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Epoch Extraction From Speech Signals
K. Sri Rama Murty and B. Yegnanarayana, Senior Member, IEEE

Abstract—Epoch is the instant of significant excitation of the
vocal-tract system during production of speech. For most voiced
speech, the most significant excitation takes place around the in-
stant of glottal closure. Extraction of epochs from speech is a chal-
lenging task due to time-varying characteristics of the source and
the system. Most epoch extraction methods attempt to remove the
characteristics of the vocal-tract system, in order to emphasize the
excitation characteristics in the residual. The performance of such
methods depends critically on our ability to model the system. In
this paper, we propose a method for epoch extraction which does
not depend critically on characteristics of the time-varying vocal-
tract system. The method exploits the nature of impulse-like exci-
tation. The proposed zero resonance frequency filter output brings
out the epoch locations with high accuracy and reliability. The per-
formance of the method is demonstrated using CMU-Arctic data-
base using the epoch information from the electro-glottograph as
reference. The proposed method performs significantly better than
the other methods currently available for epoch extraction. The in-
teresting part of the results is that the epoch extraction by the pro-
posed method seems to be robust against degradations like white
noise, babble, high-frequency channel, and vehicle noise.

Index Terms—Epoch extraction, glottal closure instant, group-
delay, Hilbert envelope, instantaneous frequency.

I. INTRODUCTION

T HE INSTANT of significant excitation of the vocal-tract
system is referred to as the epoch. An excitation is termed

as significant if it is impulse-like with strength substantially
larger than the strengths of impulses in the neighborhood. In the
context of speech, most of the significant excitation takes place
due to glottal vibration. The exceptions are strong burst releases
of very short durations. During the glottal vibration, the major
impulse-like excitation takes place during the closing phase of
the glottal cycle, due to abrupt closure of the vocal folds. De-
termining the epochs from a voiced speech signal is the main
objective of this paper.

A. Significance of Epochs in Speech Analysis

Voiced speech analysis consists of determining the frequency
response of the vocal-tract system and the glottal pulses repre-
senting the excitation source. Although the source of excitation
for voiced speech is a sequence of glottal pulses, the significant
excitation of the vocal-tract system is within a glottal pulse. The
significant excitation can be considered to occur at the instant
of glottal closure, called the epoch. Many speech analysis situ-
ations depend on the accurate estimation of the epoch locations
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within a glottal pulse. For example, knowledge of the epoch
locations is useful for accurate estimation of the fundamental
frequency . Often the glottal airflow is zero soon after the
glottal closure. As a result the supralaryngeal vocal-tract is
acoustically decoupled from the trachea. Hence, the speech
signal in the closed phase region represents the free resonances
of the supralaryngeal vocal-tract system. Analysis of the speech
signal in the closed phase regions provides an accurate estimate
of the frequency response of the supralaryngeal vocal-tract
system [1], [2]. With the knowledge of the epochs, it is possible
to determine the characteristics of the voice source by a careful
analysis of the signal within a glottal pulse. The epochs can be
used as pitch markers for prosody manipulation, which is useful
in applications like text-to-speech synthesis, voice conversion
and speech rate conversion [3], [4]. Knowledge of the epoch
locations may be used for estimating the time-delay between
speech signals collected over a pair of spatially distributed
microphones [5]. The segmental signal-to-noise ratio (SNR)
of the speech signal is high in the regions around epochs,
and hence, it is possible to enhance the speech by exploiting
the characteristics of speech signals around the epochs [6]. It
has been shown that the excitation features derived from the
regions around the epoch locations provide complementary
speaker-specific information to the existing spectral features
[7], [8].

As a result of significant excitation at the epochs, the regions
in the speech signal that immediately follow them are relatively
more robust to (external) degradations than other regions. The
instants of significant excitation play an important role in human
perception also. It is because of the epochs in speech that human
beings seem to be able to perceive speech even at a distance
(e.g., 10 ft or more) from the source, even though the spectral
components of the direct signal suffer an attenuation of around
60 dB. For example, we may not be able to get the message in
whispered speech by listening to it at a distance of 10 ft or more
due to absence of epochs. The neural mechanism of human be-
ings seem to have the ability of processing selectively the robust
regions around the epochs for extracting the acoustic cues even
under degraded conditions. It is the ability of human beings to
focus on these microlevel events that may be responsible for ex-
tracting robust and reliable speech information even under se-
vere degradation such as noise, reverberation, presence of other
speakers and channel variations.

B. Review of the Existing Methods

Normally, epochs are attributed to the glottal closure instants
(GCIs) of the glottal cycles. Most epoch extraction methods rely
on the error signal derived from the speech waveform after re-
moving the predictable portion (second-order correlations). The
error signal is usually derived by performing linear prediction
(LP) analysis of the speech signal [9]. The energy of the error
signal is computed in blocks of small interval (1–2 ms), and the
point where the computed energy is maximum is hypothesized
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as the instant of significant excitation. Some methods also ex-
ploit the periodicity property of the signal in the adjacent cy-
cles for epoch extraction. The method proposed in this paper
assumes and exploits the impulse-like characteristic of the exci-
tation. The intervals between the adjacent impulses are not nec-
essarily equal, i.e., the glottal cycles need not be periodic even
in short intervals of a few (2–4) glottal cycles.

The first contribution to the detection of epochs was due to
Sobakin [10]. A slightly modified version was proposed by
Strube [11]. In Strube’s work, some predictor methods based on
LP analysis for the determination of the epochs were reviewed.
These methods do not always yield reliable results. Sobakin’s
method using the determinant of the autocovariance matrix
was examined critically, and it was shown that the determinant
was maximum if the beginning of the interval, on which the
autocovariance matrix was computed, coincided with the glottal
closure.

In [12], a method based on the composite signal decomposi-
tion was proposed for epoch extraction of voiced speech. A su-
perposition of nearly identical waveforms was referred to as a
composite signal. The epoch filter proposed in this work, com-
putes the Hilbert envelope of the highpass filtered composite
signal to locate the epoch instants. It was shown that the instants
of excitation of the vocal-tract could be identified precisely even
for continuous speech. However, this method is suitable for an-
alyzing only clean speech.

The error signal obtained in the LP analysis, referred to as
the LP residual, is known to contain information pertaining to
epochs. A large value of the LP residual within a pitch period
is supposed to indicate the epoch location [13]. However, epoch
identification directly from the LP residual is not recommended
[11], because the LP residual contains peaks of random polarity
around the epochs. This makes unambiguous identification of
the epochs from the LP residual difficult. A detailed study was
made on the determination of the epochs from the LP residual
[14], and a method for unambiguous identification of epochs
from the LP residual was proposed. A least-squares approach
for glottal inverse filtering from the acoustic speech waveform
was proposed in [15]. In this paper, covariance analysis was
discussed for accurately performing the glottal inverse filtering
from the acoustic speech waveform.

A method based on maximum-likelihood theory for epoch
determination was proposed in [16]. In this method, the speech
signal was processed to get the maximum-likelihood epoch
detection (MLED) signal. The strongest positive pulse in the
MLED signal indicates the epoch location within a pitch period.
However, the MLED signal creates not only a strong and sharp
epoch pulse, but also a set of weaker pulses which represent
the suboptimal epoch candidates within a pitch period. Hence,
a selection function was derived using the speech signal and
its Hilbert transform, which emphasized the contrast between
the epoch and the suboptimal pulses. Using the MLED signal
and the selection signal with appropriate threshold, the epochs
were detected. The limitation of this method is the choice of
window for deriving the selection function, and also the use of
threshold for deciding the epochs.

A Frobenius norm approach for detecting the epochs was
proposed in [17]. In this paper, a new approach based on
singular value decomposition (SVD) was proposed. The SVD
method amounts to calculating the Frobenius norms of signal

matrices, and is therefore, computationally efficient. The
method was shown to be working only for vowel segments. No
attempt was made in detecting epochs in difficult cases like
nasals, voiced consonants, and semivowels.

A method for detecting the epochs in a speech signal using
the properties of minimum phase signals and group-delay func-
tion was proposed in [18]. The method is based on the fact that
the average value of the group-delay function of a signal within
an analysis frame corresponds to the location of the significant
excitation. An improved method based on the computation of
the group-delay function directly from the speech signal was
proposed in [19]. Robustness of the group-delay based method
against additive noise and channel distortions was studied in
[20]. Four measures of group-delay (average group-delay, zero
frequency group-delay, energy-weighted group-delay, and en-
ergy-weighted phase) and their use for epoch detection was in-
vestigated in [21]. In this paper, the effect of the length of anal-
ysis window, the tradeoff between the detection rate and the
timing error, and the computational cost of evaluating the mea-
sures were examined in detail. In this paper, it was shown that
the energy-weighted measures performed better than the other
two measures. A dynamic programming projected phase-slope
algorithm (DYPSA) for automatic estimation of glottal closure
instants in voiced speech was presented in [22] and [23]. In
this method, the candidates for GCI were obtained from the
zero crossings of the phase-slope function derived from the en-
ergy-weighted group-delay, and were refined by employing a
dynamic programming algorithm. In this paper, it was shown
that DYPSA performed better than the existing methods.

Epoch is an instant property, but, in most of the methods
discussed above (except the group-delay based methods),
the epochs are detected by employing block processing ap-
proaches, which result in ambiguity about the precise location
of the epochs. Most of the existing methods rely on the LP
residual signal derived by inverse filtering the speech signal.
Though these methods work well in most cases, they need
to deal with the following issues: 1) selection of parameters
(order of LP analysis, length of the window) for deriving the
error signal; 2) dependence of these methods on the energy of
the error signal, which in turn depends on the energy of the
signal; 3) the accuracy with which the epochs can be resolved
decreases as a result of block processing; 4) setting a threshold
value to take an unambiguous decision on the presence of an
epoch; 5) though some of these methods exploit periodicity
for accurate estimation of epoch locations, the excitation im-
pulses need not be periodic. In general, it is difficult to detect
the epochs in the case of low voiced consonants, nasals and
semivowels, breathy voices, and female speakers.

In this paper, we propose a new method for epoch extraction
which is based on the assumption that the major source of ex-
citation of the vocal-tract system is due to a sequence of im-
pulse-like events in the glottal vibration. The impulse excita-
tion to the system results in a discontinuity in frequency in the
output signal. We propose a novel approach to detect the loca-
tion of the discontinuity in frequency in the output signal by
confining the analysis around a single frequency. In Section II,
we discuss the basic principle of the proposed method and il-
lustrate the principle for several cases of synthetic excitation
signals. In Section III, we discuss the issues involved in ap-
plying the method directly on speech data. In Section IV, we
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present our proposed method to extract epochs from the speech
signal. In Section V, the performance of the proposed method
in terms of identification accuracy is given, and the results are
compared with three existing methods for epoch extraction. In
Section VI, the performance of the proposed method is eval-
uated for different types of degradations, and the results are
compared with the existing methods. Finally, in Section VII we
summarize the contributions of this paper, and discuss some lim-
itations of the proposed method which prompt further investiga-
tion for extracting epochs from speech signals recorded in prac-
tical environments.

II. BASIS FOR THE PROPOSED METHOD OF EPOCH EXTRACTION

Speech is produced by exciting the time-varying vocal-tract
system by one or more of the following three types of excitation:
1) glottal vibration; 2) frication; 3) burst. The primary mode of
excitation is due to glottal vibration. While excitation is present
throughout the production process, it is considered significant
(especially during glottal vibration) only when there is large en-
ergy in short-time interval, i.e., when it is impulse-like. These
impulse-like characteristics are usually exhibited around the in-
stants of glottal closure during each glottal cycle. The presence
of these impulse-like characteristics suggests that the excitation
can be approximated as a sequence of impulses. This assump-
tion on the excitation of the vocal-tract system suggests a new
approach for processing the speech signal as discussed in this
section.

All physical systems are inertial in nature. The inertial sys-
tems respond when excited by an external source. The excita-
tion to an inertial system can be any of the following four types.

1) Excitation impulse is not in the observed interval of the
signal—Sinusoidal generator: Output signal is the re-
sponse of a passive inertial system for an impulse, and
the impulses themselves are not present in the observed
intervals of the signal.

2) Sinusoidal excitation: Sinusoidal excitation can be
viewed as impulse excitation in the frequency domain.
Hence, a sinusoidal excitation to an inertial system
selects the corresponding frequency component from
transfer function of the system. Though sinusoidal
excitation is widely used to analyze synthetic systems,
it is not commonly found in physical systems.

3) Random excitation: Random excitation can be inter-
preted as impulse excitation of arbitrary amplitude at
every instant of time. Since impulse excitations are
present over all the instants of time, it is difficult to
observe them from the output of the system. Random
excitation does not possess impulse-like nature either
in the time-domain or in the frequency-domain, and
hence, the impulses cannot be perceived.

4) Sequence of impulses as excitation: In this case, the sig-
nals are generated by a passive inertial system with a
fixed sequence of (periodic and/or aperiodic) impulses
as excitation. The time instants of impulses may not be
observed from the output of the system, but they can be
perceived. If the sequence of impulses is periodic in the
time-domain, then it corresponds to a periodic sequence

Fig. 1. Inertial system excited with a sequence of impulses.

of impulses in the frequency-domain also, and can also
be perceived.

Consider a physical system excited by a sequence of impulses
of varying strengths, as shown in Fig. 1. One of the challenges
in the field of signal processing is to detect the time instants
of the impulses and their corresponding strengths from the
output signal. In a natural scenario like speech production, the
characteristics of the system vary with time and are unknown.
Hence, the signal processing problem can be viewed as a blind
deconvolution, where neither the system response nor the exci-
tation source are known. In this paper, we attempt to detect the
time instants of excitation (epochs) of the vocal-tract system.

Consider a unit impulse in the time domain. It has all the
frequencies equally well represented in the frequency domain.
When an inertial system is excited by an impulse-like excitation,
the effect of the excitation spreads uniformly in the frequency
domain and is modulated by the time-varying transfer function
of the system. The information about the time instants of oc-
currence of the excitation impulses reflects as discontinuities in
the time domain. It may be difficult to observe these disconti-
nuities directly from the signal because of the time-varying re-
sponse of the system. The effect of the discontinuities can be
highlighted by filtering the output signal through a narrowband
filter centered around a frequency. The output of the narrow-
band filter predominantly contains a single frequency compo-
nent, and as a result, the discontinuities due to the excitation
impulses will get manifested as a deviation from the center fre-
quency. The time instants of the discontinuities can be derived
by computing the instantaneous frequency of the filtered output
[24]. A tutorial review on the instantaneous frequency and its
interpretation is given in [25]. It has been previously observed
that isolated narrow spikes in the instantaneous frequency of the
bandpass-filtered output [26, ch. 11] are attributed to either the
valleys in the amplitude envelope or the onset of a new pitch
pulse, but no previous work explored the feasibility of this type
of observation for epoch extraction.

A. Computation of Instantaneous Frequency

The instantaneous frequency of a real signal is defined
as the time derivative of the unwrapped phase of the complex
analytic signal derived from [24]. The complex analytic
signal corresponding to a real signal is given by

(1)

where is the Hilbert transform of the real signal and
is given by

(2)
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where IFT denotes the inverse Fourier transform, and is
given by

.
(3)

The analytic signal thus derived contains only positive fre-
quency components. The analytic signal can be rewritten
as

(4)

where

(5)

is called the amplitude envelope, and

(6)

is called the instantaneous phase. Direct computation of the
phase from (6) suffers from the problem of phase wrapping,
i.e., is constrained to an interval or . Hence,
the instantaneous frequency cannot be computed by explicit dif-
ferentiation of phase without first performing the com-
plex task of unwrapping the phase in time. The instantaneous
frequency can be computed directly from the signal, without
going through the process of phase unwrapping, by exploiting
the Fourier transform relations. Taking logarithm on both sides
of (4), and differentiating with respect to time , we have

(7)

where the superscript denotes the derivative operator, and
is the instantaneous frequency. That is

(8)

where denotes the imaginary part. can be computed
by using the Fourier transform relations. The analytic signal

can be synthesized from its frequency domain represen-
tation through the inverse Fourier transform

(9)

where is the Fourier transform of the analytic signal
, and is zero for negative frequencies. Differentiating both

sides of (9) with respect to time , we have

(10)

The instantaneous frequency can be obtained from (7) and
(10) as

(11)

where denotes real part. Computation of the instantaneous
frequency given in (11) is implemented in the discrete domain
as follows:

(12)

Here, IDFT denotes the inverse discrete Fourier transform, and
is the total number of samples in the signal.
The instantaneous frequency may be interpreted as the fre-

quency of a sinusoid which locally fits the signal under analysis.
However, it has a physical interpretation only for monocom-
ponent signals, where there is only one frequency or a narrow
range of frequencies varying as a function of time. In this case,
the instantaneous frequency can be interpreted as deviation of
frequency of the signal from the monotone at every instant of
time. The notion of a single-valued instantaneous frequency be-
comes meaningless for multicomponent (multiple frequency si-
nusoids) signals. The multicomponent signal has to be dispersed
into its components for further analysis.

In this paper, we propose to use a resonator to filter out from
a signal a monocomponent centered around a single frequency
for further analysis. A resonator is a second-order infinite-im-
pulse response (IIR) filter with a complex conjugate pair of poles
in the -plane [27]. A resonator with narrow bandwidth (cor-
responding to a radius ) was chosen to realize the
narrow band filter. An ideal resonator was not used in
order to avoid saturation of the filter output.

When a multicomponent signal is filtered through a resonator
centered around a frequency , the output signal predom-
inantly contains the frequency component. Any deviation
from in frequency of the filtered output can be attributed to
the impulse-like characteristics present in the multicomponent
signal. In general, the analytic signal corresponding to the fil-
tered output can be expressed as

(13)

Hence, the instantaneous frequency of the filtered output (pre-
dominantly monocomponent) is given by

(14)

Fig. 2(a) shows a multicomponent signal in the form of an ape-
riodic sequence of impulses with arbitrary strengths. The signal
filtered by a 500-Hz resonator, and the instantaneous frequency
of the filtered output are shown in Fig. 2(b) and (c), respec-
tively. At the instants of impulse locations, the instantaneous
frequency deviates significantly from the normalized center fre-
quency , where is the frequency of the resonator,
and is the sampling frequency. For a resonator frequency

Hz, and sampling frequency , the instanta-
neous frequency (around ) shows sharp peaks at the
locations of the impulses. The illustration in Fig. 2 shows that
the discontinuity information can be derived from the filtered
output even if the sequence of impulses are not regularly spaced,
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Fig. 2. Aperiodic sequence of impulses filtered through a 500-Hz resonator.
(a) Aperiodic sequence of impulses with arbitrary strengths, (b) output of the
resonator, and (c) instantaneous frequency of the filtered output.

Fig. 3. White noise filtered through a 500-Hz resonator. (a) Segment of white
noise, (b) output of the resonator, and (c) instantaneous frequency of the filtered
output.

and are of arbitrary strengths. The amplitudes of the peaks in the
instantaneous frequency depend not only on the strengths of the
impulses, but also on the phases at which the sinusoids origi-
nated at these impulses are added at the instants. This in turn
depends on the locations of the impulses and the frequency of
the sinusoid.

To highlight the significance of these isolated discontinuities
in the impulse sequence, if the impulse sequence is replaced by
white noise, the corresponding filtered output and the IF plot do
not contain any significant discontinuities, as shown in Fig. 3.
The white noise does not contain any isolated impulse-like dis-
continuities. As a result, the filtered output will be a slowly
varying amplitude envelope modulated by a sinusoid without
any significant discontinuities in the phase. Hence, the instanta-
neous frequency of the filtered white noise does not show any
significant peaks, unlike in the case of Fig. 2(c).

Consider a situation where a synthetic speech signal is filtered
through a resonator. The synthetic speech signal is generated
by exciting a time-varying all-pole system by a sequence of im-
pulses at known locations. When such a signal is filtered through
a resonator, the frequency response of the all-pole system gets
multiplied with the frequency response of the resonator. Hence,
the frequency response of the all-pole system around the center

Fig. 4. Synthetic speech signal with known locations of excitation impulses
filtered though a 500-Hz resonator. (a) Excitation impulses, (b) synthetic
speech signal obtained by exciting an all-pole system with excitation impulses,
(c) output of the resonator, and (d) instantaneous frequency of the filtered
output.

frequency of the resonator gets selected. The filtered output car-
ries the information about the discontinuities that are reflected in
the narrow frequency band of the resonator. The instants of ex-
citation impulses can be extracted from the filtered output using
the instantaneous frequency. Fig. 4(b) shows a synthetic speech
signal, obtained by exciting a time-varying all-pole system with
a sequence of impulses shown in Fig. 4(a). The instantaneous
frequency [Fig. 4(d)] of the filtered output [Fig. 4(c)] shows dis-
continuities at the instants of excitation of the all-pole system.
The locations of the discontinuities are in close agreement with
the original excitation impulses.

III. ILLUSTRATION OF INSTANTANEOUS FREQUENCY

FOR SPEECH DATA

A speech signal can be considered as a convolution of the
time-varying vocal-tract transfer function and the epochs due to
the excitation source. The epochs are the time instants where
significant excitation is delivered to the vocal-tract system. The
information about the locations of the epochs is embedded in
the coupling between the source and the system, though it is not
evident from the speech waveform directly. It is difficult to ac-
curately locate the time instants of excitation impulses directly
from the speech waveform because of the time-varying reso-
nances of the vocal-tract system. To highlight the effect due to
the instants of significant excitation, the speech signal is filtered
through a resonator centered around a chosen frequency . The
significant deviations of the filtered output from the natural os-
cillations of the resonator can be attributed to the excitation im-
pulses. Fig. 5 shows a 100-ms segment of voiced speech signal
sampled at 8 kHz, and the output of the resonator at 500 Hz.
The instantaneous frequency of the filtered output shows sharp
peaks at the epoch locations, as shown in Fig. 5(c). In order to
determine the accuracy of the estimated epoch locations, the
differenced electro-glottograph (EGG) signal is also given in
Fig. 5(d). The peaks in the instantaneous frequency of the fil-
tered output match well with the actual epoch locations given
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Fig. 5. A 100-ms segment of (a) speech waveform, (b) output of the resonator
at 500 Hz, (c) instantaneous frequency of the filtered output, and (d) differenced
EGG signal.

by the differenced EGG signal, illustrating the potential of the
proposed method.

In the case of speech, instantaneous frequency of the filtered
output also contains the time-varying frequency changes associ-
ated with the vocal-tract transfer function, which is undesirable.
As a result, though the peaks in the instantaneous frequency of
the filtered output indicate the epoch locations accurately for
the segment shown in Fig. 5, it may not be useful to extract the
epoch locations unambiguously for any chosen center frequency

. Thus, the method of epoch extraction using the instan-
taneous frequency of the filtered output depends critically on
the choice of center frequency of the filter. A single center fre-
quency may not be suitable for extracting the epoch locations of
an arbitrary segment of speech. The center frequency has to be
chosen based on the characteristics of the speech segment under
analysis. The choice of the center frequency also depends on the
distribution of energy of the speech segment in the frequency
domain. To illustrate the significance of choice of the center
frequency of the filter, the instantaneous frequency computed
around four different center frequencies are shown in Fig. 6. The
spectrogram, the speech signal and the differenced EGG signal
are also given for reference. The spectrogram in Fig. 6(a) shows
a band of energy around 500 Hz. The instantaneous frequency
computed around 500 Hz [Fig. 6(d)] indicates unambiguous
peaks/valleys that are in close agreement with the actual epochs
shown by the differenced EGG signal [Fig. 6(c)]. In the instanta-
neous frequencies computed around 1000 and 2000 Hz, shown
in Fig. 6(e) and (f), respectively, the epoch locations cannot be
identified easily. This is because the energy of the signal in those
frequency bands is very low. Since the spectrogram shows large
energy in the band around 2500 Hz, the instantaneous frequency
computed around 2500 Hz shows sharp peaks/valleys around
the epoch locations. However, the instantaneous frequency plot
in Fig. 6(g) shows less ambiguous peaks/valleys in the time in-
terval 570–620 ms, than those in the time interval 520–570 ms.
This is because the intensity of the 2500-Hz frequency band in
the time interval 570–620 ms is greater than the intensity of the
band in the time interval 520–570 ms.

Fig. 6. Instantaneous frequency of a speech segment computed around four
different center frequencies. (a) Spectrogram of the speech segment. (b) Speech
waveform. (c) Differenced EGG signal. Instantaneous frequency plots com-
puted around (d) 500 Hz, (e) 1000 Hz, (f) 2000 Hz, and (g) 2500 Hz.

Notice that the instantaneous frequencies computed around
1000 and 2000 Hz also contain all the peaks/valleys corre-
sponding to the epoch locations, but they cannot be located
easily due to fluctuations in the neighborhood. This is because
the instantaneous frequency captures not only the discontinu-
ities due to the excitation impulses, but also the fluctuations
due to the time-varying vocal-tract system. Hence, it is difficult
to extract the instants of excitation from the instantaneous
frequency computed around an arbitrary center frequency.
The center frequency has to be chosen in such a way that the
discontinuities due to the excitation impulses dominate over
the fluctuations due to the time-varying vocal-tract system.

IV. EPOCH EXTRACTION FROM SPEECH

USING A 0-Hz RESONATOR

The discontinuity due to impulse excitation is reflected across
all the frequencies including the zero frequency. That is, even
the output of the resonator at zero frequency should have the in-
formation of the discontinuities due to impulse-like excitation.
The advantage of choosing the zero frequency resonator filter
is that the characteristics of the time-varying vocal-tract system
will not affect the characteristics of the discontinuities in the res-
onator filter output. This is because the vocal-tract system has
resonances at much higher frequencies than at zero frequency.
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Fig. 7. Illustration of effect of mean subtraction from output of 0-Hz resonator.
A 100-ms segment of (a) speech signal, (b) output of cascade of two 0-Hz res-
onators, and (c) mean subtracted signal.

Therefore, we propose that the characteristics of the disconti-
nuities due to excitation impulses can be extracted by passing
the speech signal twice through a zero frequency filter. The pur-
pose of passing the speech signal twice is to reduce the effects
of all (high frequency) resonances. A cascade of two 0-Hz res-
onators provide a sharper roll-off compared to a single 0-Hz res-
onator. Since the output of the zero frequency filter is equivalent
to double integration of the signal, passing the speech signal
twice through the filter is equivalent to four times successive in-
tegration. This will result in a filtered output that grows/decays
as a polynomial function of time. Fig. 7 shows a segment of
speech signal, and its filtered output. The effect of discontinu-
ities due to impulse sequences will be overridden by those large
values of the filtered output. Hence, it is difficult to compute the
instantaneous frequency (deviation from zero frequency) as in
the conventional manner of computing the analytic signal of the
filtered output.

We attempt to compute the deviation of the filtered output
from the local mean to extract the characteristics of the discon-
tinuities due to impulse excitation. The local mean for every
10 ms is computed and is subtracted from the filtered output.
The resulting mean subtracted signal obtained from the filtered
output in Fig. 7(b) is shown in Fig. 7(c). The mean subtracted
signal is called the “zero frequency filtered signal” or merely the
“filtered signal.” The following steps are involved in processing
the speech signal to derive the zero frequency filtered signal.

1) Difference the speech signal (to remove any time-
varying low frequency bias in the signal)

(15)

2) Pass the differenced speech signal twice through an
ideal resonator at zero frequency. That is

(16a)

and

(16b)

Fig. 8. Illustration of effect of length of window used for mean subtraction. (a)
Speech signal. Mean subtracted signal using a window length of (b) 5 ms, (c)
10 ms, and (d) 15 ms.

where , and . This is equivalent to
successive integration four times, but we prefer to call
the process as filtering at zero frequency.

3) Remove the trend in by subtracting the average
over 10 ms at each sample. The resulting signal

(17)

is called the zero-frequency filtered signal, or simply the
filtered signal. Here corresponds to the number
of samples in the 10 ms interval.

The effect of the time window for local mean computation is
shown in Fig. 8 for 5, 10, and 15 ms. The choice of the window
size is not critical in the range of 5-15 ms. It is preferable to have
a window size of one to two pitch periods to avoid spurious zero
crossings in the filtered signal.

The filtered signal clearly shows rapid changes around the
positive zero crossings. So the time instants of the positive zero
crossings can be used as epochs. It is interesting to note that
for impulse sequences (even for aperiodic sequences) the pos-
itive zero-crossing instants correspond to the locations of the
impulses. There is no such relation between the excitation and
the filtered signal for the random noise excitation of the time-
varying all-pole system. Also, the filtered signal has signifi-
cantly lower values for the random noise excitation compared
to the impulse sequence excitation. Fig. 9(b) shows the filtered
signal for a speech signal consisting of voiced and unvoiced seg-
ments. The unvoiced segments correspond to the random noise
excitation of the vocal-tract system. The differenced EGG signal
[Fig. 9(c)] is also given in the figure to identify the voiced and
nonvoiced segments. Fig. 10 shows the speech waveform, the
filtered signal and the derived epoch locations and the differ-
enced EGG signals for an utterance of a female voice. The epoch
locations coincide with the locations of the large negative peaks
in the differenced EGG signal [Fig. 10(c)].
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Fig. 9. Segment of (a) speech signal, (b) filtered signal, and (c) differenced
EGG signal. The filtered output shows significantly lower values in the regions
where there is no glottal activity.

Fig. 10. Illustration of the proposed method of epoch detection for female
speaker. (a) Speech signal, (b) filtered signal, and (c) differenced EGG signal.
Pulses in (c) indicate the detected epochs. Note that the filtered output brings out
even the epochs not picked up by the EGG signal (in the interval 360–375 ms).

V. COMPARISON OF PROPOSED EPOCH EXTRACTION

WITH OTHER METHODS

In this section, the proposed method of epoch extraction is
compared with three existing methods in terms of identifica-
tion accuracy and in terms of robustness against degradation.
The three methods chosen for comparison are the Hilbert en-
velope-based (HE-based) method [28], the group-delay-based
(GD-based) method [18], and the DYPSA algorithm [23]. Ini-
tially, the performance of the algorithms was evaluated on the
clean data. Subsequently, we have evaluated robustness of the
proposed method and the three existing methods at different
levels of degradations. A brief discussion on the implementation
details of the three chosen methods for comparison are given
below.

Hilbert envelope-based method: The strength of the exci-
tation impulses in the voiced speech is large and impulse-like.
Though this can be observed from the LP residual, it cannot be
extracted unambiguously because of multiple peaks of random
polarity around the instant of excitation. Ideally, it is desirable
to derive an impulse-like signal around the instant of significant
excitation. A close approximation to this is possible by using the
Hilbert envelope of the LP residual. Even though the real and
imaginary parts of an analytic signal have positive and negative

Fig. 11. Illustration of Hilbert envelope-based method for epoch extraction
[28]. (a) Speech signal, (b) LP residual, (c) Hilbert envelope of LP residual,
(d) epoch evidence plot, and (e) differenced EGG signal. The pulses in (e) indi-
cate the detected epoch locations.

samples, the Hilbert envelope of a signal is a positive function,
giving the envelope of the signal. For example, the HE of a unit
sample sequence or its derivative has a peak at the same instant.
Thus, the properties of the HE can be exploited to derive approx-
imate epoch locations. The evidence for epoch locations can be
obtained by convolving the HE with a Gabor filter (modulated
Gaussian pulse), as suggested in [28]. In the present work, the
evidence for epoch locations is obtained by convolving the HE
with a differenced Gaussian pulse

where defines the spatial spread of the Gaussian, and is the
length of the filter. For this evaluation, the values of ,
and ms (80 samples at 8-kHz sampling frequency) are
used. The Hilbert envelope of the LP residual is convolved with
the differenced Gaussian pulse to obtain the epoch evidence plot
shown in Fig. 11(d). The instants of positive zero crossings in
the epoch evidence plot correspond approximately to the loca-
tions of the instants of significant excitation.

Group delay-based method: This method is based on the
global phase characteristics of minimum phase signals. The av-
erage slope of the unwrapped phase of the short-time Fourier
transform of LP residual is computed as a function of time.
The averaged slope obtained as a function of time is termed as
phase-slope function. Instants where the phase-slope function
makes a positive zero crossing are identified as epochs. Fig. 12
shows a speech utterance, its LP residual, the phase-slope func-
tion, and the extracted instants. For this evaluation, we have used
a tenth-order LP analysis to derive the LP residual, and an 8-ms
window for computing the phase-slope function.

The DYPSA algorithm: The DYPSA algorithm is an auto-
matic technique for estimating the epochs in voiced speech
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Fig. 12. Illustration of group-delay based method for epoch extraction [18].
(a) Speech signal, (b) LP residual, (c) phase-slope function, and (d) differenced
EGG signal. The pulses in (d) indicate the detected epoch locations.

from the speech signal alone. There are three components
in the algorithm. The first component generates candidate
epochs using zero crossings of the phase-slope function. The
energy weighted group-delay was used as a measure to derive
the phase-slope function. The second component employs
a novel phase-slope projection technique to recover candi-
dates for which the phase-slope function does not include a
zero-crossing. These two components detect almost all the
true epochs, but they also generate a large number of false
alarms. The third component of the algorithm uses dynamic
programming to identify the true epochs from the set of hypoth-
esized candidates by minimizing a cost function. For evaluating
this technique, the MATLAB implementation of the DYPSA
available in [29] was used.

The CMU-Arctic database [30], [31] was employed to eval-
uate the proposed method of epoch detection and to compare
the results with the existing methods. The Arctic database con-
sists of 1132 phonetically balanced English sentences spoken
by two male and one female talkers. The duration of each utter-
ance is approximately 3 s, which makes the duration of the entire
database to be around 2 h 40 min. The database was collected
in a soundproof booth, and digitized at a sampling frequency
of 32 kHz. In addition to the speech signals, the Arctic data-
base contains the simultaneous recordings of EGG signals col-
lected using a laryngograph. The speech and EGG signals were
time-aligned to compensate for the larynx-to-microphone delay,
determined to be approximately 0.7 ms. Reference locations of
the epochs were extracted from the voiced segments of the EGG
signals by finding peaks in the differenced EGG signal. The per-
formance of the algorithms was evaluated only in the voiced seg-
ments (detected from EGG signal) between the reference epoch
locations and the estimated epoch locations. The database con-
tains a total of 792 249 epochs in the voiced regions.

The performance of the epoch detection methods was evalu-
ated using the measures defined in [23]. Fig. 13 shows the char-
acterization of epoch estimates showing each of the possible de-
cisions from the epoch detection algorithms. The following

Fig. 13. Characterization of epoch estimates showing three larynx cycles with
examples of each possible outcome from epoch extraction [23]. Identification
accuracy is measured as a variance of � .

TABLE I
PERFORMANCE COMPARISON OF EPOCH DETECTION METHODS ON

CMU-ARCTIC DATABASE. IDR—IDENTIFICATION RATE, MR—MISS RATE,
FAR—FALSE ALARM RATE, IDA—IDENTIFICATION ACCURACY

measures were defined to evaluate the performance of epoch
detection algorithms.

1) Larynx cycle: The range of samples
, given an epoch reference at

sample with preceding and succeeding epoch refer-
ences at samples and , respectively.

2) Identification rate (IDR): The percentage of larynx cy-
cles for which exactly one epoch is detected.

3) Miss rate (MR): The percentage of larynx cycles for
which no epoch is detected.

4) False alarm rate (FAR): The percentage of larynx cycles
for which more than one epoch is detected.

5) Identification error : The timing error between the ref-
erence epoch location and the detected epoch location in
larynx cycles for which exactly one epoch was detected.

6) Identification accuracy (IDA): The standard deviation
of the identification error . Small values of indicate
high accuracy of identification.

Table I shows the performance results on Arctic database for
identification rate, miss rate, false alarm rate, and identifica-
tion accuracy for the three methods HE-based, GD-based, and
DYPSA algorithm, as well as for the proposed method. Fig. 14
shows the histograms of the timing errors in detecting the
epoch locations, averaged over the entire Arctic database. From
Table I, it can be concluded that the DYPSA algorithm per-
formed best among the three existing techniques, with an iden-
tification rate of 96.66%. The proposed method of epoch de-
tection gives a better identification rate as well as identification
accuracy, compared to the results from the DYPSA algorithm.
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Fig. 14. Histogram of the epoch timing errors for (a) HE-based method, (b) GD-based method, (c) DYPSA algorithm, and (d) proposed method.

Fig. 15. Histogram of the epoch timing errors for degradation by white noise at an SNR of 10 dB. (a) HE-based method, (b) GD-based method, (c) DYPSA
algorithm, and (d) proposed method.

VI. EFFECT OF NOISE ON PERFORMANCE OF PROPOSED

METHOD OF EPOCH EXTRACTION

In this section, we study the effect of (moderate levels of)
noise on the accuracy of the epoch detection methods. The ex-
isting methods and the proposed method are evaluated on an
artificially generated noisy speech database. Several noise en-
vironments at varying signal-to-noise ratio (SNR) were simu-
lated to evaluate the epoch detection methods. The noise used
was taken for NOISEX-92 database [32]. The database con-
sists of white, babble, high-frequency (HF) channel, and vehicle
noise. The noise from the NOISEX-92 database was added to
the Arctic database to form noisy speech data at different levels
of degradation. The utterances are appended with silence such
that the total amount of silence in each utterance is constrained
to be about 60% of data, including the pauses in the utterances.
Including different noise environments and SNRs, the database
consists of 33 h of noisy speech data.

Table II shows the comparative results of epoch detection
methods for different types of degradations at varying SNRs.
Fig. 15 shows the distribution of the timing errors in detecting
the epoch locations, for white noise environment at an of SNR of
10 dB. The proposed method consistently performs better than
the existing techniques even under degradation. The improved
performance of the proposed method may be attributed to the
following reasons. 1) There is no block processing involved in
this method. Hence, there are no effects of the size and the shape
of the window. The entire speech signal is processed at once to
obtain the filtered signal. 2) The proposed method is not depen-
dent on the energy of the signal. This method detects the epoch
locations even in weakly voiced regions like voice-bar. 3) There

is only one parameter involved in the proposed method, i.e., the
length of the window for removing the trend from the output of
0-Hz resonator. 4) There are no critical thresholds or costs in-
volved in identifying the epoch locations.

VII. SUMMARY AND CONCLUSION

In this paper, we proposed a method for epoch extraction that
does not depend on the characteristics of the vocal-tract system.
The method exploits the impulse-like excitation of the vocal-
tract system. The method uses the output of speech from a zero
frequency resonator. The positive zero crossings of the filtered
signal correspond to epochs. The identification rate and identi-
fication accuracy are evaluated using the CMU-Arctic database,
where the speech signal and the corresponding EGG signals are
available. The epoch information derived from the EGG sig-
nals is used as a reference. The performance of the proposed
method is compared with the results from the DYPSA and two
other methods. The proposed method gives significantly better
results in terms of identification rate and identification accu-
racy. It is also interesting to note that the proposed method is ro-
bust against degradations such as white noise, babble, high-fre-
quency channel, and vehicle noise.

There are many novel features in the proposed method of
epoch extraction. The method does not use any block processing
as most signal processing methods do. The performance of the
method does not depend on the energy of the segment of speech
signal, and hence, the method works equally well for all types of
speech sound units. In addition, there are no parameters to con-
trol, and no arbitrary thresholding in the identification of epochs.
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TABLE II
PERFORMANCE COMPARISON FOR EPOCH DETECTION METHODS FOR VARIOUS SNRS AND NOISE ENVIRONMENTS.

IDR—IDENTIFICATION RATE, MR—MISS RATE, FAR—FALSE ALARM RATE, IDA—IDENTIFICATION ACCURACY

The method performs well for speech collected with a close-
speaking microphone, even with the addition of degradations.
However, the method is not likely to work well when the degra-
dations produce additional impulse-like sequences in the col-
lected speech data as in the case of reverberation. The method is
also not likely to work well when there is interference of speech
from other speakers. Our future efforts will be in the direction
of developing methods for extracting epochs from speech with
degradations involving superposed impulse-like characteristics.

Since the proposed method provides accurate locations of
epochs, the results are useful to develop methods for pitch

extraction, and also for voice activity detection. Also, since the
filtered signal gives an indication of glottal activity, the method
may be used for analysis of phonation characteristics [33] in
normal and pathological voices. The method may also be a
useful first step in accurate analysis of vocal-tract characteristics
by focusing the attention in the region around the epochs. Accu-
rate analysis of excitation source and time-varying vocal-tract
systems may lead to a better acoustic–phonetic analysis of
speech sounds in many languages, and it also may provide a
useful supplement to the existing spectral-based methods of
speech analysis.
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