a reduction in complexity by a
factor proportional to the frame length.

The coefficients of all oscillators have to be added in the
Fourier domain before the signal is generated in the second
step, by an inverse Fourier transform

y(t) =
M1∑

k=M0

Y (k)eik 2π
N t , (3)

where only the real part of y(t) is used if a real signal is
required. The transform can be implemented by an inverse FFT
so that the complexity per sample depends logarithmically on
the frame size. Thus, the first step decreases as O( 1

N ) and
the second step increases as O(log N) with the frame length
N . An optimal compromise has to be found. Moreover, if
volume and pitch of the oscillators changes frequently, this
may further restrict the frame length because such changes
may not be possible during a frame.

Fig. 1 demonstrates the method. Also shown is the calcu-
lation of Y (k) by a forward transform of the desired signal.
The Y (k) are pre-computed for a sufficiently dense set of
frequencies and stored in memory. Fortunately, no more than a
range of size 1 is needed for these frequencies because integer
steps in frequency can be achieved by a relocation of the
coefficients, as is shown later on. Also, phase and amplitude
can be controlled easily in the Fourier domain. The pre-
computation step can also be viewed as the calculation of an
oversampled frequency response through a Fourier transform
of the zero-padded frame.

The main problem with this approach is that oscillator
frequencies that do not fall exactly onto a single Fourier
component occupy the whole spectrum, with magnitudes de-
creasing only by O( 1

d ) with the distance d from the center
frequency. In other words, the rectangular function produced
by zero-padding evokes large side-lobes in the frequency
response. This means that many frequency bins have to be
set in order to satisfy limits on the approximation error.

Most early approaches [11], [12], [13], [14] have therefore
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(a) desired signal (b) transformed

(c) essential coefficients (d) approximated signal

Fig. 1. Approximation of a sinusoid signal with non-integer frequency (3.5)
by few (M = 2) essential coefficients. Time signals show sine and cosine
together to make the shape of the amplitude visible more easily. Spectral plots
show the real and imaginary parts of coefficients.

adopted overlap-add techniques and window functions [15],
with the aim of minimizing the side-lobes by the choice of
the window function. The employed method is basically an
inverse short-time Fourier transform. Additionally, the window
function can be allowed to be the product of two parts, one
that adds up to 1 everywhere, as usual, and one that has to
be inverted explicitly after signal generation. This allows for
more freedom in the choice of the window function. While
all that works well, the computational complexity is increased
and problems with changing pitches arise.

In [16], a technique without overlap is developed. For the
same reasons, it also uses a window function h(t) which
is obviously of the latter kind. Furthermore, the signal is
truncated in the time domain by about 10% at the borders,
where the approximation error is worst. Thus, the desired
signal x(t) is approximated by

h(t)x(t) ≈ y(t) for t = T0, . . . , T1 . (4)

The values of y(t) for t outside of [T0, T1] are dropped. This
decreases the computational efficiency somewhat, but since
no overlap is required, the method is still favorable. The
coefficients Y (k) are found by a Fourier transform of h(t)x(t),
those outside of [M0,M1] are dropped. After the inverse
Fourier transform, the signal is renormalized by multiplication
of the inverted window function. There are no problems with
changing pitches at the borders. Changing volumes are not so
easy to handle, though. Linear changes of volume within a
frame are added separately in the frequency domain, causing
additional computational effort per oscillator (see Section V).

Fig. 2 demonstrates the method. One can see that the
windowed signal is easier to approximate because coefficients
outside of the range [M0,M1] = [3, 4] are smaller. As a

(a) desired signal (b) windowed signal

(c) transformed (d) essential coefficients

(e) approximated windowed signal (f) reverse-windowed approximation

Fig. 2. Approximation of a sinusoid signal with non-integer frequency (3.5)
by few (M = 2) essential coefficients using a Kaiser window to increase
frequency concentration.

consequence, the approximation of the desired function by the
reverse-windowed function in Fig. 2(f) is better than the direct
approximation in Fig. 1(d).

So far, x(t) was real-valued. For theoretical considerations
we will now model x(t) as complex-valued. This has two
advantages. First, the coefficients in the Fourier domain will
not be mirrored in negative frequencies. Second, error integrals
over the phase space are turned into taking the squared norm.
Once the optimized coefficients are calculated and stored in
memory, a real-valued inverse FFT is used where the Fourier
domain is assumed to be conjugate mirrored and a real-valued
signal is generated. Window functions are still real-valued.
Thus, x(t) is modelled as

x(t) = x(α, t) = Aeiα 2π
N t (5)

where A is complex and contains the phase and amplitude of
the signal, and α is the frequency of the oscillator in relation
to the frame length. A has to be set so that subsequent frames
fit together, i.e. Am+1 = Ameiα 2π

N T where T = T1 − T0 +
1. Since phase and amplitude of synthesized signals can be
manipulated easily by multiplying the coefficients Y (k), the
rest of this paper will assume A = 1 without loss of generality.
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α does not have to be integer and has an arbitrary range.
It is obvious that the frequency bins that are best suitable to
approximate the signal are those closest to α. In other words,
| 12 (M1 + M0)− α| ≤ 1

2 should be fulfilled. Moreover, if α is
increased by an integer w, the Fourier coefficients Y (k) can
be reused by shifting them up w frequency bins. Therefore,
we only need to consider the cases − 1

2 ≤ α ≤ 1
2 for uneven

numbers M of frequency bins, and 0 ≤ α ≤ 1 for even M .
The method of truncating the output of the inverse Fourier

transform raises the question whether the chosen Fourier
coefficient values and window functions are optimal in terms
of approximation SNR. The problem of finding minimal-
bandwidth representations of incompletely defined functions
is generally known as inter- and extrapolation problem [17].
In the band-limited case, the well-known Papoulis-Gerchberg
algorithm [18] solves the problem by a recursion of alternating
band-limiting and resubstitution of the desired signal in non-
truncated parts of the frame. It converges to the solution with
the minimal approximation error

T1∑
t=T0

|g(t)y(t)− x(t)|2 where g(t) =
1

h(t)
. (6)

This solution can also be found through systems of linear
equations, though. One such approach, based on Fourier
coefficients, is developed in Section II.

The second question is how to find the optimal window
function h(t) (or g(t)). For this purpose, the approximation
error (6) for x(α, t) is averaged over the whole range of α.
Then, it is minimized by the choice of the window function.
The resulting equation is solved in Section III through an
iterative method that converges quite slowly, but improves
the approximation accuracy significantly over the Kaiser or
Tchebychef windows used in [16]. As a result, fewer frequency
bins have to be used and the frame does not have to be
truncated as much.

II. OPTIMAL COEFFICIENTS

In [16] the window function h(t) is defined on the non-
truncated frame [0, N − 1]. The Fourier coefficients Y (k) are
calculated by a forward Fourier transform of the windowed
signal x(t)h(t), where t = 0, . . . , N−1. Although coefficients
that are found in this way are good, they are not optimal.

Therefore, we will try to find Fourier coefficients Y (k) that
best approximate the signal x(t). The range of frequency bins
[M0,M1] and the window function h(t) is fixed. The approach
is to minimize the approximation error (6), which is a function
of the Fourier coefficients Y (k) from (3). To find the optimal
coefficients, we simply differentiate (6) with respect to Y (n)
for n = M0, . . . ,M1 and set the result to zero. We get

M1∑
k=M0

Y (k)
T1∑

t=T0

g(t)ei(k−n) 2π
N t =

T1∑
t=T0

x(t)e−in 2π
N t . (7)

See Appendix A for a derivation of this result. There are
two appearances of a “truncated Fourier transform” in this
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Fig. 3. Approximation quality for the Kaiser window, comparing the
conventional forward FT method to optimal coefficients. M = 7, N = 1024,
T = 824. The SNR in dB is shown depending on the concentration parameter
of the Kaiser window.

equation. If we define this transform as f 7→ F̃ ,

F̃ (n) :=
T1∑

t=T0

f(t)e−in 2π
N t , (8)

then we can reformulate (7) as

M1∑
k=M0

Y (k)G̃(k − n) = X̃(n) . (9)

This is basically a system of linear equations of size M ×M ,
where G̃ forms a Toeplitz matrix. The solution is unique and
minimizes the approximation error.

Fig. 3 shows how the optimal coefficients improve the
accuracy over the forward FT method in [16]. For M = 7,
N = 1024, T = 824 and α = −0.5, . . . , 0.5 (in short steps)
the coefficients and the signal-to-noise ratio (SNR) between
y and x are calculated with either method. The gain is about
8 dB between the optima, where the optima are almost but
not exactly located at the same concentration parameter of the
Kaiser window.

III. OPTIMAL WINDOW FUNCTION

The window function must not depend on the frequency
α. This is an important concept to allow the second step
in the synthesis, i.e. the inverse Fourier transform together
with application of the inverted window, to be executed once
for all oscillators whose frequency components are added in
the transform domain. Therefore, the window function has to
be chosen so that the sum of approximation errors over the
relevant range of α is minimal. Thus, we have to minimize

α1∫
α0

T1∑
t=T0

|g(t)y(α, t)− x(α, t)|2dα (10)

by varying the values g(t) of the window function. Again, we
do this by differentiating (10) with respect to g(t) and setting
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the result to zero. In this way, we arrive at the following set
of equations:

g(t)

α1∫
α0

|y(α, t)|2dα =

α1∫
α0

x(α, t)y(α, t)dα . (11)

See Appendix B for a derivation of this result.
Altogether, the error function (10) can be viewed as a

function of the union of all Y (k) and g(t). If the g(t) are
fixed, then the error function has a unique minimum due to
(9). On the other hand, if the Y (k) are fixed, then it has also
a unique minimum because (11) has only one solution. Now,
if a solution can be found that satisfies both conditions, does
this constitute a global minimum? This would certainly be
the case if the Hessian matrix were positive everywhere or,
equivalently, if the second directional derivatives D2

v along all
vectors v are positive, where v is a vector in the space of Y (k)
and g(t). These derivatives are

α1∫
α0

T1∑
t=T0

2(Dvg(t)y(α, t))2

+ 2(g(t)y(α, t)− x(α, t))D2
vg(t)y(α, t) dα . (12)

The first part of this expression is positive except for de-
generate cases, if ever. The second part incorporates the
approximation difference as a factor. Therefore, it is small
compared to the first part if the approximation is not entirely
bad. Thus, this second directional derivative of the error
function is positive for reasonable regions of the parameter
space. As a consequence, there is a unique minimum that can
be found by solving (9) and (11) simultaneously, unless there
is a very different optimal solution, which is unlikely.

The two equations cannot be solved together directly be-
cause the involved expressions depend on Y and thus in turn
on g in an entirely non-linear way. However, it is possible to
develop an iterative method. By alternatingly calculating the
optimal Y from g by (9) and g from Y by (11), we get a
scheme

gj(t) −→ G̃j(k)
(9)−→ Yj(α, k) −→ yj(α, t)

(11)−→ gj+1(t)
(13)

that converges to the optimal solution, since convergence
implies both conditions (9) and (11). Note that the coefficients
and the window function are optimized simultaneously since
each iteration involves the optimization of both.

The convergence is rather slow, the number of necessary
iterations seems to depend exponentially on the number M of
frequency bins. Fig. 4 shows how the SNR of the approxi-
mation approaches the maximum as the number of iterations
grows. The convergence happens in about M−1

2 “waves” with
approximately equal widths on the logarithmic scale. Thus,
for high bandwidths M the calculation times for the optimal
window function can be ridiculously long. Fortunately, small
M are sufficient and desirable in our case. Moreover, the
optimal window and coefficients only have to be obtained
once, prior to the real-time synthesis.

Note also that the window function could be complex in
principle. However, the imaginary part always comes out as
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Fig. 4. Convergence of the iterative method to find the optimal window
function. The SNR in dB of the approximation is shown depending on the
number of iterations. N = 1024, T = 960, M = 2, . . . , 9.
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zero because x(α, t) and y(α, t) have equal phases, so the
term x(α, t)y(α, t) in (11) has zero phase.

The optimal window is very similar in shape and scale to
the Kaiser window. Fig. 5 shows the quotient of the optimal
window and the best Kaiser window for N = 1024, T =
1008 and M = 2, . . . , 9. The two windows are scaled so that
they have both the same integral between T0 and T1 before
building the quotient. One can see that the main difference
lies at the borders of the frame, where the approximation is
most difficult.

A comparison of SNR results is shown in Fig. 6. Three
methods are compared. The first one uses the optimal Kaiser
window, where the Fourier coefficients are calculated with
the forward FFT method as in [16], the second one uses the
optimal Kaiser window and optimal Fourier coefficients as in
(9), and the third one uses the optimal window developed in
this section. In the interesting range from 40 to 80 dB, the
optimal window gains 10 to 40 dB compared to the forward
FFT method, where 5 to 20 dB are due to optimal coefficients.
The fact that the optimal window seems to perform slightly
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(b) T = 824
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(c) T = 992
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(d) T = 1016

Fig. 6. SNR of the three methods for N = 1024, various values of T and
M = 2, . . . , 9.

worse than the Kaiser window with optimal coefficients for
a few points is most likely caused by numerical imprecision.
The improvement is greater for smaller T , which means that
the Kaiser window is less fit for heavily truncated signals.

IV. VARYING PITCH

So far, only oscillators with constant pitch and volume have
been considered. A change in pitch can be realized easily at
the frame borders. The only thing to ensure is that phases fit
together at the transition from one frame to the next. Sudden
changes in pitch are widely believed to not impose unpleasant
artifacts if the changes are small enough [19].

In IFFT methods the intervals where the frequency of an
oscillator can be changed are determined by the frame size.
This raises the question how large these intervals can be
without producing an audible distortion. Because the author
could not find an appropriate investigation of this issue in
literature, a small ad hoc experiment might help.

In this experiment, a test person is presented with two chirp
signals with a duration of one second, spanning a certain
frequency range from fL to fH . One of the signals has a
perfect continuous exponential frequency ascent, the other one
is stepped in intervals of a certain step length. The two signals
are ordered randomly and the test person has to guess which
one is the stepped chirp.

Depending on how well the test person can distinguish the
signals, there is a probability p of a correct guess. If the
signals are easily distinguishable, then p = 1, if they are
indistinguishable, then p = 0.5. The process is repeated until
it can be concluded that p is significantly above or below
0.75. This is the case if the number k of correct out of n
total guesses yields a probability P (l ≥ k | p = 0.75) or
P (l ≤ k | p = 0.75) of at most 20%, respectively, where l
is binomially distributed, l ∼ Bn,p.

The critical step length is found by a binary search, based
on the above decisions. This is done for the whole range of
frequencies and frequency gradients. The author admits that
the experiment does not constitute a thorough psychoacous-
tical investigation for several reasons, such as cheap audio
equipment and enlisting only a single test person who is
identical to the author. However, the procedure guarantees
small deviation and the aim is only a feasibility study.

Fig. 7 shows the results. The mean frequency on the
horizontal axis is calculated in the logarithmic sense because
the chirps are of the exponential type, i.e. f̄ =

√
fL · fH . The

gradients of the chirps are accordingly measured in cent per
second. One can see that a stepped frequency glide can be
detected more easily for high gradients and high frequencies.
Reasonable step lengths are between 5 and 50 ms, which easily
allows for frame sizes that are beneficial for our IFFT method.

V. VARYING VOLUME

To cope with volume changes, requires additional effort.
The finite difference scheme principally requires two multi-
plications and mostly also an increased number of additions
per sample point [20]. In [19] the overhead is reduced to a
small percentage by changing oscillator parameters only in
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Fig. 8. Approximation of a modulated ramp signal for frequency 3.5 (relative
to FFT-size), T = 824 and M = 2.

certain intervals, at points which are claimed to produce least
audible artifacts, such as maxima and zero-crossings.

For the IFFT scheme, [16] suggests to create an extra signal
with a frequency equal to that of the oscillator but a volume
that increases linearly from 0 to a certain amount. This signal
is also modelled in the Fourier domain and added to the
constant-volume oscillator coefficients. By scaling this signal,
the rate of volume change can be chosen arbitrarily.

To include such a signal into our framework, we simply
have to model x(t) in (5) as modulated ramp signal

x(t) = A(t− T0)eiα 2π
N t (14)

and proceed as in Section II. The window function used
for calculating the optimal volume-change coefficients is the
optimal window calculated for the constant-volume signal.
This has the advantage that the synthesis coefficients can be
added to the constant-volume ones and there is no need for an
extra FFT. The disadvantage is somewhat suboptimal accuracy.
However, accuracy is less crucial when the volume is not
constant.

Fig. 8 shows an example for a small M = 2 to make the
approximation error visible.

VI. COMPLEXITY AND BEST PARAMETER CHOICE

The reason to implement oscillator arrays through an inverse
FFT is to reduce overall computational complexity. This is
achieved by a shift of complexity per oscillator into complexity
per sample point. The average number of multiply m and add
operations a per sample point depend on several parameters:
the size N of the FFT, the frame size T , the number of
frequency bins M per oscillators, and the number O of
oscillators. These parameters also determine the average SNR
of the signal approximation.

Increasing N decreases m and a up to a certain point after
which they increase again. Increasing T decreases m and a
but also decreases the SNR. For M the situation is reversed.
High numbers of oscillators O obviously imply high numbers
of operations m and a. Additionally, O influences how other
parameters must be chosen to minimize the complexity.

Usually, O and a minimal SNR are given. The other three
parameters N , T , M should be optimized for minimal m and
a. However, this approach quickly leads to unrealistically high
values of T , which is undesirable because oscillators cannot
be altered during T samples. Therefore, we will also consider
T as given and fixed and find optimal values of N and M .

To do this, we first have to determine the number of
multiplies mi and adds ai required in each of the two steps,
i.e. in the calculation of the Fourier coefficients (m1, a1)
and in the inverse FFT (m2, a2). The former requires one
complex multiplication to determine the phase and amplitude
of the oscillator in the frame, i.e. A in (5), plus one complex
multiplication of A with each coefficient Y (k). The results
have to be added to the Fourier domain representation of
the frame. As each complex multiplication requires 4 real
multiplications and 2 additions, we get

Tm1 = 4OM + 4O, Ta1 = 4OM + 2O . (15)

The FFT part can be implemented by an inverse FFT with
positive frequency input only and real output. Optimization
thereof leads to the following numbers of operations:

Tm2 = 2N log2 N − 9N + 6 log2 N + 8 , (16)
Ta2 = 3N log2 N − 8N + 12 , (17)

where N is a power of 2. It turns out that, for higher numbers
of oscillators O, the optimal T is significantly smaller than N .
In this case, the complexity of the inverse FFT can be further
reduced by a truncated FFT [21] which cuts off all operations
that are not needed for the requested output. See Fig. 9. More
precisely, Tm2 is reduced by

N−1∑
j=T

(
2dl(j)e+1 − 2dl(j)e − 2

)
− χ(l(T ) ≥ 2)

(
9 · 2bl(T )c−1 − 4bl(T )c − 4

)
+ χ

(
l(T ) ≥ 1 ∧ T >

3
4
2n−bl(T )c

)(
2bl(T )c − 1

)
− χ(bl(T )c = 1) , (18)
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Fig. 9. Truncated inverse FFT scheme for N = 16 and T = 6. The input
in the first row consists of positive frequency coefficients which are sorted
in the second row in the usual bit-reverse order. The last row is the output
signal of length T .

where l(t) = log2(N) − log2(t), and χ(A) = 1 if A is true,
and χ(A) = 0 else. Accordingly, Ta2 is reduced by

N−1∑
j=T

(
3 · 2dl(j)e − 2dl(j)e − 3

)
+ χ(l(T ) ≥ 2)

(
2bl(T )c − 2bl(T )c

)
. (19)

Formulas (16)–(19) have been found by the author by
analysing empirical counts of an implementation of the trun-
cated FFT and are exact unless N is very small.

After the two steps, the result has to be multiplied by
the inverted window function g(t), which adds another real
multiplication per sample point. Together, m = m1 + m2 + 1
and a = a1 + a2 represent the average number of multiplies
and adds per sample point.

Now, we notice that the SNR depends, apart from M , only
on the fraction T/N . This follows from the fact that, if N and
T are increased by a factor, then synthesized sinusoids for a
certain range of α are just dilated by the same factor if the
range of α and the coefficients are retained. As a consequence,
the coefficients are still optimal and the average squared error
remains the same.

Taking this as a basis, we calculate optimal windows and
coefficients for a range of values of M and T while N is fixed,
say 1024. Then, for a larger range of N , M , and O, and some
representative values of T , we calculate approximated optimal
SNRs through interpolation, as well as the average number of
multiply and add operations per sample point. For some values
of minimal SNR, we remember those parameter combinations
that minimize the number of operations, i.e. 2m + a to be
precise. The choice of how to weight m and a is somehow
arbitrary, and for modern architectures m+a seems more ap-
propriate. However, m is a better estimator for iteration counts
and, thus, supposed to incorporate loop control overhead.

The result is shown in Table I. The table is actually three-
dimensional, as it depends on T , SNR, and O. However, the
optimal parameters N and M are constant over wide ranges
of O. Therefore, the O-dimension is pruned to the lowest O of
each range. Thus, for values O′ not in the table, the optimal
parameter choice is that of the largest O smaller than O′,
whereupon m is increased by (4M +4)(O′−O)/T and a by
(4M + 2)(O′ −O)/T . The maximal considered O is 50,000.

The table suggests that there are lower bounds on O and T
for the method to be superior to the finite difference scheme,

where m = O and a = 2O. Although these bounds depend on
the SNR and on each other, a rule of thumb may be O > 20
and T > 50. The performance gain improves dramatically
for larger T and O. The ratio T/N is close to 1 for small
O, but decreases for larger O because this permits smaller
values of M while retaining the approximation quality. Thus,
complexity per oscillator is shifted to complexity per sample
point which is less significant for larger O. For the same
reason, the ratio T/N also decreases with increasing SNR.

Note that, if volume changes are necessary and implemented
as in Section V, then the first step requires twice as many
operations, i.e. m1 and a1 are doubled. This can be accounted
for by letting O be twice the number of oscillators when
looking up optimal parameters in Table I.

Audio examples are provided at [22].

VII. PRACTICAL PERFORMANCE

Section VI presents complexity as the theoretical perfor-
mance of the algorithm. This performance can be compared
directly with that of [16] since the resulting program code to
generate oscillatory signals is identical. Only the used coeffi-
cients and window functions differ. If the minimum SNR is
met with smaller bandwidth by using the optimized parameters
(see Fig. 6), then the performance increases accordingly. Note
also that, as claimed in [16], the non-overlapping technique is
as fast as, or at most 25% slower than overlap-add techniques,
but delivers signals of higher quality, so it is, in the end, faster
with respect to equal quality.

Nevertheless, it is interesting to compare the method to fast
finite difference methods. The question is whether compiled
code contains more overhead per effective multiplication or
addition for one method than for the other. Therefore, an
implementation of the fast technique in [6] is investigated. It
applies the usual scheme from (2) on every fourth sample and
calculates the remaining samples by appropriate nested inter-
polation. While this leaves the number of multiplications and
additions unchanged, some instructions become independent
and can be scheduled to avoid processor stalls. Additionally,
loop unrolling can further improve the performance. While [6]
suggests unrolling 3 iterations, the author’s experiments show
that unrolling 8 iterations performs best.

Both algorithms have been implemented with an equal
amount of optimization, i.e. pointers to access arrays, single
precision floating-point data and pre-computed constants. gcc
4.1.2 has been used with option –O3 on an Intel Pentium 4
CPU with 3.2GHz. SSE operations have not been used. The
truncated FFT is implemented by automatically generated flat
C-code without loops.

The execution times of each method can now be compared
to their theoretical complexity, i.e. c = 2m + a, where m is
the number of effective multiplications per sample and a the
number of additions. The complexity of the IFFT method is
described in Section VI. The complexity of the finite difference
scheme includes one multiplication per sample (m = 1), one
addition as shown in (2), plus one addition due to the summa-
tion of the oscillators (a = 2). Thus, c = O · (2 · 1+2) = 4O,
where O is the number of oscillators.
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TABLE I
OPTIMAL SYNTHESIS PARAMETERS DEPENDING ON THE FRAME SIZE T , THE NUMBER OF SYNTHESIZED OSCILLATORS O AND THE MINIMUM

APPROXIMATION QUALITY (SNR). EACH ENTRY ALSO CONTAINS THE FFT SIZE N , THE BANDWIDTH M , THE ACTUAL SNR, AND THE NUMBER OF
MULTIPLIES m AND ADDS a PER SAMPLE POINT. EACH ENTRY MINIMIZES 2m + a BY THE CHOICE OF N AND M . FOR VALUES O′ NOT IN THE TABLE,
THE OPTIMAL PARAMETER CHOICE IS THAT OF THE LARGEST O SMALLER THAN O′ , WHEREUPON m IS INCREASED BY (4M + 4)(O′ −O) AND a BY

(4M + 2)(O′ −O).

min. SNR 30 40 50 60 70 80
O N M O N M O N M O N M O N M O N M

T m a SNR m a SNR m a SNR m a SNR m a SNR m a SNR
10 1 16 3 1 16 3 1 16 4 1 16 4 1 16 5 1 16 5

4.2 9.2 43.7 4.2 9.2 43.7 4.6 9.6 62.6 4.6 9.6 62.6 5 10 80.4 5 10 80.4
22 32 2 76 64 2 22 32 3 22 32 3 22 32 4 22 32 4

34.5 45.1 39 113.6 134.6 51.3 43.3 53.9 65.9 43.3 53.9 65.9 52.1 62.7 94.6 52.1 62.7 94.6
54 64 2 176 128 2 54 64 3 54 64 3

87.2 112.6 51.3 267.4 313.9 63.4 108.8 134.2 84.7 108.8 134.2 84.7
400 256 2 1022 512 2

614.2 713.8 75.4 1540 1725 83
50 1 64 3 1 64 4 1 64 5 1 64 5 1 64 6 1 64 7

6.04 14.08 34.6 6.12 14.16 49.2 6.2 14.24 63.2 6.2 14.24 63.2 6.28 14.32 77.7 6.36 14.4 93.1
185 128 2 185 128 3 93 128 3 185 128 4 93 128 4 62 128 4

60.64 73.98 35.1 75.44 88.78 59.7 46 63.02 59.7 90.24 103.6 85.8 53.44 70.46 85.8 41.04 59.3 85.8
451 256 2 1497 512 2 451 256 3 451 256 3 1497 512 3

151.4 181.6 47.5 466.2 514.1 59.6 187.5 217.7 78.9 187.5 217.7 78.9 586 633.8 97.3
3408 1024 2 3408 1024 2 7620 2048 2
1071 1170 71.7 1071 1170 71.7 2411 2616 81.1

100 1 128 3 1 128 4 1 128 5 1 128 5 1 128 6 1 128 7
8.06 17.76 34.6 8.1 17.8 49.2 8.14 17.84 63.2 8.14 17.84 63.2 8.18 17.88 77.7 8.22 17.92 93.1
451 256 2 451 256 3 226 256 3 451 256 4 226 256 4 151 256 4

75.28 90.3 35.1 93.32 108.3 59.7 57.32 76.84 59.7 111.4 126.4 85.8 66.36 85.88 85.8 51.36 72.38 85.8
1083 512 2 3564 1024 2 1083 512 3 1083 512 3 3564 1024 3
184.1 217.5 47.5 558.7 609.3 59.6 227.4 260.8 78.9 227.4 260.8 78.9 701.3 751.8 97.3

8037 2048 2 8037 2048 2 17807 4096 2
1270 1374 71.7 1270 1374 71.7 2830 3045 81.1

200 1 256 3 1 256 4 1 256 5 1 256 5 1 256 6 1 256 7
10.32 21.53 34.6 10.34 21.55 49.2 10.36 21.57 63.2 10.36 21.57 63.2 10.38 21.59 77.7 10.4 21.61 93.1
1061 512 2 1061 512 3 531 512 3 1061 512 4 531 512 4 354 512 4
89.83 106.3 35.1 111 127.5 59.7 68.65 90.38 59.7 132.3 148.7 85.8 79.27 101 85.8 61.57 85.06 85.8

2500 1024 2 8165 2048 2 2500 1024 3 2500 1024 3 8165 2048 3
214.8 250.9 47.5 643.5 696.1 59.6 264.8 300.9 78.9 264.8 300.9 78.9 806.8 859.4 97.3

18227 4096 2 18227 4096 2 40091 8192 2
1446 1554 71.7 1446 1554 71.7 3197 3419 81.1

300 1 512 3 1 512 3 1 512 4 1 512 4 1 512 5 1 512 5
16.62 33.45 46 16.62 33.45 46 16.63 33.47 66 16.63 33.47 66 16.65 33.48 84.6 16.65 33.48 84.6
2364 1024 2 7816 2048 2 2364 1024 3 2364 1024 3 2364 1024 4 2364 1024 4
135.2 158.6 40 410 444.9 52.2 166.7 190.1 67.5 166.7 190.1 67.5 198.2 221.6 96.8 198.2 221.6 96.8

5452 2048 2 17671 4096 2 5452 2048 3 5452 2048 3
315.4 366.1 52.2 932.8 1005 64.3 388.1 438.8 86.1 388.1 438.8 86.1

39114 8192 2
2076 2224 76.6

500 1 512 5 1 512 7 1 512 8 1 1024 4 1 1024 4 1 1024 5
10.39 20.49 32.3 10.4 20.5 44.8 10.41 20.51 51 25.62 49.9 74.7 25.62 49.9 74.7 25.63 49.9 95.3

832 1024 2 624 1024 3 500 1024 3 5822 2048 3 5822 2048 3 9437 4096 3
45.55 66.5 30.1 45.55 67.33 52 41.58 63.86 52 248.3 279.6 71.7 248.3 279.6 71.7 446.8 528.4 90.2

5822 2048 2 18875 4096 2 41708 8192 2
201.7 233.1 42.7 597.8 641.6 54.9 1329 1419 67.1

800 1 1024 3 1 1024 4 1 1024 5 1 1024 5 1 1024 6 1 1024 7
15.19 29.17 34.6 15.19 29.17 49.2 15.2 29.18 63.2 15.2 29.18 63.2 15.2 29.18 77.7 15.21 29.19 93.1
5472 2048 2 5472 2048 3 2734 2048 3 5472 2048 4 2734 2048 4 1823 2048 4
118.4 137.3 35.1 145.8 164.6 59.7 91 116.7 59.7 173.1 192 85.8 104.7 130.4 85.8 81.89 109.9 85.8

12509 4096 2 40291 8192 2 12509 4096 3 12509 4096 3 40291 8192 3
273.3 314.2 47.5 800.7 856.5 59.6 335.8 376.7 78.9 335.8 376.7 78.9 1002 1058 97.3

1000 1 1024 5 1 1024 7 1 1024 8 1 2048 4 1 2048 4 1 2048 5
12.36 23.54 32.3 12.36 23.55 44.8 12.37 23.55 51 29.67 56.11 74.7 29.67 56.11 74.7 29.68 56.11 95.3
1868 2048 2 1401 2048 3 1121 2048 3 12881 4096 3 12881 4096 3 20748 8192 3
52.07 74.77 30.1 52.07 75.7 52 47.59 71.78 52 276.4 309.6 71.7 276.4 309.6 71.7 493.6 580.2 90.2

12881 4096 2 41503 8192 2
224.9 258.1 42.7 659.7 704.8 54.9

2000 1 2048 5 1 2048 7 1 2048 8 1 4096 4 1 4096 4 1 4096 5
14.36 26.61 32.3 14.37 26.61 44.8 14.37 26.61 51 33.75 62.29 74.7 33.75 62.29 74.7 33.75 62.3 95.3
4138 4096 2 3105 4096 3 2484 4096 3 28211 8192 3 28211 8192 3 45182 16384 3
58.56 82.97 30.1 58.58 84.02 52 53.61 79.67 52 304.2 339.2 71.7 304.2 339.2 71.7 539.8 631.1 90.2

28211 8192 2
247.8 282.8 42.7

5000 1 8192 3 1 8192 3 1 8192 4 1 8192 4 1 8192 5 1 8192 5
28.87 51.79 44.6 28.87 51.79 44.6 28.87 51.79 63.9 28.87 51.79 63.9 28.87 51.79 82 28.87 51.79 82

10000 1 16384 3 1 16384 3 1 16384 4 1 16384 4 1 16384 5 1 16384 5
32.14 56.71 44.6 32.14 56.71 44.6 32.14 56.71 63.9 32.14 56.71 63.9 32.14 56.71 82 32.14 56.71 82
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(a) IFFT method
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(b) finite difference method

Fig. 10. Complexity estimation via operation count (c = 2m + a) versus
execution time per sample point. For both methods, the execution time lies
mostly between 0.4c and 0.8c nanoseconds, indicated by straight lines.

Fig. 10 shows the results. For both methods, the execution
time per sample lies mostly between 0.4c and 0.8c nanosec-
onds. Only for small O and small frame sizes, up to 1.2c is
reached, but these are cases where the IFFT method should
not be used anyway. The finite difference method converges
quickly to 0.5c, so its optimization gains an additional speedup
between 0.8 and 1.6 over the theoretical performance com-
parison. As a result, the conclusion of Section VI, i.e. that
the IFFT method is faster for O > 20 and T > 50,
remains basically valid, albeit for slightly higher minimal O.
A direct comparison ist difficult, due to the vast number of
parameter combinations. However, the speedup can easily be
approximated by 4O

p(2m+a) or simply O
pm in Table I, where

0.8 < p < 1.6.
Note that both methods can be accelerated by SIMD-

extensions such as SSE. The FFTW-library is about 3 times
faster by using SSE than the FFT used in the above mea-
surements. The SIMD-potential of the finite difference scheme
may still need exploitation [23].

VIII. EXACT BORDER MATCH

The biggest approximation errors are located at the borders
of the frame, introducing discontinuities at regular intervals.

The following approach restricts the Fourier coefficients in a
way so that the values at the border of the frames are exact.

The condition of exact border values is properly expressed

y(T0) = x(T0)h(T0), y(T1) = x(T1)h(T1) . (20)

These two equations serve as constraint in the optimization
of (6). By applying Lagrange-multipliers λ0, λ1 to these
equations, the solution in (9) becomes

M1∑
k=M0

Y (k)G̃(k − n) + λ0e
−in 2π

N T0 + λ1e
−in 2π

N T1 = X̃(n) .

(21)
Together with (20), where y(Tj) is substituted as in (3), we
get a system of equations of size (M + 2)× (M + 2), which
can easily be solved as in the non-constrained case.

The approximation accuracy, however, is not improved by
this approach, but decreases by several dB. On the other hand,
errors in the high frequency range are transferred to lower
frequencies, which may be preferable for some applications.

IX. CONCLUSION

The method of sinusoid synthesis via inverse FFT is usually
implemented by an analysis part, i.e. choosing a window
function, forward Fourier transform of windowed sinusoids,
and dropping insignificant Fourier coefficients, followed by
the synthesis part, i.e. inverse Fourier transform of the possibly
relocated coefficients, and application of the inverted window
function. The signal is then truncated at the borders to a certain
frame size. Thus, computational complexity per oscillator is
reduced and shifted to an FFT-part that is common to all
synthesized oscillators.

This method can be significantly improved by two ap-
proaches. First, for a given number of Fourier coefficients
of an oscillator, the values of the coefficients can be chosen
optimally, so that the average approximation error over the
whole range of frequencies is minimized. The optimization is
achieved by the solution of a small system of linear equations.
The gain in overall approximation SNR is 5 to 20 dB.

Second, an optimal window function can be found, which
minimizes the approximation error for optimal coefficients
computed as above. This is done with an iterative approach
that converges to the optimal solution. The gain in overall SNR
is another 5 to 20 dB, so the total improvement is up to 40
dB in practically relevant parameter ranges.

The applied methods can be modified to allow for amplitude
changes and exact border matches. Also, a table has been
generated which can be used to look up the optimal parameter
choice, i.e. the optimal number of coefficients and FFT-
size, for given frame size, minimal SNR and number of
synthesized oscillators. This parameter choice minimizes the
computational complexity of the sinusoid synthesis. It turns
out that the truncation of the FFT-generated signal to frame
size should be quite drastic if the number of oscillators is large,
especially if a truncated FFT implementation can be used.



10

APPENDIX

A. Optimal Coefficients

To get (7), we have to minimize the approximation error
(6) by varying the Fourier coefficients Y (k). Because the
error function contains non-holomorphic elements (norm or
conjugation), we cannot build the derivative in a strict sense.
However, the following approach amounts to practically the
same. Suppose that u(z) is a complex function of z = x+ iy,
i.e. u(z) = v(x, y) + iw(x, y), where v, w, x, and y are real.
If we want to get both derivatives d

dx |u|
2 = d

dx (v2 + w2) and
d
dy |u|

2 = d
dy (v2 + w2), we can use the theorem

d|u|2

dz
:=

d|u|2

dx
+ i

d|u|2

dy
= 2u

du

dz
. (22)

Thus, we get both derivatives as real and imaginary part of a
complex expression which constitutes a variation of the chain
rule. Setting this expression to zero will set both derivatives
to zero, as is intended. For our error function, this means

d

dY (n)

T1∑
t=T0

|g(t)y(t)− x(t)|2

=
T1∑

t=T0

2(g(t)y(t)− x(t))g(t)
dy(t)
dY (n)

. (23)

Now, we substitute y(t) =
∑M1

k=M0
Y (k)eik 2π

N t as in (3) and
get

2
T1∑

t=T0

(
g(t)

M1∑
k=M0

Y (k)eik 2π
N t − x(t)

)
g(t)e−in 2π

N t . (24)

Setting this expression to zero, finally results in (7).

B. Optimal Window Function

To minimize (10) to get (11), we choose a similar approach
as in Appendix A. First, we build the derivative of (10):

d

dg(t)

α1∫
α0

T1∑
s=T0

|g(s)y(α, s)− x(α, s)|2dα

=

α1∫
α0

2(g(t)y(α, t)− x(α, t))y(α, t) . (25)

Then we set this expression to zero and arrive at (11).
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