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Abstract—Blind separation of convolutive mixtures is a very
complicated task that has applications in many fields of speech
and audio processing, such as hearing aids and man-machine
interfaces. One of the proposed solutions is the frequency-domain
independent component analysis. The main disadvantage of this
method is the presence of permutation ambiguities among con-
secutive frequency bins. Moreover, this problem is worst when
reverberation time increases. Presented in this paper is a new
frequency-domain method, that uses a simplified mixing model,
where the impulse responses from one source to each microphone
are expressed as scaled and delayed versions of one of these
impulse responses. This assumption, based on the similitude
among waveforms of the impulse responses, is valid for a small
spacing of the microphones. Under this model, separation is per-
formed without any permutation or amplitude ambiguity among
consecutive frequency bins. This new method is aimed mainly
to obtain separation, with a small reduction of reverberation.
Nevertheless, as the reverberation is included in the model, the
new method is capable of performing separation for a wide range
of reverberant conditions, with very high speed. The separation
quality is evaluated using a perceptually designed objective mea-
sure. Also, an automatic speech recognition system is used to test
the advantages of the algorithm in a real application. Very good
results are obtained for both, artificial and real mixtures. The
results are significantly better than those by other standard blind
source separation algorithms.

Index Terms—Blind source separation (BSS), reverberation, in-
dependent component analysis (ICA), speech enhancement.

1. INTRODUCTION

HE objective of source separation applied to sound
T sources is to obtain a set of signals approximating the
original sound sources, given a set of sound field measurements
[1]. When the mixture is produced inside an enclosed environ-
ment, the sound waves are reflected by every solid surface in
the room and, in this way, each microphone receives not only
the direct sound wave but also the reflections of all orders until
the energy of the source vanishes. This phenomenon, called
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reverberation, can be modeled as the output of a linear and time
invariant (LTT) system [2]. This is the well known problem of
cocktail party, where one is interested in the isolation of some
of the sources from several ones, after their mixture in a real
room. This kind of algorithms can be applied to all application
areas where the sources are remotely located respect to the
sensors, including hands-free communications, hearing aid
processing, dictation systems, man—machine interfaces, etc.

In the case of blind source separation (BSS), the separation
must be obtained without using (almost) any knowledge re-
garding the source characteristics nor the transmission media.
There are many approaches to try to solve this problem. Among
them, two have received an important interest in last years, one
based on the sparsity of the signals [3], [4] and the other using
the statistical independence among the sources [5]-[8]. The
first approach uses the property of sparsity in time—frequency
domain to segregate the sources using some properly designed
masks. It has the advantage that it can be used when more
sources than sensors are present (i.e., in the under-determined
case), but the sparsity assumption collapse quickly when rever-
beration increases [9], so its applicability to real environments
is limited.

The second approach needs a number of sensors equal or
greater than the number of sources and can be applied to envi-
ronments with some (small) reverberation. In this case, the main
hypothesis is the statistical independence among sources. This
assumption is used to achieve the separation by an iterative op-
timization of a properly chosen cost function that expresses the
independence of the resulting signals. The process can be done
in the time domain [10], [7], in the frequency domain [11], [8],
or in both the domains [6], [12]. The time domain formulation
has an advantage that there are no ambiguities in the solution,
but the algorithmic complexity is high due to the convolution
operations involved. This limitation usually restricts its usage
to simple toy examples. On the contrary, the frequency-domain
formulation has a lower complexity, but it has the so-called per-
mutation problem that makes the solution difficult. There are
some formulations in both the domains, in which all processing
is done in the frequency domain, but the updating and evalu-
ation of costs functions is done in the time domain. Although
this can avoid the permutation indeterminacy, it requires con-
stant switching between domains during the iterations, which
makes the complexity and computational cost higher.

In this paper, the frequency-domain approach based on statis-
tical independence of the sources is adopted. This formulation,
called frequency-domain blind source separation (fd-BSS) or
frequency-domain independent component analysis (fd-ICA)
[13], solves a standard instantaneous ICA problem for each
frequency bin, after applying a short-time Fourier transform
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(STFT) to switch to the time-frequency domain. To avoid
confusion, this approach will be called fd-ICA in all the man-
uscript.

The main disadvantage of this approach is the permutation
indeterminacy among source identification, as the separated
sources can have arbitrary permutations and scalings for each
frequency bin. It must be noted that this problem is a direct
result of the indeterminacy that arise in ICA from the lack of
information about the sources. Thus, to obtain a consistent
time—frequency representation for each source, this approach
requires to correct the permutations and the arbitrary scaling
among frequency bins. Although there are some approaches
to solve the permutation problem, based on the correlation be-
tween frequency bands [11] or on the estimation of directivity
patterns of the separation matrix [14], these approaches tend to
fail when reverberation time of the environment increases.

A detailed analysis of the working principles and limitations
of fd-ICA for reverberant environments is presented in [15]. In
this approach, in order to capture the impulse response effect, a
large frame size is required for the STFT analysis. This reduces
the amount of data available in each frequency bin, and pro-
duces a deficient estimation of the separation matrix. As a conse-
quence, there is a compromise between the need of long frames
to deal with reverberation, and the need of short frames to prop-
erly estimate the separation matrix. Furthermore, in the same
work the BSS processing is compared to a set of null beam-
formers, and it is shown that for longer reverberation times, the
directivity pattern produced by fd-ICA is increasingly deterio-
rated, mainly in low frequencies, due to wrong estimation of
the mixing matrices. This increases the rate of permutation mis-
alignment, producing poorer results.

Considering all this, some means to avoid the permutation
problem are required. In previous works, a separation algorithm
that is permutation-free was proposed [16], [17]. This algorithm
uses only one separation matrix common to all frequency bins,
estimated over a stack of all the time—frequency plane in one
long vector. This approach has the disadvantage that by using
the same separation matrix for all frequency bins, the directivity
pattern generated for each frequency is different, and so it does
not produce the right separation for all frequencies.

In the present work, we propose a new method of fd-ICA
based on a simplified mixture model, which assumes a high sim-
ilarity between impulse responses from a given source to all the
microphones. This method can be used to generate a separation
matrix for each frequency bin, having no indeterminacy among
bins, and with high processing speed. As a consequence, con-
stant directivity patterns are obtained, which improves the sep-
aration quality. Also a time—frequency Wiener postfilter is ap-
plied to enhance the output by reducing the residual noise. The
simplified algorithm includes the reverberation effect in the ob-
tained source waves, and so the performance is less sensitive
than other fd-ICA approaches to the effects of reverberation. In
this way, the proposed algorithm can solve two of the problems
mentioned above.

In the next section, a detailed explanation of the mixture
model used in this work will be presented. Based on this model,
a new separation algorithm will be outlined in Section III. Next,
in Section IV, several experiments to assess the capabilities of
the algorithm will be presented, using both synthetic and real
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Fig. 1. Environment description and notation for a two sources and two micro-
phones case.

mixtures. The performance will be evaluated with objective
quality measures. Also, the application to a specific task of
robust speech recognition will be evaluated and the robustness
of the method will be assessed. Finally, conclusions and future
works will be presented in Section V.

II. PSEUDOANECHOIC MIXTURE MODEL

To obtain a robust method of separation, a simplified mixture
model is proposed. The mixing model and the separation
algorithm derived from it, will be explained for the case of
two sources and two microphones. The generalization to
more sources and microphones is straightforward, and will be
sketched after presenting the algorithm. In a 2-by-2 configu-
ration, there are four impulse responses (IR), that characterize
the transmission path from each source to each microphone.
We assume the usage of omnidirectional microphones, both
pointing in the same direction to avoid phase inversions. The IR
from source 4 to microphone j will be denoted as hj;(t). The
source vector is s () = [s1(#)s2(¢)]? and the mixture vector is
denoted x(t) = [x1(¢)z2(t)]T. Fig. 1 shows these variables.

Using this setting, the mixtures can be expressed as

Jil(t) = Sl(t) * hll(t) + Sg(t) * hlg(t)
LL’Q(t) = Sl(t) * }L21(t) + 52<t) * h22(t) (1)

where * stands for convolution. As can be seen, each signal z;
is produced by the addition of two terms, one generated by each
source s;, after convolution with different IRs. In the general
case of arbitrary microphone locations, the IRs from a source,
say s1, to both microphones, k11 and hay, will be quite different,
and thus after convolution with them the results will have very
different waveform. This means that the contributions of the
same source on each microphone would behave as completely
different signals. Thus, the problem behaves as under-complete,
as it is like a four sources and two microphones mixture. This
is why instantaneous independent component analysis fails to
solve the problem.

Now assume that the microphones, instead of having arbi-
trary positions, are restricted to remain “near” to each other. The
sound generated by some source corresponds to local changes
in pressure from a steady, stable value. Thus, what we are in-
terested in is the evolution along time and space of the pres-
sure, relative to the steady value. This pressure variation, de-
noted by p(v), where v = [z, vy, 2, t] represents the concatena-
tion of space coordinates and the time evolution, can be modeled
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using the classic fluid mechanics theory. For a flow at small ve-
locity (which is the usual case for sound at normal power levels),
the sound field is characterized by the classical wave equation
[18]. As this equation includes second-order partial derivatives
in time and space, the pressure function that solves the equation
must be a C? class function, that is, a twice continuously dif-
ferentiable function of space and time coordinates. Therefore,
both the pressure and its first derivative must be continuous. This
continuity imply that the limit of the pressure must exist in all
space-time coordinates of the domain. In other words, at two
near enough points of the space-time coordinates, the pressure
cannot be too different. In this phrase, the terms near enough
refer to the Euclidean norm ||v{ —v2|| being small. The meaning
of this, is that if the microphones are enough near, the IR mea-
sured from the same source at both microphones will have a
similar waveform, possibly affected by some delay and scaling.
This observation motivates the following assumption that we
will use to simplify the mixture model: given enough near lo-
cated microphones, the impulse responses from one source to
all the microphones are similar in shape, and are only modified
by a delay and a scaling factor. That is

hgl(t) ~ Oéhu t— dl)
—da). 2
To simplify the notation, let hq(¢) and ho(t) denote hq(t)

and hao(t), respectively. Denoting z; = s1xh; and zo = soxho,
we can rewrite (1) as

.’.13'1(75) = Zl(t) + ﬁZz(t — dg)

LL’Q(t) = O[Zl(t — dl) + Zg(t). (3)
After a STFT, and assuming the time invariance of the impulse

responses (as usual for static or short duration sources), this can
be written as

X(w,7) = A(w)Z(w,T) ©)
where the mixing matrix A has the form
1 BeId2w
A(UJ) = ae—jdlw 1 . (5)

In this model, the parameters «, (3, d; and do are related to
the relative attenuations and delays of the impulse responses
arriving at different microphones, and the effect of the room is
included in Z(w, 7). The separated sources (convolved by the
impulse responses h and hs) can be obtained using the inverse
W (w) of the mixing matrix A(w) for each frequency bin. In this
way, we have a specific mixing matrix for each frequency bin,
and thus a specific separation matrix, which will produce the
specific directivity patterns.

In the standard fd-ICA formulation, the problem consists of
estimating a 2-by-2 complex separation matrix for each fre-
quency bin (that can be hundreds). Using this new model, the
problem has been reduced to the estimation of four parameters,
named «, (3, dy and ds. If one can obtain a reliable estimate
of these parameters for some frequency bin, then they can be
used to build the mixing matrix A(w) for other frequency bins.
Given A(w), the separation matrix W (w) is obtained as its in-
verse, and the separation is realized by applying it to each mixed
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Fig. 2. Block diagrams comparing (a) the anechoic and (b) the pseudoanechoic
models. For both cases, on the left is the general case, and on the right the equiv-
alent model using relative parameters.

frequency bin. This matrix works in a similar way than that of
standard fd-ICA methods, and can be interpreted as a pair of
null beamformers.

The main assumption of this pseudoanechoic model, that is,
the similar waveforms of the impulse responses from the same
source in all the microphones, has also been observed in other
works. In a recent work [19], in the context of underdetermined
BSS methods for echoic environments, the authors analyze the
IR for closely spaced microphones (2.5 cm). They present some
graphics that show very similar impulse responses for four con-
secutive microphones, and then state that these suggest that the
impulse responses are merely delayed and scaled versions of
each other. Moreover, in [20] a pair of microphones are located
with their tips almost coincident, and so the authors simplify
the mixture model because they consider the IR to be identical.
In this case, the authors use directional microphones, and this
directionality is what allows the separation. These works, al-
though propose the usage of closely spaced microphones, does
not explore the theoretical bases for their use.

Two aspects must be noted: by using this model, there are no
amplitude nor permutation ambiguities among bins, thus there
is no need for permutation correction stages after the separa-
tion. Also, an algorithm based on this approach is expected to
have a low computational cost, as only one optimization (to es-
timate the parameters) would be needed. This is the opposite for
standard fd-ICA approaches, that need one ICA optimization for
each frequency bin, and after that needs to solve the permuta-
tion and amplitude ambiguities.

This approach is quite different from the anechoic model used
by example in [21]. In the anechoic model, the effect of reflec-
tions is disregarded, and no restrictions on the microphones lo-
cation are imposed. In this way the anechoic model only works
for rooms with very small reverberation time. On the contrary,
our model takes reflections into account, and consider that their
effect can be grouped into some latent variables z;, which are
obtained as outputs. This is clearly explained in Fig. 2. In part
(a) of this figure, the anechoic model is shown in the left, and the
block diagram in the right side shows the usual transformation
to relative parameters. Both models are completely equivalent,
and they can be applied only if the mixture was anechoic. If
also a far field simplification is used, « = g = 1, as in [21].
On the other side, in part (b), a fully echoic model is shown in
the left, which is valid no matter how long the filters are. The
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1) Apply a STFT to switch to the time-frequency
domain.
2) Choose some frequency bin wy.
3) Estimate the separation and the mixing matrix for
wy by ICA.
Convert the mixing matrix to the normalized form
of (5).
Use the obtained matrix to calculate the four pa-
rameters: «, (3, di and ds.
Separate each frequency bin. For each w:
a) Calculate A (w) according to (5).
b) Calculate separation matrix W (w) by inver-
sion of A (w).
) Obtain the estimated source contributions
Z(w,7)=W (w)X(w,7) .
Apply the time-frequency Wiener filters to enhance
the output signals.
Reconstruct the temporal signals by inverting the
STFT.

4

=
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Fig. 3. Separation algorithm based on the proposed mixture model.

transformation in the right, which yields relative parameters, is
possible for near enough microphones. In that case, both models
are completely equivalent, and so the one in the right models a
fully echoic mixture. Although the right sides of both models
are similar in structure, they clearly differ in their principles and
conditions of applicability. Given the similitude to the anechoic
model we called this the “pseudoanechoic” model.

In the pseudoanechoic model the reverberation time is not a
limiting aspect, because as can be seen in Fig. 2, the transfor-
mation to relative parameters only depends on the validity of the
assumption of similar waveforms of the impulse responses. In
[21], the anechoic model is used to synthesize null beamformers
that does not take into account the amplitude attenuations, using
some closed formulation. On the contrary, our method takes re-
flections into account, considers both delays and attenuation fac-
tors, synthesize the mixing matrix for each frequency bin using
the estimated parameters, and calculates the separation matrices
by direct inversion of the estimated mixing matrix. This yields
very different equations for the separation matrix coefficients
with respect to those obtained by synthesizing null beamformers
with constant attenuations.

III. SEPARATION ALGORITHM

According to the previous section, the key point to achieve
separation using the pseudoanechoic model is to be able to find
a good estimate for matrix A(w) for a given frequency bin. This
allows the estimation of the mixing parameters, and thus we
can build a separation matrix for each frequency bin. To realize
this idea, an algorithm is designed as shown in Fig. 3. In this
algorithm, there are several subjects that need to be clarified.
We will detail all the steps in the following.

Step 1) Transformation to the time-frequency domain: This
transformation is done by means of a standard STFT using
a Hanning window [22]. Let x(n) be a digital signal and

x(m,7) = ¢(m)x(m + TR) the windowed and time-shifted
version of z(n). The STFT X (wy, 7) is given by

N-1
X(wk,7) =Y w(m,T)e THm 6)
m=0

where w, = (27k)/(N) is the discrete normalized frequency,
withbinindex £ = 0,..., N —1, frameindex 7 =0,...,L—1,
¢(n) is a Hanning window of length N and R is the frame
shifting interval for the analysis. This formula is used to ob-
tain the time—frequency representations for all the mixtures.The
two relevant parameters in this transformation are the window
length N and the frame shifting interval R. As in this method
the impulse response is considered as a part of the signal to ob-
tain, these parameters are not so critical. In usual fd-ICA, a large
window length is used to capture the impulse response charac-
teristics. This increases the number of frequency bins to be pro-
cessed. As the reverberation is included in the model in this new
approach, a relatively small window length can be used without
significant degradation of separation. This will speed up the al-
gorithm as less frequency bins need to be processed. Regarding
the frame shifting interval, in standard fd-ICA a small value is
used mainly to increase the amount of available data. This in-
crease of the data length does not necessarily imply a better
separation, because the data is highly redundant and the con-
vergence may be slow. On the contrary, in this new algorithm
the amount of data is decided by other aspects (see Step 2), and
so the frame shifting interval can be increased (even to half of
the window length) to reduce computational costs.

Step 2) Selection of frequency bin: This selection is not
trivial, the ideal frequency bin would be one which presents
a good signal to noise ratio, and for which the ICA algorithm
will produce good directivity patterns. We have selected the
frequency bin based on knowledge of source characteristics
(see Section IV for details), but some better designed automatic
decision algorithms can be developed. To give robustness to
the method we use not only one frequency bin, but we select a
number A of frequencies to each side of the chosen one, and
pack all in one long vector. We have verified that sometimes
ICA fails to converge with isolated bins. To avoid these failures,
a number of lateral bins is concatenated to the selected wy,
thus ensuring the production of an usable separation matrix.
This also gives a robust estimation in the case that one of the
signals has no contents for a given frequency bin. The use
of lateral bins not only makes estimation for the central bin
more robust, but also increases the amount of available data
(which improves the convergence properties of ICA), so we
can fix a desired number K of training samples for the ICA
algorithm. If the number of frames used in the STFT is L (this
is the number of time elements in a frequency bin), we set
A = max(3,[(K/L — 1)/2]), where [-] means rounding to
the nearest higher integer. That is, we use a number of bins
enough to have, combined, K samples for ICA training, and if
this number is less than 3, we fix it to 3. The separation matrix
obtained from this process will be assigned to the central bin
of index /.

Step 3) Estimation of mixing and separation matrices: We
use the complex version of FastICA algorithm, as proposed in
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[23]. This algorithm uses a deflationary approach where each
source is extracted sequentially. It searches for the extrema of
E{G(|wHx|?)} where w corresponds to ith row of separation

matrix W. For extraction of each source, w; is updated as
+ E " * H 2
Wi = X (W,L- X) g |W7 X|

- {a )

+lwix[ g (|whx[*) }wi ™

+

new __ Wi
TN ®

After finding the separating vectors w; for p sources, a
Gram-Schmidt-like decorrelation is applied for vector w4
in each iteration to avoid the convergence to the previous
optima. In these equations, we have used G(y) = log(y + v),
its derivative g(y) = (1)/(y + y), and second derivative
g () = (=1)/((v + y)?), with v = 0.1. After finding the
separation matrix, the mixing one is calculated as its inverse.

Step 4) Conversion of mixing matrix to normalized form:
The normalized form consists of ones in the main diagonal, and
in general this will not be the case with the estimated mixing
matrix. To obtain the normalized form of (5), all elements in
column ¢ must be divided by the :th element of the diagonal.
This step is responsible for the elimination of the amplitude am-
biguity because all scaling effects of the mixing matrix are ab-
sorbed into z.

Step 5) Estimation of the mixing parameters: Once the
mixing matrix in normalized form is obtained, the parameters
can be calculated as

o= |a21|7 dy = %m(ln(aﬂ))

2rlf,

ﬂ = |a12|, d2 = %m(ln(alz))

2rlf, ©)

where / is the index of the central frequency bin used in Step 2,
fs denotes the sampling frequency, and Sm(+) is the imaginary
part function. It must be noted that the delay estimations will
be valid only if (27¢fs)/(N)d; < m, which follows from the
periodicity of the complex exponentials. This requirement will
be satisfied if the microphone spacing is small enough to avoid
spatial aliasing, and of course, if the mixing matrix is success-
fully estimated.

Note that this robust estimation of the parameters is quite
different from the direction of arrival (DOA) estimation used
in the field of fd-ICA [14], [21]. For ICA-based DOA estima-
tion, an ICA problem is solved in each frequency bin, and after
solving the permutation problem, each global DOA is estimated
by averaging the DOAs estimated on each frequency bin, all
under an anechoic model (as in (13) of [21]). The estimations
for each frequency bin are affected by many disturbances like
different noise powers, bad convergence of the ICA algorithm,
and residual permutations. All of these noise sources affect the
estimation of each bin and thus the resulting average estimates
will lacks robustness. The robustness of our approach is a con-
sequence of the use of several frequency bins in Step 2 and the
absence of permutations.

Step 6) Separation: In this step, a specific mixing matrix for
each frequency bin is calculated using the estimated parame-
ters. A separation matrix is obtained as its inverse, and the sep-
arated sources are calculated using it. It must be noted that
the structure of the mixing matrix can be exploited to speed
up the calculation of the separation matrix, without using the
inverse. After this step we obtain an estimation Z(wy,7) =
[Z1 (wi, T) Za(wy, 7)]T of the sources Z(wy, 7).

Step 7) Wiener filtering: Due to the behavior of the separa-
tion algorithm as a pair of null beamformers [15], the estimated
sources will still have some residual noise. To obtain an esti-
mate of source 1, a beam with a null pointed towards source 2
is formed, and vice-versa. As only two microphones are being
used, the depth of this null will not be enough to eliminate the
jammer signal. Moreover, the null eliminates all signals coming
from one specific direction, but due to the reverberation, all the
echoes coming from other different directions will remain. This
means that some residual noise will be always left undeleted,
and the residual will be larger for environments with strong re-
verberation. To reduce this residual, we propose to use a pair
of non-causal time—frequency Wiener filters as postprocessing
[24]. The short-time Wiener filter F)y ; to enhance source 1 is

|21 (wr, 7)?
|21 (wr, T + | Z2(w, )2

FWJ(wk,T) = (10)

where ég(wk,T) in the denominator is used as an estimation
of the residual noise. The short-time Wiener filter to improve
source Za, Fyy o(wy, T) is calculated in a similar way to (10),
with the roles of 2?1 and Z~2 interchanged.

This Wiener filter in which the filter characteristics depend
both on time and frequency, using each separated signal as the
noise estimation to enhance the other one, has not been previ-
ously used in the context of fd-ICA for convolutive mixtures
(although similar strategies have been proposed in the context
of single channel BSS). Its behavior will depend of the capa-
bility of having a good estimation of source and noise, that is, it
depends on a good result for the previous separation stage.

Step 8) Signal reconstructions: We use the overlap-add in-
verse STFT to reconstruct the source signals [25]. For a given
Z(wg, 7), the windowed and time-shifted inverse for each frame
is obtained as

N-1
1

z(m,T) = N Z Z(wg, T)ed R,

k=0

Y

Using each reconstructed frame, we form the sum of all them,
correcting the time-shift

™~
|

1
z(n— TR, T)

z"(n) =

[ R
[
_ O

¢(n —7R)z(n — TR+ TR)

L—1
= 2(n) 3 é(n—R)

= z(n)®(n) (12)
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where ®(n) denotes the shifted sum of the windows. From the
first equation to the second, the windowed and delayed signal
z(n—TR, T) was replaced by the product of the delayed window
and signal, in a similar way that it was used in (6). Using this,
the signal can be reconstructed as z(n) = z*(n)/®(n).

It must be noted that as we are searching for z but not for
s, the algorithm will achieve separation but not reverberation
reduction (with the exception of a small reduction of reverber-
ation introduced by the Wiener filter). As the reverberation is
considered as part of the target signals, the algorithm will be
less sensitive to it, and thus will achieve better separation for
the cases where standard fd-ICA methods fail. If reverberation
reduction is also desired, a second processing stage should be
employed. In this way, we split the problem into two simpler
ones. Also note that the words “indeterminacy free” in the title
refer to the elimination of the need to solve the usual fd-ICA
permutation and amplitude ambiguities among different bins,
but the time-domain reconstructed signals will still contain an
arbitrary scale and permutation.

This algorithm can easily be generalized for the ¢-by-g mix-
ture case. Up to Step 4, no modifications are needed. For Step 5,
in the presented algorithm the amplitudes and delays are relative
to the reference signal (the one in the main diagonal). For the
general case, as in the normalized form the main diagonal has
always ones, the parameters to estimate are the amplitude of the
off-diagonal elements, and the pairwise relative delays in the ex-
ponents, that is, two parameters for each off-diagonal element.
So, there are 2¢q(gq — 1) parameters to estimate, and their estima-
tion is straightforward from the normalized form, using the cor-
responding analogous to (9). Step 6 does not need any change.
For Step 7, the Wiener filter formulation needs to be modified,
as the noise spectrum estimate will be the sum of all the other es-
timated source spectrums. Step 8 remains unchanged. Although
this generalization is straightforward, we will restrict our exper-
iments to the 2-by-2 case, leaving for future works the analysis
of the general case behavior.

IV. RESULTS AND DISCUSSION

The pseudoanechoic model was built using that the impulse
responses from one source to all microphones should have ap-
proximately the same waveform. We need to investigate how the
spacing between microphones will affect its performance. Fur-
thermore, there are two parameters: window length and frame
shifting interval, that need to be calibrated. These aspects will
be studied in the first and second part of the current section.

We are interested in the application of this algorithm to auto-
matic speech recognition (ASR), and also in applications where
the processed speech is presented to a human listener, like in
hearing aids. Then we need to evaluate our algorithm regarding
both, speech recognition tests and perceptual quality. In the fol-
lowing subsections, all these issues will be explored in detail.

For all the experiments we have used speech sentences ex-
tracted from Albayzin Spanish database [26]. Also, we have
used white noise source from Noisex-92 database [27]. All the
signals were resampled to 8000 Hz. These sources were mixed
in different conditions, using both speech and white noise as
competing sources, to generate appropriate data sets for the ex-
periments.

The mixtures were separated by the algorithm of Fig. 3. In
all experiments, for this algorithm we used a different central
frequency w, in the case of speech noise and white noise. For
speech-speech mixtures, a high-frequency bin was used, as in
general the separation matrix are better estimated in high fre-
quencies, as shown in [15]. For speech signals with telephony
quality bandwidth, the maximum frequency of interest present
in the signals is 4000 Hz. A frequency band located at 5/8 of
the maximum frequency was selected in this case. On the other
hand, for speech-white mixtures a low-frequency bin was used.
This is due to the fact that white noise presents equal power in
all frequencies, whereas speech tends to have more power in low
frequencies due to the low-pass characteristics of the glottal re-
sponse [22]. In this way, the signal to noise ratio is degraded
with increasing frequencies. A bin located at 3/8 of the max-
imum frequency was selected in this case. The desired number
of data samples to use with FastICA was fixed at K = 5000.

For the evaluation of the method in robust speech recogni-
tion, we performed some test with a state-of-the-art continuous
speech recognition system. For this task, a three-state semi
continuous hidden Markov model for context-independent
phonemes and silences was used [28]. Gaussian mixtures were
utilized as observation probability densities. After four reesti-
mations using the Baum—Welch algorithm, tying was applied
in the model, to reduce the number of parameters. For this, a
pool of 200 Gaussians for each model state was selected. After
tying, another 12 reestimations were performed. A bigram
language model was used for recognition, estimated from
transcriptions of the training sentences [29]. For the front-end,
we performed parametrization with standard Mel frequency
cepstral coefficients (MFCC), including energy and the first
derivative of these features [30]. This recognition system was
built using the HTK toolkit [31]. The results were evaluated
using the word recognition rate (WRR), defined as

T-D-S8
—1

WRR% = T

00 (13)
where T’ is the total number of words in the reference transcrip-
tion, D is the number of deletion errors and S is the number of
substitution errors.

To evaluate the separation results we have used the Percep-
tual Evaluation of Speech Quality (PESQ) raw score in narrow
band mode as defined in [32]. This measure is known by its
high correlation with subjective perceptual quality measured by
MOS. Also, in [33] a high correlation between PESQ scores and
recognition rates of an automatic speech recognition system is
reported, using different speech enhancement techniques for ad-
ditive noise, with artificial voices. In previous works [34], [35],
we have evaluated several objective quality measures as predic-
tors of recognition rate of an ASR system, after application of
fd-ICA for convolutive mixtures. The best results were obtained
for perceptually designed measures, in particular the PESQ.

Given the large amount of parameters to explore, if we varied
all them in an exhaustive search, the number of required experi-
ments would grown exponentially. To avoid this we have sorted
the parameters according to its influence on the algorithm, and
then explored the variation of each independently, with the other
parameters fixed. Although this would produce a suboptimal set
of parameters, it will allows us to explore a larger area of the
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Fig. 4. Impulse response characteristics for 4-cm spacing, recorded as in Fig. 5.
Top: first 0.5 s. Center: zoom showing the first 256 samples. Bottom: first 64
samples, resampled at 10 times the original sampling frequency. In all panels,
one of the signals has a constant of 0.2 added, to separate the two plots.

parameter space, with a reasonable number of experiments and
time.

A. Effects of Microphone Spacing

The proposed algorithm uses a physically plausible assump-
tion to simplify the mixture model. The key question to be an-
alyzed in this section is how plausible is that hypothesis in real
cases.

As already discussed, the motivation for the assumption
comes from the physics of sound propagation, taking into
account the continuity of the sound field. Intuitively, if the
microphones are “near enough,” then they should measure
similar variations of the sound field, and thus the IR measured
at those point should have approximately the same shape, but
affected by some delay and scaling. This produces two main
aspects that needed to be determined. One is how much near the
microphones must be for the hypothesis to be applicable, and
the second one is how sensitive the algorithm is with respect to
poor adjustment to the hypothesis.

As an example to illustrate the first point, Fig. 4 shows two
impulse responses recorded in the room of Fig. 5. The impulse
responses were measured from source 1 to microphones 1 and
5, which are spaced by 4 cm. The distance from the source to
the microphones was about 113 cm, with an angle respect to the
array center of 26°, in a room with 343 ms of reverberation time.

The top part of Fig. 4 shows the impulse responses. It shows
that in a general view the IRs seems to have similar global char-
acteristics, although due to the scale it is difficult to realize how
similar they really are. In the central panel, a zoom of the ini-
tial 256 samples of the IRs is shown. In this image, it is easier to
see the similitude between the two impulse responses. Although
there are some parts showing small differences, most of them
can be attributable to the combined effect of the fractional delay
and the sampling. This can be seen in the bottom panel, where
a zoom of the first 64 samples is shown. To generate this plot, a
resampling using bandlimited interpolation was used, to elevate
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Fig. 5. Experimental setup for two sources and five locations of the micro-
phone. All dimensions are in cm.

the sampling frequency to 10 times the original (i.e., from 8 to
80 kHz). Also, the original samples are shown with dark dots.
In this plot, the fractional delay can be clearly seen. The delay
corresponds to about 2/5 of the original sampling time, which
agrees with the spatial setup. The bottom panel also shows that
most of the local differences in the waveforms have disappeared,
showing that the morphological differences were artifacts pro-
duced by the sampling. Considering this example, the assump-
tion about the similarity of the IR waveforms seems to be very
plausible. It must be noted that in this example the microphone
spacing is of 4 cm, and even with such a “wide” separation, the
similitudes are evident. This is supported also by the results in
[19], in which four impulse responses measured with a 2.5-cm
uniform spacing are found to be very similar in shape. The au-
thors conclude that the IR can be possibly considered as delayed
and scaled copies.

Considering the second aspect (the sensibility of the algo-
rithm with respect to the hypothesis), we need to evaluate how
the separation performance is modified by dissimilar impulse re-
sponses. Thus, we explore the effect of microphone spacing. If
the spacing is too large, the impulse responses from one source
to the microphones will be too different and the hypothesis will
become invalid. Also, spatial aliasing can be produced for large
microphone distance. The maximum allowable distance to avoid
spatial aliasing is related to the sampling frequency by dax =
Amin/2 = ¢/(2fmax) = ¢/ fs, where Ay, is the minimum
wavelength of the signal used and c is the speed of sound. For
a 8000-Hz sampled signal, with ¢ = 340 m/s, this is dpax =
4.25 cm [36]. On the other hand, too small spacing will cause
the relative amplitudes to be very near to one, and the relative
delays to be very small. An accurate estimation of these parame-
ters will thus be difficult to obtain, mainly because of the limited
measurement precision and the microphone noise.

We have explored this issue using synthetic mixtures of
speech. To produce the mixtures we have selected five sen-
tences from Albayzin database spoken each one by two male
and two female speakers, for a total of 20 utterances. Also, one
sentence spoken by a male and a female speakers were selected
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to be used as competing noise. This sentence was used because
it was longer than any of the other sources, and so the same
sentence could be used to interfere with all the target sources.
To compete with male speech, female speech was used, and
vice-versa. The utterance duration ranged from 2.26 s to 4.65 s,
with an average duration of 3.55 s. We also used white noise
from Noisex database.

The mixtures were generated by convolving each source with
an impulse response measured in a real room and adding the re-
sults to generate each microphone signal. The impulse responses
were measured using the method of time stretched pulses (TSP)
[37]. A condenser desktop microphone with omnidirectional flat
frequency response from 20 Hz to 20 kHz was used. The mea-
surements were made in a room depicted in Fig. 5. We used five
microphone locations with a spacing of 1 cm, with a careful
synchronization to preserve relative amplitude and delays be-
tween impulse responses. The average reverberation time,! mea-
sured by the Schroeder back-integration method [38], was of
Te0 = 343 ms. The impulse responses measured from pairs
of microphones with spacings of 1, 2, 3, and 4 cm were used
(longer spacings would introduce spatial aliasing). According
to the naming convention of Fig. 5, the pairs of microphones
were 2-3 and 3—4, 1-3, and 3-5, 1-4, and 2-5, and 1-5 for 1,
2, 3, and 4 cm spacing, respectively.

The effect of different noise powers was also explored. For
each noise kind (speech or white) we used two different power
ratios (0 dB and 6 dB) by properly scaling the source signals.
Thus, we performed mixtures for a total of 16 mixing condi-
tions.

First, we wanted to investigate the optimal spacing, so we
performed separation for the different spacings. We have re-
peated the separation using three window lengths (128, 256, and
512 samples) and two different frame shifting intervals for each
window length (one quarter and one half of the window length).
Fig. 6 shows the average PESQ scores over the 20 sentences. In
this figure, we have averaged the results for the four noise condi-
tions to produce a single value for each spacing, window length
and shift interval. It can be seen that the optimal spacing is 4 cm
in all cases. A too short spacing makes difficult to accurately es-
timate the parameters and thus the algorithm also fails. Longer
spacings will cause spatial aliasing. This behavior is repeated if
the analysis is discriminated for each noise condition, showing
always the best separation at 4 cm. According to this result, we
have fixed the spacing in 4 cm for the following experiments.

B. Effect of Window Parameters

Once fixed the optimum spacing, we have explored the effect
of window length and frame shifting interval. For this evalua-
tion, we proceeded in a similar way to the previous experiment,
but only for the case of 4-cm spacing. We used five window
lengths (128, 256, 512, 1024, and 2048 samples) with a frame
shifting size fixed on half of the window length. For the evalu-
ation we used PESQ and also the average processing time. As
a fast separation algorithm with a good quality performance is
required, we used the ratio of time to quality as a cost-to-benefit
function to determine the optimum window length.

IThe reverberation time 740 is the time interval in which the sound pressure
level of a decaying sound field drops by 60 dB, that is to one millionth of its
initial value [18].
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Fig. 6. Effects of microphone spacing. Gray bar: 1-cm spacing, dashed bar:
2-cm spacing, white bar: 3-cm spacing, black bar: 4-cm spacing.

TABLE I
EFFECTS OF THE WINDOW LENGTH. COST
Is THE RATIO OF TIME TO PESQ SCORE

Window PESQ Time [s] Cost
128 2.166 0.550 0.254
256 2.215 0.558 0.251
512 2.234 0.647 0.290
1024 2.177 0.616 0.283
2048 2.094 0.716 0.342

It could be argued that the processing time is not a good index
of complexity, because different implementations of the same
algorithm would yield different times. Nevertheless, the time re-
quirements of our algorithm are not caused by high complexity
tasks that could be performed with different implementations of
algorithms, but by simpler tasks that are repeated many times.
The FastICA algorithm used is the same, and is performed only
once, with the same amount of data samples, so its influence
in the calculation time for different frame lengths is equivalent.
Thus, the two processes that have a strong effect in processing
time are the calculation of the separation matrices (which in-
volves a matrix inversion for each frequency bin) and the sepa-
ration of the data itself, which imply a matrix-matrix multipli-
cation for each time—frequency tile.

With increasing frame length, the number of bins to process
is increased, which means that more matrix inversions need to
be calculated, but the amount of data to separate is the same. So
the change of computation time is mainly due to the increased
number of matrix inversions needed. Thus, a larger window will
have to perform more matrix inversions, so its processing time
would be directly increased. Table I shows the results. It can be
seen that the optimum (the minimum of the Time/PESQ ratio)
is obtained for a window of 256 samples.

Finally we investigated the effect of the frame shifting in-
terval. Fixing the microphone space in 4 cm and the window
length in 256 samples, we have explored the shifting param-
eter from 8 to 128 samples with increments of 8 samples. The
maximum shifting interval was fixed to 128 samples because at
least a half window redundancy is necessary to obtain a proper
reconstruction of time domain signals. Fig. 7 shows the PESQ
score and the average processing time for this analysis. As can
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TABLE II
RECOGNITION RATE AND PESQ SCORE FOR SYNTHETIC MIXTURE

Mixtures Separated

Power ratio  Noise WRR% PESQ | WRR% PESQ
6 dB Speech | 32.44 1.89 63.94 2.33

White 16.73 1.74 63.36 2.30
0 dB Speech | 20.96 1.56 51.35 2.15

White 12.26 1.50 43.09 2.05
Average 20.60 1.67 55.44 2.21
Reverberant 70.22 2.33
Clean 93.98 4.50
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Fig. 7. Effects of the frame shifting interval. Solid line: PESQ score, Dashed
line: average processing time.

be noted from the figure, there is no significant quality change
for different shifting intervals. Nevertheless, with small shifting
values the processing times grow very fast. With small shifts, the
number of frames in each frequency bin increases. As we fixed a
value of atleast A = 3 for the lateral bins, as the shift interval di-
minishes, the amount of data used in FastICA increases and the
algorithm is slowed down. On the other hand, when the shift in-
terval increases, as the amount of data is fixed at K = 5000, the
redundancy is reduced and the convergence is faster. According
to this, we selected 128 samples as the best frame shifting in-
terval.

C. Evaluation on Artificial Mixtures

Once obtained the optimum values for spacing, windows
length and frame shifting size, we wanted to check the perfor-
mance of the separation algorithm in a larger database. In this
test, the separation algorithm was used as a preprocessing stage
for an automatic speech recognizer. Also, the objective quality
evaluation by means of PESQ score was carried out. For this
task we used a larger subset of Albayzin database. This subset
consists of 600 sentences spoken by six male and six female
speakers, with a vocabulary of 200 words, from the central area
of Spain. The average duration of sentences was 3.95 s, with a
minimum of 1.88 s and a maximum of 8.69 s.

The sentences were mixed artificially with impulse responses
for microphones 1 and 5 in Fig. 5. As noise sources we used
competing speech and white noise. For speech, we selected two
Albayzin sentences (different from the 600 used as sources), one
from a female speaker to interfere with male speakers and one
from a male speaker to contaminate female speech. The noise
powers were adjusted to produce a power ratio of 0 dB and 6 dB
at the simulated speakers. In this way, four sets of mixtures (two
noise kinds with two noise powers) were generated. After mix-
ture, the separation algorithm with the optimum window length
and optimum frame shifting size obtained in previous experi-
ments were used.

For the speech recognition task, we used an ASR system like
the one described in Section IV. The leave-k-out cross valida-

tion method with ten partitions of the 600 sentences was used
to test the acoustic model of the ASR system. For each partition
20% of the sentences were selected randomly to form a test set
and the other 80% used as train sets. The results of the ten par-
titions were averaged.

It is known that reverberation reduces the automatic recog-
nition rates [39], even if the recognition system is trained with
speech recorded in the same reverberant room [40]. According
to this, as our algorithm is not aimed to reduce reverberation,
we cannot expect the recognition rate to be equivalent to that
of clean speech. The maximum obtainable performance would
be near to that of reverberant speech, without interference. We
have used the artificially reverberated signals to evaluate this
maximum performance (Table II).

Table II shows the resulting PESQ scores and WRR, for the
different noise kind and powers. Besides the results of the sep-
aration algorithm, we present the results for the mixtures, the
sources, and the reverberant (but clean) sources.

As can be appreciated, an average improvement of more that
35% in WRR and more than 0.5 in PESQ score is obtained by
preprecessing the speech with the proposed algorithm. Also, it
can be seen that for the case of 6-dB mixtures, the separated
signal achieves a WRR that is near to the maximum attainable
for our kind of algorithms, given by the WRR of the reverberant
signals. The average PESQ score for processed signals is also
similar to that of reverberant ones.

Something interesting can be seen in the case of speech noise
with 6 dB of power ratio. For this case, PESQ is the same as for
reverberant speech. Nevertheless, speech recognition is lower
than that of reverberant speech. We know that the separated
signals still have some residual interference, and so the quality
should be degraded. However, the PESQ is higher than expected
because some reverberation has also been removed (this can be
noted by inspection of spectrograms and by listening carefully).
This reverberation reduction is an effect of the Wiener filter, as
the signal used as estimation of the noise has some echoes of the
desired source arriving from different directions. The Wiener
filter will thus reduce in some amount the reverberant echoes. In
this way, a small quality improvement in reverberation compen-
sates the reduction due to residual noise and PESQ is the same,
although the remaining noise degrades speech recognition.

D. Evaluation on Real Mixtures

For this experiment we recorded the same 20 sentences used
in Sections I'V-A and IV-B, contaminated with the same noises,
but in a real room as shown in Fig. 8. The environment is an
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Fig. 8. Experimental setup for a two sources-two microphones case.

acoustically isolated room that naturally has a reverberation
time of about 749 = 120 ms. To increase the reverberation
time, plywood reflection boards were added in two of the
walls. The average reverberation time for this case was about
T60 — 200 ms.

After mixture, separation was performed using the proposed
separation algorithm, the one proposed in [8] (we will call this
Parra), and the one proposed in [11] (we will call this Mu-
rata). Both algorithms are fd-ICA methods, that obtain indepen-
dence exploiting the nonstationary structure of the speech sig-
nals, using second-order statistics. Murata’s algorithm uses the
correlation among envelopes of the frequency bins to solve the
permutation problem, and Parra’s algorithms avoid permutation
by imposing constrains in the structure of the time-domain sep-
aration filters. For Murata algorithm, we used a window length
of 256 samples (32 ms), a frame shifting interval of ten sam-
ples (1.25 ms) and we selected 40 correlation matrices to di-
agonalize, as suggested by the authors. For Parra algorithm, as
the signals used here were of very different durations than the
ones reported by the author, we tried several combinations of
filter and window lengths (128/1024, 256/512, 256/2048, and
512/3072). The best results were obtained for a filter length
of 256 samples (32 ms) with a window length of 512 samples
(64 ms).

An implementation of the Parra algorithm was obtained from
the author web page,? and the implementation of Murata algo-
rithm was obtained from Shiro Ikeda web page.3 All the al-
gorithms were programmed in Matlab language, and the sep-
aration tests were ran in a Pentium 4 EMT64 of 3 GHz, with
1 GB of RAM. For the proposed algorithm we used two vari-
ants, without including the time—frequency Wiener postfilter of
Step 7 (in the following Pr. I) and with the Wiener filter (Pr. II).
Another variant is the related to the central bin selection. As we
used some heuristics based on knowledge of the source charac-
teristics to decide which could be a good candidate for central
bin, it can be argued that the method is not completely blind.

Zhttp://newton.bme.columbia.edu/~Iparra/publish/
3http://www.ism.ac.jp/~shiro/research/index.html

Thus we also run Pr. II, but using as central bin, that located in
the middle of the frequency range, for all kind of noises (Pr. III).

To test the performance of the algorithm, we have used
a speech recognition system similar to that described in
Section IV. The acoustic model was trained with 585 sentences
from a subset of Albayzin database (the training set does not
includes any of the sentences used in the test, nor the used as
interfering voices).

Also we performed two additional evaluations, one using the
PESQ to have a perceptual objective quality evaluation, and the
other the average processing time for each of the algorithms.
Table III shows the WRR for this experiment, and Tables IV
and V the PESQ scores and the average processing time, re-
spectively.

As can be seen, Murata algorithm produces some degrada-
tion of all, WRR and PESQ. This is due to the fact that the al-
gorithm cannot handle the reverberation times involved on this
tests. The only effect of the processing is to introduce distortions
that degrade the performance. For the Parra algorithm, some im-
provement is noted, although it is not enough. The proposed al-
gorithm can handle the separation in this environment and pro-
duces a large improvement in WRR and PESQ. Even if we do
not use the Wiener postfilter, the quality of our algorithm out-
perform the other evaluated alternatives, showing that the sepa-
ration stage indeed works better than the previous approaches.
Also, when using a fixed central bin (Pr. III), the performance is
slightly changed, suggesting that the method is robust to central
bin selection.

For comparison, we have also evaluated the use of a different
postfilter. In other works in the area, a binary mask postfilter
was used after a first stage of fd-ICA separation, to improve
the results. The main assumption for binary masks is that each
time—frequency sample has information of only one source, but
for reverberant signals this assumption collapses, and so a con-
tinuous mask should produce better results. We have imple-
mented the binary mask postfilter presented in [41] and used
it instead of our Wiener postfilter (with the same first stage),
evaluating the PESQ scores. For speech noise, the PESQ scores
obtained were 2.69 and 2.49 for 6 dB and 0 dB of power ratios,
respectively. For white noise, the PESQ scores were 2.73 and
2.45 for 6 dB and O dB, respectively. These results represent
in average only 52.2% of the improvement obtained with our
Wiener postfilter.

Regarding the processing times, the proposed algorithm is
more than 26 times faster than Murata’s and more than 18 times
faster than Parra’s one. It should be noted that no special opti-
mization was made in the implementation to make a faster code.

E. Robustness of the ICA Estimation

There are two other subjects to be explored. One is how the
quality and the robustness of the method are affected by the
selected number of lateral bins, and the other is how sensitive
the algorithm is to the central bin selection.

To answer the first question, we have performed an experi-
ment using the same data as the experiment in Section IV-D (the
real mixtures data). We have selected a bin located in the center
of the frequency range, and performed the separation using no
lateral bins, one lateral bin to each side, two lateral bins to each
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TABLE III
WRR% FOR THE EVALUATED ALGORITHMS AND THE MIXTURES. PR IS THE
POWER RATIO IN THE LOUDSPEAKERS

PR Noise Mix. Murata Parra Pr.I Pr. Il Pr III

6 dB Speech 44.50 2500 49.50 83.07 8550 85.50

White  19.54 15.00 27.50 61.00 85.50 82.50

0dB Speech 30.00 27.00 49.00 62.50 83.00 85.00

White 7.20 11.00 20.00 24.00 67.50 65.00

Ave. 2531 1950 36.50 57.64 80.38 79.50
TABLE IV

PESQ SCORES FOR THE EVALUATED ALGORITHMS AND MIXTURES.
PR IS THE POWER RATIO IN THE LOUDSPEAKERS

PR Noise Mix. Murata Parra Pr. I Pr. I Pr III

6dB Speech 2.11 1.97 222 251 283 283

White 1.98 1.86 237 257 283 282

0dB Speech 1.73 1.71 219 226 259 261

White 1.64 1.67 2.16 225 254 253

Ave. 1.86 1.80 223 240 270 270
TABLE V

AVERAGE PROCESSING TIME IN SECONDS FOR THE EVALUATED ALGORITHMS
AND MIXTURES. PR IS THE POWER RATIO IN THE LOUDSPEAKERS

PR Noise Murata Parra Pr. I Pr. I Pr. III
6 db  Speech 9.49 648 036 043 043
White 8.79 701 026 027 0.30
0 db Speech 9.56 6.60 031 042 046
White 8.98 648 024 028 0.30
Ave. 9.21 6.64 029 035 037
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Fig. 9. Effect of the number of lateral bins used in the ICA algorithm. Left axis
and solid line: PESQ score; right axis and dashed line: average processing time.

side, and so on. Then we averaged the separation results for the
20 test sentences, for the case of white noise and 6 dB of power
ratio (similar results were obtained for other noise and powers).
In the z axis of Fig. 9 we put the number of lateral bins,* and we
used two y axis, at the left we put the average PESQ obtained

4A frame of length 256 samples was used, so the bin index goes from 0 to

128, we used the index 64 as central bin, and added lateral bins to each side
from 0 to 63 bins.

(in solid line), and in the right side the average processing time
used for separation, in seconds (dashed line).

As can be seen in this figure, the addition of lateral bins is ben-
eficial, as the quality is always improved with respect to the case
when using only the central bin. Also, it can be seen that adding
more bins increases the quality, up to a limit, where it starts de-
creasing. This agrees with our assumption that to some extent,
by adding lateral bins, the effects of the upper an lower bins are
cancelled, and the quality is augmented, but if too much bins
are added, the discrepancies have more weight and the quality
is lowered.

Furthermore, it can be seen that the processing time initially
is decreased, proving that the addition of lateral bins, even if the
ICA algorithm has to process more data, produced faster con-
vergence than using only the central bin. When more and more
bins are added, the processing time is increased, so it would be
desirable to keep the lateral bins as low as possible for reducing
the processing time, but large enough to provide a good quality.
This shows that the addition of lateral bins provides an improve-
ment both in terms of convergence speed and estimation quality
of the ICA algorithm.

Now for the second problem, in all the experiments up to now
we used a fixed central bin for the estimation, selected using
some a priori knowledge about the source characteristics, or
fixed at the center of the frequency range. Clearly, the best case
would be to have some method that could determine automati-
cally the optimal central bin. Although more research is needed
before producing such a method, it is important to know how
sensitive is the method to the central bin selection. To verify
this robustness, we performed the following experiment.

We used a sentence from the last experiment in Section IV-D
(the case of real mixtures), contaminated with white noise at
0 dB of power ratio. We used a frame length of 256 samples
with 128 samples of step size for the STFT. This mean that we
have the bin index changing from 0 to 128, and we performed
separation changing the central bin selection it that whole range.

We repeated this, for three cases: using no lateral bins, using
five lateral bins, and using ten lateral bins (we have excluded the
extreme cases where the central bin was lower than the number
of lateral bins, because we need to use the desired number sym-
metrically). The results are presented in Fig. 10.

As can be seen in this figure, for O lateral bins, there are a lot
of deep valleys in the PESQ score. These valleys corresponds to
bins where the ICA algorithm failed to converge. This behavior
is typical of standard fd-ICA approaches (which estimate the
separation matrix in each frequency bin). For these cases, the
quality of the convergence of ICA is not uniform for all bins, so
even if the other problems (permutations, scalings) are solved,
the quality will be very variable for different bins. In contrast,
using five lateral bins, most of the valleys have been eliminated,
and using ten bins (solid line), the quality is quite smooth for
any selection of the central bin.

This experiment shows, on one side, that the addition of lat-
eral bins provides for robustness, as it produces a good estima-
tion for cases were (using only the central bin) the ICA algo-
rithm fails. On the other side, it shows that the method is quite
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Fig. 10. Effect of the central bin selection on the quality of separation, for dif-
ferent numbers of lateral bins.

robust to a wrong selection of central bin, which confirm our
previous findings.

V. CONCLUSION AND FUTURE WORKS

In this work, we have introduced a simplified mixing model
for convolutive mixtures of audio sources in reverberant rooms.
Based on this model, a new separation algorithm has been de-
veloped. The new algorithm overcomes most of the problems
presented in standard fd-ICA formulations. It has superior sep-
aration capabilities, as is shown by the experimental results with
both, synthetic and real mixtures. To sum up, the following nov-
elties have been presented.

1) A new pseudoanechoic mixing model for reverberant
rooms that includes the effect of delays and amplitude
scalings.

2) An indeterminacy-free method for separation in the fre-
quency domain.

3) A robust method to estimate the mixing parameters, using
complex ICA.

4) A postprocessing method using the separated signals as es-
timations of clean sources and noise, for a time-frequency
Wiener filter.

5) An extremely fast algorithm, between 15 to 20 times faster
than standard and well known fd-ICA algorithms.

The capabilities of our algorithm were evaluated for two dif-
ferent frameworks. One is the capability to produce a good sub-
jective quality. This capability was evaluated through a percep-
tually derived objective quality measure. The other is the capa-
bility of enhance the speech for a specific computer automatic
task. It was evaluated through an automatic speech recognition
system. The results for both cases are far superior to the evalu-
ated alternatives. At the same time, the processing requirements
are far lower than that of the alternatives. The field of applica-
tion is thus very wide, from those aimed at human listening, like
hands-free communication or hearing aid processing, to those
related to man—machine interfaces and speech-to-text transla-
tion.

Though almost all the critical parameters of the algorithm
were analyzed, there are some others that should be explored
to produce even better results. The center frequency bin w, was
selected empirically to a fixed value. Instead, some automatic
selection based on measures of the separability of the sources
in each frequency bin could be developed. This could lead to
a better estimation of the mixing matrix, and thus a more ro-
bust result would be produced. Also, a reverberation reduction
stage could be used as postprocessing to improve the quality
even more, for applications like speech recognition in which re-
verberation is also undesirable.

Finally, it must be noted that the algorithm is very fast, even in
a nonoptimized implementation in an interpreted programming
language. This encourages us to explore a real-time semi-online
version of the algorithm.
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