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Abstract

In this paper, we describe a maximum entropy-based automatic prosody labeling framework that
exploits both language and speech information. We apply the proposed framework to both
prominence and phrase structure detection within the Tones and Break Indices (ToBI) annotation
scheme. Our framework utilizes novel syntactic features in the form of supertags and a quantized
acoustic—prosodic feature representation that is similar to linear parameterizations of the prosodic
contour. The proposed model is trained discriminatively and is robust in the selection of appropriate
features for the task of prosody detection. The proposed maximum entropy acoustic—syntactic model
achieves pitch accent and boundary tone detection accuracies of 86.0% and 93.1% on the Boston
University Radio News corpus, and, 79.8% and 90.3% on the Boston Directions corpus. The phrase
structure detection through prosodic break index labeling provides accuracies of 84% and 87% on
the two corpora, respectively. The reported results are significantly better than previously reported
results and demonstrate the strength of maximum entropy model in jointly modeling simple lexical,
syntactic, and acoustic features for automatic prosody labeling.

Index Terms

Acoustic; prosodic representation; maximum entropy model; phrasing; prominence; spoken
language processing; supertags; suprasegmental information; ToBI annotation

[. Introduction

PROSODY is generally used to describe aspects of a spoken utterance’s pronunciation which
are not adequately explained by segmental acoustic correlates of sound units (phones). The
prosodic information associated with a unit of speech, say, syllable, word, phrase, or clause,
influences all the segments of the unit in an utterance. In this sense, they are also referred to
as suprasegmentals [1] that transcend the properties of local phonetic context.

Prosody encoded in the form of intonation, rhythm, and lexical stress patterns of spoken
language conveys linguistic and paralinguistic information such as emphasis, intent, attitude,
and emotion of a speaker. On the other hand, prosody is also used by speakers to provide cues
to the listener and aid in the appropriate interpretation of their speech. This facilitates a method
to convey the intent of the speaker through meaningful chunking or phrasing of the sentence,
and is typically achieved by breaking long sentences into smaller prosodic phrases. Two key
prosodic attributes described above include prominence and phrasing [2].
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Prosody in spoken language correlates with acoustic and syntactic features. Acoustic correlates
of duration, intensity and pitch, such as syllable nuclei duration, short time energy, and
fundamental frequency (f0) are some of the acoustic features that are used to express prosodic
prominence or stress in English. Lexical and syntactic features such as parts-of-speech, syllable
nuclei identity, syllable stress of neighboring words have also been shown to exhibit a high
degree of correlation with prominence. Humans realize phrasing acoustically by pausing after
a major prosodic phrase, accentuating the final syllable in a phrase, and/or by lengthening the
final syllable nuclei before a phrase boundary. Prosodic phrase breaks typically coincide with
syntactic boundaries [3]. However, prosodic phrase structure is not isomorphic to the syntactic
structure [4], [5].

Incorporating prosodic information can be beneficial in speech applications such as text-to-
speech synthesis, automatic speech recognition, and natural language understanding, dialog
act detection and even speech-to-speech translation. Accounting for the correct prosodic
structure is essential in text-to-speech synthesis to produce natural sounding speech with
appropriate pauses, intonation, and duration. Speech understanding applications also benefit
from being able to interpret the recognized utterance through the placement of correct prosodic
phrasing and prominence. Speech-to-speech translation systems can also greatly benefit from
the marking of prosodic phrase boundaries, e.g., providing this information could directly help
in building better phrase-based statistical machine translation systems. The integration of
prosody in these applications is preempted by two main requirements:

1. asuitable and appropriate representation of prosody (e.g., categorical or continuous);

2. algorithms to automatically detect and seamlessly integrate the detected prosodic
structure in speech applications.

Prosody is highly dependent on the individual speaker style, gender, dialect, and phonological
factors. Nonuniform acoustic realizations of prosody are characterized by distinct intonation
patterns and prosodic constituents. These distinct intonation patterns are typically represented
using either symbolic or parametric prosodic labeling schemes such as Tones and Break Indices
(ToBI) [6], TILT intonational model [7], Fujisaki model [8], Intonational Variation in English
(TVIE) [9], and International Transcription System for Intonation (INTSINT) [10]. These
prosodic labeling approaches provide a common framework for characterizing prosody and
hence facilitate development of algorithms and computational modeling frameworks for
automatic detection and subsequent integration of prosody within various speech applications.
While detailed categorical representations are suitable for text-to-speech synthesis, speech, and
natural language understanding tasks, simpler prosodic representations in terms of raw or
speaker normalized acoustic correlates of prosody have also been shown to be beneficial in
many speech applications such as disfluency detection [11], sentence boundary detection
[12], parsing [13], and dialog act detection [14]. As long as the acoustic correlates are reliably
extracted under identical conditions during training and testing, an intermediate symbolic or
parametric representation of prosody can be avoided, even though they may provide additional
discriminative information if available. In this paper, we use the ToBI labeling scheme for
categorical representation of prosody.

Prior efforts in automatic prosody labeling have utilized a variety of machine learning
techniques, such as decision trees [2], [15], rule-based systems [16], bagging and boosting on
decision trees [17], hidden Markov models (HMMs) [18], coupled HMMs [19], neural
networks [20], and conditional random fields [21]. These algorithms typically exploit lexical,
syntactic, and acoustic features in a supervised learning scenario to predict prosodic
constituents characterized through one of the aforementioned prosodic representations.

The interplay between acoustic, syntactic, and lexical features in characterizing prosodic events
has been successfully exploited in text-to-speech synthesis [22], [23], dialog act modeling
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[24], [25], speech recognition [20], and speech understanding [2]. The procedure in which the
lexical, syntactic, and acoustic features are integrated plays a vital role in the overall robustness
of automatic prosody detection. While generative models using HMMs typically perform a
front-end acoustic—prosodic recognition and integrate syntactic information through back-off
language models [19], [20], stand-alone classifiers use a concatenated feature vector combining
the three sources of information [21], [26]. We believe that a discriminatively trained model
that jointly exploits lexical, syntactic, and acoustic information would be the best suited for
the task of prosody labeling. We present a brief synopsis of the contribution of this paper in
the following section.

A. Contributions of This Work

We present a discriminative classification framework using maximum entropy modeling for
automatic prosody detection. The proposed classification framework is applied to both
prominence and phrase structure prediction, two important prosodic attributes that convey vital
suprasegmental information beyond the orthographic transcription. The prominence and phrase
structure prediction is carried out within the ToBI framework designed for categorical prosody
representation. We perform automatic pitch accent and boundary tone detection, and break
index prediction, that characterize prominence and phrase structure, respectively, with the
ToBI annotation scheme.

The primary motivation for the proposed work is to exploit lexical, syntactic, and acoustic—
prosodic features in a discriminative modeling framework for prosody modeling that can be
easily integrated in a variety of speech applications. The following are some of the salient
aspects of our work.

1. Syntactic Features:

«  We propose the use of novel syntactic features for prosody labeling in the
form of supertags which represent dependency analysis of an utterance and
its predicate-argument structure, akin to a shallow syntactic parse. We
demonstrate that inclusion of supertag features can further exploit the
prosody-syntax relationship compared to that offered by using parts-of-
speech tags alone.

2. Acoustic Features:

«  We propose a novel representation scheme for the modeling of acoustic—
prosodic features such as energy and pitch. We use n-gram features derived
from the quantized continuous acoustic—prosodic sequence that is integrated
in the maximum entropy classification scheme. Such an n-gram feature
representation of the prosodic contour is similar to representing the acoustic—
prosodic features with a piecewise linear fit as done in parametric approaches
to modeling intonation.

3. Modeling:

«  We present a maximum entropy framework for prosody detection that jointly
exploits lexical, syntactic, and prosodic features. Maximum entropy
modeling has been shown to be favorable for a variety of natural language
processing tasks such as part-of-speech tagging, statistical machine
translation, sentence chunking, etc. In this paper, we demonstrate the
suitability of such a framework for automatic prosody detection. The
proposed framework achieves state-of-the-art results in pitch accent,
boundary tone, and break index detection on the Boston University (BU)
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Radio News Corpus [30] and Boston Directions Corpus (BDC) [31], two
publicly available read speech corpora with prosodic annotation.

«  Our framework for modeling prosodic attributes using lexical, syntactic, and
acoustic information is at the word level, as opposed to syllable level. Thus,
the proposed automatic prosody labeler can be readily integrated in speech
recognition, text-to-speech synthesis, speech translation, and dialog
modeling applications.

The rest of the paper is organized as follows. In Section I1, we describe some of the standard
prosodic labeling schemes for representation of prosody, particularly, the ToBI annotation
scheme that we use in our experiments. We discuss related work in automatic prosody labeling
in Section Il followed by a description of the proposed maximum entropy algorithm for
prosody labeling in Section IV. Section V describes the lexical, syntactic, and acoustic—
prosodic features used in our framework and Section V1-A describes the data used. We present
results of pitch accent and boundary tone detection, and break index detection in Sections V11
and VIII, respectively. We provide discussion of our results in Section 1X and conclude in
Section X along with directions for future work.

Il. Prosodic Labeling Standards

Automatic detection of prosodic prominence and phrasing requires appropriate representation
schemes that can characterize prosody in a standardized manner and hence facilitate design of
algorithms that can exploit lexical, syntactic, and acoustic features in detecting the derived
prosodic representation. Existing prosody annotation schemes range from those that seek
comprehensive representations for capturing the various multiple facets of prosody to those
that focus on exclusive categorization of certain prosodic events.

Prosodic labeling systems can be categorized into two main types: linguistic systems, such as
ToBI [6], which encode events of linguistic nature through discrete categorical labels and
parametric systems, such as TILT [7] and INTSINT [10] that aim only at providing a
configurational description of the macroscopic pitch contour without any specific linguistic
interpretation. While TILT and INTSINT are based on numerical and symbolic
parameterizations of the pitch contour and hence are more or less language independent, ToBI
requires expert human knowledge for the characterization of prosodic events in each language
(e.g., Spanish ToBI [28] and Japanese ToBI [29]). In contrast, the gross categorical descriptions
within the ToBI framework offer a level of uncertainty in the human annotation to be
incorporated into the labeling scheme and hence provide some generalization, considering that
prosodic structure is highly speaker dependent. They also provide more general-purpose
description of prosodic events encompassing acoustic correlates of pitch, duration, and energy
compared to TILT and INTSINT that exclusively model the pitch contour. Furthermore, the
availability of large prosodically labeled corpora with manual ToBI annotations, such as the
Boston University (BU) Radio News Corpus [30] and Boston Directions Corpus (BDC) [31],
offer a convenient and standardized avenue to design and evaluate automatic ToBI-based
prosody labeling algorithms.

Several linguistic theories have been proposed to represent the grouping of prosodic
constituents [6], [32], [33]. In the simplest representation, prosodic phrasing constituents can
be grouped into word, minor phrase, major phrase, and utterance [1]. The ToBI break index
representation [6] uses indices between 0 and 4 to denote the perceived disjuncture between
each pair of words, while the perceptual labeling system described in [32] represents a superset
of prosodic constituents by using labels between 0 and 6. In general, these representations are
mediated by rhythmic and segmental analysis in the orthographic tier and associate each word
with an appropriate index.
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In this paper, we evaluate our automatic prosody algorithm on the Boston University Radio
News Corpus and Boston Directions Corpus, both of which are hand annotated with ToBI
labels. We perform both prominence and phrase structure detection that are characterized
within the ToBI framework through the following parallel tiers: 1) a tone tier, and 2) a break-
index tier. We provide a brief description of the ToBI annotation scheme and the associated
characterization of prosodic prominence and phrasing by the parallel tiers in the following
section.

A. ToBl Annotation Scheme

The ToBI [6] framework consists of four parallel tiers that reflect the multiple components of
prosody. Each tier consists of discrete categorical symbols that represent prosodic events
belonging to that particular tier.1 A concise summary of the four parallel tiers is presented
below. The reader is referred to [6] for a more comprehensive description of the annotation
scheme.

«  Orthographic Tier: The orthographic tier contains the transcription of the orthographic
words of the spoken utterance.

«  Tonetier: Two types of tones are marked in the tonal tier: pitch events associated with
intonational boundaries, phrasal tones or boundary tones, and pitch events associated
with accented syllables, pitch accents. The basic tone levels are high (H) and low (L),
and are defined based on the relative value of the fundamental frequency in the local
pitch range. There are a total of five pitch accents that lend prominence to the
associated word: {H*, L*, L*+H, L+H*, H+ !H*}. The phrasal tones are divided in
two coarse categories, weak intermediate phrase boundaries {L—, H-}, and full
intonational phrase boundaries {L — L%, L — H%, H — H%, H — L%} that group
together semantic units in the utterance.

«  Break index tier: The break-index tier marks the perceived degree of separation
between lexical items (words) in the utterance and is an indicator of prosodic phrase
structure. Break indices range in value from O through 4, with 0 indicating no
separation, or cliticization, and 4 indicating a full pause, such as at a sentence
boundary. This tier is strongly correlated with phrase tone markings on the tone tier.

«  Miscellaneous tier: This may include annotation of non-speech events such as
disfluencies, laughter, etc.

The detailed representation of prosodic events in the ToBI framework, however, suffers from
the drawback that all the prosodic events are not equally likely, and hence a prosodically labeled
corpus would consist of only a few instances of one event while comprising a majority of
another. This in turn creates serious data sparsity problems for automatic prosody detection
and identification algorithms. This problem has been circumvented to some extent by
decomposing the ToBI labels into intermediate or coarse categories such as presence or absence
of pitch accents, phrasal tones, etc., and performing automatic prosody detection on the
decomposed inventory of labels. Such a grouping also reduces the effects of labeling
inconsistency. A detailed illustration of the label decompositions is presented in Table I. In
this paper, we use the coarse representation (presence versus absence) of pitch accents,
boundary tones, and break indices to alleviate the data sparsity and compare our results with
previous work.

lona variety of speaking styles, Pitrelli et al. [38] have reported inter-annotator agreements of 83%—-88%, 94%-95%, and 92.5%,
respectively, for pitch accent, boundary tone, and break index detection within the ToBI annotation scheme.
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[1l. Related work

In this section, we survey previous work in prominence and phrase break prediction with an
emphasis on ToBI-based pitch accent, boundary tones, and break index prediction. We present
a brief overview of speech applications that have used such prosodic representations along
with algorithms and their corresponding performance on the various prosody detection and
identification tasks.

A. Pitch Accent and Boundary Tone Labeling

Automatic prominence labeling through pitch accents and boundary tones, has been an active
research topic for over a decade. Wightman and Ostendorf [2] developed a decision-tree
algorithm for labeling prosodic patterns. The algorithm detected phrasal prominence and
boundary tones at the syllable level. Bulyko and Ostendorf [22] used a prosody prediction
module to synthesize natural speech with appropriate pitch accents. Verbmobil [39]
incorporated prosodic prominence into a translation framework for improved linguistic
analysis and speech understanding.

Pitch accent and boundary tone labeling has been reported in many past studies [15], [19],
[20]. Hirschberg [15] used a decision-tree based system that achieved 82.4% speaker-
dependent accent labeling accuracy at the word level on the BU corpus using lexical features.
Wang and Hirschberg [37] used a CART-based labeling algorithm to achieve intonational
phrase boundary classification accuracy of 90.0%. Ross and Ostendorf [34] also used an
approach similar to [2] to predict prosody for a text-to-speech (TTS) system from lexical
features. Pitch accent accuracy at the word level was reported to be 82.5% and syllable-level
accent accuracy was 87.7%. Hasegawa-Johnson et al. [20] proposed a neural network based
syntactic—prosodic model and a Gaussian mixture model-based acoustic—prosodic model to
predict accent and boundary tones on the BU corpus that achieved 84.2% accuracy in accent
prediction and 93.0% accuracy in intonational boundary prediction. With syntactic information
alone, they achieved 82.7% and 90.1% for accent and boundary prediction, respectively.
Ananthakrishnan and Narayanan [19] modeled the acoustic—prosodic information using a
coupled hidden Markov model that modeled the asynchrony between the acoustic streams. The
pitch accent and boundary tone detection accuracy at the syllable level were 75% and 88%,
respectively. Yoon [40] has recently proposed memory-based learning approach and has
reported accuracies of 87.78% and 92.23% for pitch accent and boundary tone labeling. The
experiments were conducted on a subset of the BU corpus with 10 548 words and consisted of
data from same speakers in the training and test set.

More recently, pitch accent labeling has been performed on spontaneous speech in the
Switchboard corpus. Gregory and Atlun [21] modeled lexical, syntactic, and phonological
features using conditional random fields and achieved pitch accent detection accuracy of 76.4%
on a subset of words in the Switchboard corpus. Ensemble machine learning techniques such
as bagging and random forests on decision trees were used in the 2005 JHU Workshop [36] to
achieve pitch accent detection accuracy of 80.4%. The corpus used was a prosodic database
consisting of spontaneous speech from the Switchboard corpus [41]. Nenkova et al. [35] have
reported a pitch accent detection accuracy of 76.6% on a subset of the Switchboard corpus
using a decision tree classifier.

Our proposed maximum entropy discriminative model outperforms previous work on prosody
labeling on the BU and BDC corpora. On the BU corpus, with syntactic information alone we
achieve pitch accent and boundary tone accuracy of 85.2% and 91.5% on the same training
and test sets used in [20] and [27]. These results are statistically significant by a difference of
proportions test.2 Further, the coupled model with both acoustic and syntactic information
results in accuracies of 86.0% and 93.1%, respectively. The pitch accent improvement is

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2009 July 13.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Sridhar et al.

Page 7

statistically significant compared to results reported in [27] by a difference of proportions test.
On the BDC corpus, we achieve pitch accent and boundary tone accuracies of 79.8% and
90.3%. The proposed work uses speech and language information that can be reliably and easily
extracted from the speech signal and orthographic transcription. It does not rely on any hand-
coded features [35] or prosody labeled lexicons [20]. The results of previous work on pitch
accent and boundary tone detection on the BU corpus are summarized in Table I1.

B. Prosodic Phrase Break Labeling

Automatic intonational phrase break prediction has been addressed mainly through rule-based
systems developed by incorporation of rich linguistic rules, or, data-driven statistical methods
that use labeled corpora to induce automatic labeling information [2], [26], [42], [43].
Typically, syntactic information like part-of-speech (POS) tags, syntactic structure (parse
features), as well as acoustic correlates like duration of pre-boundary syllables, boundary tones,
pauses and fO contour have been used as features in automatic detection and identification of
intonational phrase breaks. Algorithms based on machine learning techniques such as decision
trees [2], [26], [44], HMM [42], or combination of these [43] have been successfully used for
predicting phrase breaks from text and speech.

Automatic detection of phrase breaks has been addressed mainly from the intent of
incorporating the information in text-to-speech systems [26], [42], to generate appropriate
pauses and lengthening at phrase boundaries. Phrase breaks have also been modeled from the
interest of their utility in resolving syntactic ambiguity [13], [44], [45]. Intonational phrase
break prediction is also important in speech understanding [2], where the recognized utterance
needs to be interpreted correctly.

One of the first efforts in automatic prosodic phrasing was presented by Ostendorf and
Wightman [2]. Using the seven-level break index proposed in [32], they achieved an accuracy
of 67% for exact identification and 89% correct identification within £1. They used a simple
decision tree classifier for this task. Wang and Hirschberg [37] have reported an overall
accuracy of 81.7% in detection of phrase breaks through a CART-based scheme. Ostendorf
and Veilleux [45] achieved 70% accuracy for break correct prediction, while, Taylor and Black
[42], using their HMM-based phrase break prediction based on POS tags have demonstrated
79.27% accuracy in correctly detecting break indices. Sun and Applebaum [43] have reported
F-scores of 77% and 93% on break and nonbreak prediction. Recently, ensemble machine
learning techniques such as bagging and random forests that combined decision tree classifiers
were used at the 2005 JHU workshop [36] to perform automatic break index labeling. The
classifiers were trained on spontaneous speech [41] and resulted in break index detection
accuracy of 83.2%. Kahn et al. [13] have also used prosodic break index labeling to improve
parsing. Yoon [40] has reported break index accuracy of 88.06% in a three-way classification
between break indices using only lexical and syntactic features.

We achieve a break index accuracy of 83.95% and 87.18% on the BU and BDC corpora using
lexical and syntactic information alone. Our combined maximum entropy acoustic—prosodic
model achieves a break index detection accuracy of 84.01% and 87.58%, respectively, on the
two corpora. The results from previous work are summarized in Table I11.

IV. Maximum Entropy Discriminative Model for Prosody Labeling

Discriminatively trained classification techniques have emerged as one of the dominant
approaches for resolving ambiguity in many speech and language processing tasks. Models
trained using discriminative approaches have been demonstrated to outperform generative

2Results at a level < 0.001 were considered significant.
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models as they directly optimize the conditional distribution without modeling the distribution
of all the underlying variables. The maximum entropy approach can model the uncertainty in
labels in typical NLP tasks and hence is desirable for prosody detection due to the inherent
ambiguity in the representation of prosodic events through categorical labels. A preliminary
formulation of the work in this section was presented by the authors in [46] and [47].

We model the prosody prediction problem as a classification task as follows: given a sequence
of words wij in an utterance W = {wj,...,Wn}, the corresponding syntactic information sequence
S ={s1,...,5n} (e.g., parts-of-speech, syntactic parse, etc.), a set of acoustic—prosodic features

A={ay,..., an}, Where a,»:(al.l, ... ,ai.“"') is the acoustic—prosodic feature vector corresponding
to word w; with a frame length of t,; and a prosodic label vocabulary &£ = {ly,...,I\}, the best
prosodic label sequence L* = {lq,l5,...,In} is obtained as follows:

L= P(LIW, S, A).
wy%x(lﬁ,) "

We approximate the string level global classification problem, using conditional independence
assumptions, to a product of local classification problems as shown in (3). The classifier is then
used to assign to each word a prosodic label conditioned on a vector of local contextual features
comprising the lexical, syntactic, and acoustic information:

L= P(LIW,S, A
arg max (LIW,S,A) @

n
~ arg mzlxl_lp (lilw;.fif, Sit];f ajtf)
i=1 3)

n
= arg mgx]—[p(mm(w, S, A, i)
i=1 (4)

Where ®(W, S, A, i)=(w'*}, si*%, al*)) is a set of features extracted within a bounded local
context k. @ (W, S, A, i) is shortened to @ in the rest of the section.

To estimate the conditional distribution P(l;|®), we use the general technique of choosing the
maximum entropy (maxent) distribution that estimates the average of each feature over the
training data [48]. This can be written in terms of the Gibbs distribution parameterized with
weights 1) where | ranges over the label set and V is the size of the prosodic label set. Hence

e/l/i-q)

P(j|®)=———.
=y

(5)

To find the global maximum of the concave function in (5), we use Sequential L1-Regularized
Maxent algorithm (SL1-Max) [49]. Compared to iterative scaling (IS) and gradient descent
procedures, this algorithm results in faster convergence and provides L1-regularization as well
as efficient heuristics to estimate the regularization meta-parameters. We use the machine
learning toolkit LLAMA [50] to estimate the conditional distribution using maxent. LLAMA
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encodes multiclass maxent as binary maxent to increase the training speed and to scale the
method to large data sets. We use here V one-versus-other binary classifiers. Each output label
I'is projected onto a bit string, with components bj(I). The probability of each component is
estimated independently:

P®i(DI®)=1 - P(b;(D|®)

—(A;-1=)-®
e (6)

where /; is the parameter vector for bj(y). Assuming the bit vector components to be
independent, we have

14
PULI®)=[ | Pb;)®).
L @

Therefore, we can decouple the likelihoods and train the classifiers independently. In this paper,
we use the simplest and most commonly studied code, consisting of V one-versus-others binary
components. The independence assumption states that the output labels or classes are
independent.

V. Lexical, Syntactic, and Acoustic Features

In this section, we describe the lexical, syntactic, and acoustic features that we use in our
maximum entropy discriminative modeling framework. We use only features that are derived
from the local context of the text being tagged, referred to as static features hereon (see Table
IV). One would have to perform a Viterbi search if the preceding prediction context were to
be added. Using static features is especially suitable for performing prosody labeling in lockstep
with recognition or dialog act detection, as the prediction can be performed incrementally
instead of waiting for the entire utterance or dialog to be decoded.

A. Lexical and Syntactic Features

The lexical features used in our modeling framework are simply the words in a given utterance.
The BU and BDC corpora that we use in our experiments are automatically labeled (and hand-
corrected) with POS tags. The POS inventory is the same as the Penn treebank which includes
47 POS tags: 22 open class categories, 14 closed class categories, and 11 punctuation labels.
We also automatically tagged the utterances using the AT&T POS tagger. The POS tags were
mapped into function and content word categories3 and were added as a discrete feature.

In addition to the POS tags, we also annotate the utterance with Supertags [51]. Supertags
encapsulate predicate-argument information in a local structure. They are the elementary trees
of Tree-Adjoining Grammars (TAGSs) [52]. Similar to part-of-speech tags, Supertags are
associated with each word of an utterance, but provide much richer information than part-of-
speech tags, as illustrated in the example in Table V. Supertags can be composed with each
other using substitution and adjunction operations [52] to derive the predicate-argument
structure of an utterance.

3Function and content word features were obtained through a look-up table based on POS.
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There are two methods for creating a set of Supertags. One approach is through the creation
of a wide coverage English grammar in the lexicalized tree adjoining grammar formalism,
called XTAG [53]. An alternate method for creating supertags is to employ rules that
decompose the annotated parse of a sentence in Penn Treebank into its elementary trees [54],
[55]. This second method for extracting supertags results in a larger set of supertags. For the
experiments presented in this paper, we employ a set of 4726 supertags extracted from the Penn
Treebank.

There are many more supertags per word than part-of-speech tags, since supertags encode
richer syntactic information than part-of-speech tags. The task of identifying the correct
supertag for each word of an utterance is termed as supertagging [51]. Different models for
supertagging that employ local lexical and syntactic information have been proposed [56]. For
the purpose of this paper, we use a maximum entropy supertagging model that achieves a
supertagging accuracy of 87% [57].4

While there have been previous attempts to employ syntactic information for prosody labeling
[44], [58], which mainly exploited the local constituent information provided in a parse
structure, supertags provide a different representation of syntactic information. First, supertags
localize the predicate and its arguments within the same local representation (e.g., give is a di-
transitive verb) and this localization extends across syntactic transformations (relativization,
passivization, wh-extraction), i.e., there is a different supertag for each of these transformations
for each of the argument positions. Second, supertags also factor out recursion from the
predicate-argument domain. Thus, modification relations are specified through separate
supertags as shown in Table V. For this paper, we use the supertags as labels, even though
there is a potential to exploit the internal representation of supertags as well as the dependency
structure between supertags as demonstrated in [59]. Table V shows the supertags generated
for a sample utterance in the BU corpus.

B. Acoustic—Prosodic Features

The BU corpus contains the corresponding acoustic—prosodic feature file corresponding to
each utterance. The f0O and root mean square (rms) energy (e) of the utterance along with
features for distinction between voiced/unvoiced segments, cross-correlation values at
estimated fO values, and ratio of first two cross correlation values are computed over 10-ms
frame intervals. The pitch values for unvoiced regions are smoothed using linear interpolation.
In our experiments, we use these values rather than computing them explicitly which is
straightforward with most audio processing toolkits. Both the energy and the fO levels were
range normalized (znorm) with speaker specific means and variances. Delta and acceleration
coefficients were also computed for each frame. The final feature vector has six dimensions
comprising f0, Af0, A%f0, e, Ae, and A2 per frame.

We model the frame level continuous acoustic—prosodic observation sequence as a discretized
sequence through quantization (see Fig. 1). We perform this on the normalized pitch and energy
extracted from the time segment corresponding to each word. The quantized acoustic stream
is then used as a feature vector. For this case, (3) becomes

n n
L" ~arg mzixl_[p(l,-ltb): arg mzix]_lp(l,-la,-)
i i (8)

4The model is trained to disambiguate among the supertags of a word by using the lexical and part-of-speech features of the word and
of six words in the left and right context of that word. The model is trained on one million words of supertag annotated text.
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Where a,:(a}, e af,“"' ), the acoustic—prosodic feature vector corresponding to word w; with a
frame length of ty;.

The quantization, while being lossy, reduces the vocabulary of the acoustic—prosodic features,
and hence offers better estimates of the conditional probabilities. The quantized acoustic—
prosodic cues are then modeled using the maximum entropy model described in Section IV.
The n-gram representation of quantized continuous features is similar to representing the
acoustic—prosodic features with a piecewise linear fit as done in the TILT international model
[7]. Essentially, we leave the choice of appropriate representations of the pitch and energy
features to the maximum entropy discriminative classifier, which integrates feature selection
during classification.

The proposed scheme of quantized n-gram prosodic features as input to the maxent classifier
is different from previous work [60]. Shriberg et al. [60] have proposed n-grams of Syllable-
based Nonuniform Extraction Region Features (SNERF-grams) for speaker recognition. In
their approach, they extract a large set of prosodic features such as maximum pitch, mean pitch,
minimum pitch, durations of syllable onset, coda, nucleus, etc., and quantize these features by
binning them. The resulting syllable-level features, for a particular bin resolution, are then
modeled as either unigram (using current syllable only), bigram (current and previous syllable
or pause), or trigram (current and previous two syllables or pauses). They use support vector
machines (SVMs) for subsequent classification. Our framework, on the other hand, models the
macroscopic prosodic contour in its entirety by using n-gram feature representation of the
quantized prosodic feature sequence. This representation coupled with the strength of the
maxent model to handle large feature sets and in avoiding overtraining through regularization
makes our scheme attractive for capturing characteristic pitch movements associated with
prosodic events.

VI. Experimental Evaluation

A. Data

All the experiments reported in this paper are performed on the Boston University (BU) Radio
News Corpus [30] and the Boston Directions Corpus (BDC) [31], two publicly available speech
corporawith manual ToBI annotations intended for experiments in automatic prosody labeling.
The BU corpus consists of broadcast news stories including original radio broadcasts and
laboratory simulations recorded from seven FM radio announcers. The corpus is annotated
with orthographic transcription, automatically generated and hand-corrected part-of-speech
tags and automatic phone alignments. A subset of the corpus is also hand annotated with ToBI
labels. In particular, the experiments in this paper are carried out on four speakers similar to
[27], two males and two females referred to hereafter as m1b, m2b, fla, and f2b. The BDC
corpus is made of elicited monologues produced by subjects who were instructed to perform
a series of direction-giving tasks. Both spontaneous and read versions of the speech are
available for four speakers h1, h2, h3, and h4 with hand-annotated ToBI labels and automatic
phone alignments, similar to the BU corpus. Table VI shows some of the statistics of the
speakers in the BU and BDC corpora.

In all our prosody labeling experiments, we adopt a leave-one-out speaker validation similar
to the method in [20] for the four speakers with data from one speaker for testing and those
from the other three for training. For the BU corpus, speaker f2b was always used in the training
set since it contains the most data. In addition to performing experiments on all the utterances
in BU corpus, we also perform identical experiments on the train and test sets reported in
[27] which is referred to as Hasegawa-Johnson et al. set.
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VII. Pitch Accent and Boundary Tone Labeling

In this section, we present pitch accent and boundary tone labeling results obtained through
the proposed maximum entropy prosody labeling scheme. We first present some baseline
results, followed by the description of results obtained from our classification framework.

A. Baseline Experiments

We present three baseline experiments. One is simply based on chance where the majority class
label is predicted. The second is a baseline only for pitch accents derived from the lexical stress
obtained through look-up from a pronunciation lexicon labeled with stress. Finally, the third
baseline is obtained through prosody detection in current off-the-shelf speech synthesis
systems. The baseline using speech synthesis systems is comparable to our proposed model
that uses lexical and syntactic information alone. For experiments using acoustics, our baseline
is simply chance.

1) Acoustic Baseline (Chance)—The simplest baseline we use is chance, which refers to
the majority class label assignment for all tokens. The majority class label for pitch accents is
presence of a pitch accent (accent) and that for boundary tone is absence (none).

2) Prosody Labels Derived From Lexical Stress—Pitch accents are usually carried by
the stressed syllable in a particular word. Lexicons with phonetic transcription and lexical stress
are available in many languages. Hence, one can use these lexical stress markers within the
syllables and evaluate the correlation with pitch accents. Even when the lexicon has a closed
vocabulary, letter-to-sound rules can be derived from it for unseen words. For each word
carrying a pitch accent, we find the particular syllable where the pitch accent occurs from the
manual annotation. For the same syllable, we assign a pitch accent based on the presence or
absence of a lexical stress marker in the phonetic transcription. The CMU pronunciation lexicon
was used for predicting lexical stress through simple lookup. Lexical stress for out-of-
vocabulary words was predicted through a CART based letter-to-sound rule derived from the
pronunciation lexicon. The results are presented in Table VII.

3) Prosody Labels Predicted Using TTS Systems—We perform prosody prediction
using two off-the-shelf speech synthesis systems, namely, AT&T NV speech synthesizer and
Festival. The AT&T NV speech synthesizer [61] is a half phone speech synthesizer. The toolkit
accepts an input text utterance and predicts appropriate ToBI pitch accent and boundary tones
for each of the selected units (in this case, a pair of phones) from the database. The toolkit uses
a rule-based procedure to predict the ToBI labels from lexical information [15]. We reverse
mapped the selected half phone units to words, thus obtaining the ToBI labels for each word
in the input utterance. The pitch accent labels predicted by the toolkit are Lyccent e{H*, L*,
none} and the boundary tones are Lyigne e{L — L%, H — H%, L — H%, none}.

Festival [62] is an open-source unit selection speech synthesizer. The toolkit includes a CART-
based prediction system that can predict ToBI pitch accents and boundary tones for the input
text utterance. The pitch accent labels predicted by the toolkit are Lyceente € {H*, L+H*, IH*,
none}, and the boundary tones are Lyione e{L. — L%, H — H%, L — H%, none}. The prosody
labeling results obtained through both the speech synthesis engines are presented in Table VII.

B. Maximum Entropy Pitch Accent and Boundary Tone Classifier

In this section, we present results of our maximum entropy pitch accent and boundary tone
classification. We first present a maximum entropy syntactic—prosodic model that uses only
lexical and syntactic information for prosody detection, followed by a maximum entropy
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acoustic—prosodic model that uses an n-gram feature representation of the quantized acoustic—
prosodic observation sequence.

1) Maximum Entropy Syntactic-Prosodic Model—The maximum entropy syntactic—
prosodic model uses only lexical and syntactic information for prosody labeling. Our prosodic
label inventory consists of Laccent e{accent, none} for pitch accents and Lyigne e{btone,
none} for boundary tones. Such a framework is beneficial for text-to-speech synthesis that
relies on lexical and syntactic features derived predominantly from the input text to synthesize
natural sounding speech with appropriate prosody. The results are presented in Table VIII. In
Table VIII, correct POS tags refer to hand-corrected POS tags present in the BU corpus release
and POS tags refers to parts-of-speech tags predicted automatically.

Prosodic prominence and phrasing can also be viewed as joint events occurring simultaneously.
Previous work by [2] suggests that a joint labeling approach may be more beneficial in prosody
labeling. In this scenario, we treat each word to have one of the four labels I; e = {accent —
btone, accent—none, none —btone, none —none}. We trained the classifier on the joint labels
and then computed the error rates for individual classes. The joint modeling approach provides
a marginal improvement in the boundary tone prediction but is slightly worse for pitch accent
prediction.

2) Maximum Entropy Acoustic—Prosodic Model—We quantize the continuous
acoustic—prosodic values by binning and extract n-gram features from the resulting sequence.
The quantized acoustic—prosodic n-gram features are then modeled with a maxent acoustic—
prosodic model similar to the one described in Section 5. Finally, we append the syntactic and
acoustic features to model the combined stream with the maxent acoustic-syntactic model,
where the objective criterion for maximization is (1). The two streams of information were
weighted in the combined maximum entropy model by performing optimization on the training
set (weights of 0.8 and 0.2 were used on the syntactic and acoustic vectors, respectively). The
pitch accent and boundary tone prediction accuracies for quantization performed by
considering only the first decimal place is reported in Table IX. As expected, we found the
classification accuracy to drop with increasing number of bins used in the quantization due to
the small amount of training data. In order to compare the proposed maxent acoustic—prosodic
model with conventional approaches such as HMMs, we also trained continuous observation
density HMMs to represent pitch accents and boundary tones. This is presented in detail in the
following section.

C. HMM Acoustic—Prosodic Model

In this section, we compare the proposed maxent acoustic—prosodic model with a traditional
HMM approach. HMMs have been demonstrated to capture the time-varying pitch patterns
associated with pitch accents and boundary tones effectively [18], [19]. We trained separate
context-independent HMMs with three state left-to-right topology with uniform segmentation.
The segmentations need to be uniform due to lack of an acoustic—prosodic model trained on
the features pertinent to our task to obtain forced segmentation. The acoustic observations of
the HMM were unquantized acoustic—prosodic features described in Section V-B. The label
sequence was decoded using the Viterbi algorithm.

The final label sequence using the maximum entropy syntactic—prosodic model and the HMM
based acoustic—prosodic model was obtained by combining the syntactic and acoustic
probabilities. Essentially, the prosody labeling task reduces to the following:
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L*=arg mzle(LIA, W)
=arg mgxP(LlW) - P(A|L, W)

x arg mzle(LI(I)(W)) - P(AIL)Y ©

where ®(W) is the syntactic feature encoding of the word sequence W. The first term in (9)
corresponds to the probability obtained through our maximum entropy syntactic model. The
second term in (9) computed by an HMM corresponds to the probability of the acoustic data
stream which is assumed to be dependent only on the prosodic label sequence. y is a weighting
factor to adjust the weight of the two models.

The syntactic—prosodic maxent model outputs a posterior probability for each class per word.
We formed a lattice out of this structure and composed it with the lattice generated by the HMM
acoustic—prosodic model. The best path was chosen from the composed lattice through a Viterbi
search. The procedure is illustrated in Fig. 2. The acoustic—prosodic probability P(A|L, W) was
raised by a power of y to adjust the weighting between the acoustic and syntactic model. The
value of y was chosen as 0.008 and 0.015 for pitch accent and boundary tone, respectively, by
tuning on the training set. The results of the HMM acoustic—prosodic model and the coupled
model are shown in Table IX. The weighted maximum entropy syntactic—prosodic model and
HMM acoustic—prosodic model performs the best in pitch accent and boundary tone
classification. We conjecture that the generalization provided by the acoustic HMM model is
complementary to that provided by the maximum entropy model, resulting in slightly better
accuracy when combined together as compared to that of a combined maxent-based acoustic
and syntactic model.

VIII. Prosodic Break Index Labeling

We presented pitch accent and boundary tone labeling results using our proposed maximum
entropy classifier in the previous section. In the following section, we address phrase structure
detection by performing automatic break index labeling within the ToBI framework. Prosodic
phrase break prediction has been especially useful in text-to-speech [42] and sentence
disambiguation [44], [45] applications, both of which rely on prediction based on lexical and
syntactic features. We follow the same format as the prominence labeling experiments,
presenting baseline experiments followed by our maximum entropy syntactic and acoustic
classification schemes. All the experiments are performed on the entire BU and BDC corpora.

A. Baseline Experiments

We present baseline experiments, both chance and break index labeling results using an off-
the-shelf speech synthesizer. The AT&T Natural Voices speech synthesizer does not have a
prediction module for prosodic break prediction, and hence we present results from using the
Festival [62] speech synthesizer alone. Festival speech synthesizer produces simple binary
break presence or absence distinction, as well as more detailed ToBI-like break index
prediction.

1) Break Index Prediction in Festival—Festival can predict break index at the word level
based on the algorithm presented in [42]. The toolkit can predict both, ToBI-like break values
(Ltobi_break £{0,1,2,3,4}) and simple presence versus absence (Lpinary break €{B, NB}). Only
lexical and syntactic information is used in this prediction without any acoustics. Baseline
classification results are presented in Table X.
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B. Maximum Entropy Model for Break Index Prediction

1) Syntactic—Prosodic Model—The maximum entropy syntactic—prosodic model uses
only lexical and syntactic information for prosodic break index labeling. Our prosodic label
inventory consists of Lyoni_preak £{0,1,2,3,4} for ToBI based break indices and Lyinary preak €
{B, NB} for binary break versus no-break distinction. The {B, NB} categorization was
obtained by grouping break indices 0,1,2 into NB and 3,4 into B [6]. The classifier is then
applied for break index labeling as described in Section V1I-B1 for the pitch accent prediction.
We assume knowledge of sentence boundary through the means of punctuation in all the
reported experiments.

2) Acoustic—Prosodic Model—Prosodic break index prediction is typically used in text-
to-speech systems and syntactic parse disambiguation. Hence, the lexical and syntactic features
are crucial in the automatic modeling of these prosodic events. Further, they are defined at the
word level and do not demonstrate a high degree of correlation with specific pitch patterns.
We thus use only the maximum entropy acoustic—prosodic model described in Section V1I-
B2. The combined maximum entropy acoustic-syntactic model is then similar to (2), where
the prosodic label sequence is conditioned on the words, POS tags, supertags, and quantized
acoustic—prosodic features. A binary flag indicating the presence or absence of a pause before
and after the current word was also included as a feature. The results of the maximum entropy
syntactic, acoustic, and acoustic-syntactic model for break index prediction are presented in
Table X. The maxent syntactic—prosodic model achieves break index detection accuracies of
83.95% and 87.18% on the BU and BDC corpora. The addition of acoustics to the lexical and
syntactic features does not result in a significant improvement in detection accuracy. In these
experiments, we used only pitch and energy features and did not use duration features such as
rhyme duration, duration of final syllable, etc., used in [2]. Such features require both phonetic
alignment and syllabification and therefore are difficult to obtain in speech applications that
require automatic prosody detection to be performed in lockstep. Additionally, in the context
of TTS systems and parsers, the proposed maximum entropy syntactic—prosodic model for
break index prediction performs with high accuracy compared to previous work.

IX. Discussion

The automatic prosody labeling presented in this paper is based on ToBI-based categorical
prosody labels but is extendable to other prosodic representation schemes such as IViE [9] or
INTSINT [10]. The experiments are performed on decompaositions of the original ToBI labels
into binary classes. However, with the availability of sufficient training data, we can overcome
data sparsity and provide more detailed prosodic event detection (refer to Table I). We use
acoustic features only in the form of pitch and energy contour for pitch accent and boundary
tone detection. Durational features, which are typically obtained through forced alignment of
the speech signal at the phone level in typical prosody detection tasks have not been considered
in this paper. We concentrate only on the energy and pitch contour that can be robustly obtained
from the speech signal. However, our framework is readily amenable to the addition of new
features. We provide discussions on the prominence and phrase structure detection presented
in Sections VII and V111 below.

A. Prominence Prediction

The baseline experiment with lexical stress obtained from a pronunciation lexicon for
prediction of pitch accent yields substantially higher accuracy than chance. This could be
particularly useful in resource-limited languages where prosody labels are usually not available
but one has access to a reasonable lexicon with lexical stress markers. Off-the-shelf speech
synthesizers like Festival and AT&T speech synthesizer have utilities that perform reasonably
well in pitch accent and boundary tone prediction. The AT&T speech synthesizer performs
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better than Festival in pitch accent prediction while the latter performs better in boundary tone
prediction. This can be attributed to better rules in the AT&T synthesizer for pitch accent

prediction. Boundary tones are usually highly correlated with punctuation and Festival seems
to capture this well. However, both these synthesizers generate a high degree of false alarms.

The maximum entropy model syntactic—prosodic proposed in Section VII1-B1 outperforms
previously reported results on pitch accent and boundary tone classification. Much of the gain
comes from the strength of the maximum entropy modeling in capturing the uncertainty in the
classification task. Considering the inter-annotator agreement for ToBI labels is only about 81
% for pitch accents and 93% for boundary tones, the maximum entropy framework is able to
capture the uncertainty present in manual annotation. The supertag feature offers additional
discriminative information over the part-of-speech tags (also demonstrated by Rainbow and
Hirschberg [59]).

The maximum entropy acoustic—prosodic model discussed in Section VI1I-B2 performs well
in isolation compared to the traditional HMM acoustic—prosodic model. This is a simple
method, and the quantization resolution can be adjusted based on the amount of data available
for training. However, the model performs with slightly lower accuracy when combined with
the syntactic features compared to the combined maxent syntactic—prosodic and HMM
acoustic—prosodic model. We conjecture that the generalization provided by the acoustic HMM
model is complementary to that provided by the maximum entropy acoustic model, resulting
in slightly better accuracy when combined with the maxent syntactic model compared the
maxent acoustic—syntactic model. We attribute this behavior to better smoothing offered by
the HMM compared to the maxent acoustic model. We also expect this slight difference would
not be noticeable with a larger data set.

The weighted maximum entropy syntactic—prosodic model and HMM acoustic—prosodic
model performs the best in pitch accent and boundary tone classification. The classification
accuracies are comparable to the inter-annotator agreement for the ToBI labels. Our HMM
acoustic—prosodic model is a generative model and does not assume the knowledge of word
boundaries in predicting the prosodic labels as in previous approaches [2], [15], [20]. This
makes it possible to have true parallel prosody prediction during speech recognition. However,
the incorporation of word boundary knowledge, when available, can aid in improved detection
accuracies [63]. This is also true in the case of our maxent acoustic—prosodic model that
assumes word segmentation information. The weighted approach also offers flexibility in
prosody labeling for either speech synthesis or speech recognition. While the syntactic—
prosodic model would be more discriminative for speech synthesis, the acoustic—prosodic
model is more appropriate for speech recognition.

B. Phrase Structure Prediction

The baseline results from Festival speech synthesizer are relatively modest for the break index
prediction and only slightly better than chance. The break index prediction module in the
synthesizer is mainly based on punctuation and parts-of-speech tag information and hence does
not provide a rich set of discriminative features. The accuracies reported on the BU corpus are
substantially higher compared to chance than those reported on the BDC corpus. We found
that the distribution of break indices was highly skewed in the BDC corpus, and the corpus
also does not contain any punctuation markers. Our proposed maximum entropy break index
labeling with lexical and syntactic information alone achieves 83.95% and 87.18% accuracy
on the BU and BDC corpora. The syntactic model can be used in text-to-speech synthesis and
sentence disambiguation (for parsing) applications. We also envision the use of prosodic breaks
in speech translation by aiding in the construction of improved phrase translation tables.
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X. Summary, Conclusions, and Future Work

In this paper, we described a maximum entropy discriminative modeling framework for
automatic prosody labeling. We applied the proposed scheme to both prominence and phrase
structure detection within the ToBI annotation scheme. The proposed maximum entropy
syntactic—prosodic model alone resulted in pitch accent and boundary tone accuracies of 85.2%
and 91.5% on training and test sets identical to [27]. As far as we know, these are the best
results on the BU and BDC corpus using syntactic information alone and a train-test split that
does not contain the same speakers. We have also demonstrated the significance of our
approach by setting reasonable baseline from out-of-the-box speech synthesizers and by
comparing our results with prior work. Our combined maximum entropy syntactic—prosodic
model and HMM acoustic—prosodic model performs the best with pitch accent and boundary
tone labeling accuracies of 86.0% and 93.1%, respectively. The results of collectively using
both syntax and acoustic within the maximum entropy framework are not far behind at 85.2%
and 92%, respectively. The break index detection with the proposed scheme is also promising
with detection accuracies ranging from 84% to 87%. The inter-annotator agreement for pitch
accent, boundary tone and break index labeling on the BU corpus [30] are 81%-84%, 93%,
and 95%, respectively. The accuracies of 80-86%, 90-93.1%, and 84-87% achieved with the
proposed framework for the three prosody detection tasks are comparable to the inter-labeler
agreements. In summary, the experiments of this paper demonstrate the strength of using a
maximum entropy discriminative model for prosody prediction. Our framework is also suitable
for integration into state-of-the-art speech applications.

The supertag features in this work were used as categorical labels. The tags can be unfolded,
and the syntactic dependencies and structural relationship between the nodes of the supertags
can be exploited further as demonstrated in [59]. We plan to use these more refined features
in future work. As a continuation of our work, we have integrated our prosody labeler in a
dialog act tagging scenario, and we have been able to achieve modest improvements [64]. We
are also working on incorporating our automatic prosody labeler in a speech-to-speech
translation framework. Typically, state-of-the-art speech translation systems have a source
language recognizer followed by a machine translation system. The translated text is then
synthesized in the target language with prosody predicted from text. In this process, some of
the critical prosodic information present in the source data is lost during translation. With
reliable prosody labeling in the source language, one can transfer the prosody to the target
language (this is feasible for languages with phrase level correspondence). The prosody labels
by themselves may or may not improve the translation accuracy but they provide a framework
where one can obtain prosody labels in the target language from the speech signal rather than
depending only on a lexical prosody prediction module in the target language.
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Normalized pitch contour values:
-3.2595 0.2524 0.3634 0.2558 0.1960 0.1728 0.1845

Quantization (precision 2):
-3.25 0.25 0.36 0.25 0.19 0.17 0.18

Feature input to maxent classifier:
[(-3.25)], [(0.25),(0.25|-3.25)], ... , [(0.18),(0.18]0.17),(0.18]0.17,0.19)]

Fig. 1.
Illustration of the quantized feature input to the maxent classifier. “|” denotes feature input
conditioned on preceding values in the acoustic—prosodic sequence.
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Fig. 2.

[llustration of the FST composition of the syntactic and acoustic lattices and resulting best path
selection. The syntactic—prosodic maxent model produces the syntactic lattice and the HMM
acoustic—prosodic model produces the acoustic lattice.
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TABLE |
ToBI Label Mapping Used in Experiments. The Decomposition of Labels is Illustrated for Pitch Accents, Phrasal
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Tones, and Break Indices

ToBI Labels Intermediate Mapping Coarse Mapping
H* High
L+H*
IH*, H+!H* Downstepped
L+IH* L*+IH accent
L* Low
L*+H
**? X&? Unresolved
L-L%,'H-L%,H-L%
H-H% Final Boundary tone
L-H% btone
%7?,X%?,%H
L-,H-,'H--X?,-? Intermediate Phrase (IP) boundary
<,>, no label none none
0 0
11-1p 1 NB
2,2-,2p 2
3,3-,3p 3
B
4,4- 4
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All Experiments

TABLE 1l
Summary of Previous Work on Break Index Detection (Coarse Mapping). Detection Is Performed at Word Level for

Accuracy (%)
Authors Algorithm Corpus Break index
Wightman and Ostendorf [2] HMM/CART BU 84.0
Ostendorf and Veilleux [45] HMM/CART ATIS 70.0
Wang and Hirschberg [37] CART ATTS 81.7
Taylor and Black [42] HMM Spoken English corpus 79.2
Sun and Applebaum [43] CART BU 85.2
Harper et al. (JHU Workshop) [36] | Decision Trees/Random Forest | Switchboard 83.2
Proposed work Maximum entropy model BU and BDC 84.0-87.5
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Lexical, Syntactic, and Acoustic Features Used in the Experiments. The Acoustic Features Were Obtained Over 10-
ms Frame Intervals

Category

Features used

Lexical features

Word identity (3 previous and next words)

Syntactic features

POS tags (3 previous and next words)
Supertags (3 previous and next words)
function/content word

distinction (3 previous and next words)

Acoustic features

Speaker normalized fO contour (+delta+acceleration)
Speaker normalized energy contour (+delta+acceleration)
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TABLE VII
Baseline Classification Results of Pitch Accents and Boundary Tones (in %) Using Festival and AT&T Natural VVoices
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Speech Synthesizer

Accuracy
Corpus
Speaker Set Prediction Module Pitch accent Boundary tone

Entire Set Chance 54.33 81.14

Lexical stress 72.64 -
AT&T Natural Voices 81.51 89.10
Festival 69.55 89.54
Hasegawa-Johnsonetal. set Chance 56.53 82.88

Lexical stress 74.10 -
AT&T Natural Voices 81.73 89.67
BU Festival 68.65 90.21
BDC Entire Set Chance 57.60 88.90

Lexical stress 67.42 -
AT&T Natural Voices 68.49 84.90
Festival 64.94 85.17
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