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Chroma Binary Similarity and Local Alignment
Applied to Cover Song ldentification
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Abstract—We present a new technique for audio signal com-

parison based on tonal subsequence alignment and its appéditon
to detect cover versions (i.e., different performances of hie
same underlying musical piece). Cover song identificationsi a
task whose popularity has increased in the Music Informatio
Retrieval (MIR) community along in the past, as it provides a
direct and objective way to evaluate music similarity algoithms.
This article first presents a series of experiments carried @t
with two state-of-the-art methods for cover song identificéion.

We have studied several components of these (such as chroma

resolution and similarity, transposition, beat tracking or Dynamic
Time Warping constraints), in order to discover which character-
istics would be desirable for a competitive cover song ideifter.
After analyzing many cross-validated results, the importace
of these characteristics is discussed, and the best-perfomg
ones are finally applied to the newly proposed method. Multife
evaluations of this one confirm a large increase in identificgon
accuracy when comparing it with alternative state-of-theart
approaches.

Index Terms—Music, Information retrieval, Acoustic signal
analysis, Multidimensional sequences, Dynamic programmg.

I. INTRODUCTION

licenses. Also, learning about music itself, discoverihg t
musical essence of a song, and other many topics related
with music perception and cognition are partially pursued
by this research. Furthermore, the techniques presented he
can be exploited for general audio signal comparison, where
cover/version identification is just an application amotigeo
possible ones.

The expressionsover songandversionmay have different
and somehow fuzzy connotations. version is intended to

be what every performer does by playing precomposed music,
while the termcover songomes from a very different tradition

in pop music, where a piece is composed for a single performer
or group. Cover songs were, originally, part of a strategy
to introduce ‘hits’ that had achieved significant commdrcia
success from other sections of the record-buying publith-wi
out remunerating any money to the original artist or label.
Nowadays, the term has nearly lost these purely economical
connotations. Musicians can play covers as a homage or a
tribute to the original performer, composer or band. Some-
times, new versions are made for translating songs to other
languages, for adapting them to a particular country/iregio

N THE present times, any music listener may have thotastes, for contemporising familiar or very old songs, ar fo
sands of songs stored in a hard disk or in a portabi&rroducing new artists. In addition, cover songs repretien

MP3 player. Furthermore, on-line digital music stores owgpportunity to perform a radically different interpretatiof a
large music collections, ranging from thousands to miliormusical piece.
of tracks. Additionally, the ‘unit’ of music transactiona$i  Today, and perhaps not being the proper way to name it, a
changed from the entire album to the song. Thus, users @ver song can mean any new version, performance, rendition
stores are faced to search through vast music databases abthrecording of a previously recorded tradi [1]. Therefore,
song level. In this context, finding a musical piece that fitge can find several musical dimensions that might change
one’s needs or expectancies may be problematic. Therefajetween two covers of the same song. These can be related
it becomes necessary to organize them according to sofgetimbre (different instruments, configurations or redogd
sense of similarity. It is at this point where determiningWb  procedures), tempo (global tempo and tempo fluctuations),
musical pieces share the same melodic or tonal progressiafithm (e.g., different drum section, meter, swinging @ator
becomes interesting and useful. To address this issue, fregmcopation), song structure (eliminating introductiadding
a research perspective, a good starting point seems to bedb sections, choruses, codas, etc.), main key (trartaposi
identification of cover songs (or versions), where the i@t to another tonality), harmonization (adding or deletingrats,
ship between them can be qualitatively defined, objectivedyibstituting them by related ones, adding tensions, .d) an
measured, and is context-independent. In addition, froen tlyrics (e.g., different languages or words).
users perspective, finding all versions of a particular stary A robust mid-level characteristic that is largely preserve
be valuable and fun. under the mentioned musical variations is a tonal sequence

It is important to mention that the concept of music simitor a harmonic progressioil[2]). Tonality is ubiquitous and
larity, and more concretely, finding cover songs in a da@pasost listeners, either musically trained or not, can idgrtie
has a direct implication to musical rights management amgbst stable pitch while listening to tonal music. Furthereno

, , _ this process is continuous and remains active througheut th
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note combinations played sequentially. These notes can dbmilarity function between chroma features, and we develo
unigue for each time slot (a melody) or can be played jointly new local alignment algorithm for assessing resemblance
with others (chord or harmonic progressions). Systems fbetween sequences.
cover song identification usually exploit these aspects andThe rest of the paper is organized as follows. First, in eacti
attempt to be robust against changes in other musical fdoetdlll we explain our test framework. We describe the methods
general, they either try to extract the predominant mel@jy [ used to evaluate several relevant parameters of a cover song
[9], a chord progression [10].111], or a chroma sequenck [12dentification system (chroma resolution and similaritgyk
[L3], [14], [1E], [16]. Some methods do not take into accountansposition, beat tracking and DTW constraints), and the
(at least explicitly) key transposition between sonps! [13llescriptors employed across all these experiments. We also
[14], but the usual strategy is to normalize these desariptintroduce the database and the evaluation measures that are
sequences in respect to the key. This is usually done bmployed along this study. Then, in sectiah I, we sequadiyti
means of a key profile extraction algorithi [9.[10I._[15]present all the evaluated parameters and the obtainedsesul
or by considering all possible musical transpositians [18], In sectiorlI\, we propose a new method for assessing the sim-
[L1]], [16]. Then, for obtaining a similarity measure, dégtor ilarity between cover songs. This is based on the conclssion
sequences are usually compared by means of Dynamic Tiolgained through our experiments (summarized in section
Warping (DTW) [8], [10], [15], an edit-distance variantl [7][IzE) and on two main aspects: a new chroma similarity
[L1]], string matching[[12], Locality Sensitive Hashing (Hp measure and a novel dynamic programming local alignment
[14], or a simple correlation function or a cosine andle [9hlgorithm. Finally, a short conclusions section closesstiely.
[13], [16]. In addition, a beat tracking method might be used
[@], [12], [16], or a song summarization or chorus extractio Il. EXPERIMENTAL FRAMEWORK
technique might be considered [9],[15]. ) )

Techniques for predominant melody extraction have beén Tonality descriptors
extensively researched in the MIR communiivi[1FTI[1BL]jJ19 All the implemented methods use the same feature set:
as well as key/chord identification enginési[20],1[21]. Alscsequences oHarmonic Pitch Class ProfilegHPCP) [25].
chroma-based features have become very popllar [22], [2Bhe HPCP is an enhanced pitch class distribution (or chroma)
[24], [25], with applications in various domains such aggrait feature, computed in a frame-by-frame basis only using the
discovery [26], audio thumbnailing and chorus detectiofi,[2 local maxima of the spectrum within a certain frequency
[28], or audio alignment[]5],[[29]. band. Chroma features are widely used in the literature and

Regarding alignment procedures and sequence similagitsoven to work quite well for the task at hand [13]._15],
measures, DTWI30] is a well known technigue used in speeff]. In general, chroma features should be robust to noise
recognition for aligning two sequences which may vary ife.g., ambient noise or percussive sounds), independent of
time or speed and for measuring similarity between therimbre and played instruments (so that the same piece played
Also, several edit-distance varianfs][31] are widely used with different instruments has the same tonal descriptiangl
very different disciplines such as text retrieval, DNA oof@in independent of loudness and dynamics. These are some of the
sequence alignmenf[B2], or MIR itse[f[33[.134]. If we usequalities that might make them lead to better results foecov
audio shingles (i.e., high-dimensional feature vectorscate- song identification when comparing them, for instance, with
nations) to represent different portions of a song sequent#CCs [{], [14].
LSH solves fast approximate nearest neighbor search in highn addition to using the local maxima of the spectrum within
dimensions|[[3b]. a certain frequency band, HPCPs are tuning independent

One of the main goals of this article is to present a studgo that the reference frequency can be different from the
of several factors involved in the computation of alignnsenstandard A 440 Hz), and consider the presence of harmonic
of musical pieces and similarity of (cover) songs. To d&requencies. The result of HPCP computationis a 12, 24 or 36-
this, the impact of a set of factors in state-of-the-art covéin (depending on the desired resolution) octave-indepeind
song identification systems is measured. We experiment witlstogram representing the relative intensity of each 2, 1/
different resolution of chroma features, with differentdb or 1/3 of the 12 semitones of the equal tempered scale. A
cost functions (or distances) between chroma featurey witthema of the extraction process and a plot of the resulting
the effect of using different musical transposition methahd HPCP sequence are shown in figutes 1 f@nd 2.
with the use of a beat tracking algorithm to obtain a tempo- We start by cutting the song into short overlapping and
independent chroma sequence representation. In add#gnwindowed frames. For that, we use a Blackman-Harris (62 dB)
DTW is a well known and extensively employed techniquayindow of 93 ms length with a 50% frame overlapping. We
we test two underexplored variants of it: DTW with globaperform a spectral analysis using the Discrete Fourier Sfran
and local constraints. All these experiments are oriented form (DFT), and the spectrum is whitened by normalizing the
elucidate the characteristics that a competitive coveg sben- amplitude values with respect to the spectral envelop. Rhem
tification system should have. We then apply this knowled@dbtained spectrum, we compute a set of local maxima or peaks
to a newly proposed method, which uses sequences of featame we select the ones with frequency valifeg40, 5000)
vectors describing tonality (in our case Harmonic Pitchs€laHz. The selected spectral peaks are summarized in an octave-
Profiles [25], from now on HPCP), but it presents relevaimdependent histogram according to a reference frequency
differences in two important aspects: we use a novel binafground 440 Hz). This reference frequency is estimated by
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exponential function.
”W*“ The HPCP extraction procedure employed here is the same
¥ ‘ . that has been used in 15[, 136, 137l,[25], and the paramsete
X ;E’:t‘lfi::):]‘%‘b mentioned in this paragraph have been proven to work well
Preprocessing . Fil‘lcring‘ for key estimation and chord extraction in the previoustedi
¢ Spectral whitening references.
# An exhaustive comparison between ‘standard’ chroma fea-
Reference (Tuning) o tures and HPCPs is presented Inl[25] ahdl [38].[Inl [25], a
Frequency y ‘t’f:_‘“:l)"s'f f‘(‘]‘ . comparison of different implementations of chroma feature
Computation qaeacy deviation (Constant-Q profiles[]39], Pitch Class Profiles (PCP) [20],
+ chromagrams([21] and HPCP) with MIDI-based Muse Data
Frequency to *  Logmapping ' [4Q] is provided. The correlation of HPCP with Muse Data
Pitch Class ‘I_’l“}'}&"" (»*‘}l;_“ffc ok agarinile) was higher than 0.9 for all the analyzed pieces (48 Fugues
Mapping . \\;:il::(li‘:z ::3:.;:31& of Bach’s WTC) and HPCPs outperformed the Constant-Q
+ c profiles, chromagrams and PCPs. We also compared the use
of different HPCP parameters, arriving to optimal resulithw
Postprocessing *  Normalization the ones used in the present work. [nl[38], the efficiency of

different sets of tonal descriptors for music structuratdivery
was studied. Herein, the use of three different pitch-class
distribution features (i.e., Constant-Q Profile, PCP ancCHP
was explored to perform structural analysis of a piece ofimus
audio. A database of 56 audio files (songs by The Beatles)
was used for evaluation. The experimental results showetd th
HPCP were performing best, yielding an average of 82% of
accuracy in identifying structural boundaries in music iaud
signals.

Fig. 1. General HPCP feature extraction block diagram. Audop) is
converted to a sequence of HPCP vectors (bottom) that eveith time.

B. Studied methods

We now describe two methods that have served us to test
several important parameters of a cover song identification
system, as a baseline for further improvements$ [16], [24. W
have chosen them because they represent in many ways the
state-of-the-art. Their main features are the use of glaligh-
ment techniques and common feature dissimilarity measures
Fig. 2. Example of a high-resolution HPCP sequence (bottamefp In subsequent sections, we differentiate these two methpds
corresponding to an excerpt of the song “imagine” by Johnnben(top s alignment procedure (cross-correlation or Dynamic &im
panel). In the HPCP sequence, time (in frames) is repredémtée horizontal . ..
axis and chroma bins are plotted in the vertical axis. Warping), but other procedures are characteristic for eaeh

(such as audio features, dissimilarity measure betwedariea
vectors, etc.).
analyzing the deviations of the spectral peaks with resmect 1) Cross-correlation approachA quite straightforward ap-
an equal-tempered chromatic scale. A global estimate ef tfiroach is presented in_[16]. This method finds cover versions
reference frequency is employed for all the analyzed framdgy cross-correlating chroma vector sequences (repreggtht

Instead of contributing to a single HPCP bin, each peakhole song) averaged beat-by-beat. It seems to be a good
frequencyf; contributes to the HPCP bin(s) that are containeglarting point since it was found to be superior to other
in a certain window around its frequency value. The pedRethods presented to MIREX 2006 evaluation coflieste
contributioni is weighted using aos? function around the worked with a similar version of the forementioned system.
bin frequency. The length of the weighting winddwhave We re-implemented the algorithm proposed by the aufhiars
been empirically set t§ semitones. This weighting procedureorder to consider the same chroma features for all the msthod
minimizes the estimation errors that we find when there afgPCPs) and to ease the introduction of new functionalities
tuning differences and inharmonicity present in the spmejr and improvements. We now describe the followed steps.
which could induce errors when mapping frequency valuesFirst of all, HPCP features are computed. Each frame vector
into HPCP bins. is normalized by dividing it by its maximum amplitude, as

In addition, in order to make harmonics contribute to thghown in figurell. In addition, beat timestamps are computed
pitch class of its fundamental frequency, we also introduce1 A | < ath o _ A
an additional weighting procedure: each peak frequeficy , ;gféo\fe‘ﬁ_osnc‘)‘r’]gt?A::ise“SigtngJ’émggys'c ir.org/ri@O06/index. php/
has a contribution to itssHarmonics = 8 sub-harmonics.

' ; - - 2http://labrosa.ee.columbia.edu/projects/coversongsccdssed 28  Jan.
We make this contribution decrease along frequency using zu08)
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with an algorithm adapted froni_[41][_142] using tlabio We can also obtain an alignment path whose length acts as a
Iibrar)ﬂ. normalization factor.

The next step is to average the frame-based HPCP vectors
contained in between each two beat timestamps. With this, Evaluation methodology

we obtain a tempo-independent HPCP sequence. In order tq“o test the effectiveness of the implemented systems un-
account for key changes, the two compared HPCP sequenges . : . : :
are usually transposed to the same kev by means of a kéar different parameter configurations, we compiled a music

uaty 'SP . y by .Collection comprising 2053 commercial songs distributed i
extraction a'go”th”.‘ or an alternative approa_ch_(see mcndiﬁerent musical genres. Within these songs, there wefie 45
MEC). Another option is the one proposed il ]16] Wher.?1riginal pieces (we call thensanonical versionsand 1462
the sequence similarity measure is computed for all pCESSIt():overs Songs were obtained from personal music collextion
transpositions and the maximum value is then chosen. )

The average number of covers per song was 4.24, ranging

In this appfoa‘:h' sequence similarity is obta_med througrr})m 2 (the original song plus 1 cover) to 20 (the original
cross-correlation. That is, we calculate a simple cross-

X . Song plus 19 covers). There were also 140 ‘confusing songs’
correlation between each. two tempo-mdgpendent HP.CP ffom the same genres and artists as the original ones that wer
guences for each song being compared (with possibly differ

ot associated to any cover group. A special emphasis was put
lengths). The cross-correlation values are further ndeedl y group P P P

in. the variety of styles and the employed genres for eachrcove
by the length of the shorter segment, so that the Measuretz a complete list of the music collection can be found in
bounded between zero and one. Note that a local distance

(if web pade
measure be“”eef‘ HPCPs mUSF be used. The most usual thII”'Igue to the high computational cost of the implemented
is to use an euclidean-based distance, but other measures

. T cover song identification algorithms, we have restrictegl th
be tried (see secti B). . music collection for preliminary experiments. We simulta-
In [L6], the authors found that genuine matches we

indicated not onlv b lati £ i1d heeously employed two non-overlapping smaller subsets of
Indicated not only by cross-correlations of large magresyd v, |, e song database, intended to be as representative as
but that these large values occurred in narrow local maxi

Bssible of the entire corpus. We provide some statistics in
in the cross correlations that fell off rapidly as the refati ?able[] P P

alignment changed from its best value. So, to maximize these
local maxima, cross-correlation was high-pass filteredaly, DBT7ASBLEI)EB|330 0B2053

. . i : ONG COMPILATIONS USED s AND CORRESPOND
the final measure representing the dissimilarity betweem thTo THE NAMES WE GIVE TO THE DIFFERENT DATABASES' ' DENOTES

songs is obtained with the reciprocal of the maximum peak/erace NUMBER OF COVERS PER GROURN DB75AND DB330THERE

value of this high-pass filtered cross-correlation. WERE NO'CONFUSING SONG$

2) Dyna}mlc Time Warping approachAnother apprqach 5E75—DE330 DEI0S3
for detecting cover songs was implemented, reflecting the Total number of songs 75 330 5053
most used alignment technique in the literature: Dynamic Number of cover sets| 15 30 451
Time Warping (DTW). The followed method has a very high Covers per set 5 11 4.24

resemblance with the one presentedlin [25].

We proceed by extracting HPCP features in the same wayWe queried all the covers and canonical versions and
as the previous approach (sectioiIIFB1). Here, we do neptained a distance matrix whose dimensions depended on
use any beat tracking method because DTW is speciall}e number of songs. This data was further processed in order
designed for dealing with tempo variations (see sedfici)ll o obtain several evaluation measures. Here, we mainly show
For speeding up calculations, a usual strategy is to averdhe results corresponding to standard F-measure and averag
eachk consecutive descriptors vectors (frames). We call thiecall (R;) [43]. This last measure was computed as the mean
value ) the averaging factor Here, each HPCP featurepercentage of identified covers within the firssenswers. All
vector is also normalized by its maximum value. We de&Xxperiments were evaluated with these measures, and, most o
with key invariance just in the same way than the previoiige time, other alternative metrics were highly correlatssth
approach (sectioiII-B1) and transpose the HPCP sequeni¢sprevious ones. A qualitative assessment of valid etialua
representing the two songs’ tonal progressions to a commagasures for this cover song system was presented.in [44].
key.

To align these two sequences (which can have different I1l. EXPERIMENTS
lengthsn. andm), we use the DTW algorithm [30]. It basically  The next subsections describe the tests carried out to-evalu
operates by recursively computing an x m cumulative ate the impact of several system parameters and procedures i
distance matrix by using the value of a local cost functiomoth methods explained in sectibBill-B. Our hypothesis was
This local cost function is usually set to be any euclideahat these had a strong influence in final identification aaxur
based distance, though [n[18]. [25] the correlation betwte and shouldn't be blindly assigned. To our knowledge, this is
two HPCP vectors is used to define the dissimilarity measugfie of the first systematic study of this kind that has been
(see sectio TI-B). With DTW, we obtain the total alignmeniade until now (with, perhaps, the exception [6fl[11], where
cost between two HPCP sequences in matrix elerent). the author evaluated the influence of key shifting, cost gap

Shittp://aubio.org (Accessed 28 Jan. 2008) 4http://mtg.upf.edutjserralfiles/coverdatabase.csv.tar.gz
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insertions and character swaps in a string alignment methedrk better than the simple euclidean distance between HPCP
used for cover song identification, in addition to the use of\aectors [25].
beat-synchronous set). Tests were made with the methods exposed in seEfioh II-B
In our experiments, we aimed at measuring, on a sta#nd the two measures cited above. The results are shown
of-the-art cover song identification system, the impacthef tin table[dIl. We observe that the employed HPCP distance
following factors [45]: (a) the resolution of the chroma feaplays a very important role. This aspect of the system can
tures, (b) the local cost function (or distance) betweemmta yield to more than a 13% accuracy improvement for some
features, (c) the effect of using different key transpositi tests [45]. In all trials made with different resolutionsdan
methods, and (d) the use of a beat tracking algorithm weays of transposing songs, correlation between HPCPs was
obtain a tempo-independent chroma sequence representafiound to be a better similarity measure than cosine diskance
In addition, as DTW is a well known and extensively emThe former gives a mean F-measure improvement, among the
ployed technique, we wanted to (e) test two underexplorézbsted variants, of approximately 6%.
variants of it: DTW with global and local constraints. A wrap

up discussion on these factors is provided in sedionl!ll-F TABLE Il
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

Finally, we Want to_ highlight that .thrOUgh all eXperim_entS SONGS FOR COSINE DISTANCEdCo5) AND CORRELATION DISTANCE
reported in this section, all combinations of parameteesidn (dcorR)- AVERAGE OF DIFFERENT CROSSCORRELATION APPROACH

each subsection were studied. We report average perfoemanc VARIANTS EVALUATED WITH DB75
r_esults for eac_h Sl_Jbs_ectlon given that _aII parameter_ccmnbln Distance Used Fmeasure R

tions resulted in similar behaviours. Different behaviare dcos 0.504 0.436
properly highlighted through the text, if any. dcORR 0.537 0.461

A. Effect of chroma resolution

Usually, chroma features are represented in a 12-bin h%— Effect of key transposition

togram, each bin corresponding to 1 of the 12 semitonesin order to account for songs played in a different key

of the equal-tempered scale. But higher resolutions can #hen the original one, we calculated a global HPCP vector

used to get a finer pitch class representation. Other conymoahd we transposed (circularly-shifted) one HPCP sequence t

used resolutions are 24 and 36 bifsl[25] (correspondingttte other’s tonality. This procedure was introduced in both

1/2 or 1/3 of a semitone). We tested these three valuesniethods described in sectibnl-B. A global HPCP vector was

our experiments. The resolution parameter was changedcitmputed by averaging all HPCPs in a sequence, and it was

the HPCP extraction method of the approaches explainednermalized by its maximum value as all HPCPs. With the

sectionI=B. global HPCPs of two songs:f4 andh ), we computed what
The average identification accuracy across experiments wive call theOptimal Transposition Indegfrom now on OT]I),

two different chroma similarity measures (sectlonlll-Byda which represents the number of bins that an HPCP needs to be

two key transposition methods (sectibnIll-C) are shown igircularly shifted to have maximal resemblance to the other

tablefl. In all the experiments, and independently of theCIRP

distance used and the transposition made, the greater G HP — — — —

resolution, the better the accuracy we got (F-measure morg?1(ha;hp) = porEIAX 1{hA cireshiftr(hp,id)} (1)

than 12% better). ST

where *' indicates a dot productNyg is the HPCP size

TABLE Il considered, andircshiftr(h ,id) is a function that rotates

F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED — . ; . )

SONGS FOR DIFFERENHPCPRESOLUTIONS AVERAGE OF DIFFERENT @ Vector (i) id positions to the right. A circular shift of one
CROSSCORRELATION APPROACH VARIANTS EVALUATED WITHDB75 position is a permutation of the entries in a vector where

the last component becomes the first one and all the other

Resolution | F-measure R .
12 bins 0,495 04729 components are shifted. Then, to transpose one song, fbr eac
24 bins 0.511 0.435 HPCP vector: in the whole sequence we compute:
36 bins 0.558 0.489
N .
Wy, = cireshiftg(haq, OTT) 2)

where superscript” denotes musical HPCP transposition.
In order to evaluate the goodness of this new procedure for
In order to test the importance of the used HPCP diStanﬁ:gnsposing both songs to a common key, an alternative way
measure, we evaluated two similarity measures: cosine sigf computing a transposed HPCP sequence was introduced.
larity and the correlation between feature vectors. Thege tThis consisted on calculating the main tonality for eaclcgie
measures were chosen because they are commonly usedsifig a key estimation algorithni_[25]. This algorithm is a
the literature. Correlation has been used [inl [1B]] [25], angate-of-the-art approach with an accuracy of 75% for real
is inspired on the cognitive aspects of pitch processing in
humansl[45]. Furthermore, for key extraction, it was fouad t Shttp://mtg.upf.edutjserra/chromabinsimappendix.html

B. Effect of chroma similarity measures
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audio pieces[]36], and scored among the first classified algmcuracies were reached with averaging HPCPs in a frame
rithms in the MIREX 2005 contdbtwith an accuracy of 86% basis, than using beat-by-beat averaging. A similar resitiy
with synthesized MIDI files. With this alternative procedur the Needleman-Wunsch-Sellers algorithn [47] reported1] [
once the main tonality was estimated, the whole song wsspports our findings.
transposed according to this estimated key. A possiblyebett
way of dealing with key changes would be to calculate the TABLE V

.o . . . -MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED
similarity measures for all possible transpositions anenth sones ror piFFERENTBVeraging factorINCLUDING BEAT AVERAGING).
take the maximum[[16]. We have not tested this proceduf@RRESPONDING TIME FACTOR IS EXPRESSED IN THE SECOND COLUMN
since for high HPCP resolutions it becomes computationall§}VERAGE OF DIFFERENTDTW ADPROACH VARIANTS EVALUATED WITH
expensive.

OTI and key transposition methods were compared across ~ Averaging factor  Averaging lengtf F-measure R
several HPCP resolutions (sectifiIl-A) and two different (frame count) (seconds)
HPCP distance measures (seclionli-B). The averagedifdent Beat variable 0.469 0417
_ _ _ : g 5 0.232 0.470  0.419
cation accuracy is shown in talfIgl V. It can be clearly seen th 10 0.464 0.494 0.448
a key estimation algorithm has a detrimental effect to diera 15 0.696 0511 0.465
results (F-measure 17% worse). This was also independent 20 0.929 0.514 0.463
LI70 - : P 25 1.161 0512 0.466
of the number of bins and the HPCP distance Bisatle 30 1.393 0.510 0.461
have evaluated dependence of the number of HPCP bins, and 40 1.856 0.487 0.434

HPCP distance, and we have found that they had similar

behavior. Therefore, it seems appropriate to transpose the

songs according to th@TI of the global HPCP vectors. ApartE_ Effect of DTW global and local constraints

from testing the appropriateness of our transposition oukth ) ) ) ]
we were also pursuing the impact that different transpwsiti e can apply different constraints to a DTW algorithm in

methods could have, which we see is quite important in tatfféder to decrease the number of paths considered during the
1 matching process. These constraints are desirable for @0 m
purposes: to reduce computational costs and to prevemdpat
TABLE IV logical’ warpings. ‘Pathological’ warpings are considgtle
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED h . | . | | . | |lj
SONGS FORGLOBALHPCP + OTITRANSPOSITION METHOD AND BY ones that, in an. alignment, assign several multiple va e; 0_
USING A KEY ESTIMATION ALGORITHM. AVERAGE OF DIFFERENT a sequence to just one value of the other sequence. This is
CROSSCORRELATION APPROACH VARIANTS EVALUATED WITHDB75 easily seen as a Straight |ine in the DTW matrix (an examp|e

is shown in the first plot of figurEl 3).

Method F-measure R . .
GlobalHPCP + OTI 0.569 0.500 To test the effect of these constraints we implemented 5
Key finding algorithm |  0.474 0.400 variants of a DTW algorithm: the one mentioned in section

two globally constrained DTW algorithms, and two
locally constrained ones:

« Simple DTW: This implementation corresponds to the
standard definition of DTW, where no constraints are
applied [30].
Globally constrained DTW: Two implementations were
tried. One corresponds to Sakoe-Chiba constralnis [48]
and the other one to the Itakura parallelograni [49]. With
these global constraints, elements far from the diagonal
of then x m DTW matrix are not considered (see figure

. A commonly used value for that in many speech
recognition tasks is 20%_[30].
Locally constrained DTW: To further specify the optimal
path, some local constraints can be applied in order
to guarantee that excessive time scale compression or
expansion is avoided. We specified two local constraints

D. Effect of beat tracking and averaging factors

In the cross-correlation approach (sectlon1I-B1), HPCP
vectors were averaged beat-by-beat. With the DTW approach
of section[I[z-B2, we expected DTW being able to cope with
tempo variations. To demonstrate this, we performed some
tests with DTW. In these, severaVeraging factoravere also
tried.

Experiments were done with 5 different DTW algorithms
(see sectiolJIE). In these and subsequent experiments
HPCP resolution was set to 36, correlation was used to,
assess the similarity between HPCP vectors and we employed
OTl-based transposition. Results shown in tdble V are the
average identification accuracy values obtained acrossethe
different implementations. We have to note that taking the ihat were found to work in a plausible way with speech
arithmetic mean of the respective evaluation measures snask recognition [50]. From this referenc@pe land Type 2
the concrete behaviour of them along different averaging gnstraints were chosen (we denote thelyersT1and
factors (information regarding the effect of different eaging MyersT2respectively). For both, the recursive relation of
factors upon considered constraints can be found in subséqu  pT\W is changed in such a way that in eleméntj) of a
sectiondII=B). Nevertheless, for all the tested variabistter DTW cumulative distance matrix, we only pay attention

Shttp://www.music-ir.org/mirex/2005/index.php/ to Warplngs(z—l., J ._1) (no tempo d,eVIatlonX’Z_Q’ j—1)
Audio_and Symbolic Key_Finding (Accessed 29 Jan. 2008) (22 tempo deviation) andi — 1,j — 2) (0.5z tempo
http://mtg.upf.edutjserra/chromabinsimappendix.html deviation). So, we allow maximal deviations of the double
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or half the tempo. This seems reasonable for us since, fbe other ones. This is due to the fact that, by using thedmaglo
instance, if the original song is at 120 B.P.M., a coveronstraints, we restrict the paths to be around the DTW matri
may not be at less than 60 B.P.M. or more than 24@ain diagonal. To understand the effect of that, as an exampl
B.P.M. The difference betweehllyersT1and MyersT2 we consider a song composed by two parts that are the same
constraints relies in the way we weight this warpingg:S; = AA) and another song (a cover) with nearly half the
considering intermediate distances for the former, artedmpo () and composed by only one of these pafis £ A’).
double-weighting the distance between elementnd The plots in figur€l4 graphically explain this idea. The finseo

j for the latter [50]. (left) was generated using a method with no constraints. We

These three implementations were evaluated across differ@bserve that the best path (straight diagonal red line) fyoes
averaging factors (see sectiBiiIll-D) and the means of the {- 1) to more or lesg20, 10) (horizontal axis lower-half part).
measure and average recall within the 4 first answered iteffdS is logical sinces; (vertical axis) is a half-tempo kind-of
(Ry) were taken. Results can be seen in tdhlke VI. In genergﬁpetition of one part of; (horizontal axis). The middle plot
better accuracies are achieved with local constraintsyedse Corresponds to the same matrix with Sakoe-Chiba consdraint
global constraints yielded the worst results. We observe that the ‘optimal’ path we could trace with thé firs

plot has been broken by the effect of the global constrafts.

TABLE VI similar situation occurs with Itakura constraints (righadtp.
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED
SONGS FOR DIFFERENDTW ALGORITHMS IMPLEMENTING GLOBAL AND

LOCAL CONSTRAINTS. EVALUATION WAS DONE WITH DB75

Alg. name Constr. type| F-measure R

Sakoe-Chiba Global 0.321 0.283
Itakura Global 0.344 0.304
Simple DTW | No constr. 0.600 0.541
MyersT2 Local 0.608 0.552
MyersT1 Local 0.624 0.570

Fig. 4. Examples of an unconstrained DTW matrix (left), armke&-Chiba
There is one important fact about local constraints thihter) and ltakura (right) giobal constraints &r (z-axis) ands: (y-axis).
) . this is an intuitive example, coordinate units in the honital and vertical
needs to be remarked and that can be appreciated in tae{flg are arbitrary.
VI In general (except for the locally constrained methods
as the framelength decreases, it can be seen that ideimificat
accuracy does so. This is due to the fact that lower frame-

lengths introduce the creation of ‘pathological’ warpingthps F. Discussion
(straight lines in the DTW matrix) that do not correspond to |n previous subsections we have studied the influence of
the true alignment (a straight line indicates several poaft several aspects in two state-of-the-art methods for caweg s
one sequence aligned just to one point of the other, lefupct jdentification. All the analyzed features proved to haveraddi
in figure[3). This makes the path length to increase, and singgd sometimes dramatic) impact in the final identification
we normalize the final result by this value to y|e|d Sequen%curacy_ We are now able to summarize some of the key
length independence, the final distance value decreases, Thspects that should be considered when identifying cover
false positives are introduced in the final outcomes of th@ngs. These aspects have been considered as a basis to
algorithm. Figurd13 shows the same part for matrices obtiingesign our approach, which will be presented in the follgvin
after a simple and a locally constrained DTW approach. Locgctions.
constraints prevent DTW from these undesired warpings. If 1) Audio features:The different musical changes involved
there is a single horizontal or vertical step in the warping cover songs, as discussed in secflon 1, give us clearlitssig
path, they force them to be the opposite way in next recurred{ which features to use. As chroma features have been
step. This is why the accuracy of locally constrained methodyidenced to work quite well for this task_J13]._115]_]16]
keeps increasing while lowering the averaging factor. and proven to be better than timbre oriented descriptors as
MFCC [4], |[14], our approaches are based on HPCPs, given
their usefulness for other tasks (e.g., key estimation)thait

9 correspondence to pitch class distributions (§eé [25] 188
\ a comparison with alternative approaches).

In sectionIl=d, we have shown that HPCP resolution is
important with both cosine and correlation distances. We=ha
tested 12, 24, and 36-bin HPCPs with different variants of
the methods presented in sectlon]l-B, and the results stigge
that accuracy increases as the resolution does so. On tee oth
hand, increasing resolution also increases computatgmsas,
so that higher resolution is not considered. In addition, 36

Also in tabldVIl, we observe that the identification accyracseems to be a good resolution for key estimation [36] and
for globally constrained methods is significantly lowerriiar ~ structural analysid [51].

|

Fig. 3. Parts of the matrix obtained with a simple (left) amtally
constrained (MyersT1, right) DTW approach for the same twogs. On
the left we can observe some ‘pathological’ warpings, wioife the right,
these have disappeared.
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TABLE VII
F-MEASURE FOR DIFFERENT AVERAGING FACTORS AND CONSTRAINTOTW APPROACH EVALUATION WITH DB75
Alg. name Constr. type 5 10 15 20 25 30 40
Sakoe-Chiba Global 0.259 0.282 0.327 0.332 0.3420.355 0.331
Itakura Global 0.256 0.286 0.362 0.353 0.3600.395 0.388
Simple DTW | No constr. | 0.537 0.606 0.611 0.632 0.638 0.634 0.598
MyersT1 Local 0.647 0.651 0.641 0.643 0.624 0.625 0.577
MyersT2 Local 0.651 0.646 0.617 0.614 0599 0.566 0.542

2) Similarity measure between featurek section[dlIz=B for a chord recognition engine range from 75.5P41[56] to
we have stated the importance of the similarity employed €8.3% [57] depending on the method and the considered
compare chroma vectors. Furthermore, we have shown thaisic material. Also, in this last case, once the chords are
using a similarity measure that is well correlated with dtigea  obtained, the approach to measure distances between them
foundations of musical pitcH_[46] improves substantialhe t is still an unsolved issue, involving both some cognitivel an
final system accuracy. When using tonality descriptors,esomrmusicological concepts that are not fully understood yet. S
papers do not specify how a local distance between these femors in these ‘intermediate’ processes might be added (in
ture vectors is computed. They are supposed to assess chroase we are using more than one of them), and be propagated
features’ similarity as the rest of studies: with an euditde to the overall system’s identification accuracy (the soechll
based distance. Since tonality features such as chromersectveakest linkproblem).
are proven not to be in an euclidean spdce [52]] [93]] [54],5) Alignment procedureSeveral tests have been presented
[B5], this assumption seems to be wrong. Furthermore, amjth chroma features DTW alignment. DTW allows us to
method (e.g., a classifier) using distances and concepts jstrict the alignment (or ‘warping’) paths to our requiksts
valid for an euclidean space will have the same problem. THigection[dII-B). Consequently, we have tested four ‘stadda
is an important issue that will be dealt in the proposed nethaonstraints on these paths (two local and two global con-
(section[TY). straints). With global constraints we are not consideriathp

3) Chroma transpositionTo account for main key differ- (or alignments) that might be far from the DTW matrix main
ences, one song is transposed to the tonality of the otisikagonal. A problem arises when this path can represent a
one by means of computing a global HPCP for each sofgprrect’ alignment (as the example illustrated in figlile 4)
(section[=Q) and circularly shifting by the OTI (equatio We have also seen that the accuracy decreases substantially
[M). This technique has been proven to be more accurate th¢ith these constraints. As mentioned in secfibn |, covers ca
transposing the song to a reference key by means of a lpstantially alter the song structure. When this happibes,
estimation algorithm. In this case, the use of a less-thafept ‘correct’ alignment between two covers of the saca@onical
key extraction algorithm degrades the overall identifaati song may be outside of the main DTW matrix diagonal.
accuracy. Through the testing of two transposition vasave Therefore, the use of global constraints dramatically eleses
have pointed out the relevance this fact has in a cover sohg system detection accuracy. These two facts reveal the
identification system or in a tonal alignment algorithm. incorrectness of using a global alignment technique forecov

4) The use of beat trackingte have seen that the DTWsoNg identification. Regarding local constraints, we haens
approach summarized in sectiBn IB2 could lead to bettdfat these can help us by reducing ‘pathological’ warpings
results without beat tracking information (tablEs V 4ad)VIl that arise when using a smaiveraging factor(table [\I).
Better results for DTW without beat tracking informatioriConsequently, this allows us to use much detail in our arglys
were also found when comparing against the cross-comalatpnd, therefore, to get a better accuracy.
approach (which uses beat information). We can see this inMany systems for cover song identification use a global
table[I¥ and in figur&ld (we also provide an extra comparatid@ignment technique such as DTW or entire song cross-
figure in a separate web p&eThis is another fact that makescorrelation for determining similarity (except the oneatthse
us disregard the use of ‘intermediate’ processes such as Re§ummarization, chorus extraction or segmentation tecieni
estimation algorithms and beat tracking systems (citiegwo  Which would suffer from the problem of the ‘weakest link’,
that have been tested here), or chord and melody extractfdi¢d above). In our opinion, a system considering sintiari
engines. We feel that this can be a double-edged sword. Diween song subsequences, and thus, using a local siynilari
to the fact that all these methods do not have a fully reliab® alignment method, is the only way to cope with strong song
performantﬂ they may decrease the accuracy of a systegffuctural changes.
comprising (at least) one of them. The same argument can
be applied to any audio segmentation, chorus extraction, or IV. PROPOSED METHOD

summarization technique. We can also take a look at statey, this section we present a novel method for cover song
of-the-art approaches. For instance, common accuracesaliyeniification which tries to avoid all the weak points that

. _ o _ conventional methods may have and which have been analyzed

9http://mtg.upf.edupjserr.s}/chromabmsumappenohx.html - in previous section. The proposed method uses high-résolut

To account for accuracies of those systems you can visit, BIREX HPCPs (36-bi h h b h lead b
2006 wiki page: http:/ww.music-ir.org/mirex/2006/mdphp/Main Page s (36-bin) as these have been shown to lead to better

(Accessed 29 Jan. 2008) accuracy (sectioIll=A). To account for key transposisipthe
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OTI transposition method explained in sectionTll-C is uged and[I=H. As we are using local constraints for the proposed
stead of a conventional key finding algorithm. We avoid usingethod, it is not surprising to find a quite similar identifi-
any kind of ‘intermediate’ technique as key estimation,rcho cation accuracy curve for different values of the averaging
extraction or beat tracking, as these might degrade the fifiattor when comparing the proposed method with the locally
system identification accuracy (as discussed in seffigH)IIl constrained DTW algorithms explained in sectionTlI-E. m a
The method does not employ global constraints, and takelectronic appendix to this artielk the interested reader can
advantage of the improvement given by the local constrairfied a figure showing the accuracy curves for the proposed
explained in sectiolII[ZIE. Furthermore, it presents ratldv method and for DTW with local constraints [45].
differences in two important aspects that boost its acgurac A global HPCP vector is computed by averaging all HPCPs
in a dramatic way: it uses a new binary similarity functioin a sequence, and normalizing by its maximum value. With
between chroma features (we have verified the relevancetigé global HPCPs of two songb‘f( andf?,;), we compute the
distance measures in sectieiTll-B), and employs a nowefr| index, which represents the number of bins that an HPCP
local alignment method accounting for structural chang@geds to circularly shift to have maximal resemblance to the
(considering similarity between subsequences, as dieduss other (see equatidd 1 in sectifnlll-C).
sectionIIL:H). The last operation of the pre-processing block consists in
A quite resemblant method to the one proposed hefels [1ghnsposing both musical pieces to a common key. This is
In there, a chroma-based feature named Polyphonic Binajfiply done by circularly shifting each HPCP in the whole
Feature Vector (PBFV) is adopted, which uses spectral peafguence of just one song Y71 (4, h) bins (remember
extraction and harmonics elimination. Then, the remaininge genote musical transposition by superscht
spectral peaks are averaged across beats and collapsed-to a 12) Similarity matrix: The next step is computing a similar-
element binary feature vector. This results in a stringwefcir ity matrix 5 between the obtained pair of HPCP sequences.

each analyzed_ song. Finally, a fast local str_ing search @deth\; tice that the sequences can have different lengtrand
and a Dynamic Programming (DP) matching are evaluateg. 5 that, therefores will be an n x m matrix. Element

The method proposed here also extracts a chroma featleS.) of the similarity matrix.$, has the functionality of a

vector using only spectral peaks (HPCP, see seEfian I1-4), ti — —
we do not do beat averaging, which we find has a detrimen g?al samen_e)ss measure between HPCP vebi’jjjgeanth,j

effect in the accuracy of DP algorithms such as Dynamic Tint&; ; = s(h?;‘j‘i,lm)). In our case, this is binary (i.e., only
Warping (DTW) (sectioliII=ID). Another important differea  two values are allowed).
to the proposed method is the similarity between vectors.We outline some reasons for using a binary similarity mea-
In [1Z], this is computed between binarized vectors, whilgure between chroma features. First, as these featureg migh
in the proposed method, what is binarized is the similarityot be in an euclidean spac¢e[46], we would prefer to avoid the
measure, not the vectors themselves (equddion 3). Fivedly, computation of an euclidean-based (dis)similarity meagiur
also think that using an exhaustive alignment method lilee tigeneral, we think that tonal similarity, and therefore cheo
one proposed in next sectibn TW-A is also determinant for ofieature distance, is a still far to be understood topic, with
final system identification accuracy. many of perceptual and cognitive open issues). Secondg usin
only two values to represent similarity, the possible paths
through the similarity matrix become more evident, provgli
us with a clear notion of where the two sequences agree
Figure[ shows a general block diagram of the system.dhd where they mismatch (see figlile 6 for an example). In
comprises four main sequential modules: pre-processimg, saddition, binary similarity allows us to operate like matyrsy
ilarity matrix creation, dynamic programming local aligant alignment techniques do: just considering if two elemeriits o
(DPLA) and post-processing. the string are the same. With this, we have an expanded range
From each pair of compared songs A and B (inputspf alignment techniques borrowed from string comparison,
we obtain a distance between them (output). Pre-processiligA or protein sequence alignment, symbolic time series
comprises HPCP sequence extraction and a global HP§iRilarity, etc. [32]. Finally, we believe that considegithe
averaging for each song. Then, one song is transposed to Wiveary similarity of an HPCP vector might be an easier (or at
key of the other one by means of &ptimal Transposition |east more affordable) task to assess than obtaining dlelia
Index (OTI). From these two sequences, a binary similarityraded scale of resemblance between two HPCPs correlated
matrix is then computed. This last is the only input needed faiith (sometimes subjective) perceptual similarity.
a Dynamic Programming Local Alignme(DPLA) algorithm,  An intuitive idea to consider when deciding if two HPCP
which calculates a score matrix that gives highest ratings \iectors refer to the same tonal root is to keep circularlftiski
best aligned subsequences. Finally, in the post-proags&p, one of them and to calculate a resemblance index for all
we obtain a normalized distance between the two procesmsime transpositions. Then, if the transposition tleails
songs. We now explain these steps in detail. to maximal similarity corresponds to less than a semitone
1) Pre-processingfor each song, we extract a sequence @iccounting for slight tuning differences), the two HPCR-ve
36-bin HPCP feature vectors as made before, using the sam& are claimed to be the same. This idea can be formulated
parameters specified in sectibnl-A. An averaging factor of
10 was used as it was found to work well in secti@aSll-D http://mtg.upf.edutjserra/chromabinsimappendix.html

A. System description
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Fig. 5. General block diagram of the system.

in terms of the OTI explained in equatigh 1. So, as we adesigned for determining similar regions between two nu-
using a resolution of &/3 of a semitone (36 hins), the binarycleotide or protein sequences. Instead of looking at thal tot
similarity measure between the two vectors is then obtainedquence, the Smith-Waterman algorithm compares segments
by: of all possible lengths and optimizes the similarity measur
So, in the same manner as the Smith-Waterman algorithm
L t OTT W — 01 1 does, we create _a(n +1) x (m+ 1)_ aIignm_ent r_natrixH
s(hh" hp ;) = {“+ ' ( Al hej) € {0,1Npg-1}, through a recursive formula, that, in addition, incorpesat
’ p—  otherwise. - some local constraints:
where iy and . are two constants that indicate match or

mismatch. These are usually set to a positive and a negative Hi-1j-1+ Si-1,4-1 = 0(Si-2,5-2, Si-1-1)

value (e.g., +1 and -1). Empirically, we found that a goog, _ ) Hi-zj-1+ Si-1j-1—0(Si-3,j-2,9i-15-1)
choice foru, andu_ were +1 and -0.9 respectively. Ranges "’ Hi 12+ Si—1,j-1 —0(Si—2,j-3,5i-1,j-1)
of 4y and u_ betweent+0.7 and+1.25 resulted in changes 0

smaller than an 5% of the evaluation measures tested. We show 4)

two examples of this type of similarity matrix in figui® 6. for4 <i <n+1and4 < j < m+1. EachsS; ; corresponds to
the value of the binary similarity matri¥ at element(s, j),

and §() denotes a penalty for a gap opening or extension.
This latter value is set to 0 if;,_; ;1 > 0 (no gap between
Si—l,j—l and eitherSi_QJ_g, S,'_37j_2 or Si_27j_3), ortoa
positive value ifS;_; ;_1 < 0. More concretely:

0 if b> 0 (no gap)

Fig. 6. Euclidean-based similarity matrix for two coverstbé same song _ ; ;
(left), OTI-based binary similarity matrix for the same eos (center) and 5(@, b) €1 ff b < 0anda >0 (gap openln.g) ®)
OTl-based binary similarity matrix for two songs that do sbare a common co if b<0anda < b (gap extension)

tonal progression (right). We can see diagonal white linethé second plot, o
while this pattern does not exist in the third. Coordinatéésuin the horizontal ~ Good values were empirically found to be = 0.5 for

and vertical axes correspond to 1 sec frames. a gap opening, and, = 0.7 for a gap extension. Small
) . ) _variability of the evaluation measures was shown &prc,
3) Dynamic programming local alignment (DPLAR bi-  yajyes between 0.3 and 1. We used the songs in DB9O for
nary similarity matrix S is the only input to our DPLA empirically estimating these parameters and then evaluhee
algorithm. In sectiorIII-E we have seen that using globakethod with DB2053 (see sectiGiV-B).

constraints and, thus, forcing warping paths to be aroued th \;5yes of 77 can be interpreted considering thd ; is the
alignment matrix main diagonal, had a detrimental effect in T and
-1

final system accuracy. Instead, the use of local constrairrlnté"‘_x.'rﬂum similarity of two segments ending hﬂfz
[60] can help us preventing ‘pathological warpings’ andjung_,j,l respectively. The zero is included to prevent negative
admitting certain ’logical’ tempo changes. Also, in sentiosimilarity, indicating no similarity up tdﬂ;g_l andhp j_1.
[=E] it has been discussed the suitability of performing &he first 3 rows and columns df can be initialized to have
local alignment to overcome strong song structure change$ value.

(i.e., to check all possible subsequences). The Smithi¥date =~ An example of the resultant matri¥ is shown in figure
algorithm [58] is a well-known algorithm for performing lak [1. We clearly observe two local alignment traces, which
sequence alignment in Molecular Biology. It was originallgorrespond to two highly resemblant sections between two
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versions of the same song (fraff 50 25 10 Has0,100 and from in order to determine the ones leading to best identification
Hogo,25 10 Hag0,100, Where sub-indices respectively denotaccuracy. We observe that OTI-based binary similarity ixatr
rows and columns). outperforms other binary similarity matrices obtainedtigh
thresholding common similarity measures between chroma
features. In the case of these last measures, best idditifica
accuracy values for different thresholds tested are shown.

TABLE VI
IDENTIFICATION ACCURACY FORDPLA ALGORITHM WITH 5 DIFFERENT
BINARY SIMILARITY MATRICES AS INPUT. EVALUATION DONE WITH
DB2053
Distance used F-measure R
Dot product 0.132 0.136
Euclidean distance 0.218 0.216
Cosine similarity 0.221 0.219
Correlation 0.239 0.247
OTl-based similarity 0.601 0.576

We next show the general evaluation results corresponding
to our personal music collection. Within these, we compare
fa 7 E e of a local ali  matrl between tw X identification accuracy between the proposed method and the

9. /. Xample of a local alignment matt etween 0 covers. It can . _ .

be seen that the two songs do not entirely coincide (just m fragments), best variants of the cross-correlation and DTW methodsdest
and that, mainly, their respective second halves are caetpleliferent. [N table [X we report the F-measure values for the three
Coordinate units in the horizontal and vertical axes cpoed to 1 sec (ifferent databases presented. Recall is shown in ﬁﬁhre 8. 1
averaging across frames. there, we plot an average Recall figure for all the implenténte

) he | fth hod. onlv th systems (best variants). Vertical axis represents Recull a
4) Post-processingln the last step of the method, only the, i, onta) axis represents different percentages of thieved

best local alignment ir{ is considered. This means that th%nswer. As this was set to a maximum length of 10, the
score determining the local subsequence similarity _be1we umbers represent 0 answers (giving a Recall of 0), 1 an@wer,
two HP.CP_ sequences, and, therefore, what we consider 1o, ers and so forth. We can see that with the newly proposed
the S'T“"a”ty between two songs, corresponds to the Vaiuerﬂethod the accuracy is around 58% of correctly retrieved
H’s highest peak: songs within the first 10 retrieved answers. This value ifliig
T superior to the accuracies achieved for the best versiotieof
Score(HPCP,", HPCPp) = max{H;;} (6)  cross-correlation and DTW methods that we could implement
for anyi,j such thatl <i <n+1andl <j <m+ 1. (around 20 an_d 40 percent re_spectiv_ely), and i; very far from
Finally, to obtain a dissimilarity value that is indepenten (e the baseline corresponding to just guessing by chance,
song duration, the score is normalized by the compared soi{gich is lower than 0.3%.

lengths [[45] and the inverse is taken: TABLE IX
F-MEASURE FOR THE PROPOSED METHODIHE DTW AND THE
CROSSCORRELATION APPROACHESPARAMETERS FOR THE

n-+m
d(son son _ 7 CROSSCORRELATION AND THEDTW METHODS WERE ADJUSTED
(songa, 95) Score(HPCPZ;T,HPCPB) (7) ACCORDING TO THE BEST VALUES AND VARIANTS FOUND IN SECTIONI
wheren andm are the respective lengths for songs A and B. Method DB75 DB330 DB2053
Cross-correlation| 0.638 0.348 0.169
DTW 0.651 0.485 0.399
B. Evaluation Proposed method 0.868  0.688 0.601

We now display the results corresponding to the evaluation
of our method. This has been made with the music collection!f we take a look to MIREX 2007 contest data (where we
presented in sectioB IIC and within the framework of thgarticipated with this algorithm), we observe that our egst
MIREX 2008 Audio Cover Song Identification contest as wellvas the best performing one with a substantial difference to
As the databases used in this part of the paper may ha&ifgers [59]. A total of 8 different algorithms were presenhte
more than 5 covers per set, the first 10 retrieved items wdfethe MIREX 2007 Audio Cover Song task. Taflé X shows
considered for evaluation. the overall summary results obtaiflédThe present algorithm

Firstly, as we have proposed a new distance measure b%G, first column) performed the best in all considered eval-
tween chroma features, we provide results for a comparisé@tion measures, reaching an average accuracy of 5.009 of
between common distance measures and the proposed @prrectly identified covers within the 10 first retrievedmtnts
based binary distance in tablEYIIl. To perform this comMNClio) and a Mean Average PrecisioMAP) of 0.521.
parison, we have thresholded common distance measures angd . .

. . . See the complete results and details about the evaluatiocegure at

applied the same DPLA algorithm (with the same parametefg),./ww.music-ir.org/mirex/2007/index.php/
to all of them. Several thresholds were tested for eachriista Audio_Cover Song Identification Results (Accessed 29 Jan. 2008)
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TABLE X
RESULTS FORMIREX 2007 AubiO COVER SONG TASK. ACCURACY MEASURES EMPLOYED WERE THE TOTAL NUMBER OF COVERS ENTIFIED WITHIN
THE FIRST10ANSWERS(TNCI1p), THE MEAN NUMBER OF COVERS IDENTIFIED WITHIN THELO FIRST ANSWERS(MNCl 19), THE MEAN OF AVERAGE
PRECISION(MAP) AND THE AVERAGE RANK OF THE FIRST CORRECTLY IDENTIFIED COVEKRANK ;). CLOCK TIME MEASURES ARE REPORTED ON THE
LAST LINE OF THE TABLE (NUMBER OF USED THREADS IN BRACKET$. VALUES FOR THE ALGORITHM PRESENTED HERE ARE SHOWN IN THE FIRST
COLUMN (SG)

Measure]| Range | SG EC JB JEC KL1 KL2 KP M
TNClyo [0-3300] 1653 1207 869 762 425 291 190 34
MNClyg [0-10] 5.009 3.658 2.633 2.309 1.288 0.882 0.576 0.103
MAP [0-1] 0.521 0.330 0.267 0.238 0.13 0.086 0.061 0.017
Rank [0-1000 9.367 13.994 29.527 22.209 57.542 51.094 46.539 97.470
Runtime | [HH:MM] | 01:37(1) 04:28(5) 04:32(8) 00:47(8) 10:45(8) 02:37(1) 0351(1) 0a2l)

Righy” and “Get Back”, that caused ‘confusion’ more or
- less with all the queries made. One explanation for this
o —DPia might be that these two songs are built over a very simple
chord progression involving just two chords: the tonic amel t
mediant (e.g., C and Em for a C major key) for the former,
and the tonic and the subdominant (e.g., C and F for a C major
key) for the latter. So, as they rely half of the time in theiton
chord, any song being compared to them will share half of the
tonal progression. Other poorly classified items are “Thééa
of Epping forest” (Genesis) or “Stairway to heaven” (Led
I I H Zeppelin). Checking their wrongly associated covers, we fin
OO s Answenangt o % that, most of the time, the alignment, the similarity measur

and the transposition are performing correctly accordintpé

Fig. 8. Average Recall figures comparing the proposed appr@idue circles) features extracted. Thus, we have the intuition that thelton
e 53055 Bt 1 e cocae e ST PogeSsion MG ot be enough fo seme kinds of covers.
mg:hgds compared wére adjusted according to the best Valuled in section This does not mean that HPCP_S could be sensitive to timbre
[ A base-line identification accuracy (BLE) is also ptatt (black bottom OF other facets of the musical pieces. On the contrary, we are
asterisks). able to detect many covers that have a radical change in the
instrumentation, which we think it is due to the capacity of

Furth th t best performi ‘ hed dHPCPs to filter timbre out.
urthermore, the next best performing system reached and ap interesting misclassification appears with “No woman no

MNCl, of 3.658 and aMAP of 0.330, which represents aSUb'cry”, originally performed by Bob Marley. These covers are

stantial difference to the one proposed in this paper (38.88, ¢4 ciated more than 1/3 of the times with the song “Let it be”

superior in terms oMAP). In addition, statistical significgpce The Beatles). When we analyzed the harmonic progression of
tests showed that the results for the system were signiica oth songs, we discovered that they share the same chords in

better than those of the other six systems presented in iga ent parts of the theme (C - G - Am - F). Thus, this

contest. ight be a logical misclassification using chroma features.

A basic ef‘ror anal;csm LALE_B] shows that the best identifieg e source of frequent confusion is the classical haimo
covers are “A forest”, originally performed by The Cur rogression | - IV - 1 or | - V - IV - I, which many songs
and “Let it be”, originally performed by The Beatles. Othe hare '

correctly classified items are “Yesterday”, “Dont let me adw
and “We can work it out”, all originally performed by The V. CONCLUSIONS
Beatles and “How insensitive” (Vinicius de Moraes). Thiglhi . ' . .
amount of Beatles’ songs within the better classified items!n this paper we have devised a new method for audio
can be due to the fact that there were many Beatles’ C()\%gnal comparison focused on cover song identification that
sets (e.g., 14 out of 30 in DB330), but it can also be justified) !arge outperforms state-of-the-art system. This has bee
considering the clear simplicity and definition of their abn achieved after experimenting with many proposed techisique
progressions, that, in comparison with other more elabdratand vanants_, and testing their effect_m f|_naI _'der?“f'c"’?“f’
pieces (e.g., “Over the rainbow” performed by Judy Garlanozjnqcuragy, which also was one of the main objectives in wgtti
leads to better identification. Within this set of betteritiged 1S article. i

e have first presented our test framework and the two

covers there are several examples of structural changes an¥

tempo deviations. In the electronic appeﬂbwe provide a state-of-the-art methods that we have used in further exper
confusion matrix with labels corresponding to cover sats/& ments. The performed analysis has focused on several tarian

and columns). that could be taken for these two methods (and, in general,
We detected that there were some songs, such as “Eleafr%rany method _based on chroma descriptors): (a) the_ chroma
features resolution - sectidn 1MIA; (b) the local cost ftion

12http://mtg.upf.edutjserra/chromabinsimappendix.html (dissimilarity measure) between chroma features - section

o
©

o
®

o
<

o
=3

% Positive examples / Num. covers
o © ©o o
W s o

o

" .
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[=B] (c) the effect of using key transposition methods f14]
section[I[=Q; and (d) the use of a beat tracking algorithm
to obtain a tempo-independent representation of the chro
sequence - sectid0IMD. In addition, as DTW is a well known
and extensively used technique, we tested two underexplore
variants of it, apart from the simple one mentioned in secti
DTW with global and with local constraints (section
[=E). The results of these cross-validated experimerigeh
been summarized in sectien1ll-F.

Finally, we have presented a new cover song identification

[17]

M. Casey and M. Slaney, “Song intersection by approxénaearest
neighbor search,Int. Symp. on Music Information Retrieval (ISMJR)
pp. 144-149, October 2006.

E. Gobmez, B. S. Ong, and P. Herrera, “Automatic tonahlgsis
from music summaries for version identificatiorConv. of the Audio
Engineering Society (AESDctober 2006.

16] D. P. W. Ellis and G. E. Poliner, “Identifying cover sanwith chroma

features and dynamic programming beat trackinBEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICAS&#®) 4, pp. 1429—
1432, April 2007.
A. Klapuri, “Signal processing methods for the autoimatanscription
of music,” Ph.D. dissertation, Tampere University of Tezlogy, Fin-
land, April 2004.

system that takes advantage of the results found and that B8k M. Goto, “A real-time music-scene-description systepredominant-

been proven, using different evaluation measures andxisnte

to work significantly better than other state-of-the-artmoels.
Although cover song identification is still a relatively new?19]
research topic, and systems dealing with this task can be
further improved, we think that the work done and the method
presented here represent an important milestone. [20]
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