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Abstract— Dominance - a behavioral expression of

power - is a fundamental mechanism of social interaction,

expressed and perceived in conversations through spoken

words and audio-visual nonverbal cues. The automatic

modeling of dominance patterns from sensor data repre-

sents a relevant problem in social computing. In this paper,

we present a systematic study on dominance modeling in

group meetings from fully automatic nonverbal activity

cues, in a multi-camera, multi-microphone setting. We

investigate efficient audio and visual activity cues for the

characterization of dominant behavior, analyzing single

and joint modalities. Unsupervised and supervised ap-

proaches for dominance modeling are also investigated.

Activity cues and models are objectively evaluated on

a set of dominance-related classification tasks, derived

from an analysis of the variability of human judgment

of perceived dominance in group discussions. Our investi-

gation highlights the power of relatively simple yet efficient

approaches and the challenges of audio-visual integration.

This constitutes the most detailed study on automatic

dominance modeling in meetings to date.

Index Terms— Group Meetings, dominance modeling,

nonverbal communication, audio-visual activity cues

I. INTRODUCTION

Certain people are consistently successful at domi-

nating conversations and their results. In fact, within

a few minutes of interaction among unacquainted indi-

viduals, a dominance order or a participation hierarchy

often emerges [27]. A concept largely studied in social

psychology, dominance is one of the basic mechanisms

of social interaction and has fundamental implications
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for communication both among individuals and within

organizations [4]. While dominant behavior could bring

benefits to the person displaying it in certain contexts,

in others it could negatively affect the social dynamics

of a group, impacting its cohesiveness and effectiveness,

and eroding social relationships.

The automatic modeling of dominance patterns in

groups is a key problem in the emerging domain of social

interaction analysis from sensor data [14], [23], which

spans research in audio and visual processing, informa-

tion fusion, human-computer interaction, and ubiquitous

computing. The analysis of face-to-face multiparty con-

versations to extract patterns of turn-taking [6], [7], [20],

addressing [18], interest and attraction [15], [24], [30],

functional roles [32], or dominance [2], [26] is challeng-

ing, given the complex nature of real communication,

and the difficulty to model, accurately and efficiently, the

behavior of multiple interacting individuals. Automatic

dominance estimators from audio-visual media could be

part of relevant human-centered applications including

self-assessment, training, and educational tools [23], and

systems to support group collaboration [10], [19].

A solid body of work in psychology has documented

the multi-modal nature of dominance [12], and in par-

ticular of the role that nonverbal communicative cues

(not involving the spoken words) play in the expression

and perception of dominant behavior. Although speech is

the main modality in conversations [9], [28] , substantial

information is conveyed in the visual modality through

body movement, postures, and gestures. It is known that,

in terms of vocalic and kinesic cues, dominant individ-

uals behave more actively (i.e., talk and move more,

more often, and with larger ranges) than non-dominant

people [4], [12]. Some of these activity cues can be

automatically extracted from data, and initial work [2],

[25], [26] has mainly investigated perceptual modalities

in isolation (where cues were often extracted manually),
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or proposed dominance recognition approaches that were

applied to relatively constrained interaction scenarios or

that were limited in their validation.

This paper presents a systematic study on fully au-

tomated dominance modeling in small group meetings

from nonverbal activity cues. Focusing on a common

data set of face-to-face interactions recorded with multi-

ple cameras and microphones, our work contains sev-

eral contributions. First, we investigate a number of

easily extracted and efficient audio and visual activity

cues for the characterization of dominant behavior. Our

cues include a novel set of visual features extracted

in compressed-domain video. We consider audio-only,

visual-only and audio-visual cases to understand the

relative power of each of the modalities and the benefits

of using them jointly. Second, we study unsupervised and

supervised approaches for dominance modeling, which

differ in complexity and needs for training data. Third,

through the analysis of the variability of human judg-

ment of perceived dominance in our corpus, we define

and study a set of dominance estimation tasks (most-

dominant person, least-dominant person) that allow us to

objectively quantify the difficulty of each task, as well

as the variation in performance as human performance

itself varies. Our results highlight a number of relevant

issues, including the robustness of basic audio features,

the power of some visual activity cues, and the overall

advantages of simple approaches. Our best methods are

able to achieve 91.2% (resp. 83.9%) accuracy for the

classification of the most (resp. least) dominant person

in a meeting. To our knowledge, this work constitutes the

most detailed study on automatic modeling of dominance

in small group meetings from audio and visual activity

cues to date.

The paper is organized as follows. Section II reviews

the literature on dominance in social psychology and on

computational approaches related to our work. Section

III presents the components of our work. Section IV

describes the data, its annotation process, and the def-

inition of the dominance classification tasks. Section V

presents the audio and visual cues. Section VI presents

our models for estimating dominance and describes the

experimental protocol. Sections VII and VIII present and

discuss the results for the studied dominance classifi-

cation tasks. Section IX summarizes the finding of our

work and provides some concluding remarks.

II. RELATED WORK

In the next subsections, we summarize the most rel-

evant work in social psychology and social computing

related to our own.

A. Dominance in social psychology

Dominance is a fundamental construct in social inter-

action [4]. In social psychology, dominance is often seen

in two ways, “as a personality characteristic (trait) and to

indicate a person’s hierarchical position within a group

(state)” [28] (pp. 421). Although dominance and closely

related terms like power, status, and influence have mul-

tiple definitions and are often used as equivalent, many

social psychologists advocate for a clearer distinction,

power being ”the capacity to produce intended effects,

and in particular, the ability to influence the behavior of

another person” [13] (pp. 208), and dominance being a

set of “expressive, relationally based communicative acts

by which power is exerted and influence achieved”, “one

behavioral manifestation of the relational construct of

power”, and “necessarily manifest” [13] (pp. 208-209).

The study of dominance has spanned several decades

of work in psychology and is obviously too large to

review here (for recent accounts, see [4], [13]). However,

two main threads of work are key to the development

of automated dominance modeling approaches, as both

justification and inspiration: the existence of specific

social cues used by people to express dominance in con-

versations, and the ability to correctly infer or perceive

dominance by observers of an interaction using such

cues.

The first aspect is rich, and has been widely studied.

Both verbal and nonverbal cues are indicators of domi-

nance. Being the primary interest of our work, we focus

on nonverbal cues, which are known to be effective in

predicting behavioral outcomes. Directly related to our

work, nonverbal cue categories of interest include vocalic

and kinesic [13]. Vocalic cues involve amount of speak-

ing time (or length) [28], speech loudness (or energy),

speech tempo, pitch, vocal control, [13], and interrup-

tions [3]. Among these, speaking activity as measured

by speaking length has shown to be a particularly robust

cue to predict dominance [28]. Kinesic cues include

body movement, posture, and elevation, and gestures,

facial expressions, and eye gaze [13]. In particular, it has

been found that, regarding body movement, dominant

people are normally more active than non-dominant

people (the former move more and with a wider range

of motion, the latter tend to be more limited in their

amount and range of body activity), and that gestures

that accompany speech are positively correlated with

dominance [4], [12]. This suggests that visual activity

(and in particular, activity that correlates with speaking

activity) are strong cues for predicting dominance. It

should be clear that, although some of the above cues

could be measured from audio and visual sensor data
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with existing automatic techniques, their corresponding

performance and computational complexity vary rather

widely. In our work, we focus on features that are easily

extracted and computationally efficient.

The second aspect is also crucial: the fact that people

can correctly decode dominance (whether as participants

of an interaction or as external observers) provides

support for both the expectation of producing reliable

human annotations and the hope of designing methods

for automatic analysis. The literature here is also rich.

Twenty-five years ago, Dovidio et al. showed that people

can systematically decode patterns of visual dominance

displayed by others [11]. It has been also found that

participants and external observers present differences

in their perception of dominance [13]. For automatic

approaches, this is important for manual data annotation

(first-party vs. third-party) in order to generate ground-

truth for training purposes. As Dunbar and Burgoon

state: “Perhaps coders’ perception of dominance corre-

spond more closely with objective measures of verbal

and nonverbal dominance than those of participants

themselves... However, the coders’ observations are lim-

ited to the behaviors in a particular interaction, whereas

participants are privy to the ongoing interaction that is

part of a continuing relationship. Thus, as with many

other findings, whose perception you trust depends on

what question is being asked.” [13] (pp. 228). We believe

the third-party option to be an adequate approach for the

questions addressed in this paper.

B. Dominance in social computing

Previous research on automatic dominance modeling

can be categorized based on the specific group interac-

tion setting, the addressed task, and the technical imple-

mentation, including both cues and dominance models.

All of the works discussed below studied small groups

recorded with multiple cameras and microphones.

For a debating game setting, Basu et al. [2] used

the influence model (IM) - an unsupervised Dynamic

Bayesian Network (DBN) that models a group as a

set of Markov chains, each of which influences the

others’ state transitions - to determine the degree of

influence a person has on the others on a pair-wise basis.

Both vocalic cues (manually labeled speaker turns and

automatically extracted speaker energy and voicing in-

formation) and kinesic cues (region-based motion energy

derived from pre-defined regions and skin-color blobs)

were used. While promising results were presented, this

work neither studied the impact of individual features nor

systematically evaluated the performance of the resulting

system.

On a small set of meetings from the M4 (MultiModal

Meeting Manager) and AMI (Augmented Multi-party

Interaction) corpora, Rienks et al. [26] studied a su-

pervised approach based on Support Vector Machines

(SVMs). The addressed task was three-way classification

of the participants’ dominance level (high, normal, low).

Audio-only features derived from manually annotated

data were used, and included a combination of nonverbal

(e.g. speaker turns, speaking length, floor grabs) and

verbal cues (e.g. number of spoken words). However,

no study of the annotation quality was conducted, and

so a clear understanding or the sources of complexity

of the data was missing. Furthermore, labeling the data

with a predefined number of dominance levels is, to some

extent, arbitrary, and a study of the effect of these choices

on the obtained was not done. Rienks et al. [25] extended

this approach to a subset of the AMI corpus where

the dominance judgements came from the participants

themselves.

Finally, Otsuka et al. [22] proposed, following the

ideas of [2], to quantify pair-wise influence from auto-

matically estimated vocalic and kinesic mid-level cues

(speaking-turn and gaze patterns, respectively), com-

puted in turn with a complex DBN that integrates low-

level features. While the proposed influence model is

simple, and the proposed features are conceptually ap-

pealing, neither an objective evaluation nor a comparison

to previous approaches were conducted in this work. Our

work substantially extends previous research in several

ways. First, unlike [2], [22] , we conduct a systematic

study of both vocalic and kinesic features and dominance

models on a common data set, and present a detailed

objective evaluation of the performance of single- and

multi-modal cues, and of unsupervised and supervised

learning approaches. Second, the specific research tasks

we study are distinct, and so complementary, to the ones

studied in all previous work. Third, unlike [25], [26]

we introduce a set of novel visual activity cues, distinct

from those in [2], [22] and computed in the compressed

domain with low computational cost. Fourth, unlike [2],

[25], [26] , we rely on fully automatically extracted

features, and in this sense the presented work is closer to

‘what is achievable using computers’. Finally, unlike all

previous work, we analyze the annotation of perceived

dominance by human judges and are thus able to analyze

the implications that the variation of human perception

has on the performance of our automatic approaches. A

preliminary version, discussing a small part of our work

presented here, was reported in [17].



4��� ���
Fig. 1. Flow diagram of our approach.

III. OUR APPROACH

Figure 1 shows a block diagram of the structure of

our work:

• (a,b): Section IV-A. We use meeting data from the

publicly available AMI corpus [5], where multiple

microphones and video cameras have been used for

audio and video data capture.

• (d): Sections IV-C, IV-B. We generated a detailed

ground truth annotation of the perceived dominance

for each individual in the meetings using multiple

human judgments. Through a study of the annotator

agreement, we define two sub-tasks to observe

the effect on the performance of the dominance

models when increased variability in the perception

of dominance was present.

• (c): Section V. From the raw audio and video data,

we derive features which are used to characterize

certain nonverbal behaviors. Both the audio and

video features have been treated similarly for com-

parison of the two modalities.

• (e-f): Section VI. Two models were considered for

estimating dominance; one unsupervised and one

supervised. The supervised approach was used for

single as well as multi-modal fusion, which allowed

us to study the contributions of the audio and video

cues to the dominance estimation performance. We

evaluated the performance of the models using

both hard and soft evaluation criteria, where the

latter accounted for the amount of variability in the

ground truth annotations.

In summary, our work studies both the underlying vari-

ability in perceived dominance by human annotators,

and systematically analyzes the objective performance

of single and multi-modal dominance estimation models

for a number of dominance classification tasks.

IV. MEETING DATA AND DOMINANCE TASKS

A. Meeting Data

We use meetings from the AMI corpus [5] which were

carried out in the meeting room shown in Figure 2. The

room contains a table, slide screen, and white board.

A circular microphone array containing eight evenly

distributed sources is set in the middle of the table,

Fig. 2. Plan view of the meeting room set up.

and one with four microphones is set at the ceiling.

Participants were also asked to wear both headset and

lapel omni-directional microphones, which were attached

via long cables to enable freedom of movement around

the room. Three cameras were mounted on the sides and

back of the room to capture mid-range and global views,

respectively, while 4 additional cameras mounted on the

table captured individual visual activity only, as shown

in Figure 3.

Fig. 3. Examples of the seven camera views available in the meeting

room. The top row shows the right, centre and left cameras while the

bottom row shows the view from each of the close up cameras.

From the AMI data, a subset of five exclusive team

of participants were selected for our meeting data. Each

team consisted of 4 participants, who were given the task

of designing a remote control over a series of meeting

sessions. The level of previous acquaintance among team

members varied from being completely unacquainted to

knowing each other well. Each participant was assigned

distinct roles: ‘Project Manager’, ‘User Interface spe-

cialist’, ‘Marketing Expert’, and ‘Industrial Designer’.

During each session, the team was required to carry out

certain tasks, such as a presentation on particular subjects

related to the task, or a discussion about a particular

aspect. To encourage natural behaviour, the meetings

were not scripted and the teams met over several sessions

so that they achieved the common goal.
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B. Annotating the data

From the AMI data, 11 meeting sessions varying from

15 to 35 minutes were divided into 5 minute segments

for ground truth annotation so that a total of 59 meeting

segments were used. The segments were chosen to be 5

minutes long, rather than the original full meetings, since

this provided more data points for training and testing.

There is also evidence that people need a relatively small

amount of time to make accurate judgments about the

behavior of others [1].

A total of 21 annotators were used and were split into

groups of 3 so that each group always annotated the

same segments. The annotators were shown a video with

views from the side and rear cameras which are shown

in the top row of Figure 3. For a given meeting, each

annotator viewed only one five-minute segment (in other

words, an annotator never judged more than one segment

of the same session). Annotators were requested to judge

a person’s dominance based only on the evidence within

each meeting. Importantly, annotators were given neither

a prior definition of dominance, nor were told what

specific verbal or nonverbal cues to look for in order

to make their judgments. Instead, they were requested

on completion of the annotations, to provide a free form

written description of the personal criteria they used to

decode dominance.

For each meeting segment (simply called meeting

from here on for convenience), annotators were asked

to rank the participants, from 1 (highest) to 4 (lowest),

according to their level of perceived dominance. As

well as an absolute ranking, annotators were also asked

to rank proportionately by distributing a total of 10

units among the participants, where more units signi-

fied higher dominance. To identify segments where the

rankings were difficult to allocate, annotators were asked

about their confidence in their absolute and proportionate

rankings on a seven-point scale. Then, annotators were

requested to ascertain specific characteristics of each

participant such as their degree of activity, timidness,

and talkativeness, also on a seven-point scale.

C. Analysis of the Annotations

From the human annotations, we wished to discover

whether there was significant inter-annotator agreement

across all meetings. Initial analysis of the meeting

data indicated that 12 out of 59 meetings showed full

agreement for all 4 absolute rankings of each meeting.

This was clearly not enough for a fair representation of

dominant behaviour for our experiments. Therefore we

decided to relax the agreement condition by considering

only the task of estimating the most dominant or the least

dominant person. A significant number of the meeting

segments (34) showed full agreement of the most domi-

nant person, i.e. all the annotators agreed on the most

dominant participant. Furthermore, the corresponding

self-reported average confidence for the annotation for

these meetings was 1.7 (where 1 represents the highest

confidence and 7 represents the lowest). This subset

represents almost 3 hours of meeting data where the

agreement and confidence of the annotators was high.

An additional observation of interest is that in 24 out of

34 cases, the most dominant person who was chosen by

the annotators played the ‘project manager’ role.

We conducted further analysis and found that there

were 23 additional meetings where 2 out of 3 annotators

agreed on the most dominant person, and 54 meetings

where atleast two out of the three annotators agreed

on the least dominant person. These values and the

corresponding average self-reported confidence levels are

shown in Table I. This subset contains a larger intrinsic

variation in the perceived dominance by human judges.

Finally, a similar analysis showed that there were 31

meetings with full agreement of the least dominant per-

son. Similar to the most dominant case, the confidence

decreases as the variability of the data-sets increases (see

Table I). It is interesting to note that the confidence in

the annotation of the least dominant person was always

less than that of the corresponding experiment in the

most dominant case. Also, the decrease in confidence as

the variability of the data set increased was greater for

the least dominant case compared to the most dominant

case. We speculate that the behaviour of less dominant

people tends to be more difficult to observe since they

tend to speak and move less than dominant people [13].

Following the analysis of the annotations, we decided

to define a number of dominance classification tasks, one

for each of the different subsets discussed above. These

are summarized in Table I below. Within each dominance

task there are two sub-tasks that correspond to meetings

where there is (i) Full agreement among annotators who

labeled the same meeting, and (ii) Majority where at

least 2 out of the 3 annotators agreed.

V. AUDIO AND VISUAL NONVERBAL CUES FOR

DOMINANCE MODELING

In order to measure the dominant behaviour of people

in meetings, we followed the social psychology literature

and hypothesized that activity levels are correlated with

dominance. Here we chose to represent activity in terms

of audio and visual cues. From the audio sources, we

adapted existing analysis techniques to characterize the

speaking activity of the meeting participants. From the
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Dominance Esti-

mation Task

Sub-Tasks Average Annota-

tor Confidence

Number of

Meetings

Proportion of To-

tal Meetings (%)

Most Full-agreement 1.74 34 57.6

Majority-agreement 1.85 57 96.6

Least Full-agreement 2.11 31 52.5

Majority-agreement 2.4 54 91.5

TABLE I

DOMINANCE TASKS AND CORRESPONDING DATA-SETS.

video data, compressed-domain features were extracted

from multiple cameras to characterize visual activity.

More details are described in the following subsections.

A. Audio cues

Audio cues were extracted from the four close-talk

microphones attached to each of the participants (one

per person). Firstly we considered time-varying aspects

of the speech.

Speaking Energy: The starting point for audio feature

extraction is to compute a speaker energy value for each

participant, using a sliding window at each time step as

described in [33]. Speaking energy was extracted using

the root mean square amplitude of the audio signal over

a sliding time window for each audio track. A window

of 40 ms was used with a 10 ms time shift. For our

experiments, the final signal was sub-sampled to a frame

rate of 5fps.

Speaking Status: From the speaking energy, a binary

variable was computed by thresholding the speaker en-

ergy values. This indicates the speaking / non-speaking

(1/0) status of each participant at each time step.

Then we considered features accumulated from the entire

conversation. These features provided a simple way of

quantifying the relative opportunities that participants

had to speak. The following list summarizes the features

used for our study.

• Total Speaking Energy (TSE): Speaker energy

accumulated over the entire meeting. This feature

follows the findings in psychology that speaker

energy is a manifestation of dominant behavior [13].

It is to be noted that the TSE feature captures how

much a participant speaks as well as how loud he

speaks, and not just how loud he speaks.

• Total Speaking Length (TSL): This feature con-

siders the total time that a person speaks [28]

according to their binary speaking status.

• Total Speaking Turns (TST): A speaking turn

is the time interval for which a person’s speaking

status is active. The total number of speaker turns

was accumulated over the entire meeting for each

participant.

Several features were then derived to capture more

meaningful characteristics of each person’s speaking

activity.

• Speaking Turn Duration Histogram (SDHist):

The set of all turn durations is accumulated into

a turn distribution or histogram. In all cases, we

considered the speaking turn duration histogram

with 11 bins, such that 10 bins were equally spaced

at one-second intervals, and the last bin included

all turns of size greater than 10 seconds for every

participant. The bins were chosen in this way to

primarily distinguish short turns (some of which are

likely to be back-channels) from longer utterances.

Empirically, we also found that increasing the num-

ber of bins did not lead to significant differences in

performance.

• Total Successful Interruptions (TSI): This feature

encodes the hypothesis that dominant people inter-

rupt others more often [3]. The feature is defined

by the cumulative number of times that speaker

i ∈ {1, 2, 3, 4} starts talking while another speaker

j ∈ {l : l 6= i} speaks, and speaker j finishes his

turn before i does, i.e. only interruptions that are

successful are counted.

• Total Speaking Turns without Short Utterances

(TSTwoSU): This is a variation of the TST feature,

computed as the cumulative number of turns that a

speaker takes such that the speaker turn duration is

longer than one second. The goal is to retain only

those turns that are most likely to correspond to

‘real’ turns, eliminating all short utterances that are

likely to be back-channels.

B. Visual cues

In order to capture visual motion activity efficiently,

we leverage the fact that meeting videos are already

in compressed form to extract visual activity features

at a much lower computational cost. These features

are generated from compressed-domain information such

as motion vectors and block discrete-cosine transform

(DCT) coefficients that are accessible at almost zero cost

from compressed video [29], [31]. In our data set, there
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(a) Original close-up view (b) Motion vectors

(c) Residual coding bitrate (d) Detected skin blocks

Fig. 4. Illustration of compressed domain features (Best viewed in

color).

is a camera taking a close-up shot of each participant,

as shown in the bottom row of Figure 3. Each of these

video streams has already been compressed by a MPEG-

4 encoder with a group-of-picture (GOP) size of 250

frames and a GOP structure of I-P-P-..., where the first

frame in the GOP is Intra-coded, and the rest of the

frames are predicted frames [8].

Figure 4 summarizes the various compressed domain

features which can be extracted cheaply from com-

pressed video. In particular, we consider the use of the

motion vector magnitude (see Figure 4(b)) and the resid-

ual coding bitrate (see Figure 4(c)) to estimate visual

activity level. Motion vectors, illustrated in Figure 4(b),

are generated from motion compensation during video

encoding; for each source block that is encoded in a

predictive fashion, its motion vectors indicate which

predictor block from the reference frame (in this case

the previous frame for our compressed video data) is to

be used. Typically, a predictor block is highly correlated

with the source block and hence similar to the block to

be encoded. Therefore, motion vectors are usually a good

approximation of optical flow, which in turn is a proxy

for the underlying motion of objects in the video [8].

We use the motion vector magnitude as one measure of

visual activity in this work.

After motion compensation, the DCT coefficients of

the residual signal, which is the difference between the

block to be encoded and its prediction from the reference

frame, are quantized and entropy coded. The residual

coding bitrate, illustrated in Figure 4(c), is the number

of bits used to encode this transformed residual signal.

While the motion vector captures gross block translation,

it fails to fully account for non-rigid motion such as lips

moving. On the other hand, the residual coding bitrate is

able to capture finer motion, since a temporal change that

is not well modeled by the block translational model will

result in a residual with higher energy, and hence require

more bits to code it. In combination with the motion

vector magnitude, the residual coding bitrate provides

complementary evidence for visual activity.

For each meeting participant, we detect when they are

in view. To do this, we implement a Gaussian Mixture

Model (GMM) based skin-color block detector [21]

that can detect face and hand regions. This works in

the compressed domain with chrominance DCT DC

coefficients and motion vector information, and produces

detected skin-color blocks such as in Figure 4(d). We

then threshold the number of skin-colored blocks in the

close-up view to detect when a participant is seated. If

a participant is not detected in a frame of the close-up

view, he is assumed to be presenting at the projection

screen, which is a reasonable assumption in the meeting

data. We also assume that a person who is presenting is

visually active.

If the participant is visible in the close-up view, we

measure his visual activity by using either or both of

motion vector magnitude and residual coding bitrate.

To meaningfully compare motion vector magnitudes and

residual coding bitrate, we normalize the quantities.

Consider computing a normalized visual activity from

motion vector magnitude for participant i in frame t.
We first calculate the average motion vector magnitude,

vi,t, over all blocks in each frame. For each participant

in each meeting, we find the median of the average

motion vector magnitude, ṽi, over all frames where the

participant is in the close-up view. We also compute the

average of the medians, v̄, of all the participants. Nor-

malization is then performed where the visual activity

level for participant i in frame t, vR
i,t, is computed by

normalizing as follows:

vR
i,t =

{

vi,t

2v̄
vi,t < 2v̄

1 vi,t ≥ 2v̄
(1)

The visual activity level from the residual coding bitrate,

rR
i,t, is also normalized in a similar fashion.

We use the average of visual activity from motion

vector magnitude, vR
i,t, and from residual coding bitrate,

rR
i,t, as another estimate of visual activity. This allows

us to quantify both rigid and non-rigid local motion.

The combined estimate of visual activity for the ith
participant in frame t, mR

i,t, is given by:

mR
i,t =

1

2

(

vR
i,t + rR

i,t

)

(2)

After raw visual activity extraction in order to fa-

cilitate the comparison between audio and visual cues,
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visual cues are derived in an analogous fashion to

those for audio cues as described in Section V-A. More

specifically, the following cues were derived from the

raw motion activity values:

• Visual Activity. A binary variable computed from

compressed-domain video that indicates whether a

participant is visually active or inactive at each time

step (extracted at 25 frames per second). Three

variations were tested, based on Motion Vectors

(Vector), Residual Coding Bitrate (Residue), and the

average of both features (Combo).

• Total Visual Activity Length (TVL). The accumu-

lated motion activity for a person can be of three

types, depending on whether it is estimated from

the motion vectors, the residual coding bitrate, or

their combination.

• Total Visual Activity Turns (TVT). This feature

quantifies the number of times someone is contin-

uously moving without breaks. This is analoguous

to the total speaking turns feature defined in Sub-

section V-A.

• Visual Activity Turn Duration Histogram (VD-

Hist). This tries to represent the motion turn char-

acteristics of each participant. It is similarly defined

as the speaking turn duration histogram.

• Total Visual Activity Interruptions (TVI). This

captures when one person starts and remains visu-

ally active while another stops. While there may

not be a meaningful notion of visual activity inter-

ruption in daily life, our hypothesis is that visual

activity is correlated with speech activity such that

speaker interruptions might be reflected in TVI as

well. It is similar to the TSI feature defined in

Subsection V-A.

Table II provides a summary of all the audio and video

cues and their associated acronyms.

Glossary of Feature Acronyms

Total Speaking Energy TSE

Total Speaking Length TSL

Total Speaking Turns TST

Total Speaking Turns without Short Utterances TSTwoSU

Total Speaking Interruptions TSI

Turn Duration Histogram SDHist

Total Motion Length TVL

Total Motion Turns TVT

Total Motion Interruptions TVI

Motion Turn Duration Histogram VDHist

TABLE II

GLOSSARY OF FEATURE ABBREVIATIONS

VI. MODELS FOR DOMINANCE ESTIMATION

In this section, we use a simple unsupervised model

and a supervised model based on SVMs as prototypical

models for dominance estimation. Our goal was to

understand the relative predictive power of single cues

for the dominance estimation task using the unsupervised

model, and to explore whether cue fusion, in the SVM

setup, could be useful. Our models, henceforth, are

representative, rather than exhaustive.

A. Unsupervised model

In this model, audio or visual cues are accumulated

over the duration of the meeting. The unsupervised

model computes either the largest or smallest accu-

mulated value of each feature, depending on whether

we are estimating the most or least dominant person,

respectively. That is, we hypothesize that someone is

likely to be more dominant if they speak, move, or

grab the floor the most out of all the participants in

the meeting. While this model is simple, it showed

promising performance in our preliminary work [17].

Similarly, we use the smallest accumulated value of

the feature to identify the least dominant person in the

meeting. We evaluate the model by comparing the label

of the person who is estimated automatically with that

of the ground truth annotated data.

B. Supervised Model

We also use a supervised method to investigate both

single and multi-modal cue fusion. This allowed us to

observe more closely, which cues were complementary

or correlated and led to some very interesting findings

about the comparative importance of the activity cues for

robust dominance estimation. In order to make the cues

comparable across meetings, we normalized them before

fusion. The supervised approach uses a two-class SVM

classifier to discriminate between the ‘most’ and ‘non-

most’ dominant participants in each meeting. A second

two-class SVM is trained to discriminate between the

‘least’ and ‘non-least’ dominant person. A Gaussian ker-

nel was employed for both experiments. For each task,

the SVM score produced for each person’s features are

ranked. The rankings are then used to determine which

participant is assigned the most (resp. least) dominant

person label, by considering the point which is furthest

from (resp. closest to) the class boundary. This procedure

generates exactly one most (resp. least) dominant person

per meeting. Note that as stated in Section III, this is

different from the work in [26], [25] where each person

independently was labeled as ‘high’, ‘middle’ or ‘low’.

The model was evaluated using a leave-one-out approach

for each combination of input features.
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Fig. 5. Flow diagram showing our experimental protocol.

C. Experimental Protocol

Figure 5 shows a summary of the experiments that we

carried out. As shown in Fig. 5(a), the experiments were

split into two tasks: the estimation of the most dominant

and the least dominant person.

For each of the tasks, we considered the set of experi-

mental conditions illustrated in Figure 5 (b-c). Firstly,

we considered each modality separately for both the

supervised and unsupervised approaches. The supervised

approach also allowed us to compare the performance

of audio-visual feature fusion with combining features

from the same modality. For each dominance task,

we also considered different evaluation criteria, which

accounted for increasing variability in the ground truth

annotations, where hard (EvH) or soft (EvS) scoring

criteria were used ( Figure 5 (c)). The criteria themselves

are explained in more detail in Subsection VII-B. For

each of the two dominance tasks that we investigated, we

consider two sub-tasks; full and majority agreement, as

illustrated in Table I. It is important to note that for each

model and evaluation criterion, the overall performance

is calculated based on the estimation for each meeting

rather than for each participant. The results are reported

as classification accuracies, and discussions regarding the

statistical significance of the results are summarized in

Section IX.

VII. CLASSIFYING THE MOST-DOMINANT PERSON

A. Full-agreement data set

1) Audio cues: Table III shows the results obtained

using audio cues. Using the unsupervised model with

single features, the total speaking length (TSL) was most

effective at 85.3% classification accuracy. This result

is important not only because of the simplicity of this

automated technique but also because it confirms the

findings in social psychology [28], [13] about speaking

time being a strong cue for dominance perception by

humans. The total speaking energy (TSE) also performed

well. While the total number of speaking turns (TST) did

not perform as well, removing short utterances, some of

which likely correspond to back-channels, (TSTwoSU),

performed as well as TSL. Finally, the total number of

successful interruptions (TSI) did not perform as well

on our meeting data set. All these audio cues performed

significantly better than chance (which would result in

25% classification accuracy).

Dominance Model Features Class. Acc.(%)

TSL 85.3

TSE 82.4

Unsupervised TST 61.8

TSI 61.8

TSTwoSU 85.3

SDHist 82.4

TSE, TST 88.2

Supervised TSL, TSE, TST 88.2

TSE, TST, TSI 88.2

TSL, TSE, TST, TSI 88.2

SDHist, TSE, TST, TSI 91.2

Random Guess None 25.0

TABLE III

PERFORMANCE OF AUDIO CUES FOR MOST-DOMINANT PERSON

WITH FULL-AGREEMENT DATA.

The results with the supervised model trained on

multi-dimensional audio cues are shown in Table III.

A selection of the best performing feature combinations

are displayed. We first observe that the Speaking Turn

Duration Histogram (SDHist) did not perform better than

the simple speaking length. No variation of performance

for SDHist was observed if we discarded short turns.

A closer look at the meetings where TSL or TSE

failed indicated that in some cases speaking turns or

successful interruptions predicted the most dominant

person correctly. This suggested that using the features

jointly might improve performance. In practice, fusing

these features in the supervised learning setup proved

beneficial. We observe that although TST is not very

discriminative as a single feature, it helps when com-

bined with TSE alone or with TSE and TSL, yielding a

3% accuracy improvement. The best feature combination

(SDHist, TSE, TST, TSI) yield an absolute performance

improvement of 6% with respect to the performance

obtained with TSL, with 91.2% accuracy.

A direct comparison of these results with the exist-

ing literature on automatic dominance detection is not

possible as the addressed tasks , the data sets, and the

experimental protocols used in each case are different.

However, a few observations are still pertinent. First,

both our results and [25] suggest that benefits can be

obtained with audio fusion. Second, both speaking length

and number of turns appear in our work and in [25] as

part of the best performing feature combinations, an im-

portant difference being that, unlike [25], in our case all

features are fully automatic. Third, the best performance

figure obtained for our two-class task (around 90%) is

considerably higher than the best reported performance

obtained for the three-class problem in [25] (around
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70%). Hypothetical reasons for this include the larger

number of classes but also the fact that the data in

[25] was not separated using any knowledge about the

variability in perceived dominance. We study the case

of higher variability in the human judgments in Section

VII-B.

2) Visual cues: Table IV shows the results obtained

with visual cues. Regarding single cues in the unsu-

pervised setting, the total visual activity length (TVL),

which quantifies how much people move, is consistently

the best visual feature (76.5% accuracy), and seems to be

the most robust. Motion turns (TVT) quantify how often

people move. In practice, we observe that these features

are generally ‘noisy’, presenting spikes of very short

duration. However, removing short turns and leaving

only those that should correspond to intentional motion

(and that likely correspond to conversational activity too)

results in the same performance as TVL. This is an inter-

esting finding that seems to be supported by evidence in

social psychology [4]. It was interesting to observe that,

for TVL and TVT, the residual bitrate option performed

slightly better than using the motion vectors; for TVT,

the combination worked the best. The motion vector and

residue cues capture different information. The former,

being derived from block motion compensation in video

compression, is better at capturing translational motion.

The latter is related to the amount of non-rigid motion

in the close-view cameras, including finer visual activity

that is usually not captured by motion vectors. In con-

trast, TVI is not an effective cue: the results indicate that

the concept of visual activity interruption (i.e., overlap)

does not hold for video as clearly as it does for audio.

As with audio cues, all the results with single video cues

are considerably better than a random guess.

Compared to single audio cues, the best results with

single visual cues degrade by 8.8% (76.5% vs. 85.3%).

This is interesting since from the free-form verbal de-

scriptions of how annotators perceived dominance, we

found that about half of them mentioned the use of how

much a person talks. In addition, annotators mentioned

audio or language-based cues more than those related to

visual activity. Despite this, it is remarkable that without

using the audio at all, the most dominant person can still

be correctly estimated in more than 75% of the cases

with easily computable nonverbal visual cues. Further-

more, it is interesting to note that the use of compressed-

domain cues, as compared with similar visual activity

cues extracted in the pixel domain, did not lead to any

classification performance loss (for more details, please

refer to [31]). Also note that TVL performed better than

some single audio cues. Figure 6(a) plots the values of

TSL and TVL for all meetings in the full-agreement

data set. The red crosses correspond to the positive

examples (most-dominant) and the black circles to the

negative ones. The figure indicates that there is a degree

of correlation between the visual activity and speaking

activity, but that the discrimination seems to be higher

for the audio case.

For the multiple feature case, a small selection of

the best performing combinations is also shown in Ta-

ble IV. The visual activity histogram (VDHist) used

in isolation was not a very effective cue, regardless

of whether short turns were filtered out or not. The

combination of the two best performing single features

(TVL and TVT) did not improve performance over the

single cues. However, when TVL, TVT, and VDHist

were combined, we observe an small improvement of

3% (79.4% accuracy), suggesting that feature fusion in

the supervised approach is also beneficial for visual

cues. Overall, the best achieved performance with visual

cues and supervised learning is 11.8% worse than the

corresponding best performance for audio cues (79.4%
vs. 91.2%), compare Tables III and IV.

Dominance

Model

Features Class.

Acc.(%)

TVL (Vector) 73.5

TVL (Residue) 76.5

TVL (Combo) 73.5

TVT (Vector) 67.6

Unsupervised TVT (Residue) 70.6

TVT (Combo) 76.5

TVI (Vector) 52.9

TVI (Residue) 52.9

TVI (Combo) 44.1

VDHist (Vector) 58.8

VDHist (Residue) 61.8

VDHist (Combo) 55.9

TVL, TVT(Combo) 70.6

Supervised VDHist, TVL (Residue) 73.5

VDHist, TVT (Residue) 76.5

VDHist, TVL, TVT (Residue) 79.4

TABLE IV

PERFORMANCE OF VISUAL CUES FOR MOST-DOMINANT PERSON

TASK WITH FULL-AGREEMENT DATA.

3) Audio-visual fusion: A selection of results ob-

tained with audio-visual cues and the supervised ap-

proach are shown in Table V. For the visual cues, we use

the Residue option, which was overall the best one for

the visual-only case. We also reproduce, for convenience,

some of the results using the audio features displayed in

Table III. Unfortunately, audio-visual fusion did not yield

any further improvement in classification performance

compared to using the audio-only cues. The obtained

performance is often better than the visual-only case but

always worse than or equal to the audio-only case. This
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holds in particular for the single-cue case, e.g. the total

speaking and visual activity lengths (TSL, TVL), and for

the best audio feature combination (SDHist, TSE, TST,

TSI). The best obtained performance remains 91.2%.

Note that the differences in performance between the

best methods are not statistically significant at the 5%
level using a standard binomial test, as the number of

data points is relatively small. Nevertheless these results

show that such features and feature combinations are

worth exploring. Figure 7 summarizes the best results

obtained for single and multi-modal cases. The correla-

tion between the best audio and visual cues is a likely

explanation to the lack of success with audio-visual

fusion.

Feature Class. acc. (%)

TSL, TVL 79.4

TSE, TVL 70.6

TST, TVT 76.5

TSL, TVL, TVT 79.4

SDHist, TSE, TST, TSI, TVL 91.2

SDHist, TSE, TST, TSI, VDHist 91.2

SDHist, TSE, TST, TSI, VDHist, TVL 82.4

SDHist, TSE, TST, TSI, VDHist, TVL, TVT 82.4

TABLE V

PERFORMANCE OF AUDIO-VISUAL CUES WITH

MOST-DOMINANT PERSON TASK WITH FULL-AGREEMENT DATA.

B. Majority-agreement data set

The second task addressed involves the 57-meeting set

where at least 2 annotators agree, which corresponds to

almost all the data (96%). This data set inherently has

more variability with respect to human perceptions of

dominance (as further suggested by the lower confidence

self-reported by the annotators as discussed in Section

IV). The evaluation of this task is therefore aimed at

analyzing the performance of models and cues in more

challenging conditions.

For evaluation, we used two different ways of comput-

ing classification accuracy. Let N denote the total num-

ber of meetings, and Ai and Bi be the most-dominant-

person ground truth labels corresponding to the ‘most-

voted’ (two votes) and ‘least-voted’ (one vote) cases,

respectively, for meeting i, 1 ≤ i ≤ N . Furthermore,

let n be the number of times the automatically predicted

most dominant person is Ai, and m be the number of

times the predicted most dominant person is Bi. A first

evaluation criterion, (called EvH for short) computes the

classification accuracy as n/N , and a second criterion

(called EvS), computes classification accuracy as (n +
m)/N . The hard criterion assumes that there is only one

correctly labeled most-dominant-person for each meeting

- the one corresponding to the majority vote by the

annotators - and is obviously the correct way to evaluate

performance on the full-agreement data set, as done

in the previous section. In contrast, the soft criterion

assumes that both the ‘most-voted’ and the ‘least-voted’

most-dominant-person labeled by the annotators for a

given meeting are correct, and thus the prediction of

either of them is considered as correct. This evaluation is

clearly less stringent, but it is nevertheless important to

observe the ability of the algorithms to predict either of

the two people perceived by annotators as being most-

dominant.

1) Audio cues: Table VI presents a selection of the

classification accuracy results obtained for audio cues.

For single cues and the unsupervised model, TSL and

TSTwoSU are the best performing features for both EvH
(77.2% and 75.5%, respectively) and EvS (84.2% for

both features). TSE is the third best performing feature,

and TST and TSI are not as effective. Interestingly, these

findings are consistent with the ones obtained for the full-

majority data set (compare to Table III). A consistent

decrease in performance (8.1% for TSL) is observed

for all cues which suggests that the inclusion of the

data that is intrinsically more ambiguous with respect

to perceived dominance results in a more challenging

task. On the other hand, the results obtained with the

soft criterion, which assumes that more than one person

can be most-dominant, brings the performance of most

features back to the same level they had for the full-

agreement data set, which indicates that in several cases

the methods guessed the ‘least-voted’ person as being

most dominant. The results for the supervised model and

fused audio cues also appears in Table VI. The selection

shown is a subset of those in Table III and includes the

best performing cases. We observe that, using the EvH
criterion, a few feature combinations performed at the

same level, but not better, than the best single cue. On

the other hand, using the EvS criterion, we observe that

the same feature combinations were capable of slightly

improving performance (a best performance of 87.7% for

the same feature combination that performed the best for

full-agreement data). Overall, the supervised approach

brought a moderate improvement over the much simpler

unsupervised case.

2) Visual cues: Table VII shows selected results ob-

tained with visual cues. Compared to the results obtained

for the full-agreement case (Table IV), many observed

trends hold: TVL and filtered TVT are the best perform-

ing single cues. TVI is a poor predictor, and overall

visual-only features perform worse than audio-only. Fur-

thermore, similar to the audio-only results in this section,

we observe a general decrease in performance with re-

spect to the full-agreement data set when using the EvH
criterion (for the best performing single visual cues, the
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Dominance

Model

Feature Class. Acc. %

EvH EvS

TSL 77.2 84.2

TSE 73.7 79

Unsupervised TST 54.4 64.9

TSI 52.6 64.9

TSTwoSU 75.5 84.2

TSL, TSE, TST 77.2 85.9

Supervised TSE, TST, TSI 75.4 84.2

SDHist, TSE, TST, TSI 77.2 87.7

TABLE VI

PERFORMANCE OF AUDIO CUES FOR MOST-DOMINANT PERSON

TASK WITH MAJORITY-AGREEMENT DATA.

absolute degradation is 6.3%). Furthermore, the results

obtained with the EvS criterion for the best visual cues

brings the performance back to the same level they had

for the full-agreement case. Finally, supervised learning

and multiple visual cues did not improve performance

over the simple unsupervised, single-cue model.

Class. Acc. %

Dominance

Model

Feature EvH EvS

TVL (Residue) 66.7 80.7

Unsupervised TVL (Combo) 64.9 80.7

TVT (Combo) 70.2 80.7

TVI (Combo) 47.4 61.4

TVL, TVT (Combo) 59.7 75.4

Supervised VDHist, TVL (Residue) 64.9 78.9

VDHist, TVL, TVT (Combo) 63.1 77.2

TABLE VII

PERFORMANCE OF VISUAL CUES FOR MOST-DOMINANT PERSON

TASK WITH MAJORITY-AGREEMENT DATA.

3) Audio-visual cues: The results for the best combi-

nations appear in Table VIII. All visual activity features

have been derived with the ‘residue’ option. We observe

that audio-visual fusion did not improve performance

over audio-only under either of the evaluation criteria.

This is shown in Figure 7. This result holds for both the

full-agreement and the majority-agreement data sets.

Feature EvH EvS

TSL, TVL, TVT 75.4 82.5

SDHist, TSE, TST, TSI, VDHist 75.4 84.2

SDHist, TSE, TST, TSI, VDHist, TVL, TVT 75.4 82.4

TABLE VIII

PERFORMANCE OF AUDIO-VISUAL CUES FOR MOST-DOMINANT

PERSON TASK WITH MAJORITY-AGREEMENT DATA.

VIII. CLASSIFYING THE LEAST-DOMINANT PERSON

In this section, we discuss our results for the least-

dominant person classification task. The experiments that

were carried out were identical to the most-dominant

case so the discussion in this section will be more brief.

We first conducted experiments on the least dominant

person task with full-agreement data (31 meetings) and

majority-agreement data (54 meetings). For the unsuper-

vised model, the person that corresponds to the lowest

proportion of the feature among all participants is clas-

sified as least dominant. The supervised model is trained

on the least vs. non-least dominant classes.

A. Full-Agreement data-set

1) Audio cues: The classification accuracy of the

cues under the unsupervised and supervised schemes are

shown in Table IX. The highest performance of 83.9%
was achieved by both the unsupervised and supervised

methods so there was no gain from fusing cues.

Like the equivalent case in Section VII-A, the TSI

feature performed the worst for the unsupervised case.

It was also interesting to see the increase in performance

between the TST and TSTwoSU features. This suggests

that the short turns were adding noise to the TST fea-

tures. This was similarly observed for the corresponding

set of results in Table III for the most dominant person

task.

Unlike the most dominant case, here there is a sig-

nificant reduction in performance for TSE compared to

TSL. We speculate that this is because the total energy

is much lower and therefore more sensitive to noise (i.e.

the signal-to-noise ratio is lower). TSL showed a slight

decrease in performance for estimating the least domi-

nant person, compared to estimating the most dominant

person. These results suggest that a similar trend will

also be observed with the visual cues; less dominant

people are less active, so their measured activity will be

more sensitive to noise. In addition, we note that some

annotators did comment on how it was more difficult to

rank passive participants than active ones.

Dominance

Model

Feature Class. Acc. (%)

TSL 83.9

TSE 67.7

Unsupervised TST 71.0

TSI 51.6

TSTwoSU 83.9

TSE, TST 80.7

Supervised TSL, TSE, TST 80.7

SDHist,TSE,TST 83.9

SDHist,TSE,TST,TSI 83.9

TABLE IX

PERFORMANCE OF AUDIO CUES FOR LEAST-DOMINANT PERSON

TASK WITH FULL-AGREEMENT DATA

2) Visual cues: Table X shows some selected results

from our experiments using only the visual cues for

the majority-agreement data-set. While in the equivalent
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results of the most-dominant task in Table IV, both

(TVL(Residue)) and (TVT(Combo)) had the best perfor-

mance, for the least-dominant task, only (TVT(Combo))

performed the best. This is likely to be caused by

the removal of the shorter turns, which account for

noisy measurements of the visual activity. However, TVT

might also eliminate significant amounts of true activity

for the most passive person. We also found that the

TVI feature performed less well in general. Overall, the

visual features are less discriminative than the audio

ones, and also less effective compared to the most-

dominant task. In terms of statistical significance, the

decrease in performance between the best audio and

video performance for the full-agreement case was not

statistically significant at conventional levels using a

standard binomial test. See Figure 7 for a comparison.

Dominance

Model

Method Class.

Acc.(%)

TVL(Vector) 54.8

TVT(Vector) 58.1

Unsupervised TVT(Combo) 64.5

TVI(Combo) 54.8

VDHist(Vector) 45.2

TVL, TVT(Combo) 45.2

Supervised VDHist, TVL(Vector) 45.2

VDHist, TVL(Combo) 48.4

VDHist, TVL, TVT(Vector) 45.2

VDHist, TVL, TVT(Combo) 54.8

TABLE X

PERFORMANCE OF VISUAL CUES FOR LEAST-DOMINANT PERSON

TASK WITH FULL-AGREEMENT DATA.

3) Audio-Visual Fusion: The audio-visual cues per-

formed similarly to the visual-only cues since the best

performing feature combinations still performed less

well than TSL or TSTwoSU, as shown in Table XI. In

general, the results using audio-visual features did not

perform as well as those of using audio cues. The drop in

performance when using video rather than audio features

was also observed with the most-dominant person task,

but was not as pronounced as in the least-dominant case.

Due to the low levels of visual activity of the least-

dominant participant, it is likely that it is more sensitive

to noise. In addition, we can see from Figure 6(b) that the

audio and visual activity are well correlated and therefore

not complementary.

B. Majority-agreement data-set

For this task, there was a total of 54 meetings, which

accounted for 91.5% of the total data. We show a

selection of performance results for this task in Table

XII. The best achieved results are also shown in Figure

7.

Feature Class.

Acc.(%)

TSL, TVL 77.4

TST, TVT 77.4

SDHist, TVL 80.7

SDHist,TSE,TST,TSI,VDHist, TVL, TVT 80.0

TABLE XI

PERFORMANCE OF AUDIO-VISUAL CUES WITH SUPERVISED

MODEL FOR LEAST-DOMINANT PERSON TASK WITH

FULL-AGREEMENT DATA. ALL MOTION FEATURES HAVE BEEN

DERIVED WITH THE ‘RESIDUAL’ OPTION.

Firstly, it was interesting to see that TSL was not

the feature that gave the best performance, though it

was ranked second behind TSTwoSU. This observation

suggests that the adding annotator variability and having

proportionately less observations in the captured signal

leads to a greater need for noise removal. Furthermore,

we found that the shorter turns were not a discriminative

feature for estimating dominance and it is likely that for

the least-dominant person, they would represent a larger

proportion of a person’s total speaking turns than that of

the most dominant person.

Increasing the variability in the data did not always

lead to a drop in performance. We also observed that

fusing the TVL feature with other features led to an

increased performance when the supervised model was

used. However, none of the feature combinations which

included visual activity cues could perform as well as

those of the audio activity.

Class. Acc. %

Dominance

Model

Features EvH EvS

TSL 59.3 75.9

TSTwoSU 68.5 83.3

Unsupervised TVL(Vector) 53.7 62.9

TVT(Combo) 48.1 63

TSL,TSE,TST,TSI 59.3 77.8

SDHist,TSE,TST,TSI 64.8 79.6

Supervised VDHist, TVL, TVT(Combo) 51.8 62.9

TSL, TVL 61.1 79.6

TSL, TVL,TVT 61.1 79.6

SDHist,TSE,TST,TSI,VDHist, TVL 61.1 75.9

TABLE XII

PERFORMANCE OF AUDIO, VIDEO AND AUDIO-VISUAL CUES FOR

LEAST-DOMINANT CLASSIFICATION TASK WITH

MAJORITY-AGREEMENT DATA.

IX. FINAL DISCUSSION AND CONCLUSION

Overall, our study has investigated how dominance

can be estimated by different audio and video cues, and

affected by annotator variability, estimation method and

the exact task involved. Our investigation suggests the

following:
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Audio cues. When taking the cue which performed

best in all categories, the audio cues always gave the

highest classification accuracy. We observed that TSL

gave the best results as a single feature, though was

second best for the task of estimating the least dominant

person when the data set had majority agreement. In

addition, TSTwoSU was found to be more robust to an-

notator variability by obtaining the highest performance

in both most and least dominance tasks. There was a

marked improvement in performance between the TST

and TSTwoSU features, indicating that much of the noise

in the TST feature was caused by the shorter turns, which

were not discriminative for our task. We also found

that while the SDHist feature was less effective on its

own, in all the highest single or multi-modality cases, it

was found to be complementary to other features. TSI

performed badly in general, suggesting that interruptions

are not always a good cue for dominance estimation. One

point to note, however, is that this cue was derived using

a coarse measure, which did not quantify the quality of

the interruption in terms of speaker overlap, for example.

Visual cues. We found that their performance was

never able to improve upon those of the best audio cues.

However, it was interesting to see that a comparison

of the performance of the single audio and video cues

(Figure 7) shows that the gap between modalities in some

cases is very small even though the visual cues are coarse

and fast to compute and the resulting features are noisy.

It was particularly interesting to observe that reasonable

performance was achievable in the most-dominant case

without having to listen to the conversations at all. There

were also some single cue cases where the visual cues

performed better than the audio cues. It was also relevant

to observe that VDHist was effective as a complementary

cue, leading to its use in all the best video and audio-

visual cue fusion results.

Audio-Visual Cues. In terms of audio-visual cue fu-

sion, we found that in some cases the feature combina-

tions matched the best performing audio-only cues, but

was never better. This can be explained by the overall

lower performance of the visual cues. One observation

we must make here is that the audio signal was extracted

from close-talk headset microphones while the video sig-

nal was captured from a much further distance from the

participants. It would be important to see how the results

using audio cues would change if more challenging audio

data from far-field microphones was used. Parallel work

using a single distant microphone to extract the total

speaking length has shown that there is indeed a decrease

in performance [16].

Full and Majority Agreement Data. From the two

evaluation criteria that were used for the data sets with

majority agreement, we found a systematic drop in

performance when comparing the performance of the

hard evaluation criterion with the full agreement case.

However, it was interesting to observe that with the soft

criterion, the performance in some cases was equivalent

to that of the corresponding full-agreement case.

Supervised and Unsupervised Models. It was interest-

ing to observe that while the best performance of 91.2%

for the estimation of the most dominant person was

obtained using the SVM method, the best performance

with the unsupervised model and a single cue was

already 85.3%. For the task of estimating the least dom-

inant person, the best performance was 83.9%, which

was obtained from using both the unsupervised and

supervised approaches. This is an interesting result since

the unsupervised model does not require training data

and has a much lower computational overhead compared

to the supervised model.

Most and Least Dominant Tasks. It was interesting to

observe that there was a consistent drop in performance

between the two tasks as shown in Figure 7. Closer

inspection also shows that there is a more significant

decrease in performance between the audio and video

cues for the least dominant task compared to that of

the most dominant. This is an interesting finding that

highlights the inherent increase in uncertainty when

trying to identify people who have a lower level of

activity. While the most dominant person in a meeting

might be considered the most active and therefore more

observable, finding the least-dominant person is closer to

identifying the most passive or someone with the least

observable cues. This seems to be reflected in the self-

reported annotator confidence values (see Table I). Such

a problem may be better solved with more sophisticated

visual cues where for instance attention can be measured.

Evaluation advantages and limitations. Our work has

produced novel evaluation resources (data annotation,

research tasks, and corresponding data sets) that build

upon and enrich the publicly available AMI meeting

corpus. We also plan to make these resources public.

Finally, as the size of the data set is relatively small,

many of the observed performance differences are not

statistically significant at conventional levels. In this

view, the results presented here need to be interpreted

with care, specially from the view of generalization.

While the social psychology literature has validated, over

multiple studies, the robustness of certain nonverbal cues

for dominance perception [28], similar work to ours

would have to be done in other scenarios to thoroughly

validate such cues in automatic systems, using larger and

varied data sets.
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(a) Most-dominant task (full

agreement)

(b) Least-dominant task (full

agreement)

Fig. 6. Scatter plots of the total speaking and visual activity length

where the red crosses show the ground truth annotated person with

the corresponding audio and visual cues, and the black circles show

the negative class in each case.

Future work. One of the limitations of our work is its

reliance on high-quality audio (derived from close-talk

microphones) to extract cues. We have taken initial steps

to address some of these limitations by investigating the

extraction of nonverbal cues (such as speaking turns)

from single distant microphones [16]. The results suggest

that the most-dominant person classification performance

degrades, as compared to the head-set microphones,

but the degradation is not drastic. We believe that the

extraction of audio nonverbal cues from far-field micro-

phones is a relevant area of future work. In the second

place, the nonverbal communication literature also refers

to various cues related to body-language as cues for

dominance (e.g. postures and gestures) and this would

be interesting to explore. In the third place, we plan to

address the dominance problem in terms of cliques rather

than dominant individuals since there are occasions when

multiple people can be perceived as similarly dominant.

Finally, the performance measures considered in this

paper are simply a few of the various possible options. In

the future, it would be interesting to examine the effect

of various cues on the speed of detecting dominance, or

other measures of importance to different applications.

Fig. 7. Comparison of the best performance values in each modality

and each dominance sub-task. A:Audio, V:Video, A.V:Audio-Visual.
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